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A Time-Domain Multigrid Solver with
Higher-Order Born Approximation for Full-Wave
Radar Tomography of a Complex-Shaped Target

Liisa-Ida Sorsa, Mika Takala, Christelle Eyraud, Sampsa Pursiainen

Abstract—This paper introduces and evaluates numerically a
multigrid solver for non-linear tomographic radar imaging. Our
goal is to enable the fast and robust inversion of sparse time-
domain data with a mathematical full-wave approach utilizing
a higher-order Born approximation (BA). Full-wave inversion
is computationally expensive, hence techniques to speed up the
numerical procedures are needed. To model the wave propagation
effectively, we use the finite element time-domain (FETD) method,
which is equipped with a multigrid scheme to enable the rapid
evaluation of the higher-order BA. As a potential application, we
consider the tomography of small solar system bodies (SSSBs)
and asteroid interiors particular, the latter of which can contain
internal details observable by radar, e.g., layers, voids and cracks.
In the numerical experiments, we investigated monostatic, bistatic
and multistatic measurement configurations. The results obtained
suggest that, with a relevant noise level, the tomographic recon-
struction quality can be improved by applying the higher-order
BA in comparison to the first-order case, which we interpret as a
linearization of the inverse problem. Our open multigrid-FETD
solver for Matlab (The Mathworks Inc.) is available online. It
applies Matlabs features for graphics computing unit acceleration
to enhance computational performance.

Index Terms—Radar Tomography, Small Solar System Bod-
ies, Finite Element Time-Domain (FETD), Multigrid, Graphics
Computing Unit (GPU)

I. INTRODUCTION

This paper concerns tomographic full-wave radar imaging
in which the internal permittivity distribution of a given
domain is to be reconstructed via transmitting and measuring
electromagnetic waves penetrating through a domain [1], [2],
[3], [4]. We consider inverting a wave equation in the time
domain for a sparse set of measurements to reconstruct the
interior structure of a complex target object, for example, a
small solar system body (SSSB), which can be sounded by
radar in a planetary space mission [5], [6], [7], [8]. The first
attempt aiming at tomographic reconstruction of the interior
of a SSSB was the Comet Nucleus Sounding Experiment by
Radio-wave Transmission (CONSERT) [9], [8], [10], a part of
the European Space Agency’s (ESA) Rosetta mission, which
visited the comet 67P/Churyumov-Gerasimenko in 2014. The
density estimates available today [11] suggest that SSSBs
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can be highly porous and contain a significant amount of
void space, which might be detectable via tomographic radar
imaging.

In this study, we aim at developing a mathematical and
numerical higher-order Born approximation (BA) [12], [13]
for the effective modeling and inversion of non-linear full-
wave scattering in the time-domain for a complex-shaped or
structured target object. Data processing in the time domain
has been applied, e.g., in CONSERT [10], [8], as it is beneficial
in the presence of complex scattering; the noisy parts of the
signal can be filtered out of the data based on their travel
time, including, e.g., the effects of anisotropic structures or
highly uncertain scattering. As of other studies concentrating
on the present theoretical context, analytical and computational
approaches to solve scattering problems [14], [15] utilizing BA
have been previously introduced for various different cases
including, among other things, special domain structures such
as the cylindrical geometry [16], [17], [18], [19]; advanced
inversion of spectral information, e.g., via multiple signal
classification (MUSIC) or other methods in the time-reversal
of signals [20], [21], [22], [23]; and non-linear processes,
e.g., distorted Born iterative (DBI) techniques [16], [24],
[25], [26], [27], [28]. Moreover, regularization techniques such
as TV constraints can be used in reconstructing structural
distributions based on electromagnetic measurements [29].

Differing from the aforementioned studies, we approach
the tomography of a per se complex–e.g., non-convex and
irregular–target applying a multigrid version of the finite
element time-domain (FETD) method [30], [31]. Multigrid-
FETD enables the accurate modeling of an arbitrary target,
maintaining its actual shape with various different finite el-
ement (FE) mesh resolutions. It also allows one to speed
up the inversion process, which can be performed using a
coarse mesh resolution determined by the size of the smallest
detectable details. We have previously introduced a multigrid-
FETD inversion approach [32] in which the first-order BA of
the wave scattering is used. It has been successfully applied
in linearized and iterative TV regularization to reconstruct a
synthetic permittivity distribution within a real 3D asteroid
shape in [5], [33]. Here, building on our previous work, we
introduce an iterative and fully non-linear inverse solver in
which the unknown permittivity is updated via subsequent
linearized approximations akin to the DBI approach and the
numerical wave-field can be updated through a higher-order
BA. This update requires performing a computationally inten-
sive deconvolution routine. The multigrid-FETD provides the
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TABLE I
LIST OF ESSENTIAL MATHEMATICAL SYMBOLS.

Symbol Description
εr Relative electric permittivity
εbg Background permittivity
ρε Local permittivity perturbation
σ Conductivity distribution
G[εr]~p1,~p2 Green’s function between ~p1 and ~p2 w.r.t. εr
f̃ Signal transmitted at ~p1
d̃ Signal received at ~p2.
h̃ The total wave-field at ~r.
p` The discretized wave-field at `-th time point
q
(k)

`− 1
2

k-th component of integrated gradient at `-th time point

a
(k)

`− 1
2

time-evolution of q(k)
` at `-th time point

b
(k)

`+ 1
2

time-evolution of p` at `-th time point

h` Discretized total wave-field at ~r at `-th time point
h̃BA,n
` n-order Born approximation of h`

h
(i,j)
` h̃BA,1 w.r.t. j-th element and i-th node in a coarse mesh

d
(i,j)
` p` w.r.t. j-th element and i-th node in a coarse mesh

hdiff
` h̃BA,1 obtained as a differential

C, C1, C2 Mass matrices weighted w.r.t. εr , εbg and ρε, resp.
R Mass matrix weighted w.r.t. σ
S, T(k) Scalar and gradient perfectly matched layer matrix
A, B(k) Diagonal weight and gradient evaluation matrix, resp.
Q̃(i) Restriction matrix with a single non-zero entry Q(i)

i,i = 1

u, ~g Electric field and its gradient integrated over time
v, ~w Scalar and vector valued test function, resp.
T , Tj Finite element mesh and its j-th element, resp.
ϕi i-th nodal FE basis function
χj Characteristic function of the j-th element

.

essential means to tackle the computational cost of this update.
Our implementation is available online as an open toolbox for
Matlab (The Mathworks Inc.). To enhance the computational
performance, Matlab’s features for graphics processing unit
(GPU) acceleration are applied in both the forward modeling
and inversion stage.

The numerical experiments involve a two-dimensional test
domain and simulated data. The parameter selection in the nu-
merical experiments was made regarding the radar tomography
of an SSSB–a small asteroid in particular–as a potential appli-
cation. The results suggest that, using the present approach, a
candidate solution for the full non-linear inverse problem can
be found in a sufficiently short time with improved accuracy
when compared to solving a linearized inverse problem. Fur-
thermore, it seems that maximizing the benefit of the potential
future bistatic [34], [35] and multistatic measurements [36]
yielding a sparse set of data might necessitate applying a
higher-order BA.

This article is organized as follows. Section II describes
mathematically the BA, forward simulation and inversion
process. Additionally, the underlying wave propagation model
is briefly reviewed in Appendix A. Section III includes the
numerical results, and Section IV discusses the outcome. Table
I lists the essential mathematical symbols of this study.

II. METHODS

A. Sparse full-wave tomography in time-domain

We aim at resolving the relationship between the rela-
tive electrical permittivity distribution εr, and the full time-
dependence of the wave defined in domain Ω and received at
a given set of measurement points. For reconstructing εr, the
ability to model full-wave measurements is essential, since it
allows distinguishing signal fluctuations arriving from different
parts of the tomography target D, e.g., from the surface or the
deep interior. It is necessary to tackle the potential modeling
errors arising from the complexity, for example, the effects
related to anisotropic structures or scattering effects with high
uncertainty. In particular, to optimize the reconstruction quality
in a backscattering measurement, it is necessary to filter out
the signal peak arising from the wave scattered by the rear
wall of D [5], [33]. Namely, the amplitude of such a peak
can be larger compared to the earlier arriving peaks which are
essential for detecting the scatterers in the interior structure.
Time-domain full-wave modeling allows this via restricting the
investigated signal length as depicted in Fig. 1.

Fig. 1. Left: A schematic picture of a tomography target D, e.g. an asteroid, in
which the electromagnetic wave transmitted by an antenna (e.g. an orbiting
spacecraft) is scattered at different locations denoted by (A), (B) and (C).
Right: The signal (solid grey wave), i.e., the electric field E, corresponding
to the measurement configuration on the right has peaks at time (t) points
corresponding to the locations (A), (B) and (C). The intense and potentially
noisy peak (C) arriving from the rear wall of D needs to be excluded from the
final data in order to improve the signal-to-noise ratio of the measurement. The
first-order BA takes into account the scattered wave-front which originates at
(A) and interacts with the domain (dashed grey wave). The second-order BA
takes into account also the two times scattered part of the wave-field, thereby
leading to a further correction and an improved approximation for the later
arriving peak (dashed black wave) scattered from (B).

B. Green’s functions

Assuming that the signal f̃ is transmitted at the point ~p1

and d̃ is received at ~p2, the problem of modeling the full
wave can be associated with the task of finding the Green’s
function [37] G~p1,~p2

predicting the wave received according
to the equation d̃ = G~p1,~p2

∗ f̃ . The Green’s function is
a functional of the relative permittivity εr and a nuisance
parameter θ, i.e., G = G[εr, θ]. That is, the Green’s function
is not exactly known because of the different uncertainties
in the mathematical model. The unknown exact effect of θ
on the outcome is related to (numerical) modeling errors, for
example, to ambiguities arising from signal attenuation effects
which can be related to various factors, e.g., to the conductivity
σ and its indirect relationship to εr [38], propagation losses,
reflections, and refractions. For simplicity, it is modeled here
with additive random effects by assuming that
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G[εr, θ] = G[εr] + E, (1)

where E is an unknown modeling error.
In this study, the numerical approximation of the Green’s

function is first obtained in a forward simulation process after
which it is used in the inversion stage. In the latter case it
is significant that the dependence of G on εr is non-linear.
Consequently, in order to optimize the modeling accuracy, the
approximation for G[εr] needs to be updated during an iterative
inversion process in which εr is gradually updated.

C. Higher-order Born approximation of wave scattering

Assume that the Green’s function G[εbg] of a background
permittivity distribution εbg is given and the task is to approx-
imate G[εr], where εr = εbg + ρε with ρε denoting a local
perturbation of the relative permittivity at ~r. That is, a small
scattering obstacle at ~r acts as a point source, whose amplitude
is proportional to the local wave-field h̃. Since the wave-
field is altered only at ~r, Green’s function equals to G[εbg]
elsewhere. The perturbed wave-field is, consequently, of the
form (Fig. 2)

d̃ = G[εbg]~p1,~p2
∗ f̃ + cG[εbg]~r,~p2

∗ h̃, (2)

where c is a constant contrast factor, whose numerical de-
pendence on the perturbation ε2 is to be determined in the
following sections, and

h̃ = G[εr]~p1,~r ∗ f̃ . (3)

The n-th order Born approximation (BA) of h̃ is to assume
that h̃ is an n-th degree polynomial with respect to the first
term of (2). The first-order BA follows from substituting G[εr]
with G[εbg], i.e.,

h̃BA,1 = G[εbg]~p1,~r ∗ f̃ . (4)

The higher-order (n-th order) approximation can be derived
from the following recursive equation:

h̃BA,n = G[εbg]~p1,~r ∗ f̃ + cG[εbg]~r,~r ∗ h̃BA,n−1. (5)

As depicted in Fig. 2, the first-order BA is based on G[εbg]
and, therefore, it cannot reproduce the non-linear propagation
effects in which the path of the altered wave crosses the
point ~r two or more times. Taking such effects into account
necessitates a second or higher-order BA which can improve
the accuracy of the signal tail, i.e., later arriving peaks, as
illustrated in Fig. 1.

D. Evaluation of Green’s function via regularized deconvolu-
tion

Evaluation of Green’s function for any complex-structured
εr necessitates advanced computations which cannot be per-
formed exactly within a feasible time for each scattering point
~r. Therefore, it is approximated by the following regularized
deconvolution process [39] (Fig. 2):

1) Evaluate the terms h̃ = G[εr]~p1,~r∗f̃ and p̃ = G[εr]~p2,~r∗f̃
for each scattering point ~r by propagating a single wave
from both ~p1 and ~p2.

2) Estimate the Green’s function

g̃ = G[εr]~r,~p2
= G[εr]~p2,~r (6)

by using Tikhonov regularized deconvolution with a
suitably chosen regularization parameter δ.

The reciprocity of the wave propagation ensures that the
equation (6) holds. The estimate obtained for g̃ can be then
applied to estimate the wave d̃ = g̃ ∗ f̃ originating at the
scattering point ~r.

E. Numerical higher-order Born approximation

We assume that an incident wave-field p` for time points
` = 1, 2, . . . , nT has been modeled numerically for a given
distribution εbg and the task is to obtain it for εr = εbg + ρε,
where ρε corresponds to a small scattering obstacle. The time-
evolution of the wave-field obeys the following so-called leap-
frog formulae derived in Appendix A:

q
(k)

`+ 1
2

= q
(k)

`− 1
2

+∆ta
(k)

`− 1
2

p`+1 = p`+∆tC−1(f`+ b`+ 1
2
). (7)

Here q
(k)

`− 1
2

is the gradient of p` integrated over time and a
(k)

`− 1
2

and b`+ 1
2

are auxiliary time-evolution vectors (Appendix A).
Matrix C is a permittivity-weighted positive definite mass
matrix [40] with entries of the form Ci,j =

∫
Ω
εr ϕiϕj dΩ,

where ϕi and ϕj denote FE basis functions (Appendix A). It
can be decomposed as

C = C1 + C2, (8)

where C1 and C2 correspond to εbg and ρε, respectively. If
ρε is small enough so that ‖C−1

1 C2‖ < 1, the inverse of C
can be expanded via the geometric Born series expression for
(I + C−1

1 C2)−1 as given by

C−1 = (C1 + C2)−1 = (I + C−1
1 C2)−1C−1

1

= (I + C−1
1 C2 + C−2

1 C2
2 + · · · )C−1

1 . (9)

The first-degree polynomial approximation of this identity
is of the form C−1 ≈ (I + C−1

1 C2)C−1
1 . When substituted

into the leap-frog formulae (7), this results in the following
expression:

q
(k)

`+ 1
2

= q
(k)

`− 1
2

+∆ta
(k)

`− 1
2

p`+1 = p`+∆tC−1
1 (h` + f`+ b`+ 1

2
), (10)

where h` = C2C
−1
1 (f` + b`+ 1

2
) denotes an auxiliary source

vector. We denote

hBA,1
` = C2C

−1
1 (f` + b`+ 1

2
) (11)

to emphasize that this particular choice for the auxiliary source
results in the first-order BA. That is, at each order, the change
of the total field C−1(f` + b`+ 1

2
) is approximated with that

of the incident field C−1
1 (f` + b`+ 1

2
).

Formula (10) can be applied recursively n times to obtain
the n-th order BA. The auxiliary source corresponding to the
result of the recursion is:

hBA,n
` = C2Pn(C−1

1 C2)C−1
1 (f` + b`+ 1

2
), (12)
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(a) Deconvolution process (b) First-order BA (c) Second-order BA

Fig. 2. (a) A schematic picture depicting the principle of the Tikhonov-regularized deconvolution process which is applied in the Born approximation (BA) of
the wave scattering and in forming the Jacobian matrix (as first-order BA). (b) The first-order BA takes into account the scattering wavefronts (black dashed
arrows) originating from a single point and its interaction ~r w.r.t. the existing details in the computation geometry, including the internal part and the surface
of the target D. (c) The second-order BA, takes into account, additionally, the wavefronts which have scattered two-times at ~r (solid gray arrows). Generally,
the order of BA determines the maximal number of times the wave can be scattered at ~r in the model.

where Pn is a matrix-valued polynomial of the form

Pn(C−1
1 C2) = I + C−1

1 C2 + · · ·+ C−n+1
1 Cn−1

2 . (13)

The formula (12) can be derived inductively as follows. Using
the first-order formula two times recursively results in the
second order form:

hBA,2
` = C2C

−1
1 (hBA,1

` + f` + b`+ 1
2
)

= C2C
−1
1 (C2C

−1
1 (f` + b`+ 1

2
) + f` + b`+ 1

2
)

= C2(I + C−1
1 C2)C−1

1 (f` + b`+ 1
2
)

= C2P2(C−1
1 C2)C−1

1 (f` + b`+ 1
2
). (14)

Further, the assumption that the formula

hBA,n
` = C2Pn(C−1

1 C2)C−1
1 (f` + b`+ 1

2
) (15)

holds for an arbitrary natural number n, is verified by the
induction step:

hBA,n+1
` = C2C

−1
1 (hBA,n

` + f` + b`+ 1
2
)

= C2C
−1
1 (C2Pn(C−1

1 C2)C−1
1 (f`+b`+ 1

2
)

+f` + b`+ 1
2
)

= C2Pn+1(C−1
1 C2)C−1

1 (f` + b`+ 1
2
). (16)

The n-th order approximation (12) tends to the exact solution
as n→∞. This can be shown as follows:

C−1
1 (hBA,∞

` +f`+b`+ 1
2
) = (C−1

1 C2P∞(C−1
1 C2) + I)

·C−1
1 (f`+b`+ 1

2
)

= P∞(C−1
1 C2)C−1

1 (f`+b`+ 1
2
)

= C−1(f`+b`+ 1
2
), (17)

where the last identity follows from the fact that C−1 =
P∞(C−1

1 C2)C−1
1 .

1) Convergence of the higher-order Born approximation:
The condition number κ of an unweighted mass matrix is
independent of the mesh size within a quasi-uniform FE mesh,
i.e., a mesh in which the ratio between the maximum and
minimum element size is uniformly bounded [41]. That is,
for a quasi-uniform mesh, κ = ‖C−1‖‖C‖ = constant, if εr
is constant. It follows that the weighted mass matrices C1

and C2 arising from the same FE discretization satisfy the
following inequality:

‖C−1
1 C2‖ ≤ ‖C−1

1 ‖‖C2‖ ≤ constant× maxx |ρε|
minx εbg

, (18)

Fine mesh T Coarse mesh T ′

Fig. 3. A schematic illustration of the nested mesh structure. The fine mesh
T (left) is used in the forward simulation and the coarse mesh, T ′ (right) in
the inversion.

showing that the condition ‖C−1
1 C2‖ < 1 for the convergence

of the Born series (9) and, thereby, the higher-order Born
approximation, can be satisfied only if the magnitude of
the perturbation ρε is moderate compared to the background
εbg . The minimum minx εbg can be considered in the local
neighborhood of the perturbation, since any vector multiplied
by C−1

1 C2 is negligible far from the perturbation. Namely,
first multiplication by C2 restricts any vector to the perturbed
neighborhood which is, then, spread by some amount, when
multiplied by C−1

1 , since the solution of the linear system
defined by a mass matrix decays, when moving away from
the source.

As the BA is here found through the Tikhonov regularized
deconvolution process (Section II-D) and the source hBA,n

` of
BA is linear respect to C2, selecting the magnitude of ρε
can be associated with choosing an appropriate regularization
parameter value δ. Namely, an update of the form ρε → γρε
with scaling γ > 0 corresponds to hBA,n

` → γhBA,n
` and

alternatively to δ → γ−1δ, if the estimate p` obtained for
the wave is updated as p` → γp`. That is, the same effect
which follows by decreasing the perturbation can be generated
via increasing the regularization parameter. Therefore, in the
numerical implementation, it suffices to assume that ρε = 1
in the numerical evaluation of the BA, and to select an
appropriate regularization parameter with respect to that.

2) Multigrid formulation of the permittivity: We define the
permittivity distribution with respect to a coarse and nested d-
simplex mesh T ′ (Fig. 3), i.e., εr =

∑M
j=1 cjχ

′
j and assume

that the permittivity distribution is piecewise constant as given
by εr =

∑m
j=1 cjχj . The multigrid formulation, i.e., the use of

a coarse inversion mesh, is applied to set the resolution of the
unknown permittivity distribution on a suitable level. Namely,
the maximal theoretical reconstruction accuracy obtainable
with full data is generally lower than what is needed for
propagating the wave.

In order to obtain a feasible performance with the decon-
volution approach presented in II-D, it is assumed that εr is
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Forward simulation
Source points
Model the full-wave propagation using each of the
following points as the source point ~p1:
• transmission positions
• the nodes of the mesh T ′.

Wave propagation
Perform leap-frog iteration in T .

Data points
Store the full-wave data using each of the follow-
ing points as the data point ~p2:
• receiver positions
• the nodes of the mesh T ′.

Inversion process

Data points
Use the full-wave measurements obtained at the
receiver positions as the data for the inversion
process.

Total variation regularization
Find a new estimate for εr by performing the
iterative TV regularized inversion process for one
or more multigrid meshes nested with respect to
T ′ can be used as explained in [32]. For each
mesh, form a Jacobian matrix with respect to εr
as described in Section II-F.

Update wave-field
After the TV regularized iteration, correct the
wave-field to correspond εr at
• the receiver positions
• nodes of T ′

for each signal source point used in the forward
simulation.

Fig. 4. Graphical description of the forward and inversion stages of the
present multigrid solver. The unknown permittivity εr is updated sequentially
via a linearized approximation akin to the DBI method [28]. The left column
visualizes the point sets involved and the right one includes the descriptions.

updated in a single element T′j ∈ T ′. Denoting by C̃
(j)
2 an

update restricted to T′j , we define the following element-wise
auxiliary source vector which is used in the deconvolution
process:

h
(i,j)
` = C̃

(j)
2 Q(i) C−1

1 (f` + b`+ 1
2
). (19)

Here, the matrix Q(i) ∈ Rn×n has one nonzero entry Q(i)
i,i =

1 and the vector h(i,j) differs from zero only if the i-th node
belongs to T′j . The solution of the system (10) with respect
to h(i,j) can be obtained as

p` ≈
∑

~ri∈T′j , i≤N

d′
(i,j)
` =

d+1∑
k=1

d′
(ik,j)
` , (20)

where the number of terms is d + 1, that is, the number of
nodes in T′j , and d′

(i,j)
` is the regularized deconvolution-based

solution of the following auxiliary system:

r
(i,j,k)

`+ 1
2

= r
(i,j,k)

`− 1
2

+ ∆ta
(i,j,k)

`− 1
2

,

d
(i,j)
`+1 = d

(i,j)
` + ∆tC−1(h

(i,j)
` + b

(i,j)

`+ 1
2

). (21)

This system can be derived from (10) simply by substituting
h

(i,j)
` as the source. The definition for the auxiliary vectors

a
(i,j,k)

`− 1
2

and b
(i,j)

`+ 1
2

follow directly by substituting p` and d
(k)

`− 1
2

with d
(i,j)
` and r

(i,j,k)

`− 1
2

, respectively, in Equation (28) and

(29) (Appendix A). Note that only d
(i,j)
`+1 out of the auxil-

iary variables r
(i,j,k)

`+ 1
2

and d
(i,j)
`+1 needs to be evaluated. This

is approximated via the regularized deconvolution process.
Hence, with the multigrid approach, one can perform the
deconvolution process with respect to the coarse system (21)
by applying the wave data obtained with the dense one. A
graphical description of the multigrid solver is shown in the
Fig. 4.

F. Jacobian matrix

As shown in [32], the wave equation can be linearized with
respect to the permittivity distribution as follows:

∂q
(k)

`+ 1
2

∂cj
=
∂q

(k)

`− 1
2

∂cj
+∆t

∂a
(k)

`− 1
2

∂cj

∂p`+1

∂cj
=
∂p`

∂cj
+∆tC−1(hdiff

` +
∂b`+ 1

2

∂cj
), (22)

where
hdiff
` =

∂C

∂cj
C−1(f` + b`+ 1

2
) (23)

is an auxiliary source function implied by the identities
(∂C−1/∂cj)(f`+b`+ 1

2
) and ∂C−1/∂cj = C−1(∂C/∂cj)C

−1

the latter one of which can be obtained via differentiat-
ing both sides of CC−1 = I which gives ∂C−1/∂cj =
C−1∂C/∂cjC

−1. Based on the definition of the permittivity
distribution and the matrix C, it holds that (∂C/∂cj)k,` =∫
Tj
ϕkϕ` dΩ. That is, the entry (∂C/∂cj)k,` is non-zero only

if for which ϕk and ϕ` are supported on Tj .
When interpreted in terms of Section II-E, hdiff

` can be inter-
preted as a special case of the first-order BA (11). Morever, the
multigrid formulation presented in Section II-E2 is valid, since
the update (∂C/∂cj) differs from zero only in the element
T ′j ∈ T ′.

G. Non-linear inversion process

The data was inverted using the following fully non-linear
inversion process (Figure 4):

1) Choose a constant initial guess x(0) for the unknown
permittivity distribution, a desired number of iterations
N , and set ` = 1.

2) Find an estimate x(`) for the permittivity distribution
using the iterative total variation (TV) regularization
algorithm described in [32] with one or more multigrid
meshes nested with respect to T ′. For each mesh, eval-
uate a Jacobian matrix with x(`−1) as the linearization
point.

3) If ` < N , update the wave-field via BA with x(`) as
the reference permittivity distribution, set `→ `+1 and
repeat the second step. Perform the update sequentially
element-by-element with the element-wise strategy de-
scribed in Section II-E2.

4) Associate the final estimate with the reconstruction of
the permittivity distribution.
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This algorithm is a fully non-linear generalization of the
reconstruction method presented in the study [32] which is
restricted to the linearized case N = 1. Note that the iterative
TV regularization process of the second step can be non-linear
also when N = 1. It also allows using an arbitrary number
of multigrid hierarchy levels in a straigthforward manner as
explained in [32]. Here, for simplicity without losing the
generality, the investigation is restricted to two hierarchy levels
T and T ′.

H. Computational complexity
1) Forward approach: The computational complexity of

the forward solver follows from the signal’s shortest wave-
length which determines the mesh size, h. The number of
spatial degrees of freedom n in the FE mesh is proportional
to h−d, in which d is the dimension of the mesh. That is, the
number of non-zeros in the system matrices grow as O(n).
Hence, the complexity of each time step is O(n), including the
multiplication by C−1. Namely, the complexity of the solution
of the linear system determined by C by preconditioned
conjugate gradient method [42], applied in inverting the mass
matrix C, is O(n

√
κ) and the condition number κ of C is

independent of n in a quasi-uniform mesh (Section II-E1). The
total complexity of the forward solution is, thus, O(n1+1/d)
since the number of time steps is depends on the degrees of
freedom along a single dimension, i.e. it is of the complexity
of O(n1/d). [43].

2) Inverse approach: In the present multigrid scheme,
the resolution of the mesh T ′ is not bound by that of the
forward simulation but rather by that of the desired imag-
ing resolution. Following from the radar range resolution,
the maximal imaging resolution is determined by the signal
bandwidth [44]. Evaluation of the first-order BA for a given
signal transmission requires performing the regularized decon-
volution process (Section II-D), i.e., accounting the effect of
the signal propagating through the target object D for each
of the M elements in T ′ at each of the K measurement
points, resulting in the complexity of O(KM). Since the
number of elements is comparable to that of the nodes, this
can be expressed also as O(KN), where N refers to the
number of nodes. When evaluating a higher-order transform,
the regularized deconvolution is evaluated for the combined set
of nodes and measurement points. That is, the complexity is
O(KN2) with respect to the spatial degrees of freedom. The
computational cost is also directly proportional to the order of
the transform. The evaluation of a BA essentially determines
the computational complexity of the inversion process (Section
II-G).

I. Numerical implementation with the GPU-accelerated To-
mographic Radar Reconstruction (GPU-ToRRe) toolbox

Numerical forward and inverse methods were implemented
for the MATLAB (The MathWorks Inc.) programming en-
vironment which natively allows using GPU accelerated al-
gorithms as a part of the code. The GPU-accelerated To-
mographic Radar Reconstruction (GPU-ToRRe) toolbox1 de-

1https://github.com/sampsapursiainen/GPU-Torre

TABLE II
THE PROPERTIES OF THE TEST DOMAIN Ω CORRESPONDING TO THE

FOLLOWING VALUES OF THE SCALING PARAMETER: s = 1, s = 500 M
AND s = 0.5 M. THE FIRST SI-UNIT VALUE MATCHES WITH A RADIO

FREQUENCY MEASUREMENT PERFORMED FOR A SMALL SOLAR SYSTEM
BODY [46], AND THE LAST ONE TO A MICROWAVE-RANGE LABORATORY

MEASUREMENT (TABLE III).

Scaling s D Surface layer Voids
1 Diameter 0.28 0.02 0.01– 0.09 m

58λ 4λ 2-18λ
Value of εr 4 3 1
Value of σ 20 15 5

500 m Diameter 140 m 10 m 5 – 45 m
Value of εr 4 3 1
Value of σ 11.0 8.0E-5 S/m 2.8E-5 S/m

0.5 m Diameter 14 cm 1 cm 0.5 – 4.5 cm
εr 4 3 1
σ 0.11 S/m 0.80 S/m 0.028 S/m

TABLE III
SIGNAL PROPERTIES AND CLASSIFICATION FOR THE SCALING PARAMETER

VALUES s = 1, s = 500 M AND s = 0.5 M.

s Center freq. Bandwidth T λ in D Class.
1 15.5 15.5 0.1 0.03 Unitless
500 m 10 MHz 10 MHz 2.2 µs 15 m Radio wave
0.5 m 10 GHz 10 GHz 2.2 ns 15 mm Microwave

.

veloped in this study is available online in GitHub. The
documentation can be found therein. The numerical results
of this study have been computed using this toolbox.

J. Domain

Numerical experiments were performed in a two-
dimensional origin-centric square Ω including the tomogra-
phy target D (Figure 5) in the center part and a perfectly
matched layer (PML) [45] near the boundaries. The PML was
embedded in the model as shown in Appendix to simulate
an open-field wave propagation, i.e., to dampen echoes from
the boundaries back to the center. For the generality of the
results, we used a unitless set of parameters t, ~x, εr, σ and
c = ε

−1/2
r (velocity) which can be scaled to SI-units via

the expressions (µ0ε0)1/2st, s~x, ε0εr, (ε0/µ0)1/2s−1σ, and
(ε0µ0)−1/2c (c = 1 for εr = 1), respectively, with s denoting
a spatial scaling factor (meters), ε0 = 8.85 · 10−12 F/m the
electric permittivity of vacuum, and µ0 = 4π · 10−7 H/m
the magnetic permeability which is assumed to be constant
in Ω. By tuning s, the system can be scaled to match with
different scales and applications. That is, the actual target
and its analog scale model can be modeled through a single
system but two different values of s. Table II shows the scaling
for s = 1, s = 500 m and s = 0.5 m. The first one of
these is the unitless representation, the second one corresponds
to a radio frequency measurement performed for a SSSB,
and the last one to a laboratory-scale microwave experiment.
Conductivity was considered as an unknown latent nuisance
parameter predicted by the equation σ = 5εr, as it difficult to
be inverted as shown, e.g., in [38].

In the unitless coordinates, the diameter of D was approx-
imately 0.28, or in terms of wavelength, 8.7λ. The relative
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Fig. 5. The exact tomography target D used in the numerical experiments.
The white, gray and black area have the relative permittivity value of 4 (solid
layer), 3 (porous layer) and 1 (vacuum), respectively.

permittivity distribution of D included a surface layer with
the thickness around 0.02 (0.6λ) and three inclusions (voids)
with maximum diameter of 0.01–0.09 (0.3-2.8λ) (Figure 5.
The values of εr for the interior part, the surface layer and
the voids were chosen to be 4, 3 and 1, respectively. Outside
D, εr was set to be one, i.e., that of air or vacuum. Inside
D, conductivity causing signal energy loss was assumed to
be a nuisance parameter of the form σ = 5εr, and vanish
elsewhere, i.e., σ = 0.

1) Numerical discretization: To avoid the inverse crime,
i.e., the overly good data fit in the inversion process, the
exact and background wave data were simulated using two dif-
ferent triangular (shape-regular and unstructured) FE meshes
consisting of 93 475 and 40 715 nodes together with 186 544
and 81 040 triangles. The time increment ∆t in the leap-frog
iteration was set to be 6.25E-5 and 2.5E-4, respectively.

Each triangular mesh applied in the wave propagation
process (forward simulation) was obtained by refining a coarse
one uniformly two times. The permittivity distribution was
reconstructed for an original coarse mesh (996 triangular
elements, 552 nodes) which was nested with respect to the
one corresponding to the background data.

2) Signal pulse and measurement: The Blackman-Harris
window [47], [48], [49] with the duration T0 was used as the
shape of the source function f̃(t) for t ≤ T0 (0.67 ns), and
f̃(t) = 0, otherwise. The duration of the pulse was chosen to
be T0 = 0.1 and the duration of the measurement T = 1.1.
The time interval between each data sampling point was set to
be 0.005 corresponding to a 2.5 oversampling rate relative to
the Nyquist criterion. The signal properties and classification
can be found in Table III.

The signal was transmitted and received at 0.32 diameter
circular path centered at the origin and enclosing D. We
investigated the following four different spatial measurement
configurations depicted in Figure 6:

1) The monostatic configuration is constituted by a single
spacecraft.

2) The bistatic I configuration includes two spacecraft with
a constant 22.5 degree angle in between them.

3) In the bistatic II configuration, the separating angle is
90 degrees.

4) In the multistatic configuration, a 90 degrees angle is
covered by altogether five equally spaced spacecraft,
each two separated by a 22.5 angle.

In each one of these, the red one both transmits and receives
the signal while the other spacecraft are used as additional

receivers. The dataset included a total number of 16 transmis-
sion points equally distributed around the target D. This sparse
distribution not satisfying the Nyquist criterion is used in order
to take into account the in-situ restrictions of a radar measure-
ment performed during a planetary space mission. Achieving
a full spatial measurement coverage would necessitate using a
point density which would oversample the Nyquist criterion by
factor two in the vicinity of D. The corresponding number of
points can be obtained dividing the wavelength of the highest
frequency signal component in vacuum (here 0.03) by four
times the circumference of the circumcircle containing D (here
0.9), resulting here to about 120 equally spaced points [50].

3) Noise: Zero-mean Gaussian white noise with a fixed
standard deviation (STD) was added to the measurements. To
investigate the effect of the noise on the signal, the peak-to-
peak signal-to-noise ratio (PPSNR) was evaluated for each
measurement configuration. It was defined as the decibel
value of the relative noise peak level with respect to the
amplitude of the initial data vector, i.e., the difference between
the exact signal and the background data. The noise peak
level was defined to be the 95 % quantile of the Gaussian
noise distribution. When selecting the noise STD, the targeted
level of PPSNR was between 10 and 20 dB (with 0 dB
referring to the level of the signal peak) which is known to
allow finding a tomographic reconstruction and also seems
a potential range for measurements performed for an SSSB
based on the CONSERT data [5], [8]. The motivation to use
Gaussian noise is the significance of the modeling errors,
whose net effect approach a Gaussian random variable under
the additive uncertainty model, assuming that the errors are,
additionally, independent and identically distributed.

4) Inverse estimates: The final reconstruction of the per-
mittivity distribution was obtained via three steps of the non-
linear inversion algorithm in which, on each step, a regularized
permittivity estimate was found through a single step of
the iterative TV regularization scheme presented in [32]. In
this algorithm, the regularizing function is a sum of TV
and L2-norm penalty term. The TV term corresponds to the
Euclidean norm of the permittivity gradient integrated over
D. It regularizes the jumps between adjacent elements, while
the L2-norm penalizes the total magnitude of the distribution.
These terms were scaled by the parameter values α = 2E-1
and β = 1E-3, respectively. The predominating parameter α
affects the reconstruction quality and the role of β is mainly to
ensure the numerical stability of the inversion process, i.e., the
boundedness of the reconstruction. The value of the Tikhonov
regularization parameter for the deconvolution process was set
to be δ = 1E-4. Each parameter value was selected based
on preliminary tests. The reconstructions were produced and
analyzed separately for the first, second and third-order Born
approximation.

5) Inverse error measures: The quality of the inverse
estimates was measured by evaluating the structural similarity
(SSIM) [51] between the exact and the reconstructed permit-
tivity distribution denoted here by εr and ε∗r . To analyze the
value accuracy and localization of the permittivity details, we
evaluated also the mean squared error (MSE) and the relative
overlap error (ROE). The latter one of these is defined as the
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(1) (2) (3) (4)
Fig. 6. The signal configurations of the numerical experiments. In each one
of these, the red one both transmits and receives the signal while the other
spacecraft are used as additional receivers. The dataset included a total number
of 16 transmission points equally distributed around the target D. 1) The
Monostatic configuration is constituted by a single spacecraft. 2) The Bistatic
I configuration includes two spacecraft with a constant 22.5 degree angle in
between them. 3) In the Bistatic II configuration, the separating angle is 90
degrees. 4) In the Multistatic configuration, a 90 degrees angle is covered by
altogether five equally spaced spacecraft, each two separated by a 22.5 angle.

relative error in overlap between εr and ε∗r for the surface
layer and voids. We define ROE as the percentage

ROEi = 100
(

1− Area(A) ∩ Area(Si)

Area(Si)

)
for i = 1, 2, (24)

where S1 denotes the voids and S2 the surface layer, A =
(S1 ∪ S2) ∩ R is the overlap between the target set S1 ∪ S2

and the set R in which a given reconstruction is smaller than
a limit such that Area(R) = Area(S1 ∪ S2).

III. RESULTS

The results of the numerical experiments can be found in
Tables IV and V and Figure 7. Both the signal configuration
and the order of the Born approximation were observed to
have a significant effect on the reconstruction quality obtained
in the non-linear inversion process.

A. Peak-to-peak signal-to-noise ratio

The Bistatic I and multistatic signal configuration, i.e., those
including a measurement point within a 22.5-degree angle
from the transmission location, produced a higher measure-
ment PPSNR than the monostatic one. The PPSNR obtained
with Bistatic II, in which the additional measurement point is
at 90 degrees with respect to the transmitter, was equal to that
of the monostatic case.

B. SSIM

A visual inspection of the reconstructions suggests the two
and multi-point approaches provide an increased sharpness and
distinguishability of the permittivity details. This observation
is supported by the SSIM results, showing that the structural
similarity between the reconstruction and the exact permittivity
distribution increases along with the measurement point count
and also with the order of the BA. Based on the SSIM,
the Bistatic configurations I and II were found to improve
the reconstruction quality by a somewhat similar marginal as
compared to the monostatic case, while the superior results
were obtained with the multistatic configuration.

C. MSE and ROE

The first-order BA was found to be advantageous with
respect to the overlap (ROE), especially, in the cases of the
Bistatic I and multistatic configuration, which nevertheless had
a lower value-accuracy with regard to MSE as compared to the
other two configurations. Increasing the order of the BA led
to an enhanced global value-accuracy for each configuration,
and based on a visual examination, it also led to a sharper
contrast between the image details and the background. The
advantage of using a higher-order BA was obvious, especially,
with respect to the value of the surface layer, which generally
is overly low in the first-order case. Notably, with the second
and third-order BA, the Bistatic configuration I performed
slightly better compared to II regarding both MSE and ROE.

D. Computing time

The performance of the numerical solver was evaluated
using an NVIDIA Quadro P6000 GPU; using it computing the
Jacobian took about 45 s, updating the full-wave data 75, 150
and 225 s with the first-, second-, and third-order BA, resulting
in a total reconstruction process duration of about 285, 435
and 585 s, respectively. Propagating the wave for a single
transmission point took about 45 and 135 s for the background
and exact permittivity distribution, respectively. The wave was
propagated for each node included in the regularized decon-
volution process. The total number of transmission points was
16 outside the target D and 552 inside, corresponding to each
node of the coarse inversion mesh. Performing these processes
in a standard CPU was observed to generally take 20–100
times the time required by a GPU.

IV. DISCUSSION

In this study, we have shown that the linearized full-wave
inversion approach for the tomographic reconstruction of small
solar system bodies (SSSBs) presented in [32] can be derived
from the first-order Born approximation (BA) by associating
it with the Jacobian matrix of the numerical wave-field.
Here, this approach was generalized as a non-linear iteration
in which the wave-field– i.e., the forward solution–can be
updated via a BA of an arbitrary order. The structural similarity
(SSIM) criterion shows an improvement in the reconstructions
with the increase in the BA order. We have also prepared
a graphics processing unit-accelerated toolbox, GPU-ToRRe
for Matlab (MathWorks Inc.), to achieve a sufficiently short
computation time for experimentation and further method
development.

The structural similarity (SSIM) and overlap (ROE) results
suggest that the quality of the reconstruction can be increased
via bistatic or multistatic measurement configurations, i.e.,
dual- or multi-point measurement schemes. Increasing the
order of the BA was found to improve the SSIM further,
and its role with regard to the value-accuracy (MSE) of the
reconstructions was found to be crucial. In the Bistatic I con-
figuration, an angular separation of 22.5 degrees between the
transmitter and the additional receiver was observed to result
in an enhanced measurement PSNR level compared to the
monostatic case, which was recently proposed in [7], whereas
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TABLE IV
THE RESULTS OF THE NUMERICAL EXPERIMENTS. THE BEST VALUE OF SSIM IS 1 AND THE BEST VALUE OF MSE AND ROE IS 0.

Configuration BA order PPSNR (dB) SSIM Global MSE Void MSE Surface MSE Void ROE Surface ROE
Monostatic 1 13.9 0.896 0.344 0.147 0.102 37.1 22.6

2 13.9 0.914 0.283 0.171 0.0485 37.3 26.0
3 13.9 0.918 0.288 0.189 0.0495 34.2 32.0

Bistatic I 1 15.2 0.897 0.419 0.164 0.124 33.6 17.9
2 15.2 0.916 0.302 0.173 0.0425 39.4 20.6
3 15.2 0.922 0.285 0.185 0.0387 40.0 23.8

Bistatic II 1 13.9 0.907 0.339 0.140 0.0647 34.2 26.4
2 13.9 0.916 0.305 0.181 0.0480 38.0 32.6
3 13.9 0.920 0.303 0.200 0.0493 39.8 36.0

Multistatic 1 -15.2 0.908 0.489 0.232 0.0636 37.7 14.5
2 -15.2 0.924 0.331 0.208 0.0334 36.5 18.0
3 -15.2 0.925 0.305 0.209 0.0392 35.9 22.0

TABLE V
COMPUTING TIMES (S) FOR THE GPU-ACCELERATED ALGORITHMS.

Process type
BA order

1st 2nd 3rd Other
Jacobian matrix 45
Wave-field update 75 150 225
Reconstruction process 285 435 585
Exact wave data 135
Background wave data 45

the larger 90-degree angle of the Bistatic II configuration did
not. It seems that, whereas the Bistatic I reconstruction is
superior to the Bistatic II on the surface part, there is not such
a difference in the deep interior, which we interpret to follow
from the longer and more ”multi-way” signal propagation in
comparison to the background prediction in the latter case.
The findings of this study suggest that, in addition to the
noise-robustness [5], [33], the reconstruction quality can be
improved via a bistatic measurement with regard to both
structural similarity and value accuracy, especially if a higher-
order BA is used. A bistatic configuration had also been chosen
for CONSERT to provide tomographic travel-time data [6],
[8].

Regarding the practical aspects of a space mission design,
placing the transmitter in the mothership might be convenient
to guarantee its power supply. Small spacecrafts could carry
the additional receivers for the chosen measurement config-
uration [34], [35]. Therefore, in addition to the monostatic
and bistatic configurations, the multistatic one can also be
considered as a potential scenario for a future space mission. In
the light of the present numerical results, such a configuration
should improve the reconstruction quality as shown by the
SSIM, global MSE and ROE criteria.

Referring to the convergence properties, the numerical sta-
bility of the BA with the present Tikhonov regularization
approach seems appropriate. It converges rapidly as a function
of the approximation order, matching with our justification
given in Section II-E1 for a well-chosen regularization pa-
rameter. Based on our inversion results, it seems that the third-
order approximation might be applicable for wave propagation
investigations, as the effect of increasing the order of the BA is

already minor when moving from the second to the third order.
The practical limit for increasing the order is set by the noise,
the effect of which becomes visible gradually as the order
of the BA increases. Here the third-order case was selected
as the limit, due to the observation of minor noise effects.
Even though the highest SSIM was obtained for the third-
order reconstructions, they can also be argued to be affected
by the noise based on a comparison of MSE values. We deem
them to be due to the inversion process, which applies the
BA multiple (three) times to correct the wave-field–i.e., the
Green’s function. The sensitivity of such updates to noise is
a well-known property of the DBI techniques [16], [24], [25],
[26], [27], [28]. Our method is similar to the DBI methods, but
it performs the computations in the time domain and allows
for complex-shaped target domains. The noise effects could be
resolved by strengthening the regularization which, however,
would diminish the effect of the higher-order updates, since
they would alter and decrease the terms of the Born series.
In addition to the noise, another obvious factor affecting the
performance of the inversion algorithm is the contrast of
the permittivity details–i.e., as shown in Section II-E1, the
ratio between the magnitude of the permittivity perturbation
and the background permittivity distribution is the key factor
determining the level of the Tikhonov regularization necessary
for the convergence of the BA. Following from this, in can be
challenging to reconstruct high-contrast details [24], [25].

The Born iterative method with a steady Green’s function
has been shown to be advantageous with respect to the
noise robustness of the inversion process compared to a
DBI updating method to data in the frequency domain [28].
This observation is also in agreement with our present time-
domain modeling results, suggesting that the update routine
necessitates finding a balance between accuracy and noise
suppression. The analysis of the noise tolerance of our method
with the first-order BA without updating the Green’s function
(corresponding to the Born iterative method) can be found in
our previous work [32], [5] where a noise level above 8 to
10 dB was found to be necessary for obtaining an appropriate
reconstruction quality. This compares well with the findings
for microwave tomography of the breast [52], for example. For
its superior magnitude, the first-order BA determines the inver-



10

First-order Born approximation

R ∩ S1 R ∩ S2

Monostatic
R ∩ S1 R ∩ S2

Bistatic I
R ∩ S1 R ∩ S2

Bistatic II
R ∩ S1 R ∩ S2

Multistatic

Second-order Born approximation

R ∩ S1 R ∩ S2

Monostatic
R ∩ S1 R ∩ S2

Bistatic I
R ∩ S1 R ∩ S2

Bistatic II
R ∩ S1 R ∩ S2

Multistatic

Third-order Born approximation

R ∩ S1 R ∩ S2

Monostatic
R ∩ S1 R ∩ S2

Bistatic I
R ∩ S1 R ∩ S2

Bistatic II
R ∩ S1 R ∩ S2

Multistatic

Fig. 7. The reconstructions of the two-dimensional permittivity distribution together with the overlap sets R ∩ S1 and R ∩ S2. The color scale is from 1
(black) to 5 (white).

sion performance in high-noise cases, where the minor higher-
order corrections have a less significant effect in cases where
the level of the Tikhonov regularization is sufficient. The first-
order BA is also less demanding regarding computational com-
plexity. Therefore, it might be preferable for dense inversion
meshes. Optimizing the performance of the multigrid solver
with respect to noise and regularization is a complex topic, as it
depends on altogether three regularization parameters: the TV,
L2-norm and Tikhonov regularization parameters. It is obvious
that the optimal conditions, including the most suitable order
of the BA, depend on the application-related parameters, such
as the permittivity distribution, wavelength, targeted imaging
resolution, and the distribution of the scattering obstacles.

Regarding the goal of reconstructing the interior structure
of an asteroid, it will be important to implement and evaluate
the present higher-order BA for a 3D computation geometry.
This could be done by extending the linearized multigrid

solver introduced and used in our recent studies [32], [33].
Applying the multigrid approach is crucial in discretizing
the unknown permittivity distribution, as the sparsity of the
inversion grid enables the fast performance of the wave-field
updating routine. The results of this study together with the
adaptability of the multigrid mesh suggest that our approach
will be sufficiently fast also in a three-dimensional case where
the coarse mesh might consist of a few thousand elements.
A three-dimensional inverse solver could be evaluated via
microwave-range measurements on an analogue target. Re-
cently, a multistatic inversion approach has been validated for
frequency-domain data in such a way [53]. Thus, a natural next
step would be to perform a validation for the time domain.
Other interesting research directions would be to investigate
carrier wave effects in the full-wave inversion of tomographic
radar data, and sampling techniques to improve the noise-
robustness of the reconstructions [54].
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APPENDIX

A. Wave propagation model

Following [32], the wave equation for a transverse electric
field ~E = u~ez in the spatio-temporal set [0, T ] × Ω can be
formulated as a first-order system

εr
∂u

∂t
+ σu−∇ · ~g = f and

∂~g

∂t
−∇u = 0, (25)

where εr and σ denote the relative permittivity and conduc-
tivity distribution, respectively, ~g =

∫ t

0
∇u(τ, ~x) dτ , and the

boundary conditions are set by ~g|t=0 = ∇u0 and u|t=0 = u1.
The right-hand side is the signal source, i.e., the antenna
current density given by f(t, ~x) = δ~p(~x)f̃(t) transmitted at
the point ~p. Here δ~p(~x) is Dirac’s delta function with respect
to ~p. Integrating (25) multiplied by v : [0, T ] → H1(Ω)
and ~w : [0, T ] → L2(Ω) and applying the rule of partial
integration, one can obtain the following weak form:

∂

∂t

∫
Ω

~g · ~w dΩ−
∫

Ω

~w·∇u dΩ = 0,

∂

∂t

∫
Ω

εr uv dΩ+

∫
Ω

σ uv dΩ+

∫
Ω

~g ·∇v dΩ =

{
f̃ , if ~x=~p,
0, else.

(26)

Here, it is assumed that the domain and the parameters are
regular enough, so that the weak form has a unique solution
u : [0, T ]→ H1(Ω) [55].

To obtain a numerical solution, we assume that the electric
and gradient field are finite sums of the form u =

∑n
j=1 pj ϕj

and ~g =
∑d

k=1 g
(k)~ek with g(k) =

∑m
i=1 q

(k)
i χi, respec-

tively. Here, ϕ1, ϕ2, . . . , ϕn are real-valued linear (nodal) basis
functions and χ1, χ2, . . . , χn are piecewise (element-wise)
constant element-indicator functions. Defining test functions
v : [0, T ] → V ⊂ H1(Ω) and ~w : [0, T ] → W ⊂ L2(Ω) with
V = span{ϕ1, ϕ2, . . . , ϕn} and W = span{χ1, χ2, . . . , χm}
the weak form can be written in the Ritz-Galerkin discretized
form [40], that is,

∂

∂t
Aq(k) −B(k)p + T(k)q(k) = 0,

∂

∂t
Cp + Rp + Sp +

d∑
k=1

B(k)Tq(k) = f , (27)

with p = (p1, p2, . . . , pn) and q(k) = (q
(k)
1 , q

(k)
2 , . . . , q

(k)
m ),

and f ∈ Rn with fi =
∫

Ω
f ϕi dΩ denoting the coordinate

vectors for u, ~g and the source function, respectively.
The matrices of the system are given by A ∈ Rm×m,

B ∈ Rm×n, C ∈ Rn×n, S ∈ Rn×n, T ∈ Rm×m. Matrices
A and T(k) = ζ(k)A are diagonal with non-zero entries
determined by Ai,i =

∫
Ti

dΩ. The matrix B(k) is a projection
matrix of the form B

(k)
i,j =

∫
Ti
~ek · ∇ϕj dΩ, and C, R and

S are mass matrices weighted by εr, σ and ξ, respectively,
as given by Ci,j =

∫
Ω
εr ϕiϕj dΩ, Ri,j =

∫
Ω
σ ϕiϕj dΩ and

Si,j =
∫

Ω
ξ ϕiϕj dΩ. The matrices S and T(k) correspond

to a split-field perfectly matched layer (PML), i.e., the set
{~x ∈ Ω | %1 ≤ maxk |xk| ≤ %2} which eliminates reflections
from the boundary ∂Ω back to the inner part of Ω [45]. For
the PML parameters, ξ(~x) = ς , if %1 ≤ maxk |xk| ≤ %2, and
ζ(k)(~x) = ς , if %1 ≤ |xk| ≤ %2, and ξ(~x) = ζ(k)(~x) = 0,
otherwise.

To discretize the time interval [0, T ], we utilize ∆t spaced
regular grid of nT time points and the standard difference
approximations for the time derivative. These substituted into
(27) lead to the leap-frog formulae (7) [45], [56], [57],
where the auxiliary time-evolution vectors a

(k)

`− 1
2

and b`+ 1
2

are defined as follows:

a
(k)

`− 1
2

= A−1B(k)p`−A−1T(k)q
(k)

`− 1
2

, (28)

b`+ 1
2

= −Rp`−Sp`−
d∑

k=1

B(k)Tq
(k)

`+ 1
2

. (29)
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