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How2: A Large-scale Dataset for Multimodal Language Understanding

Human information processing is inherently multimodal, and language is best understood in a situated context. In order to achieve human-like language processing capabilities, machines should be able to jointly process multimodal data, and not just text, images, or speech in isolation. Nevertheless, there are very few multimodal datasets to support such research, resulting in a limited interaction among different research communities. In this paper, we introduce How2, a large-scale dataset of instructional videos covering a wide variety of topics across 80,000 clips (about 2,000 hours), with word-level time alignments to the ground-truth English subtitles. In addition to being multimodal, How2 is multilingual: we crowdsourced Portuguese translations of the subtitles. We present results for monomodal and multimodal baselines on several language processing tasks with interesting insights on the utility of different modalities. We hope that by making the How2 dataset and baselines available we will encourage collaboration across language, speech and vision communities.

Introduction

Multimodal sensory integration is an important aspect of human concept representation, language processing and reasoning [START_REF] Lawrence W Barsalou | Grounding conceptual knowledge in modality-specific systems[END_REF]. From a computational perspective, major breakthroughs in natural language processing (NLP), computer vision (CV), and automatic speech recognition (ASR) have resulted in improvements in a wide range of multimodal tasks, including visual question-answering [START_REF] Antol | VQA: Visual Question Answering[END_REF], multimodal machine translation [START_REF] Specia | A shared task on multimodal machine translation and crosslingual image description (WMT)[END_REF], visual dialogue [START_REF] Das | Visual Dialog[END_REF], and grounded ASR [START_REF] Palaskar | End-to-end multimodal speech recognition[END_REF]. Despite these advances, state-of-the-art computational models are nowhere near integrating multiple modalities as effectively as humans. This can be partially attributed to a lack of resources that are pervasively multimodal: existing datasets are typically focused on a single task, e.g. images and text for image captioning [START_REF] Chen | Microsoft COCO captions: Data collection and evaluation server[END_REF], images and text for visual-question answering [START_REF] Antol | VQA: Visual Question Answering[END_REF], or speech and text for ASR [START_REF] Godfrey | Switchboard: Telephone speech corpus for research and development[END_REF]. These datasets play a crucial role in the development of their fields, but their single-task nature limits the collective ability to develop general purpose artificial intelligence.

We introduce How2, a dataset of instructional videos paired with spoken utterances, English subtitles and their crowdsourced Portuguese translations, as well as English video summaries. The pervasive multimodality of How2 makes it an ideal resource for developing new models for multimodal understanding. In comparison to other multimodal resources, How2 is a naturally occurring dataset: I'm very close to the green but I didn't get it on the green so now I'm in this grass bunker. Eu estou muito perto do green, mas eu não pus a bola no green, então agora estou neste bunker de grama.

In golf, get the body low in order to get underneath the golf ball when chipping out of thick grass from a side hill lie. neither the subtitles, nor the summaries have been crowdsourced. Furthermore, the visual content is inherently related to the spoken utterances. Figure 1 shows an example in which the presenter is explaining how to play a golf shot. If one only has access to the text, it is unclear whether the "green" in the subtitles refers to the colour green ("verde" in Portuguese), or the surface type ("green" in Portuguese). The textual context alone is not enough to disambiguate the meaning of the subtitles, and at the time of writing, both Google Translate and Microsoft Translator incorrectly translate "green" as "verde". However, given additional visual context (green grass with a flag pole), or the audio context (outside with the sound of chipping a golf ball), our multimodal models can correctly interpret this utterance. See Appendix A.1 for more examples.

The value of additional modalities can also be demonstrated for ASR. Object and motion level visual cues can filter out systematic noise that co-occurs with activities. Scene information from an image can be used to learn a common auditory representational space for different environmental characteristics such as indoor vs. outdoor settings [START_REF] Miao | Open-domain audio-visual speech recognition: A deep learning approach[END_REF]. Entities in an image can also be used to adapt a language model towards a domain [START_REF] Gupta | Visual features for contextaware speech recognition[END_REF].

Together with the dataset, we also release code to perform baseline experiments on several tasks covering different subsets of How2. We find that action-level visual features improve automatic speech recognition, video summarization and speech-to-text translation. These results demonstrate the potential of the How2 dataset for future multimodal research.

HowDataset

The How2 dataset consists of 79,114 instructional videos (2,000 hours in total, with an average length of 90 seconds) with English subtitles. The corpus can be (re-)created using the scripts and metadata we made available at https://github.com/srvk/how2-dataset. The website also contains information on how to obtain pre-computed features for validation or saving computation, and how to reproduce the experimental results we present using nmtpy [START_REF] Caglayan | NMTPY: A flexible toolkit for advanced neural machine translation systems[END_REF].

Collection We downloaded the videos from YouTube, along with various types of metadata, including ground-truth subtitles and summaries (referred to as "descriptions") in English, written by the video creators. Videos were scraped from the YouTube platform using a keyword based spider as described in [START_REF] Yu | Instructional videos for unsupervised harvesting and learning of action examples[END_REF]. In order to produce a multilingual and multimodal dataset, the English subtitles were first re-segmented into full sentences, which were then aligned to the speech at the word level. The visual features were extracted from the video clips that correspond to these sentence-level alignments. The distribution of the duration of segments can be seen in Figure 2b. See Appendix A.2 for more details on the alignment process.

To generate translations, we used the Figure Eight crowdsourcing platform. After conducting a pilot experiment with a small set of languages, we chose Portuguese as target language because of the availability of workers and the quality and reliability of the annotations performed by them. In order to reduce the amount of time it would take to annotate the dataset, we posed translation as a post-editing task: in another pilot experiment, we instructed crowd workers to "choose the best translation" from English to Portuguese among candidate translations provided by three state-of-the-art online neural machine translation systems. We then selected the system that was preferred most often, and had crowdworkers post-edit the candidate translations. This process is still ongoing.

During annotation on Figure Eight, the worker population was restricted to those living in Portugal or Brazil. Workers were paid US$ 0.05 to watch a short video and post-edit the automatically translated Portuguese segment into correct Portuguese. Workers thus performed the annotation (and the pilots) in a multimodal setting. To ascertain worker reliability, a content word of each 5 sentences of the candidate translations was replaced by another random content word that was not part of the translation. If the word inserted was still present in the final translation, the annotations from that worker were discarded and the worker was banned from further contributing to the project.

At the time of writing, we had completed the collection of Portuguese translations for a 300h subset of the entire dataset from 200 workers (each was limited to 5,000 segments to post-edit but none of them reached this limit). We discarded and re-annotated 18% of the 300h. The total cost for data collection thus far was US$ 8,771.

In a verification experiment, we determined found that training an English-Portuguese neural MT system on 300h of machine generated training data degrades performance by about 1 BLEU point, when compared to a system that has been trained on the post-edited translations, when evaluated against expert-validated post-edited translations, showing that the approach is justified.

Topic distribution

We clustered the English subtitles using Latent Dirichlet Allocation (LDA) [START_REF] David M Blei | Latent dirichlet allocation[END_REF]. Upon analyzing the clusters with top words in each topic, inter-topic and intra-topic distances, we found that a good representation for the 300h subset consists of 22 topics. We hand-labeled these topics based on top words in each cluster, as shown in Figure 2a. 

Splits

Experiments

To demonstrate and explore the potential of the How2 dataset, we propose several tasks and developed systems for them using a sequence-to-sequence (S2S) approach. Table 2 summarizes the baseline results on the 300h training set for all tasks; only the summarization task uses the entire 2000h set. More details can be found in the Appendix A.4.

1. Automatic speech recognition. We use an S2S model with a deep bi-directional LSTM encoder [START_REF] Hochreiter | Long short-term memory[END_REF]. For multimodal ASR, we apply visual adaptive training [START_REF] Palaskar | End-to-end multimodal speech recognition[END_REF][START_REF] Gupta | Visual features for contextaware speech recognition[END_REF] where we re-train an ASR model by adding a linear adaptation layer which learns a video-specific bias to additively shift the speech features. All parameters of the network all jointly trained in this re-training step. The adaptation layer increases the model size by less than 1%.

2. Machine translation. We train an S2S MT model for English→Portuguese using a bidirectional GRU [START_REF] Cho | Learning phrase representations using rnn encoderdecoder for statistical machine translation[END_REF]. For multimodal MT (MMT), we apply the same adaptive approach as we did for ASR but the inputs to be shifted are now word embeddings instead of speech features.

The adaptation layer increases the model size by 8%.

3. Speech-to-text translation. We directly translate from English speech to Portuguese using the same ASR architecture but with a different target vocabulary, which is similar to previous approaches [START_REF] Weiss | Sequence-tosequence models can directly translate foreign speech[END_REF][START_REF] Bérard | End-to-end automatic speech translation of audiobooks[END_REF]. For multimodal STT, we apply the same adaptive scheme as in ASR.

4.

Summarization. The baseline is again the same S2S MT model. For multimodal summarization, we follow the hierarchical attention approach [START_REF] Libovický | Attention strategies for multi-source sequence-tosequence learning[END_REF][START_REF] Libovický | Multimodal abstractive summarization of open-domain videos[END_REF] to combine textual and visual modalities by using a sequence of action-level features instead of an average-pooled one as in the other experiments. This latter increases the model size by 14%.

Related work

Lying at the intersection of NLP and CV [START_REF] Bernardi | Automatic description generation from images: A survey of models, datasets, and evaluation measures[END_REF], image captioning (IC) is the multimodal task with the largest number of datasets available. The most widely used datasets in this field are the ones with human crowdsourced descriptions, such as Flickr8K [START_REF] Hodosh | Framing Image Description as a Ranking Task: Data, Models and Evaluation Metrics[END_REF], Flickr30K [START_REF] Young | From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions[END_REF], MSCOCO [START_REF] Chen | Microsoft COCO captions: Data collection and evaluation server[END_REF] and their extensions to other languages. A closely related task to IC is multimodal machine translation. So far, MMT has been addressed using captioning datasets extended with translations in different languages such as IAPR-TC12 [START_REF] Grubinger | The IAPR TC-12 benchmark: A new evaluation resource for visual information systems[END_REF] and Multi30K which is an extension of Flickr30K into German [START_REF] Elliott | Multi30k: Multilingual english-german image descriptions[END_REF], French [START_REF] Elliott | Findings of the second shared task on multimodal machine translation and multilingual image description[END_REF], and Czech [START_REF] Barrault | Findings of the shared task on multimodal machine translation (WMT)[END_REF]. One major pitfall of these datasets is that they lack syntactic and semantic diversity.

A similar task to IC is that of automatically describing videos (VD). The most popular datasets for VD are MSR-VTT [START_REF] Xu | MSR-VTT: a large video description dataset for bridging video and language[END_REF], LSMDC [START_REF] Rohrbach | Movie description[END_REF], and Microsoft Research Video Description (MSVD) corpus [START_REF] Chen | Building a persistent workforce on Mechanical Turk for multilingual data collection[END_REF] which is the only multilingual resource of this type providing 122K crowdsourced descriptions. However, two-thirds of the descriptions are in English and the ones in other languages are not parallel.

How2 offers a larger amount of data, all of which is in two languages.

Lipreading can be seen as a form of multimodal ASR, albeit not fusing information at the semantic level. Popular and large-scale datasets include Grid [START_REF] Cooke | An audio-visual corpus for speech perception and automatic speech recognition[END_REF] and Lip Reading in The Wild [START_REF] Son | Lip reading in the wild[END_REF]. How2 is the first dataset that allows to perform multimodal ASR, using images as acoustic and linguistic context to improve accuracy. How2 is also a valuable resource for speech-to-text translation, which EN CZ (V) 492,402 pairs is otherwise often performed using Fisher-Callhome [START_REF] Post | Improved Speech-to-Text translation with the Fisher and Callhome Spanish-English speech translation corpus[END_REF] and Audiobooks [START_REF] Ali Can Kocabiyikoglu | Augmenting Librispeech with French Translations: A Multimodal Corpus for Direct Speech Translation Evaluation[END_REF]. How2 is the only corpus for multimodal STT currently available.

Multimodal neural abstractive summarization is an emerging field for which there are no well established benchmarking datasets yet. Li et al. [START_REF] Li | Multi-modal summarization for asynchronous collection of text, image, audio and video[END_REF] collected a multimodal corpus of news articles containing 500 videos of English news articles paired with human annotated summaries. UzZaman et al. [START_REF] Uzzaman | Multimodal summarization of complex sentences[END_REF] collected a corpus of images, structured text and simplified compressed text for summarization of complex sentences. More traditional text-based summarization is commonly based on CNN/Daily Mail [START_REF] Moritz Hermann | Teaching machines to read and comprehend[END_REF][START_REF] Nallapati | Abstractive text summarization using sequence-to-sequence rnns and beyond[END_REF], Gigaword [START_REF] Napoles | Annotated gigaword[END_REF] and the Document Understanding Conference challenge data [START_REF] Over | Duc in context[END_REF]. An older version and non-released version of How2 was used for experiments on learning action examples in videos in [START_REF] Yu | Instructional videos for unsupervised harvesting and learning of action examples[END_REF].

Conclusions

We have introduced How2, a multimodal collection of instructional videos with English subtitles and crowdsourced Portuguese translations. We have also presented sequence-to-sequence baselines for machine translation, automatic speech recognition, spoken language translation, and multimodal summarization. By making available data and code for several multimodal natural language tasks, we hope to stimulate more research on these and similar challenges to obtain a deeper understanding of multimodality in language processing.

Actually I use this beautiful moroccan oil and it's really wonderful on the hair. Na verdade eu uso este belo óleo marroquino e é realmente maravilhoso no cabelo.

Relaxed African-American hair should be moisturized and washed to maintain good and healthy hair. Care for African-American, biracial or ethnic hair with tips from a professional hairstylist in this free video on hair care.

Like said you can cook this pretty quickly with your family.

Como disse você pode cozinhar isso muito rapidamente com sua família.

Learn how to cook and serve picadillo con arroz with expert cooking tips in this free classic Cuban recipe video clip.

When your wide receivers get into their stance they want to have one foot forward, they want to have good position and be ready to fire off the line.

Quando seus receptores largos entram em sua posição eles devem ter um pé para a frent,e eles devem ter uma boa posição e estar pronto para disparar a linha.

Learn some great tips on how to line up as a receiver in this free video clip on how to play football. The image is a randomly selected frame from a concrete segment of the video, the text in bold is the utterance pronounced during this segment, the Portuguese text in italic are the translations corresponding to the utterance and finally, the summary of the whole video is placed inside the rectangle.

A Appendix

A.1 How2 Examples

In Figure 3, we list three typical instances from the How2 dataset. In these examples, we can see the correspondence between the content of the video frame, the summary, and the utterance. This multimodal correspondence is what systems can exploit by using the How2 dataset. In the first example, a hairdresser is explaining how to use a specific hair product. In that case, the visual elements (i.e., hair product, hairdresser) and the scene, a hairdressing salon, are a rich source of context. In the second example, a woman is cooking in a kitchen with many cooking devices. In the third example, we can infer the acoustic environment (i.e., outdoors) by the scene.

A.2 Modality Alignment and Data Checks

To combine all modalities (i.e., speech, video, transcriptions, and translations) successfully, we need to establish and validate their correspondence in time. While the audio transcription is generated from subtitles, these do not always correspond to the actual audio. We thus decided to generate token-level (e.g. word-level) time stamps that link text, audio, and video modality. From these, utterance-level start and end times were also calculated.

features described in Section 2 are now used as-is, i.e. as a sequence of 2048-dimensional vectors rather than being average pooled into a single vector.

A.5 Training Details

Unless otherwise specified, we use ADAM [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] as the optimizer with an initial learning rate of 0.0004. The gradients are clipped to have unit norm [START_REF] Pascanu | On the difficulty of training recurrent neural networks[END_REF]. The training is early stopped if the task performance on validation set does not improve for 10 consecutive epochs. Task performance is assessed using Word Error Rate (WER) for speech recognition, BLEU [START_REF] Papineni | BLEU: A method for automatic evaluation of machine translation[END_REF] for translation tasks and ROUGE-L [START_REF] Lin | Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics[END_REF] for the summarization task. The learning rate is halved whenever the task performance does not improve for two consecutive epochs. All systems are trained three times with different random initializations. The hypotheses are decoded using beam search with a beam size of 10. We report the average results of the three runs. We use nmtpytorch [START_REF] Caglayan | NMTPY: A flexible toolkit for advanced neural machine translation systems[END_REF] to train the models.

Figure 1 :

 1 Figure 1: How2 contains a large variety of instructional videos with utterance-level English subtitles (in bold), aligned Portuguese translations (in italics), and video-level English summaries (in the box). Multimodality helps resolve ambiguities and improves understanding.

  (a) Topic distribution. (b) Segment duration.

Figure 2 :

 2 Figure 2: LDA topic distributions and segment duration for the 300h subset. The 2000h overall corpus exhibits very similar characteristics.

Figure 3 :

 3 Figure 3: Examples of the How2 dataset that reflect its sample variability and modality correlation.The image is a randomly selected frame from a concrete segment of the video, the text in bold is the utterance pronounced during this segment, the Portuguese text in italic are the translations corresponding to the utterance and finally, the summary of the whole video is placed inside the rectangle.

Table 1 :

 1 Statistics of How2 dataset.

			Videos	Hours Clips/Sentences	Per Clip Statistics
	300h	train 13,168	298.2	184,949 5.8 seconds & 20 words
		val	150	3.2	2,022 5.8 seconds & 20 words
		test	175	3.7	2,305 5.8 seconds & 20 words
		held	169	3.0	2,021 5.4 seconds & 20 words
	2000h train 73,993 1,766.6	-
		val	2,965	71.3	-
		test	2,156	51.7	-

Table 1

 1 

presents summary statistics of the 2000h set and 300h subset: the val and test sets can be used for early-stopping, model selection and evaluation; the held set is reserved for future evaluations or challenges. The total set (i.e. 2000h) contains around 22.5M words. The tokenized

Table 2 :

 2 Results of the automatic speech recognition, machine translation, speech-to-text translation, and summarization experiments on test set. The arrows indicate direction of improvement. ASR (% WER ⇓) MT (BLEU ⇑) STT (BLEU ⇑) SUM (ROUGE-L ⇑)

	Baseline	19.4	54.4	36.0	53.9
	Multimodal	18.0	54.4	37.2	54.9
	training set of 300h subset contains around 3.8M (43K unique) and 3.6M (60K unique) words for
	English and Portuguese respectively.			

Table 3 :

 3 Comparison with previous datasets: (IC) and (VD) stand for image and video captioning. Language names are encoded in ISO-639-1.

	Task	Dataset	Languages	Audio Visual Size
	IC	Flickr8K [19]	EN, TR [20], ZH [21]	(I)	8K
	IC	Flickr30K [22]	150K EN, DE [23]	(I)	30K
	IC	MSCOCO [6]	414K EN	(I)	82K
	IC		820K JA [24]	(I)	164K
	MMT	Multi30K [23]	EN, DE, FR [25], CZ [26]	(I)	30K
	VD	MSVD [27]	122K total in many	(V) 5.3 hours
	VD	LSMDC [28]	EN	(V) 150 hours
	VD	MSRVTT [29]	EN	(V) 41 hours
	AV-ASR	Grid [30]	EN	(V) 50 hours
	AV-ASR	ViaVoice [31]	EN	(V) 34.9 hours
	AV-ASR	LRW [32]	EN	(V) 800 hours
	STT	Fisher [33]	EN, ES		150 hours
	STT	Audiobooks [34]	EN, FR		236 hours
	SUM	CNN/DMC [35, 36] EN		286,817 pairs
	SUM	DUC [37]	EN		500 pairs
	SUM	[38]			

https://www.clsp.jhu.edu/workshops/18-workshop/
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To align text and audio, we perform a Viterbi alignment between the transcriptions, which were provided by the users who uploaded the videos, and the audio track of How2, using Kaldi's [START_REF] Povey | The Kaldi speech recognition toolkit[END_REF] Wall Street Journal (WSJ) GMM/ HMM acoustic model. This alignment process estimates the start and end times of each sentence in the audio track. Finally, by using the estimated alignments, we can segment the audio and video track according to the utterances.

To make sure the data will be suitable for the proposed use, we validated two properties: First, we verified that the word alignment is indeed accurate by manually inspecting randomly chosen utterances. The 300 h sub-set was selected to give good alignment scores, and the WSJ model seemed to perform best in that respect: "good" (according to the score) utterances were indeed accurately aligned, when compared to alignments generated with other models, including those developed for speech synthesis. Second, the "transcription" data has been generated from video subtitles, which were not meant to be verbatim and highly accurate "transliterations" of the spoken content. Rather, the "transcription" text is a somewhat canonical form of the spoken word, which is fine for our proposed uses, although it may lead to slightly higher overall word error rates for the speech-to-text tasks.

A.3 Feature Extraction and Processing

Speech Features We used Kaldi [START_REF] Povey | The Kaldi speech recognition toolkit[END_REF] to extract 40-dimensional filter bank features from 16kHz raw speech using a time window of 25ms with 10ms frame shift and concatenated 3-dimensional pitch features to obtain the final 43-dimensional speech features. A per-video Cepstral Mean and Variance Normalization (CMVN) is further applied to account for speaker variability.

Visual Features A 2048-dimensional feature vector per 16 frames is extracted from the videos using a CNN trained to recognize 400 different actions [START_REF] Hara | Can spatiotemporal 3d CNNs retrace the history of 2d cnns and imagenet[END_REF]. It should be noted that this results in a sequence of feature vectors per video rather than a single/global one. In order to obtain the latter, we average pooled the extracted features into a single 2048-dimensional feature vector which will represent all sentences segmented out of a single video.

Text Features All texts are normalized, lowercased and filtered from punctuation. A SentencePiece model [START_REF] Kudo | SentencePiece: A simple and language independent subword tokenizer and detokenizer for neural text processing[END_REF] is learned separately for English and Portuguese resulting into vocabularies of 5K each except for summarization which uses word-level tokens.

A.4 Architecture Details

Automatic Speech Recognition We use a 6-layer pyramidal encoder [START_REF] Chan | Listen, attend and spell: A neural network for large vocabulary conversational speech recognition[END_REF] (with interleaved tanh projection layers) where the middle two layers skip every other input resulting into a subsampling rate of 4. The decoder is a 2-layer conditional GRU (CGRU) decoder [START_REF] Sennrich | Nematus: a toolkit for neural machine translation[END_REF], a transitive decoder where the hidden state of the second GRU is fed back to the first GRU. The first GRU is initialized with the mean encoder hidden state transformed using a tanh layer. A feed-forward attention mechanism [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] is used inside the decoder and the input and output embeddings are tied [START_REF] Press | Using the output embedding to improve language models[END_REF].

Multimodal Automatic Speech Recognition For multimodal ASR, we apply video adaptive training [START_REF] Palaskar | End-to-end multimodal speech recognition[END_REF][START_REF] Gupta | Visual features for contextaware speech recognition[END_REF] with a learned linear transformation of the visual feature vector v that will act as a visual bias over a given speech feature x t at time t. The shifted speech feature xt is thus computed as follows:

To train this model, we first initialize the model parameters using a previously trained ASR and jointly optimize all parameters including W and b above.

Machine Translation

We train a sequence-to-sequence neural MT model with a 2-layer bidirectional GRU [START_REF] Cho | Learning phrase representations using rnn encoderdecoder for statistical machine translation[END_REF] encoder and a 2-layer conditional GRU decoder [START_REF] Sennrich | Nematus: a toolkit for neural machine translation[END_REF]. A dropout [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF] with 0.3 drop probability is used after source embeddings, source encodings and before the final sof tmax operation.

Multimodal Summarization We follow the hierarchical attention approach [START_REF] Libovický | Attention strategies for multi-source sequence-tosequence learning[END_REF] to combine textual and visual modalities. Unlike previous multimodal ASR, MT and STT architectures, the visual