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Abstract—The diagnosis of telecommunication networks re-
mains a challenging task, mainly due to the large variety and
volume of data from which the root causes have to be inferred.
Expert systems, supervised machine learning, or Bayesian net-
works require expensive and time consuming data labeling or
processing by experts. In this paper, we propose the Infinite
Multivariate Categorical Mixture Model for clustering patterns
of faults from data gathered from telecommunication networks.
The model is able to automatically identify the number of
clusters necessary to explain the data using the Dirichlet process
prior. We show how to use Variational Inference to derive
an Expectation-Maximization (EM) like algorithm to perform
inference on the model. We apply our model on synthetic data
generated from an expert Bayesian network of a Fiber-To-The-
Home (FTTH) Gigabit capable Passive Optical Network (GPON).
We show that the model discovers the patterns linked to the root
causes of the faults with up to 96 % accuracy in an unsupervised
manner. We also apply our method on real data gathered from
the FTTH network and the local area network and demonstrate
how the model is able to identify known faults.

Index Terms—Infinite Mixture Models, Variational Inference,
Self-Diagnosis, Access Network, Local Area Network, Pattern
discovery

I. INTRODUCTION

Identifying fault patterns in large telecommunication network
and service infrastructures is a difficult task. Most of the
considered technical solutions rely either on rule based expert
systems or hand crafted expert Bayesian networks [1]–[4].
Although these approaches have had tremendous success, one
of the unsung drawbacks is the data processing and the expert
knowledge required to build the diagnosis model or rules. For
expert systems, for example, the rules created by the expert
require knowledge of the existing fault and the identification
of the variables describing the fault. This process requires data
processing by hand by an expert of the domain, which is an
expensive and time consuming task. Also, the maintenance of
the model or rules in the long run can be a significant issue
for operational teams.

Recently, machine learning techniques have been tremen-
dously successful in the identification and the extraction of
patterns in various domains, such as text analysis, clustering
documents and the identification of topics. In the context of our
problem, similar approaches can be used to identify patterns of
faults from diagnosis data. This task is thus an unsupervised

machine learning task, where labels are not available and
obtaining them is as complex as the data processing required
to construct expert rules. However, unlike text data, the data
gathered from various devices and services in the network is
often structured in the form of a table, where each variable
takes some range of values.

Clustering such data, gathered from telecommunication
networks and services presents many challenges. The first
and the main challenge is the unknown number of clusters
of faults in the data. The second challenge is the types and
multivariate nature of the data. The data is multi-dimensional
and can contain categorical and continuous variables. Therefore,
classical clustering algorithms where the number of clusters
is to be set a priori require some form of model selection.
Furthermore, classical approaches such as KMeans suppose a
specific probability distribution for each cluster, notably Gaus-
sian distributions with a diagonal constant covariance matrix
and uniformly distributed mixture weights. These modeling
assumptions can hurt the performance of the clustering when
the data do not comply with such assumptions, which is often
the case when dealing with real-world applications.

In this paper, we propose an infinite multivariate categorical
mixture model to identify patterns of faults in an unsupervised
setting, without any prior expert knowledge. The model is
based on the Dirichlet Process prior introduced in [5], which
allows for learning the number of clusters from the data itself.
However, the Dirichlet Process supposes an infinite number
of clusters which translates to a harder intractable inference
problem on the model. Our contributions are the following:

• We provide a theoretical formulation of the infinite
multivariate categorical mixture model (section 2).

• We show how to perform approximate inference on the
model, in order to extract the clusters from the data using
Variational Inference [6] (section 3).

• We demonstrate how the model is able to identify root
causes of faults in a synthetic dataset generated from a
real-world expert Bayesian Network (section 4).

• We also demonstrate the clustering performance of the
model on real operational data acquired from the Fixed
Access Network and the Local Area Network (section 5).

Implementation of the model and synthetic data are available
in: https://git.io/JejBQ978-1-7281-5127-4/20/$31.00 ©2020 IEEE



II. THE INFINITE CATEGORICAL MIXTURE MODEL

A. Notations
We introduce some notations that we will use throughout

the paper. We denote by Xi an observable random variable,
describing a specific feature of a network equipment such
as a status, an alarm or a physical metric. We consider
only categorical random variables. Continuous variables such
as optical powers or temperatures are discretized, using
standard methods such as equal frequency or equal width
discretization. Thus, each random variable takes values in
Val(Xi) = {v1i, ..., v|Xi|i}, where |Xi| is the number of
modalities of variable Xi. Let x1:N represent N samples of the
vector X = [X1, ..., Xd]

T of dimension d. We denote by z1:N
N random variables, where zn represents the diagnosis cluster
of sample xn. The Kullback-Leibler divergence between two
distributions q and p is denoted by:

DKL [q||p] =
∫
q(x) log

q(x)

p(x)
dx

The entropy of a distribution p is denoted by:

H [p] = −
∫
p(x) log p(x)dx

For discrete radom variables integrals are replaced by discrete
sums over the values taking by the random variable X.
We denote by Cat(x|π) the categorical distribution of a
random variable X taking discrete values {x1, ..., xm} with
probabilities {π1, ..., πm}:

Cat(x|π) =
m∏
i=1

π
1[x=xi]
i s.t

∑
i

πi = 1

We denote by Beta(β; 1, η) the beta distribution of parameters
1 and η, defined as:

Beta(β; 1, η) = C(1− β)η−1 C: normalizing constant

If a random variable X has a probability distribution p
X
(x),

we simply write:
x ∼ p(·)

We denote by x1:m the vector of elements {x1, ..., xm} and
x−i the vector of all elements except the ith index.

B. The Dirichlet Process Prior
In a model-based clustering, one of the main challenges is

to choose the correct number of clusters to analyze the data. In
our case, the number of diagnosis clusters is unknown a priori.
The Dirichlet Process (DP) [5] allows us to introduce a prior
on the number of clusters, without fixing it explicitly. One
way to construct the Dirichlet Process is via the stick-breaking
construction [7], where η is the concentration parameter of
the DP (η > 0) , and the weight πk of the kth cluster is
constructed from k samples drawn from a beta distribution as
follows:

βk ∼ Beta(·; 1, η)

πk = βk

k−1∏
l=1

(1− βl)

The stick breaking construction is as follows, πk represents
the length of the kth piece broken from a stick of length 1. If
the concentration parameter is small, πk will be large (close to
1) at the first times the stick is broken, therefore the stick will
be broken a small number of times (small number of clusters).
If η is large, πk will be small (close to 0) and the stick can
be broken a large number of times (large number of clusters).
The probability that the (n+ 1)th data point belongs to a new
cluster k∗ or K existing clusters is [8]:

P[zn+1 = z|z1:n, η] =
1

η + n

[
η1[z = k∗] +

K∑
k=1

nk1[z = k]

]
where nk is the number of data points in cluster k. If η →∞
a new cluster would be created for each data point, and if
η → 0 all data points are concentrated in the first cluster.
The intuition behind the Dirichlet process is the following:
as the number of data points increases, we allow the number
of clusters to grow according to the concentration parameter
and the clusters already assigned. New samples are assigned
to existing clusters if they match, otherwise a new cluster is
created for them. Therefore the Dirichlet Process allows the
mixture model to cluster the data and identify automatically
the number of clusters necessary to explain the data.

C. The Dirichlet Process Categorical Mixture Model
(DPCMM)

Using the stick-breaking construction introduced in the
previous section, the generative process for the model becomes:

βk ∼ Beta(·; 1, η)

πk = βk

k−1∏
l=1

(1− βl)

zn ∼ Cat(·|π) =
∞∏
k=1

π
1[zn=k]
k

bki ∼ Dir(·;αi, |Xi|) =
∏

v∈V al(Xi)

bαiv−1
k,i,v

s.t
∑

v∈V al(Xi)

bk,i,v = 1

xni|zn = k, b ∼ Cat(·|bki) =
∏

v∈V al(Xi)

b
1[xni=v]
k,i,v

Figure 1 shows a graphical representation of the generative
process of the model.

Based on the assignment of cluster zn a sample xni is drawn
based on the conditional probability distribution for variable
Xi taking a certain value v under cluster zn = k:

bk,i,v = P[xni = v|zn = k]

In the classical Bayesian formulation considered above, the
parameters bk,i = [bk,i,v]v∈V al(Xi) are themselves random
variables with a conjugate prior, in this case a Dirichlet
distribution with concentration parameter αi for variable
Xi. The concentration parameter allows us to inject prior
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Fig. 1. Graphical representation of the model in plate notation.

knowledge about the modalities of variable Xi. αiv thus
represents a weight for modality v in the Dirichlet distribution
associated with variable Xi. In the case where no information
is available we use an uninformative prior αiv ∝ 1

|Xi| .
In order to fit the model to the data and identify the clusters

representing the different types of network failures, we need
to compute or approximate the posterior distribution:

p(z1:N , b, β|x1:N ) =
p(z1:N , b, β, x1:N )

p(x1:N )
(1)

Markov Chain Monte Carlo (MCMC) approaches are com-
monly used to fit such models [9]. The main idea behind
these approaches is to run a Markov chain long enough (until
convergence) where the stationary distribution at convergence
is the posterior of interest as defined in equation (1). One
major drawback of such approaches is the long burn-in time
of the Markov chain that does not scale well with the number
of dimensions of the data [10]. In a high dimensional space
the Markov chain needs to visit a high number of states. The
other drawback is that convergence of MCMC methods is hard
to diagnose, due to the sampling issue in high dimensions.
Although MCMC methods have had many successes in small
scale problems, further research is required particularly for
large scale applications.

Recently, an alternative approach emerged called Variational
Inference [6], [8], [10]. The main idea behind the approach
is to express the intractable inference problem as a relaxed
optimization problem, where we can leverage all the tools
available in the mathematical literature of optimization to
solve the inference problem. In the next section, we present
a brief review of variational inference, and we show how we
can use it to approximate our posterior distribution of equation
(1).

III. VARIATIONAL INFERENCE

A. Variational Inference and the mean field approximation

In order to introduce the variational inference approach,
we denote by ζ1:p = {z1;N , b, β} the vector grouping all

the hidden variables of the model. Solving the inference
problem of the model amounts to determining p(ζ1:p|x1:N ).
As mentioned previously, close form solutions for this quantity
can not be determined. Variational inference and the mean-
field approximation allow us to approximate this intractable
distribution by a set of distributions for which the inference
is tractable, namely the mean field family. A distribution q
is said to be in the mean field family for variables ζ1:p, if it
verifies:

q(ζ1:p) =

p∏
l=1

q(ζp)

The main idea of variational inference is to approximate the
intractable distribution (1), by finding the closest mean field
family member in terms of Kullback-Leibler divergence i.e:

q∗ = min
q

DKL [q(ζ1:p)||p(ζ1:p|x1:N )]

By exploiting the factorization in the mean field family, we
can show that the solution q∗ verifies the following fixed point
equations:

log q∗(ζl) = const + Eζ−l∼q∗ [log p(ζ1:p, x1:N )] ∀l (2)

For an explicit derivation of this criterion we refer the reader to
[8]. In the case of our model, the mean-field family is defined
as :

q(z1:N , b, β) =

N∏
n=1

q(zn)

d∏
i=1

T∏
k=1

q(bk,i)

T∏
k=1

q(βk) (3)

We also suppose that q(βT = 1) = 1 hence q(zn > T ) = 0,
i.e the number of clusters is truncated to an upper bound on
the true number of clusters [10]. A noteworthy aspect of this
approach is that the true posterior given by (1) has an infinite
number of factors, however the approximating distribution q is
constrained based on the previous conditions. Therefore, the
true model is unchanged however the minimization problem
is relaxed in order to be solved efficiently.

B. Variational Inference for The DPCMM

By applying equation (2) to our Infinite Categorical Mixture
Model, we obtain:

log q∗(zn) = const + E{z−n,β,b}∼q∗ [log p(z1:N , b, β, x1:N )]

log q∗(bk,i) = const + E{z1:N ,β,b−{k,i}}∼q∗ [log p(z1:N , b, β, x1:N )]

log q∗(βk) = const + E{z1:N ,β−k,b}∼q∗ [log p(z1:N , b, β, x1:N )]

And by substituting the expression of p(z1:N , b, β, x1:N )
resulting from the graphical representation of the model (Figure
1), we then deduce the following approximating distributions
and fixed point updates for their parameters:

q∗(zn) = Cat(zn;φn)
q∗(bk,i) = Dir(bk,i; εk,i, |Xi|)
q∗(βk) = Beta(βk; γ1,k, γ2,k)



The mean field fixed point equations for the parameters are
finally the following, where ψ is the digamma function:

log φnk = const +
d∑
i=1

∑
v∈V al(Xi)

1[xni = v][ψ(εk,i,v)

− ψ(
∑

v′∈V al(Xi)

εk,i,v′)]

+ ψ(γ1,k)− ψ(γ1,k + γ2,k) (4)

+

k−1∑
l=1

[ψ(γ2,l)− ψ(γ1,l + γ2,l)] s.t
T∑
k=1

φnk = 1

γ1,k = 1 +

N∑
n=1

φnk (5)

γ2,k = η +

N∑
n=1

T∑
l=k+1

φnl (6)

εk,i,v = αi,v +

N∑
n=1

φnk1[xni = v] (7)

C. Convergence and an Algorithm

In order to monitor convergence while iterating the fixed
point equations, we can plot the evidence lower bound defined
as:

L(q) = −DKL [q||p(z1:N , b, β, x1:N )] (8)
= E{z1:N ,β,b}∼q [log p(z1:N , b, β, x1:N )] +H[q]

The mean field fixed point updates minimize −L(q), therefore
across iterations the evidence lower bound should increase
monotonically. Usually, we only evaluate the log predictive
across iterations, which is the first term of L(q). This quantity
is not guaranteed to increase monotonically. However, at
convergence, this quantity reaches a plateau, and by evaluating
convergence in this manner we can bypass the tedious
calculation of different entropy terms in H[q].

Like the EM algorithm, the fixed point update equations
only guarantee convergence to a local minimum depending on
the initialization. Therefore, in order to converge to the best
local minimum possible we need to initialize the parameters
φn in the best way possible. One approach widely used for
the initialization of mixture models is to initialize φn from a
KMeans algorithm. Hence, given the centers of a fitted KMeans
µk where we set the number of clusters to the upper bound
T , we initialize φn as:

φnk ∝ exp

(
−1

2
||xn − µk||

)
Algorithm 1 presents the inference process on the Dirichlet
Process Categorical Mixture Model using variational inference.
Similar to the EM Algorithm, we can recognize two steps
in the iterative process: the update of the local variational
parameters φn analogous to the E-step, and the update of the
global variational parameters γ1, γ2, and ε analogous to the
M-step.

Algorithm 1 Variational Inference for the DPCMM
Input: x1:N , T, η
{µk}k = KMeans(T, x1:N )

φ
(0)
nk ∝ exp

(
− 1

2 ||xn − µk||
)

{Initialize φn ∀k, ∀n}
L(0) = −∞
for t = 1...∞ do

Compute: γ(t)1,k ∀k (5)
Compute: γ(t)2,k ∀k (6)
Compute: ε(t)k,i,v ∀v,∀k, ∀i (7)
Compute: φ(t)n,k ∀n,∀k (4)
Compute L(t) (8)
if |L

(t)−L(t−1)

L(t) | ≤ 10−6 then
break

end if
end for
zn = argmax

k
φnk ∀n

return z1:N , φ

IV. ASSESSMENT ON SYNTHETIC DATA GENERATED BY AN
EXPERT BAYESIAN NETWORK FOR FTTH DIAGNOSIS

A. Experiment and Dataset

Fig. 3. FTTH GPON Architecture [1].

In this first experiment we assess our clustering model for
the FTTH fault diagnosis. We reuse the work done by Tembo et
al. [1] where the authors designed an expert Bayesian network
that reflects the behaviour of a real GPON network (Figure
3). The Bayesian network is depicted on Figure 2 where the
colored top nodes represent the root causes and the other nodes
the observations coming from the network. The goal here is
to see if our clustering model is able to automatically detect
the patterns corresponding to the different root causes.

In order to generate the synthetic data for the experiment, we
simulate a fault by activating the root cause for the fault, and we
sample the visible variables. Here we sampled 6 uncorrelated
faults (for more details on the expert bayesian network and
remaining variables, we refer the reader to [1]):
• AltONT: highlights a problem with the power supply

of the optical network termination (ONT). This hidden



Fig. 2. Expert Bayesian Network of the FTTH GPON [1]. Colored nodes are possible root causes whereas non-colored nodes are observations.

variable controls the current of the ONT IONT , the Dying
Gasp alarm DG, and the electric voltage of the ONT
VONT .

• AltOLT: describes a problem with the power supply of
the optical line termination (OLT). It controls similar
variables for the OLT, VOLT and IOLT .

• FaultyONT: denotes whether the ONT is faulty, and
symbolizes the global state for an ONT. It controls the
alarms TIA (Transmission Interference Alarm), DOW
(Drift Of Windows), and SF (Signal Fail) or SD (Signal
Degraded).

• FiberDB: represents the state of the drop optical fiber and
controls RxONT the power at which the ONT receives
the signal.

• IOS: (Image Operating System) refers to an incompati-
bility between the OS of an OLT and the OS of an ONT.
It controls the variable SWV describing the software
version alarm.

• TcOLT: represents the temperature of the OLT.

We sampled 150 data points for each fault, using the likelihood
weighted sampling method, based on the conditional distribu-
tion tables of each observation given the root cause. Therefore
we generate for each fault a pattern of the visible variables for
a specific customer equipment (ONT). The resulting dataset
contains 900 samples, where each sample presents a realisation
of the 29 visible nodes of the Bayesian network. These visible
nodes are referred to in our modeling by Xi.

B. Evaluation Process and Results
In order to demonstrate the value of the Dirichlet Process

prior, we suppose that the number of faults is unknown,
similarly to many real-world applications. As discussed in
section III-A we evaluate our model with a truncation level
T = 50 which represents an upper bound of the true number
of clusters (here K = 6). The algorithm will build up to 50
clusters but will automatically keep the main relevant clusters.
We set the concentration parameter of the Dirichlet process
to η = 0.001. We run our model on the generated dataset
multiple times and we plot the evidence lower bound defined
in equation (8) in Figure 4.

The evaluation metric is the clustering accuracy. It is similar
to the classification accuracy, however, in the clustering task
the clusters are not identifiable with the labels, i.e the clusters
can change from one run of the algorithm to another. Therefore
we need to test all possible combinations and choose the best
one. The clustering accuracy is defined as [11]:

ACC = max
m∈M

∑N
n=1 1 [ln = m(zn)]

N

where zn is the cluster assignment, ln the true label and M
the set of all possible one-to-one mappings.

The best run of the model was selected as the run with
highest evidence lower bound (Experiment 6). It corresponds
to a clustering accuracy of 0.96 as seen on the table I. We
report the confusion matrix between the clusters and true labels
in table II.

The confusion matrix in table II shows that each of the main
clusters found by the clustering model corresponds clearly to
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Fig. 4. The evidence lower bound for different runs of the algorithm.

Best model (highest L) Exp. 6

ACC 0.96
TABLE I

CLUSTERING ACCURACY FOR THE BEST CLUSTERING MODEL.

a particular root cause, with up to 3.2 % error. The Dirichlet
process automatically identifies the main patterns and clusters
them in 6 clusters corresponding to the true clusters. The other
clusters remain empty. It shows that the number of clusters is
automatically and solely estimated from the data. Here, based
on a ground truth we can also assess the relevancy of each
cluster since they refer to a particular root cause.

V. EXTRACTION OF PATTERNS OF FAULTS IN THE FIXED
ACCESS NETWORK AND THE LOCAL AREA NETWORK

In this second experiment, we apply our clustering model on
real operational network data. However in this setup we don’t
have access to a ground truth so the aim of this experiment is
to demonstrate the benefit of our clustering model in a data
exploration process.

A. Data Collection and Network Scope

We place our working environment on the FTTH GPON
fixed access network and the local area network as represented
in Figure 5. For the fixed access network we collected data
describing the status of the OLT, and the status of the ONT
(olt_status, ont_status, ont_download_status). For the local area
network, we collected data describing the status of the router
and the different services provided such as, IPTV, VOD (Video
On Demand) and VOIP. We also collected data describing the
account status of the client. The final dataset contains about
7000 clients who claimed to have a problem with one of their
services. For each client we collect 29 variables reflecting the
different aspects of the environment as described previously.

AltOLT AltOLT FaultyONT FiberDB IOS TcOLT

cluster 11 150 0 0 0 0 0
cluster 25 0 132 0 0 0 0
cluster 5 0 0 148 0 0 0
cluster 3 0 0 1 150 0 2
cluster 39 0 1 0 0 147 3
cluster 17 0 17 1 0 3 145
cluster 1 0 0 0 0 0 0
...

...
...

...
...

...
...

cluster 50 0 0 0 0 0 0

TABLE II
CONFUSION MATRIX.

Fig. 5. Network scope for fault pattern extraction from real operational data

B. Cluster Analysis

We apply the same protocol as the previous experiment
described in section IV-B. We obtained 6 main clusters
corresponding to known problems. We report for each cluster
the number of customers assigned to the cluster and the most
common pattern, i.e. characteristic values that the variables take
and the counts for each variable (Figure 6). Furthermore, we
give an interpretation based on network expertise to understand
what kind of problem the customers are facing in each cluster.
• Cluster 37: (600 clients) This cluster gathers cus-

tomers with a problem on the remote PVR for
the IPTV: Remote_PVR = Missing, and all other
values correspond to an operational state of the
client’s line: (client_account_status=1, OLT_status=OK,
router_status=Enabled, ONT_status=NODEFECT...).

• Cluster 30: (> 2500 clients) In this cluster the ONT is not
detected: (ONT_status = Missing), where all other services
are operational (router_status=Enabled, voip_status=Ok,
tv_profile_status=operational ... ).

• Cluster 43: (≈ 2500 clients) This cluster corresponds
to the optimal behavior of the network and services, all
equipment are detected and all services are operational.

• cluster 44: (≈ 550 clients) This cluster
describes a problem with the router where the
router is disabled (router_status=DISABLED,
router_ipv6_status=DISABLED), however all other
equipments are operational and client account status is
activated.

• Cluster 40: (≈ 27 clients) This cluster represents
the case where an account is suspended and the
VOIP service is down (client_account_status = 0,
tv_profile_status=SUSPENDED, VOIP_status=KO), how-
ever all pieces of equipment are operational.

• Cluster 12: (≈ 130 clients) This cluster gathers clients



with deactivated WiFi (router_WiFi_status = Down,
router_status=Enabled), and all other equipment is opera-
tional (ont_status = NODEFECT, OLT_status=OK...).

This experiment shows that our clustering method can be
helpful in a data exploration process where the number of
clusters is not known a priori. With a simple network expertise
we can see that the clusters are relevant and describe a particular
behaviour on the network. We can also stress the fact that this
method can discover the main patterns in the data but also
patterns that are not dominant but still relevant. For example,
we have clusters composed of 2500 customers (cluster 43) and
clusters with only dozens of customers (cluster 40). This is
thus an interesting feature since we can discover "weak signal"
patterns.

VI. DISCUSSION AND RELATED WORKS

Machine learning techniques for fault detection in telecom-
munication networks are promising. Bayesian networks have
been dominant in this domain [1]–[4]. The main advantage of
Bayesian network modeling is the easy interpretable nature
of the approach. Root causes of faults are explicitly modeled
by variables of the Bayesian network and inference can be
performed in order to determine the root cause from the
evidence presented by the observable variables. This approach
however, as previously mentioned, requires expert knowledge
of the specific domain of faults and a time consuming task to
build the Bayesian network and all the dependencies between
the variables. Recently, researchers have been interested in
learning the structure of the Bayesian network from data [12],
and such approaches have been successfully used for the self-
diagnosis problem [13]. However, the main problem, in such
approaches, is the loss of the interpretable nature of Bayesian
networks. The structure learned from the data can be one of
a class of equivalence of optimal structures, hence, this often
results in structures that are optimal but hard to interpret. The
second group of machine learning approaches, are anomaly
detection based approaches [14], [15]. Although these methods
allow for accurate detection of anomalies from data, their
main drawback is that all anomalies identified are grouped in
a single cluster. Classifying each anomaly requires either a
relabeling process by hand or a clustering process. Therefore,
the natural reformulation of the self-diagnosis problem is as a
clustering problem. Clustering types of faults from the data has
been previously proposed [16], [17]. However, most of these
approaches rely on classical algorithms where the number of
clusters is known a priori or estimated by model selection.
Although our approach allows for automatic determination of
the number of clusters and requires no intervention from an
expert, one drawback is the interpretability of the clusters. A
post processing of the clusters is needed in order to identify the
fault present in each cluster and the root cause. [18] proposed
a method based on decision trees to accomplish this task.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we showed how the infinite multivariate
categorical mixture model can be used to analyze data gathered

from telecommunication networks and services and how to
discover fault patterns in an unsupervised manner. The model
is capable of identifying the correct number of clusters to
analyze the data using the Dirichlet process. We showed how
Variational Inference can be used to perform inference on the
model. This approach allows inference to scale well with the
dimensionality of the data, and the convergence of the model
can be determined explicitly. In future work, we will explore
how such methods can be applied to time series data. Analysis
of such data gathered from telecommunication networks can
also be very useful for anomaly detection and monitoring.
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Fig. 6. Assignments defining each cluster from most occurring to least occurring


