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Abstract: Plasma corticosterone (CORT) concentrations fluctuate in response to homeostatic 8 

demands. CORT is widely recognized as an important hormone related to energy balance. 9 

However, far less attention has been given to the potential role of CORT in regulating salt and 10 

water balance or responding to osmotic imbalances. We examined the effects of reproductive and 11 

hydric states on CORT levels in breeding Children’s pythons (Antaresia childreni), a species 12 

with substantial energetic and hydric costs associated with egg development. Using a 2 × 2 13 

experimental design, we examined how reproduction and water deprivation, both separately and 14 

combined, impact CORT levels and how these changes correlate with hydration (plasma 15 

osmolality) and energy levels (blood glucose). We found that reproduction leads to increased 16 

CORT levels, as does dehydration induced by water deprivation. The combined impact of 17 

reproduction and water deprivation led to the largest increases in CORT levels. Additionally, we 18 

found significant positive relationships among CORT levels, plasma osmolality, and blood 19 

glucose. Our results provide evidence that both reproductive activity and increased plasma 20 

osmolality can lead to increased plasma CORT in an ectotherm, which could be explained by 21 

either CORT having a role as a mineralocorticoid or CORT being elevated as part of a stress 22 

response to resource imbalances.  23 
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1. Introduction 25 

The endogenous secretion of glucocorticoids is one of the main mechanisms by which animals 26 

modulate their physiological and behavioral responses to unpredictable and predictable stimuli 27 

(Romero and Wingfield, 2016). The main glucocorticoid in rodents and non-mammalian 28 

terrestrial vertebrates (i.e., birds, amphibians, and reptiles) is corticosterone (CORT) (Sapolsky, 29 

2000), and it can affect growth (Busch et al., 2008; Midwood et al., 2014), survival (O’Connor et 30 

al., 2010; Romero et al., 2009), and reproductive success (Robert et al., 2009; Wingfield and 31 

Sapolsky, 2003). There is an impressive body of work examining the elevation in CORT in 32 

response to unpredictable stressors and noxious stimuli (i.e., allostatic response, see Romero et 33 

al., 2009; Vera et al., 2017). However, baseline CORT levels are also important to consider 34 

because they may reflect the homeostatic demands faced by the organism (Landys et al., 2006; 35 

Romero, 2002). CORT is important for regulating shifts in metabolism and behavior (Landys, 36 

2006) and it oscillates to meet demands associated with shifts in life-history stages (Romero, 37 

2002). For example, baseline CORT levels are typically related to energy balance during 38 

reproduction and can either increase to support direct allocation to reproduction (i.e., energy 39 

model hypothesis) or decrease to minimize maintenance requirements (Bonier et al., 2009a,b). 40 

However, important variations exist among and even within species in the directionality 41 

in which CORT levels respond (i.e., increase, decrease, or no change) to endogenous demands 42 

and predictable exogenous constraints (Dickens and Romero, 2013). For example, individuals 43 

can have dramatically different CORT responses to annual, expected events such as decreased 44 

temperature during winter (increase – Sheriff et al., 2012; decrease – Xu and Hu, 2017; no 45 

change – Khonmee et al., 2016) or seasonal precipitation (increase – Strier et al., 1999; decrease 46 

– Schoof et al., 2016; no change – Wilkening et al., 2016). These variable responses suggest that 47 



changes in CORT levels are extremely context dependent (de Bruijn and Romero, 2018; Graham 48 

et al., 2017), emphasizing the importance of considering factors such as life-history stage, body 49 

condition, and environmental conditions when investigating the role of CORT within an 50 

organism. Despite these variable patterns, CORT is critical to survival, maintenance, and 51 

reproduction (Darlington et al., 1990), and CORT levels are modulated to adjust energy demands 52 

(Dallman et al., 1993; Remage-Healey and Romero, 2001) and maintain homeostatic balance 53 

(Landys et al., 2006; Romero, 2002).  54 

While energy is critical, water is another vital resource (Kleiner, 1999), and CORT has 55 

been shown to have important mineralocorticoid roles involved with water balance in rodents 56 

(Agarwal and Mirshahi, 1999; Bentley, 1970; Liu et al., 2010; Thunhorst et al., 2007). While 57 

more limited in number, several studies have examined the relationship between CORT and 58 

water balance in non-rodent taxa. For example, a link between CORT levels and hydration state 59 

has been demonstrated in water-constrained environments (Bradshaw, 1997). However, high 60 

variability in CORT levels suggests the response is context dependent. For example, recent 61 

studies found that baseline CORT levels are not affected by dehydration in animals with low 62 

metabolic demands (non-reproductive snakes and lizards, Dupoué et al., 2014; Moeller et al., 63 

2017). However, in animals with higher metabolic requirements and greater water deficits (e.g., 64 

pelagic sea birds), the opposite has been documented (Brischoux et al., 2015). At least two 65 

studies have considered the additive challenges of reproduction and water deprivation on CORT 66 

levels (Dauphin-Villemant and Xavier, 1986; Dupoué et al., 2016). In the aspic viper (Vipera 67 

aspis), CORT has been found to be closely related to the energy demands of pregnancy (Lorioux 68 

et al., 2016). However, Dupoué et al. (2016) found that changes in CORT levels were further 69 

increased when pregnant females faced water deprivation. In these studies, the study animals 70 



were able to thermoregulate, possibly resulting in differing selected body temperatures and 71 

thermal depression (see Ladyman and Bradshaw, 2003) that, in turn, could have influenced the 72 

CORT response.  73 

To further explore the influence that reproduction and water balance have on plasma 74 

CORT levels, we used Children’s pythons (Antaresia childreni) in a two-by-two experiment 75 

where reproductive status and hydric states varied but body temperature was controlled to avoid 76 

confounding thermal effects on CORT levels. This capital-breeding, oviparous squamate faces 77 

considerable physiological and performance costs associated with reproduction, especially when 78 

considering that the energetic (Lourdais et al., 2013) and hydric (Brusch et al., 2017) demands of 79 

reproduction must be met when energy and water resources are limited in the environment 80 

(Taylor and Tulloch, 1985). We tested the hypothesis that plasma CORT concentration is 81 

influenced by both reproductive status and hydric state. We predicted that (1) reproduction will 82 

increase CORT; (2) water deprivation, leading to dehydration, will increase CORT; and (3) the 83 

combined challenges from reproduction and water deprivation will have an additive effect on 84 

CORT. 85 

 86 

2. Material and methods 87 

2.1 Study species 88 

Children’s pythons inhabit the wet-dry tropics of northern Australia (Wilson and Swan, 2013) 89 

where they experience substantial, natural fluctuations in water availability during the Austral 90 

dry-season, which frequently lasts 3-4 months (May-August, Taylor and Tulloch, 1985). Egg 91 

development and oviposition typically occurs towards the end of the dry season so that eggs 92 

hatch at the start of the wet season. As capital breeders, females accumulate energy resources 93 



over a long duration (typically in excess of a year) and utilize the resultant lipid reserves to 94 

support the reproductive effort from vitellogenesis through egg brooding (Stephens et al., 2009). 95 

However, a lack of free-standing water during the period of egg development results in 96 

considerable challenges to female water balance (Brusch et al., 2017). Coupled with a lack of 97 

available water to support themselves, reproductive females face additional water requirements 98 

associated with egg development (Deeming, 2004; Lourdais et al., 2015). In the weeks just prior 99 

to oviposition, in the absence of free-standing water in the environment, females must transfer 100 

substantial amounts of body water to their eggs (Stahlschmidt et al., 2011) and this can 101 

dramatically challenge female water balance (Brusch et al., 2017).   102 

 103 

2.2 Experimental design 104 

All work was conducted under the oversight of the Arizona State University Institutional Animal 105 

Care and Use Committee (protocol # 17-1532R). Snakes used for this study were part of a long-106 

term colony at Arizona State University, AZ, USA, and were housed individually in 91 × 71 × 107 

46 cm cages (Freedom Breeder, Turlock, CA, USA). Snakes were deprived of food from the 108 

onset of overwintering until oviposition (~5 months) because they typically do not eat when 109 

reproductively active. To stimulate the reproductive cycle, snakes were over-wintered for six 110 

weeks from mid-December through January (light-dark cycles of 6:18 h and a daily temperature 111 

cycle of 20:15°C that changed in conjunction with the light cycle). During the 6-hr light phase a 112 

supplemental sub-surface heat source was provided under one end of each cage to allow for 113 

thermoregulation. After overwintering, room temperature was increased to a constant 31.5°C, 114 

which is the preferred temperature of gravid Children’s pythons (Lourdais et al., 2008), with a 115 

12:12 h light-dark cycle and no supplemental heat provided. Females were held at a constant 116 



temperature without the opportunity to thermoregulate to prevent temperature-based difference 117 

resulting from differential thermoregulation between treatment groups. 118 

Females were randomly assigned to either the reproductive (n = 19) or non-reproductive 119 

groups (n = 16). Females in the reproductive group were exposed to a different male every 2-3 120 

days, resulting in each reproductive female being sequentially housed with 6-8 males during this 121 

18-day breeding period. Each non-reproductive female was yoked to a reproductive female of 122 

similar body mass so that the timing of its treatments, measurements, and sampling coincided 123 

with that of the reproductive female to which it was yoked. At ovulation (based on a peri-124 

ovulation shed, Lourdais et al., 2008), half of the reproductive females, and their yoked partners, 125 

were deprived of water until the reproductive female laid her eggs (22±1 d). Deprivation of water 126 

during this time leads to ecologically relevant levels of dehydration (Brusch et al., 2018). 127 

Treatment groups were: gravid with water provided ad libitum (number of females, mean mass ± 128 

SEM, and plasma osmolality at the end of the experiment ± SEM: n = 9, 464±28 g, 324±5 mOsm 129 

kg-1), non-reproductive with water provided ad libitum (n = 8, 414±18 g, 297±4 mOsm kg-1), 130 

gravid with no water provided (n = 10, 424±41 g, 354±3 mOsm kg-1), and non-reproductive with 131 

no water provided (n = 8, 423±33 g, 340±4 mOsm kg-1).  132 

 133 

2.3 Blood sampling and analyses 134 

We used heparinized 1 ml syringes with a 25 gauge X 1.6 cm (5/8 in) needle to collect a 135 

0.8 ml blood sample via cardiocentesis. Blood samples were collected from females once the 136 

reproductive female of the yoked partners reached late vitellogenesis (20 mm follicles 137 

determined by ultrasonographic examination, Sonosite MicroMazz, Bothell, WA, USA) and 138 

again when it reached late gravidity (twenty days after periovulation ecdysis and 1-4 days prior 139 



to oviposition). Total time for capture, restraint, and blood collection was typically less than 140 

three minutes and did not exceed seven minutes, which is less than the time required to detect 141 

measurable CORT concentration changes in squamates (Romero and Wikelski, 2001). To control 142 

for potential circadian fluctuations in CORT concentrations, all blood samples were collected 143 

between 0900-1100 hr. We immediately centrifuged the blood samples at 3000 rpm for three 144 

minutes to separate plasma from blood cells. We aliquoted plasma (~50 µl) into separate vials 145 

that were then frozen at -80°C. From the collected blood samples, we measured plasma CORT 146 

concentration as well as plasma osmolality (based on triplicate analysis using a vapor pressure 147 

osmometer, #5600, Wescor Inc., Logan, UT, USA) and circulating concentrations of glucose as a 148 

metric of circulating energy resources (blood glucose meter, #EG220546, Medline Industries, 149 

Northfield, IL, USA).  150 

Plasma CORT concentrations (ng ml−1) were determined at the Centre d’Etudes 151 

Biologiques de Chizé (CEBC) following a well-established radioimmunoassay protocol (Lormée 152 

et al., 2003). The sample dilution curve in assay buffer was parallel to the standard curve, 153 

suggesting that the assay is specific for A. childreni with limited interference. We used a 154 

polyclonal anti-CORT antibody produced in rabbit whole antiserum (C 8784, Sigma-Aldrich, St 155 

Louis, MO, USA). Cross-reactions of the anti-CORT antibody were: 11-deoxycorticosterone 156 

20%, progesterone 15.7%, 20α-hydroxyprogesterone 8.8%, testosterone 7.9%, 20β-157 

hydroxyprogesterone 5.2%, cortisol 4.5%, aldosterone 4.4%, cortisone 3.2%, androstenedione 158 

2.6%, 17-hydroxyprogesterone 1.8%, 5α-dehydrotestosterone 1.4%, androsterone <0.1%, estrone 159 

<0.1%, and estriol <0.1%. The percent retrievable fraction of CORT after diethyl ether extraction 160 

was greater than 95% and all samples were run in duplicate (intra-assay variation: 8.05%, inter-161 

assay variation: 9.79%).   162 



 163 

2.4 Statistical Analyses 164 

We performed all statistical analyses in R, version 3.5.0 (R Development Core Team 2018). We 165 

checked to ensure the data met the assumptions for parametric testing and used transformations 166 

where necessary. First, we examined the effect of reproductive status and water treatment on 167 

CORT values using repeated measures analysis of variance (rmANOVA). We tested for three-168 

way interactions and used treatment (water or no water), status (reproductive or non-169 

reproductive), and sampling period (late-vitellogenesis and late-gravidity bleeds) as fixed effects, 170 

and individual as a random effect. We included parameters addressing potential size effects by 171 

using a body condition index (BCI, standardized residuals from a linear regression using mass 172 

and SVL). However, this variable was removed from the final model as a result of stepwise 173 

removal using ΔAIC and model weights (Arnold, 2010; Zuur et al., 2010). We used an ANOVA 174 

to examine changes in CORT values between females in each of the four groups (reproductive or 175 

non-reproductive, with or without water from late-vitellogenesis to late-gravidity). We used a 176 

post-hoc Tukey’s HSD test to determine which of the groups were significantly different within 177 

and between time.  178 

We then used linear regressions comparing the profiles among individuals to explore the 179 

relationships between CORT and osmolality or glucose across both sampling periods. We first 180 

compared the relationship by grouping all females together, regardless of treatment or status, 181 

after which we separately explored the effects of treatment, status, and the combination of the 182 

two. We next used variance partitioning methods described by Anderson and Gribble (1998) to 183 

decompose our full response into orthogonal subsets to examine how treatment (water or no 184 

water) or status (reproductive or non-reproductive) affected the relationship between CORT and 185 



osmolality or glucose and performed similar linear regressions. Using methods described by 186 

Nakagawa and Schielzeth (2013), we calculated a general measure of R2, marginal R2 (R2
GLMM), 187 

from our models to estimate the variance explained by CORT and treatment, status, or a 188 

combination of the two.  189 

We used the packages “nlme” and “multcomp” (Hothorn et al., 2008; Pinheiro et al., 190 

2018) for rmANOVA’s, “CAR” (Fox and Weisberg, 2011) for linear regressions, “MuMIn” 191 

(Barton, 2018) for estimates of marginal R2, and “agricolae” (de Mendiburu, 2017) for post-hoc 192 

tests. Significance was set at α = 0.05. 193 

 194 

3. Results 195 

3.1 Variation in CORT levels 196 

We found significant main effects of sampling (F1,31 = 25.08, p < 0.001), status (F1,31 = 26.69, p < 197 

0.001), and treatment (F1,31 = 4.41, p = 0.044). We also found significant sampling-by-198 

reproductive status (F1,31 = 8.29, p = 0.007) and sampling-by-water treatment (F1,31 = 5.32, p = 199 

0.028) interactions (Table 1, Fig. 1A,B), but no three-way interaction (F1,31 = 1.19, p = 0.283). A 200 

Tukey’s HSD post-hoc test revealed that, while reproductive females initially had higher CORT 201 

(mean ± SEM; 16.77 ± 1.67 ng mL-1) compared to non-reproductive females (5.52 ± 1.46 ng mL-
202 

1), the difference was more pronounced at the second sampling period (42.28 ± 6.72 ng mL-1 and 203 

11.75 ± 4.84 ng mL-1, respectively;  Fig 1A). At the start of the experiment, CORT values were 204 

comparable in females with (11.08 ± 2.16 ng mL-1) and without (12.15 ± 2.06 ng mL-1) water. 205 

However, water-deprived females had much higher CORT (36.56 ± 7.74 ng mL-1) at the time of 206 

the second sampling period, compared to those who had water provided (19.61 ± 3.59 ng mL-1; 
207 

Fig 1B).   208 



When examining changes in CORT, we found significant differences among groups (F3,31 209 

= 493.19, p = 0.006). Specifically, a Tukey’s HSD post-hoc revealed that water deprived 210 

reproductive females had significantly greater (all p < 0.05) changes in CORT (36.0 ± 6.29 ng 211 

mL-1) when compared to other females (13.9 ± 6.66 ng mL-1, 10.0 ± 6.84 ng mL-1 and 2.5 ± 1.15 212 

ng mL-1 for  reproductive with water, non-reproductive without water and non-reproductive with 213 

water, respectively). CORT change was not significantly different between these three groups 214 

(all p < 0.05). 215 

 216 

3.2 Correlates of CORT levels  217 

We found a significant positive relationship between CORT and plasma osmolality (F1,34 = 218 

34.20, p < 0.001, R2
GLMM = 0.331) when all females and sampling sessions were grouped 219 

together. When we isolated the effects of treatment and status, we found a significant positive 220 

relationship between CORT and osmolality in reproductive females with (F1,8 = 8.06, p = 0.022, 221 

R2
GLMM = 0.321; Fig. 2A) and without access to water from late vitellogenesis to late gravidity 222 

(F1,9 = 22.05, p = 0.001, R2
GLMM = 0.537; Fig. 2B), and in non-reproductive females without 223 

access to water during a similar period (F1,7 = 6.77, p = 0.035, R2
GLMM = 0.311; Fig. 2C). We did 224 

not detect a significant relationship in non-reproductive females with access to water (p > 0.05; 225 

Fig. 2D).  226 

When evaluating CORT and blood glucose, we did not detect a significant relationship (p 227 

> 0.05) when all females were grouped together. However, when we isolated the effects of 228 

treatment and status, we found a significant positive relationship between CORT and blood 229 

glucose in reproductive females, both those with (F1,8 = 8.45, p = 0.019, R2
GLMM = 0.332; Fig. 230 

3A) and those without access to water during gravidity (F1,9 = 7.41, p = 0.024, R2
GLMM = 0.266; 231 



Fig. 3B). We did not detect a significant relationship in either of the non-reproductive groups (p 232 

> 0.05; Fig. 3C,D).  233 

 234 

4. Discussion  235 

Throughout an organism’s lifetime, glucocorticoids play a fundamental role in responding to 236 

fluctuations in internal, biotic, and abiotic conditions (Landys et al., 2006; Sapolsky, 2000). 237 

CORT is widely recognized as an important hormone that mediates energy balance (Landys et 238 

al., 2006; Romero, 2002; Sapolsky, 2000). For example, growth (Belden et al., 2005; Cadby et 239 

al., 2010; Hayward and Wingfield, 2004), reproduction (Angelier et al., 2009; Love et al., 2014; 240 

Moore and Jessop, 2003), and migration (Cease et al., 2007; Eikenaar et al., 2014) are, in part, 241 

regulated through the dynamic actions of CORT. A large body of literature on rodents has also 242 

recognized mineralocorticoid-like effects of CORT (Bartter and Forman, 1962; Bidet et al., 243 

1987; Schultz, 1998). The potential role of CORT in regulating salt and water balance has 244 

attracted far less attention in other taxa (Vera et al., 2017). Our results provide evidence that 245 

increased CORT is contextually linked to both reproduction and plasma osmolality in an 246 

ectotherm.  247 

 At the time of the first blood sampling, all females had access to water and the 248 

reproductive females were in late vitellogenesis, which is the period of peak energetic investment 249 

in oviparous taxa (Stephens et al., 2009). The reproductive females had higher CORT compared 250 

to their non-reproductive yoked partners (Fig.1A), and this is not surprising when considering 251 

the classic, energy-centric view of CORT (Romero, 2002). As capital breeders, Children’s 252 

pythons rely on internal reserves to fuel reproductive investment during vitellogenesis and 253 

increased CORT allows females to mobilize internal resources to fund the creation of energy-254 



rich vitellogenin (Jaatinen et al., 2013). As expected, non-reproductive females, which had 255 

relatively low energetic demands during the same time-period, had substantially lower CORT 256 

levels.  257 

In contrast with the high energetic demands of vitellogenesis, reproductive females 258 

during late-gravidity had already completed a majority of their energetic investment but were 259 

divesting considerable amounts of internal water to their developing eggs (Stahlschmidt et al., 260 

2011). Regardless of water availability, reproductive females had the highest CORT levels 261 

during late-gravidity, despite lower energetic requirements at this time compared to late 262 

vitellogenesis (Fig. 1A). These findings are in contrast with the CORT-energy allocation 263 

relationship (Romero, 2002), yet increased CORT has been associated with later stages of 264 

pregnancy in other species (Dauphin-Villemant and Xavier, 1985; Lind et al., 2010; Lorioux et 265 

al., 2016; Schuett et al., 2005). Increased CORT levels may also be associated with maternal 266 

physiological and behavioral shifts associated with gravidity (Lourdais et al., 2008). This period 267 

of embryonic development is particularly sensitive to thermal variation and females shift their 268 

activity to increase body temperatures (Lorioux et al., 2012). Additionally, CORT may serve as a 269 

hormonal stimulus for females to oviposit (Taylor et al., 2004), which may explain why CORT is 270 

at its highest in late gravid females. 271 

We found significant positive relationships between CORT and blood glucose, which is 272 

also in line with the classic role of CORT as a mediator of energy levels (Romero, 2002). 273 

However, this relationship appears to be context dependent. It was only after parsing our data 274 

into treatment groups that we detected any significant relationships. We found significant 275 

relationships in reproductive females (Fig. 3A,B), but not in non-reproductive females (Fig. 276 

3C,D), regardless of water availability. Previous research has found that female Children’s 277 



pythons are able to preferentially catabolize muscle during gravidity to sustain the demands of 278 

reproduction (Lourdais et al., 2013) and that muscle catabolism increases with water deprivation 279 

(Brusch et al., 2018). This, coupled with data from our study, emphasizes that these relationships 280 

(i.e., CORT and glucose levels or increased muscle catabolism) may only be detectable during 281 

periods of high physiological burden such as what occurs when an organism must face 282 

simultaneous challenges (e.g., reproduction and dehydration). 283 

Reproductive females in our study with ad libitum access to water had significant 284 

increases in plasma osmolality (average osmolality increase: 37 mOsm kg-1) compared to their 285 

non-reproductive yoked pairs (6 mOsm kg-1) likely due to the considerable hydric demands of 286 

egg production. These increases were not significantly different from non-reproductive females 287 

without water access (44 mOsm kg-1) that had the hydric challenge of living without water. 288 

Reproductive females without access to water during gravidity were faced with the combined 289 

hydric challenges of reproduction and water deprivation, and subsequently had the largest 290 

plasma osmolality increases during the experiment (66 mOsm kg-1; Brusch et al., 2018). 291 

Increases in CORT throughout the experiment followed comparable trends with non-292 

reproductive, water-provided females having the smallest change (average CORT increase: 2.5 293 

ng mL-1), non-reproductive without water and reproductive with water in the middle (10.0 ng 294 

mL-1 and 13.9 ng mL-1, respectively), and reproductive without water during gravidity having the 295 

largest change (36.0 ng mL-1). 296 

We found a strong relationship between CORT and plasma osmolality, although, as with 297 

the rest of our results, it appears to be context dependent. When we examined the influence of 298 

reproductive status and water availability on osmolality, we found that CORT explained 54% of 299 

the variance in reproductive females without access to water during gravidity. The low metabolic 300 



demands of the non-reproductive females enabled us to examine the relationship between CORT 301 

and plasma osmolality (i.e., hydration) independent of the high energetic demands. Non-302 

reproductive females showed increases in CORT when they were deprived of water, and we 303 

found a significant positive relationship between hyperosmolality (dehydration) and CORT (Fig. 304 

2C). Juxtaposed against these results, we did not detect any similar increases or a significant 305 

relationship in non-reproductive females with water provided (Fig. 2D). While non-reproductive 306 

females in our study were exposed to a constant temperature approximately 2.5°C above their 307 

preferred body temperature (Lourdais et al., 2008), this was not enough to impact their CORT 308 

levels.  309 

 Our results from an ectotherm appear to be in congruence with decades of research in 310 

rodents that show CORT has important mineralocorticoid actions involved in water balance (see 311 

de Kloet et al., 2000 and Joëls, 1997 for review). Unlike previous studies (Dupoué et al., 2014; 312 

Moeller et al., 2017), we found that dehydration induced a CORT increase in non-reproductive 313 

females. Also in contrast with recent studies (Dupoué et al., 2016; Lorioux et al., 2016), our data 314 

suggest that CORT is linked to both energy and water balance. Our study controlled for a 315 

fundamental factor in heterothermic taxa, temperature, which may explain the discrepancy 316 

between previous results and ours. Organisms often alter their thermal preference based on their 317 

internal state. For example, dehydrated tiger snakes (Notechis scutatus) have reduced preferred 318 

temperatures, likely in an attempt to reduce water loss (Ladyman and Bradshaw, 2003). Such 319 

thermal adjustments may also impact other physiological functions including hormone 320 

production and release. Given that temperature and the availability of resources are predicted to 321 

dramatically fluctuate due to climate change, further work is needed to better understand the 322 

potential inter-relationship among CORT, energy, and water balance.  323 
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Figure Legends 580 

 581 

Figure 1 – Average plasma corticosterone (CORT, ng mL-1) concentrations measured in non-582 

reproductive (NR) and reproductive (R) female Antaresia childreni (A) that were held with (W) 583 

or without (NW) access to water (B) during the duration of gravidity or its equivalent for non-584 

reproductive yoked females. Initial blood samples were collected when reproductive females 585 

were in late-vitellogenesis, prior to water deprivation, and final blood samples were collected at 586 

late-gravidity. Error bars represent ± 1 SEM. Different letters indicate significant differences 587 

between groups and blood samples (Tukey’s HSD post-hoc test).   588 

 589 

 590 

Figure 2 – Relationships between corticosterone (CORT, ng mL-1) and plasma osmolality 591 

(mOsm kg-1) measured in reproductive (R, n = 19; A,B) and non-reproductive (NR, n = 16; C,D) 592 

female Antaresia childreni. Females were held with (W) or without (NW) access to water during 593 

the duration of gravidity (i.e., prior to the second sampling point) or its equivalent for non-594 

reproductive yoked females. Both sampling periods were combined for statistical analyses (see 595 

text for details) and a line of best fit is included for significant relationships (p < 0.05). Closed 596 

circles represent initial blood sampling, while open circles represent final blood sampling.  597 

 598 

 599 

Figure 3 – Relationships between corticosterone (CORT, ng mL-1) and glucose (mg dL-1) 600 

measured in reproductive (R, n = 19; A,B) and non-reproductive (NR, n = 16; C,D) female 601 

Antaresia childreni during the experiment. Females were held with (W) or without (NW) access 602 

to water during the duration of gravidity (i.e., prior to the second sampling point) or its 603 

equivalent for non-reproductive yoked females. Both sampling periods were combined for 604 

statistical analyses (see text for details) and a line of best fit is included for significant 605 

relationships (p < 0.05). Closed circles represent initial blood sampling, while open circles 606 

represent final blood sampling.  607 

  608 



 609 

 610 

Table 1 – Statistical models used to examine corticosterone concentrations (ng mL-1, CORT) in 611 

female Antaresia childreni during initial and final blood samplings (session), that were either 612 

reproductive or non-reproductive (status) and had continuous access to water or were water-613 

restricted (treat) during the time reproductive females were gravid.  614 

 615 

Factors d.f. F ratio P value 
intercept 1, 31 98.29 < 0.001 
status 1, 31 26.69 < 0.001 
treat 1, 31 4.41 0.044 
session 1, 31 25.08 < 0.001 
status × treat 1, 31 1.22 0.277 
status × session 1, 31 8.29 0.007 
treat × session 1, 31 5.32 0.028 
status × treat × session 1, 31 1.19 0.283 
 616 

 617 










