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ABSTRACT

The large number of Wireless Sensor Networks (WSN) simulators available nowadays, differ in
their design, goals, and characteristics. Users who have to decide which simulator is the most
appropriate for their particular requirements, are today lost, faced with a panoply of disparate and
diverse simulators. Hence, it is obvious the need for establishing guidelines that support users in
the tasks of selecting a simulator to suit their preferences and needs. In previous works, we pro-
posed a generic and novel approach to evaluate networks simulators, considering a methodological
process and a set of qualitative and quantitative criteria. In particularly, for WSN simulators, the
criteria include relevant aspects for this kind of networks, such as energy consumption modelling
and scalability capacity. The aims of this work are: (i) describe deeply the criteria related to WSN
aspects; (ii) extend and update the state of the art of WSN simulators elaborated in our previous
works to identify the most used and cited in scientific articles; and (iii) demonstrate the suitability
of our novel methodological approach by evaluating and comparing the three most cited simulators,
specially in terms of energy modelling and scalability capacities. Results show that our proposed
approach provides researchers with an evaluation tool that can be used to describe and compare
WSN simulators in order to select the most appropriate one for a given scenario.
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1.Introduction

In the last two decades, the use of Wireless Sensor Networks (WSN), in monitoring and
tracking applications, has gained attention. The flexible network structure and scalable
topology provide attractive solutions for both designers and researchers in the area of
data networks [1]. However, developing WSN applications involves a conception and
designing phase, after which, the test phase takes place. This test phase can be expensive
and includes delays in the development of such as WSN applications. Thus, simulators
might be used to save cost and time [2]. In this context, research groups have developed
different WSN simulators that answer their needs. As a result, many simulators with
various capabilities are available. Thus, the selection of a simulator to implement a specific
scenario proposes the following questions: How does a user or a researcher select a WSN
simulator? On which basis the decision is to be built?. These are unaddressed issues in
the WSN research domain.

In previous works, we proposed a methodological approach with a set of criteria aiming
at evaluating network simulators. The approach was applied to evaluate and compare
two network simulators, namely Packet Tracer and GNS3, and their quantitative and
qualitative characteristics were described [3][4]. Later, the methodological approach was
extended to include the evaluation of characteristics of WSN simulators, such as scalability
and energy consumption awareness [5]. In [5], we also elaborated a study of a state of the



art for WSN simulators, in order to identify the most used and cited in scientific articles.

In this paper, we extend our previous works in several aspects: (i) describe in detail
the criteria related to WSN aspects; (ii) extend and update the state of the art of WSN
simulators elaborated in our previous works to identify the most used and cited in scientific
articles; this helps to eliminate authors bias or unawareness of certain simulators; and
(iii) demonstrate the suitability of our systematic approach by evaluating and comparing
three of the most cited simulators, specially in terms of energy modelling and scalability
capacities The application of our systematic approach leads to results that are measurable
and comparable, giving a comprehensive overview of simulators features, their advantages,
and disadvantages, particularly from the point of view of scalability capacity and energy
consumption awareness. In this way, users and researches the most appropriate simulator
for a given scenario

2.Related Work

The flexibility and validation in model construction offered by network simulation has
fostered the research and development of multiple and different simulators. Thus, for se-
lecting an appropriate network simulator for a simulation task or scenario, it is important
to have good knowledge of the available simulators, along with their strengths and weak-
nesses, as well as to ensure that the results generated by the simulators are valid (i.e., how
reliable are the models used by the simulators). Particularly, for WSNs it is important to
evaluate the scalability and energy consumption awareness of simulators.

To support this selection process, some works have proposed comparative criteria to carry
out the evaluation of network simulators. For WSNs, the most recent and cited compara-
tive studies, related to our work, are [6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21]
[22][23][24][25]. Most of them propose generic comparative qualitative criteria, not related
to energy consumption, such as type of simulator, API, languages supported, platforms
supported, licenses, network support type, user interface [7][8][15][16][17][21][22][23][24][25].
Only the works proposed in [17][18] consider quantitative criteria, such as CPU utiliza-
tion, memory usage, execution time, and scalability. Other studies also consider energy
consumption modelling (e.g., wireless propagation, power consumption, battery, topology,
antenna, radio propagation, noise, and application modelling) and the challenges that face
their implementations [6][9][10][12][13][14]. Few of such works are dedicated to evaluate
WSN simulators in function of the energy consumption of each component of the WSN
nodes and how they model the energy consumption of each component [11][20].

All these works, mainly evaluate WSN simulators based on a set of qualitative criteria,
related and not related to scalability and energy consumption, but they do not establish
any methodological process to perform the evaluation. Besides considering these generic
qualitative criteria, we also include quantitative criteria, to evaluate any type of network
simulators, as well as specific criteria to evaluate WSN simulators, such as scalability and
energy consumption awareness. Although, we propose a methodological approach to make
such evaluation in a systematic and formal way.

As far as we know, the only work that timidly proposes a methodological process is
presented in [19]. However, the proposed guidelines and steps are focused on performing
the network simulation, by following these steps: (i) evaluate the simulator based on
a set of generic criteria (e.g., general features, visual support, flexibility, user support);
(ii) select benchmarks to evaluate the simulated scenarios (e.g., network design, network
protocols); (iii) conduct the simulation process; (iv) evaluate and analyze results. This
methodological approach is focused on how to perform the simulation process; while our
systematic approach, besides of considering such aspect, is aimed to evaluate and compare



several network simulators to select the most appropriated for a target simulation scenario.

Thus, up to what we know, our proposed methodological approach is the first study
that considers qualitative and quantitative criteria, as well as a systematic evaluation
process, intended to be generic, flexible, and suitable to support the selection of the most
appropriate network simulator, according to the user preferences and requirements.

3.WSN Simulators: state-of-the-art

In order to extract the most cited WSN simulators, we present a study of WSN simulators
that are used in current research. We first describe the systematic process used to follow
such study and propose a categorization of scientific articles intended to describe, present,
or evaluate WSN simulators. Finally, we statistically analyze the articles on each category.

3.1. Systematic Review

In order to find, select, and analyze the most popular and recent WSN simulators, we
have followed a systematic review consisting of three main steps: (i) search of works
dealing with WSN simulators; (ii) selection of relevant articles; and (iii) statistically find
simulators cited in the set of the selected papers.

For the first step, the search was done on the Google Scholar search engine, which provides
links to scientific repositories such as IEEE Xplore, ACM, and Springer. The search was
based on tags that included the keywords WSN and simulator, combined with tags
related to the focus of the papers, such as Survey, Review, Comparison, Evaluation.
We obtained more than 60 scientific articles.

In the second step, we select the most relevant articles related to WSN simulators evalua-
tion, proposal, and comparison. From the more than 60 scientific papers obtained in the
first step, some of them do not focus on simulators, but on designing and evaluating WSNs.
We select works since 2010 and some older ones that have been widely cited. The final
result was 49 relevant papers, categorized according to their main focus: (i) comparison
papers, that evaluate and compare simulators; (ii) survey papers, in which authors present
a general review of WSN simulators; (iii) simulator specific papers, which introduce the
design or features of a particular WSN simulator; and (iv) trend papers, which explain
the definitions and trends of how researchers evaluate WSN simulators.

In the third step, we analyze the selected papers and present statistics of referenced WSN
simulators on each category.

3.2. Categories of scientific articles

The selected papers were classified in four groups:

Comparison papers, which include comparative studies of WSN simulators, based on
self-defined criteria that evaluate the differences among simulators. In [8], authors make
a review of some of the open source network simulators (i.e., NS2, NS3, OMNeT++, and
JSIM), comparing them according to languages supported, platforms supported, licenses,
network support type, user interface, and API. In [17], authors compare NS2, NS3, OM-
NeT++, and GloMoSiM. A unified scenario is applied by simulating a MANET routing
protocol, in order to measure memory usage, computational time, and scalability, from
which NS3 demonstrates the best performance. Similarly, in [7][12][16][18][19][21][26][27],
some of popular WSN simulators (NS2, NS3, TOSSIM, OMNeT++, JSIM, Castalia, Qual-
Net, EmStar, ATEMU, Avrora, SENS, COOJA, etc.) are described and compared based
on the their general characteristics, their merits, and their limitations. The studies pre-
sented in [6][15], evaluate more than 20 simulators. In [9], authors make a survey of



available tools to evaluate WSN applications. They identify a set of models that are
necessary to have in a WSN simulator: wireless propagation model, fine-grained energy
expenditure model, non-linear battery model, and application model. In [10], authors
compare Castalia, TOSSIM, and NS3 based on the sustainability to test dynamic network
reconfiguration protocols. One of the topics that they evaluate is the energy consumption
model of the simulators. They identify that the ability to model the RF states of the
sensors is important to model the energy of sensors. In [11], authors compare NS2, NS3,
TOSSIM, and OMNeT++, focusing on the modelling of the energy consumption. They
describe the energy consumption of each component of the WSN nodes and show how the
studied simulators model the energy consumption of each component. In [13], researchers
evaluate four WSN simulators: NS2, Castalia, TOSSIM, and COOJA. The evaluation is
made by following criteria that they define in the paper. One of the aspects they used to
make the evaluation is the energy consumption model and the ability to model non-linear
batteries. They execute a series of real experiments and calibrate the radio propagation
model and the energy consumption model. In [14], authors review and compare the fol-
lowing simulators: NS2, OMNeT++, Prowler, OPNET, and TOSSIM. They highlight
the features of each simulator in MAC and routing support, energy modelling, and im-
plemented Radio Frequencies (RF) models. In [20], authors compare Castalia, MiXiM,
TOSSIM, and WSNet, based on topology, antenna, radio propagation, noise, RF, medium
access control, and energy consumption modelling.

Survey papers, that describe WSN simulators in a general way, but there is no com-
parison among them. More than ten simulators are described in [22][25][28][29], in terms
of type of simulator, API, languages supported, platforms supported, licenses, network
support type, user interface. In other work, reusability, availability, performance, scal-
ability, support for scripting languages, and GUI are the aspects considered to describe
about 15 simulators [30]. Besides these type criteria, testbeds and hardware platforms
are also considered in [31], in order to assessing different parameters required by WSN
applications. In [32][33], WSN simulators are described and classified according to their
type: simulators (based on models) or emulators. The work presented in [34], describe
thirty five simulators considering simulation models, emulation, and testbeds. More than
thirty simulators are described in [35], according to a classification presented by the au-
thors, based on the target function of simulators: emulators, topology control simulators,
environment and wireless medium simulators, network and application level simulators,
cross-level simulators, NS2 based simulators, OMNeT++ based simulators, and Ptolemy
II based simulators). In [36], a review of network modelling and simulation tools is pre-
sented, including WSN simulators, such as NS2, OPNET, and GloMoSim. Authors in [2]
present a review of several WSN simulation tools. They mostly focus on their suitability
for large-scale WSNs.

Simulator-specific papers, which focus on describing properties and characteristics of
new WSN simulators. In [37], WebShawn, an WSN simulator is presented. It does not
require a specific platform because is an online simulator. In [38], authors developed an
energy consumption model and presented eMnSiM, an energy-aware simulator for WSN.
First, they studied a number of existing energy models and WSN simulators. Then, the
simulator was developed, evaluated, and validated as the obtained results were compared to
results obtained from existing WSN simulators. According to the authors, eMnSiM proved
to be more efficient in terms of execution time and packet delivery ratio as compared to
NS2, OMNeT++, and SensorSimulator. NS2 is the simulator used in [39] to analyse S-
MAC and leach in WSNs. An architecture-driven modelling platform, called A4WSN, for
analysing and developing WSNs is presented in [40]. In [41], the support for heterogeneous



networks in IDEA1, is presented. SolarCastalia is described in [42], a simulator focused
on modelling solar energy sources for WSN.

Trends papers focused on studying proposed approaches to evaluate WSN simulators
and research trends. In [1], a general description of WSNs is provided. Additionally,
authors address the issues and challenges facing the proper design and implementation of
WSNs. In [43], authors compile a large set of papers of wireless communication-related
conferences and review the statistics about the tools (i.e., testbeds and simulators) the
researchers use to evaluate their experiments. Additionally, they address the issues and
challenges facing the proper use of WSN simulators. They assert that simulators do
not reproduce actual environmental conditions of deployed systems, thus experimental
testbeds can be developed to replace simulators. In [44], authors discuss topics to consider
when addressing IoT issues. They present the research trends on IoT simulators in the
last years. To achieve that, authors describe existing tools that are used by researchers to
prove and evaluate their findings on IoT research. They claim that more work is needed
to conduct large-scale, robust and effective IoT simulation, and prototype evaluations.

3.3. Statistical Analysis of Selected Papers
In total, in the selected papers there are 403 citations, distributed among more than 100
WSN simulators. According to the number of citations, simulators are categorized into
three groups: (i) Group 1, composed by simulators with more than 16 citations; this group
includes 4 simulators; (ii) Group 2, involves all simulators with 10 to 15 citations citations;
it contains 11 simulators; and (iii) Group 3, covers all simulators that are cited less than
10 times; it contains 94 simulators. Figure 1 presents the number of citations and the
number of simulators of each group.

The total sum of citations for simulators of the Group 1 is 101, which represent 25.06% of
the citations distributed in 4 simulators. Group 2 has in total 140 citations, which means
the 34.74% of the citations. Group 3 has 162 citations, which represents a 40.19% of the
total of citations. Figure 1 shows that Group 3 and Group 2 contain more citations than
Group 1. In both cases, those citations are distributed in a larger number of simulators.

Figure 2 shows the number of citations of the simulators of Group 1, in which the most
cited simulators are NS2, TOSSIM, and OMNeT++. NS2 is presented in 30 papers,
TOSSIM is presented in 27 papers, and OMNeT++ is presented in 25 papers.

Figure 1: Citations of WSN simulators Figure 2: Citations in Group 1

This study can help to identify the most used WSN simulators, but the number of citation
is not enough to provide comparison-based view. Therefore, a more robust approach to
compare and evaluate WSN simulators is needed. In next sections, our methodological
approach is presented.

4.Methodological approach to evaluate WSN simulators

In previous works [3][4], we proposed an approach to evaluate data network simulators,
considering a methodological process and a set of qualitative and quantitative criteria.



Afterward, we extended our methodological approach to consider qualitative criteria to
analyze the simulator scalability and the support of simulators on evaluating traces of
energy consumption, sensor nodes mobility, and wireless medium modelling [5]. These
characteristics are present in WSN and are less important for general networks. In this
work, we continue improving our methodological approach to better considering features
that characterize WSN simulators. The methodological process consists on the following
steps [3][4][5]:

Step 1. Establish a set of criteria. The evaluation of the simulator requires clear and
accurate criteria to assess the different aspects of the simulator.

Step 2. Establish the experimental setup. The platform in which simulators are
installed to be evaluated should not be neglected.

Step 3. Evaluate the qualitative criteria of the simulator(s). To comply this step,
it is recommended to revise the available documentation of simulator(s) and elaborate a
table highlighting their characteristics.

Step 4. Design a test scenario to evaluate the measurable criteria. In a data
network and WSN, a scenario is defined by parameters that characterize a specific use
case.

Step 5. Evaluate the measurable criteria of the simulator(s) by executing the
designed scenarios. In order to obtain the results, each designed scenario has to be
implemented on the simulator(s).

Step 6. Elaborate a discussion by analyzing the results.

With this six-steps systematic approach, users can evaluate network simulators to select
the most appropriated according to their needs and scenarios. For the comparative analy-
sis, we also propose a set of criteria, which complement the Step 1 of this approach. They
are described in the next section.

4.1. Criteria used in the methodological process

In previous work [5], we define a set of criteria to evaluate WSN simulators, it includes
the following items: nature of the simulator, type of simulator, license, user interface, sup-
ported platform, level of details, modeling capability, mobility modelling, wireless medium
modelling, and Energy consumption modelling.

In this work, we update the level of details item to become design philosophy considering
the evaluation of the level of aspects that are being simulated. Each level represents a
group of parameters that belong to different functions and features of WSNs. Sorted in
descending order, they are abstract algorithms, high-level protocols, low-level protocols,
and hardware. The lower the level is, the less the assumptions are and the more the
constraints are. If the studied simulator shows only interactions among parameters that
belong to the same level, it is a single-level simulator. If it shows interactions among
parameters that belong to different levels, but the interactions are limited inside each
level, it is a multi-level simulator. In the case where interactions among parameters spread
across the levels, it is a cross-level simulator [45].

Additionally, we extended the energy consumption modelling item to include also a de-
scription of the energy model using UML diagrams. In general, a class diagram can be
used to reflect the structure of the model. However, a state-machine diagram can be
designed to reflect the model behavior.

The methodological approach was applied to the most cited WSN simulators (NS2, TOSSIM,



and OMNeT++) in [5]. Although, in this work we extended and updated the state of the
art concerning WSN simulators by adding 12 recent studies, these three simulators remain
the most cited up to today. The next section presents their comparative evaluation based
on our extended approach and focusing on the energy consumption modelling capacity.

5.Application of the proposed methodological process

To show the suitability of the extended methodological approach, we apply it to compare
the most cited WSN simulators, identified in Section 3: NS2, TOSSIM, and OMNeT++.

Step 1: Establish a set of criteria. As it is illustrated in Table 1, the set of criteria
considered are the ones described in Section 4.2.

Step 2: Establish the experiment setup. To evaluate the considered simulators in
different systems, they are tested on Linux Ubuntu 16.04 LTS and Microsoft Windows
10 version 10.0.14393. They were installed on the same computer with the following
characteristics: Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz with 16 GB of RAM, 915
GB of disk allocated for Linux, while 909 GB is allocated for Windows.

Step 3: Evaluate the qualitative criteria. The qualitative criteria of the three sim-
ulators are summarized in Table 1. We particularly comment about energy consumption
modelling of each simulator.

NS2 Energy model: In NS2, the energy model is designed to address the energy con-
sumption in the mobile nodes. The model is a TCL object, it includes variables to store
the initial energy of the node and the total energy consumed in transmission, receiving,
idle mode, and the sleep mode, as well as the methods intended to deal with these issues.
All previously mentioned energy values are stored and treated in Joules.

The model consists of a basic class called Energy Model, and two other subclasses: Adapti-
veFidelityEntity and SoftNeighborHandler. The class AdaptiveFidelityEntity man-
ages the energy consumption chronologically, while SoftNeighborHandler is used to con-
trol the node relationship with its neighbors. These subclasses are intended to handle
events generated in the simulation environment, thus, they inherit the Handler class,
which is the base class developed for this purpose. A linked list is used to describe neigh-
bors, where each neighbor forms a node in a series of nodes, with a specific identifier and a
timer value to keep the value of the lifetime for the communication channel. Two structures
(i.e., struct) were written for that purpose: neighbor list and neighbor list item.
It is worth to mention that the information stored for each neighbor does not include its
position or coordinates. Figure 3 shows the UML diagram of NS2 energy model.

The model supports four modes of the node: (i) the INROUTE mode, to describe the
node while it is moving; (ii) the WAITING mode; (iii) the IDEAL mode; and (iv) the
SLEEP mode. The state transition scheme depends on several assumptions, which keep
the situation permanently changed. In each state, the energy consumed is calculated
based on the power level and the time spent in this state. The power levels can be
set as configuration parameters and the time spent in the state is calculated using special
functions in the energy model class. The energy consumed is calculated in Joules. Figure 4
shows the machine state diagram for NS2 energy model.

OMNeT++ Energy model: The energy model in OMNeT++ consists of three sub-
models: storage, generators, and consumption models. These models do not function
separately, but they rather operate in parallel. Thus, it is possible to consume stored
energy and generate it at the same time. To achieve this, the sub-models relate to each
other through a three-level hierarchical structure shown in Figure 5.



Table 1: Comparison of WSN simulators using the proposed criteria
Criterion TOSSIM NS2 OMNeT++/INET

Nature
of the
simulator

Emulator Simulator Simulator

Type of the
simulator

discrete-event discrete-event discrete-event

License BSD-license GNU GPLv2 license Academic Public Li-
cense. INET models
under LGPL or GPL.

User Inter-
face

GUI: through
TinyViz.
Supported lan-
guages: Python,
C++ and NesC

GUI: through Nam.
Supported languages: C++
and OTcl

GUI: a built-in GUI is
available
Supported lan-
guages: C++ and
NED

Supported
platforms

Linux and Win-
dows

Linux, MacOs and FreeBSD Windows, Linux and
Mac OSX

Heterogeneity No No Yes
Design phi-
losophy

single-level single-level single-level

Modelling Available Available Available
Mobility
model

Yes, through
MOB-TOSSIM

Yes Yes

Wireless
medium
model

Path loss mod-
els: lognormal
shadowing
Other models:
noise modelling

Path loss models: shadow-
ing, 2-ray ground, free space

Path loss models:
free-space, log-normal
shadowing, rayleight
fading, 2-ray ground,
rician fading, nakagami
fading
Other models: Back-
ground noise, obstacle
loss and propagation
models

Energy
model

Battery model:
No
RF states: Yes
Limitations:
Cannot model
energy harvester
units

Battery model: Only for
Ideal Battery
RF states: Yes
Limitations: Cannot model
sensing and processing units

Battery model: Yes
RF states: Yes
Limitations: Cannot
model sensing and pro-
cessing units

Supported
technol-
ogy and
protocols

TOSSIM sim-
ulates entire
TinyOS applica-
tions, including
the network
stack that sup-
ports TinyOS
implementation.

Application Layer: DHCP,
telnet, FTP, HTTP
Transport Layer: TCP,
UDP, SCTP, XCP, TFRC,
RAP, RTPM
Network Layer: IPv4, IPv6
Link Layer: HDLC, GAF,
MPLS, LDP, Diffserv, Drop-
Tail, RED, RIO, WFQ, SRR,
Semantic Packet Queue, REM,
CSMA, 802.11b, 802.15.4,
Satellite Aloha
Routing Protocols: RIP,
AODV, Click, DSDV, DSR,
NixVectorRouting, OLSR

Application Layer:
HTTP, DHCP, Bit-
Torrent, P2P Video
Streaming, Voice
Transport Layer:
TCP, UDP, SCTP, RTP,
RTCP.
Network Layer:ARP,
HIP, IGMPv2, IGMPv3,
IPv4, IPv6, MCoA,
MIPv6
Link Layer: 802.11,
802.11p, 802.1e,
WiMAX, LDP, LTE,
PPP.
Routing Protocols:
AODV, BGP, GPSR,
link-state routing,
OSPF, OSPFv2, PIM,
RIP



Figure 3: UML class diagram–NS2 energy
model

Figure 4: Machine state diagram–NS2 energy
model

Figure 5: The hierarchical structure of OMNeT++ energy model

At the top level, there are four abstract basic classes: IEnergy Sink, IEnergy Consumer,
IEnergy generator, and IEnergy source. Together, they form the basis from which the
entire structure is subdivided. In the second level, there is a set of abstract energy classes
that connect the abstract classes in the first level with the energy model at the third
level. Classes in the third level inherit from the second level the models, the processes,
and basic properties associated with energy calculations, whether to make the calculation
using energy and power units or using charge and current. In addition, classes of the third
level relate to various simulator classes that provide a set of services and basic non-energy
functions. Figure 6 shows the UML class diagram of OMNeT++ energy model.

The OMNeT++ energy model supports two forms of calculation, either using power and
energy and their units are Watt and Joule respectively, or using charge and current, one
of which uses Colomb and Ampere. Although, it is possible to switch from one form to
another mathematically, the models in the simulator are built separately. This adds a
layer of complexity and causes a repetition of the structure and calculations many times
in the code line with only different units used.

TOSSIM Energy model: TOSSIM includes the simplest energy model among all the
studied models. The model is object-oriented and it does not include a battery model.
Instead, it traces the energy consumed by nodes components. The main structure is the
struct node energy. Every simulated node has an instance of this struct attached to
it. The main struct node energy includes other child data structures: (i) MCUEnergy:
this structure is dedicated to the energy consumed by the processing unit; it includes
variables to store energy consumed for the microcontroller states, i.e., idle, standby, ex-
tended standby, energy-saving, on, and down states. Additionally, the structure includes
a variable to trace the energy consumed by the Analog-to-Digital Converter (ADC); (ii)
LedEnergy: this is a data structure that traces the energy consumed by the LEDs, where
each node can have three LEDs; (iii) RadioEnergy: this structure is used to trace and
store energy consumed by the RF module; it follows the state of the circuit. The sending,
receiving, and synchronize states are supported; and (iv) MemEnergy: this structure is



Figure 6: The UML class diagram of OMNeT++ energy model

dedicated to the energy consumed for the memory-related operations; it includes reading
and writings. Figure 7 shows the UML class diagram of TOSSIM energy model. The
use of the model is simple: every time an activity takes place and consumes energy, the
function related to the circuit and the corresponding state is called and the consumed
energy is passed to be accumulated in the associated variable.

Step 4: Design the test scenarios. Basic scenarios are designed to evaluate the
performance of the selected simulators and their energy consumption modelling capacity.
The performance is measured in terms of CPU utilization, memory usage, execution time,
and scalability. A meshed topology is adopted for the WSN, whose size is increasing
exponentially for different tests. The basic component (BC) of the topology consists of
four sensor nodes, each one placed in the vertex of a 10x10 meters square. The first test
includes only one BC (see Figure 8(a)). The second test is done with two BC, i.e., eight
nodes as Figure 8(b) shows. The third one is composed by four BC, with 16 nodes, and
so on. In total, eight simulations take place on each system (Linux and Windows), with
the number of BCs changing as: 1, 2, 4, 8, 16, 32, 64, and 128 for each simulator.

Figure 7: The UML class diagram of
TOSSIM energy model Figure 8: Simulation scenarios

Each node in the WSN is configured to use IPv4 and ICMPv4. The goal is to create a
data message with an echo request to all other nodes in the topology. A node that receives
the echo request, replies back the same message. Each simulation lasts 100 seconds. The
frequency is 1 Hz, which means that one echo message is sent every second. As a result,



Table 2: Parameters of the energy consumption scenario
Parameter 802.11b 802.15.4

Bitrate 11 Mbps 250 Kbps
MAC CSMA/CA with RTS/CTS CSMA/CA with CCA

Transmitting power 750 [mW] 52 [mW]
Receiving power 220 [mW] 59 [mW]

Sleep power 0.2 [mW] 0.06 [mW]
Idle power 0.2 [mW] 0.06 [mW]

there are 100 echo request messages sent per simulation.

To evaluate the energy consumption models, another test scenario is proposed. This
scenario consists of two nodes, which are 10 meters apart from each other (see Figure 8(c)).
One of the nodes is periodically sending an ICMPv4 echo request to the other node. When
a node receives the request, it replies back the same message. Both echo request and reply
are identical in length and format Therefore, the energy consumption of both nodes will be
the same. The communication of nodes is made using two different wireless link protocols:
802.11b and 802.15.4. For each protocol the payload length of the ping message starts at
10 bytes, then, it is gradually being increased by 10 bytes, until the payload size reaches
90 bytes. In total, there are 9 simulation per protocol. Each simulation is repeated three
times for different values of frequency of the ping messages: 0.1, 1, and 2 Hz.

For the 802.11b scenarios, the energy consumption parameters were taken from the data
sheet of HDG204 RF Module (https://media.digikey.com/pdf/DataSheets/H&DWireless0-
PDFs/HDG204DS.pdf), while for the 802.15.4 scenario was used the data sheet of CC2420
RF Module (http://www.ti.com/lit/ds/swrs041c/swrs041c.pdf). Each simulator was con-
figured to use the models of the protocols with the values of the standards. The values of
the energy consumption for each module is shown in Table 2.

Step 5: Evaluate the measurable criteria. NS2 is only evaluated in Linux, since it
is the only platform that supports its installation. OMNeT++/INET is installed on both
Windows and Linux. The NS2 version used is the 2.35 (https://sourceforge.net/projects/n-
snam/), for OMNeT++, it is 5.4.1 (https://github.com/omnetpp/omnetpp/tree/omnetpp-
5.4.1), and for INET, it is 4.1.0-810053f713 (https://github.com/inet-framework/inet/tre-
e/v4.1.0). TOSSIM (PowerTOSSIM z) is not installed in none of the systems, since it
has a poor level of support for the recent Operating System (OS) versions and it is not
possible to install it on the SO used. Thus, PowerTOSSIM z is not evaluated in terms of
measurable criteria. We show how the quantitative criteria are measured as follows.

Performance scenarios: In these scenarios, the CPU utilization is evaluated for the
simulators during 100 seconds of simulation. Results of the evaluation of CPU utilization
for different BCs are shown in Figure 9. NS2 tends to consume all available CPU cycles,
whatever the number of the BCs is, while OMneT++ consumes the CPU differently in
Linux than in Windows. Figure 9 shows that the CPU utilization in Windows is always
less than Linux when the same scenario is implemented. In both OS, as the number of
BCs increases, the average value of CPU utilization increases as well.

Figure 10 represents the results of memory usage for both simulators on a logarithmic
scale as the number of BCs increases. NS2 shows proper memory usage when the BCs are
4 or less. After that, the usage tends to follow an exponential orientation. On both OS,
OMNeT++ shows a strictly controlled memory usage as the number of the BCs increases.
The memory usage in Windows shows lower values compared to Linux when the same
scenario is being implemented.



Figure 9: CPU utilization of NS2 and
OMNeT++

Figure 10: Memory usage of NS2 and
OMNeT++

Figure 11: Execution time of NS2 and OMNeT++

To obtain the execution time in OMNeT++, the express-mode is used, since the normal
mode was intentionally built to run slowly to allow the user to trace the events that are
occurring during the simulation. Figure 11 represents the execution time for the simulators
on a logarithmic scale. We note that NS2 has lower execution time for the scenarios with
less than 16 BCs, while OMNeT++ has lower execution time for the scenarios that have
16 BCs or more. The execution time of OMNeT++ in Windows and Linux are similar.

Scalability, as the capacity of supporting scenarios with a huge quantity of WSN com-
ponents, can be deduced from the CPU utilization, memory usage, and total execution
time in terms of number of BCs. Results shown on Figures 9, 10, and 11 demonstrate
that OMNeT++ scales better than NS2. Even though the CPU utilization of OMNeT++
increases as the number of BCs increases, it is comparable to the CPU utilization of NS2
for the largest scenario (Figure 9), its memory usage increases less than NS2 for larger
scenarios (Figure 10), and its total execution time is linear in contrast to the super-linear
execution time of NS2 (Figure 11).

Energy consumption scenarios: The main objective of the energy consumption sce-
nario is to demonstrate the information that can be obtained from the two simulators. To
do so, the same scenarios were implemented on them. In NS2, the entire energy model
illustrated in Figure 3 is used. However, for OMNeT++, as shown in Figure 6, the energy
model hierarchy includes energy harvester as well, this part of the model was ignored and
not used in OMNeT++ simulation to keep the similarity to NS2 simulation, because NS2
does not model energy harvesting.

NS2 has only a command-line interface; thus the output is text displayed on the termi-
nal. Information related to energy consumption is not included. Thus, we developed an



animator that was integrated to NS2 as a plug-in, in order to control the simulation time,
capture the output, and extract the energy consumption information. OMNeT++ stores
information about the simulations in files, that can be exported in multiple formats for
later data processing. OMNeT++ shows the same results both on Windows and Linux,
regarding the energy consumption evaluation. Therefore, the results of the energy con-
sumption scenario in OMNeT++ are presented only once and without mentioning the OS.
The energy model in both simulators trace only the energy consumption of RF module,
i.e., the consumption of the node CPU and the sensors are not included.

By comparing the results for the same scenarios obtained from NS2 and OMNeT++,
there are differences and similarities. In the 802.11b scenarios, both simulators have
the capability to accurately simulate the CSMA/CA mechanism, including parameters of
PHY and MAC layers of each frame sent during each phase of the mechanism, such as
RTS and CTS frames. Additionally, the data and ACK frames are simulated as well. The
implementation uses the standard guideline to define the length of each frame used in the
protocol, as well as the preamble length and the PHY header. The time spent sending
RTS, CTS, and ACK frames are similar for both simulators as shown in Table 3. But the
time spent to send data frames is higher in the OMNeT++ simulator as Table 4 shows.

Table 3: Time spent in 802.11b for con-
trol frames

Frame Time in Time in
type OMNeT++ [µs] NS2 [µs]
RTS 207 207
CTS 203 202
ACK 203 202

Table 4: Time spent in 802.11b for data
frames

Payload Time in Time in
[Byte] OMNeT++ [µs] NS2 [µs]

10 246 239
30 261 253
50 275 268
70 290 282
90 304 297

By examining one of the repeated interval of the simulation (i.e., the time that includes
sending one ping message), the results show that the energy consumption of both sim-
ulators are not the same. Figure 12 shows the energy consumption in an interval when
the frequency is 1 Hz, for the 802.11b scenario, for both simulators. Each pair of columns
represents a payload size; the columns to the right is for results obtained from OMNeT++,
while the column to the left is for results obtained from NS2. In general, when the same
scenario is implemented, the reported energy consumption in OMNeT++ is slightly higher
than NS2 (less than 5%).

Figure 12: Energy consumption using
802.11b for NS2 and OMNeT++

Figure 13: Energy consumption using
802.15.4 for NS2 and OMNeT++

It is possible to trace the results obtained from the simulators in Table 3 and Table 4, there



are different values for the same activities when sending and receiving data frames. These
differences between the time spent in sending each frame appears in all the scenarios for
802.11b. It is the cause of the difference in energy consumption between the two simulators.

In the 802.15.4 scenarios, both simulators present different implementations of the proto-
col, this, in turn, affects the energy consumption. Figure 13 shows the energy consumption
for one interval of 802.15.4, when frequency is 1 Hz.

Step 6: Elaborate a discussion. From the methodological process, it is possible
to detect advantages and disadvantages of the three analyzed WSN simulators. In the
following, the analysis is divided into three sections based on the discussed subject.

On qualitative criteria: NS2 is a generic data network simulator that was later adapted
to suit WSN, while OMNeT++, was built to support the WSN from the beginning.
TOSSIM, is an emulator for TinyOS, which is an OS widely used for embedded systems.
The principal drawback of TOSSIM is that it is not compatible with the modern OS. It was
not possible to install and run the evaluation scenarios in TOSSIM. Thus, only the qual-
itative parameters are available for the comparison with the other simulators. Although,
NS2 is only supported on Linux, and despite the fact that it is no longer maintained in
favor of NS3, it is one of the most cited simulators in the research domain, meaning that
NS3 has not completely replaced NS2. NS3 is still in development and many protocols
supported in NS2 have not been yet implemented in NS3. OMNeT++ is supported both
on Linux and Windows. The project is still maintained and regularly updated.

On energy models: Energy modeling in WSN simulation includes three aspects: the
harvesting, storage, and consumption of energy. The studied simulators handle these
aspects in different manners.

NS2 does not include energy harvesting. However, storage and consumption are considered
and modeled. Energy stored in watts, and each activity taking place in the node consumes
a specific amount of energy that is calculated based in different parameters. For example,
when sending data packets, bit rate and payload lengths impact energy consumption. The
machine state, shown in Figure 4, controls the the sequence of the activities.

OMNeT++ has an object-oriented energy model that links together different models for
harvesting, storage, and consumption of energy. As illustrated in Figure 6, the structure
of the model allows the creation of different models under each category. There are two
possibilities for the units to be used: charge and current or power and energy. The
user is to choose a possibility before running the simulation. Then, the transformation
is not possible. Both in NS2 and OMNeT++, the consumption model is limited to the
RF module, thus sensors processing units activities are not included, although they are
responsible for a considerable amount of consumed energy [46].

TOSSIM model is simple and easy to use, but it has some drawbacks. First, the design
includes the use of different functions to provide the same service, the only difference
is the corresponding circuit, i.e., each circuity has its own energy consumption function,
although these functions are written in the same way and provide the same service. In this
case, it is recommended to use inheritance and write the function once, then inherit it by
other classes. Second, back to the Figure 7, the model includes objects for MCU, LEDs,
memory, and RF, but not sensors. The sensors are not involved, thus, their consumption
was neglected. Third, and the most important, is the lack of the battery model leads
to the need to use a specific amount of energy for circuit activities. This design is not
flexible, because parameters such as bit rate, payload, and node positions cannot impact
the consumed energy. In other words, the transmission of data packets in different sizes



or using different bit rates will end consuming the same amount of energy.

The application of our methodological approach show that none of the studied simulators
considers voltage regulators in the model design. Regulators reside between battery and
node circuits aiming at providing the stable and level-controlled power transmission. The
selection of voltage regulators impacts energy consumption. Thus, it is recommended for
the battery model to include parameters that reflect regulator effect. Our criteria do not
address the reliability of the energy model, i.e., how close are the obtained results to the
real-world tests? It is recommended to extend the criteria to include a set of steps for
validating the obtained results with reference scenarios or measurements.

On performance: This methodological approach allows studying and evaluating the
performance of WSN simulators from three points of view: the CPU consumption, memory
usage, and execution time. Additionally, although scalability was included in the proposed
criteria, outlines can be drawn for this item by analyzing the results obtained from the
previously mentioned items.

- CPU consumption: NS2 shows the same behavior regardless of the number of nodes,
it uses all available CPU cycles. This leads to a very low execution time when the number
of nodes is small. On the other hand, OMNeT++ is more conservative. In Windows, the
CPU consumption starts around 70% for scenarios with a small number of nodes. Then,
the consumption grows as the number of nodes increases. In Linux, OMNeT++ shows
similar behavior except for the starting threshold raises to 90%. In general, from a CPU
consumption point of view, OMNeT++ in Windows consumes the CPU the least, when
the same scenarios are being executed.

- Memory usage: as the number of nodes is increased, the memory usage shows growth
for the two simulators. NS2 presents stable usage of memory when the number of nodes
is less than 16. Then, the behavior changes and exponential growth takes place. Based
on the testing simulation platform we used, it was not possible to simulate scenarios with
more than 512 nodes in NS2; this is mainly due to the long execution time obtained which
lasts for several days when exceeded the 512 nodes threshold. However, although not
presented in this paper, OMNeT++ performs the same except for the threshold that rises
to 2048 nodes. Interestingly, memory usage for OMNeT++ is identical when the same
scenarios are implemented in two OS that use different architectures. Briefly, in this set
of tests, NS2 uses less memory than OMNeT++ when the number of nodes is less than 8,
but it uses more memory when nodes’ number exceeds this threshold.

- Execution time: the execution time for the scenarios showed exceptional growth as a
function of the number of nodes. NS2 benefits from its high consumption of the CPU when
the number of nodes is low, the scenario executes fast that there are difficulties to obtain
the execution time in these scenarios. However, as the number of nodes is increasing,
execution time grows in NS2 to exceed that of OMNeT++ in all scenarios when the nodes
are more than 16. In NS2, when nodes are more than 512, the simulation is impractical
as it lasts for days. On the other hand, simulations in OMNeT++ show close execution
times regardless of the OS that hosts the simulator.

- Scalability: analyzing the performance criteria, we can highlight scalability. First,
memory usage puts strict constraints on the number of nodes used. Information for each
simulated node is stored in memory, but simulators vary in the level of details they use.
Thus, simulators running the same scenario use different amounts of memory. However,
results on memory usage measurements show that when the exponential growth starts, the
scalability limit is achieved. Harmoniously with that, results on execution time measure-



ments reflect that there is a threshold for the maximum number of nodes where execution
time is practical. Beyond this limit, the simulation can last for days. In general for the
proposed scenarios, OMNeT++ is more scalable than NS2. However, dedicated scenarios
are needed to be developed in order to address this item in detail.

6.Discussion about the proposed methodological approach

Nowadays, with the huge variety of available simulators, it is important to identify which
simulator suits the most for a given scenario. The problem of selection always arises, no
matter if the simulator is going to be used for academic purposes or industrial development.

From previous proposals [3][4][5], we add extensions aimed to provide the approach with
criteria to address the evaluation of WSN simulators, in terms of their scalability and
capability of modelling mobility, wireless medium, and energy consumption.

In a WSN simulation environment, energy issues can be addressed using modelling tech-
nologies. On the other hand, scalability is a subject governed by the hardware of the
simulator host (CPU and memory). Our proposed approach addresses these issues: it
proposes guidelines and criteria to evaluate the energy consumption awareness modelling
of simulators and to measure their scalability.

Most WSN simulators model the energy consumption of the RF module. Although the
RF activities are responsible for the major part of the energy consumption in the node,
the consumption of CPU and sensors cannot be neglected. In [46], authors calculate the
power consumption average of the sensor unit, the RF module, and the microcontroller for
a WSN application. In their specific application the average of power consumed for the RF
activities were 62%, the average of power consumed for the sensor and the microcontroller
were 14% and 24% respectively; which means that the RF activities can consume more
than the sum of the other units. Therefore, it is important for a simulator to model the
energy consumption of all units present in the node in order to get an accurate estimation
of the energy consumed. Our methodological approach evaluate all these aspects.

The proposed methodological approach is flexible, allowing to integrate another items to
cover new aspects needed by users. For instance, it is possible to add criteria to evaluate
the simulators capacity of modelling the antenna or the battery behaviour. By following
the systematic process steps, the advantages and disadvantages of one or more simulators
for a certain application can be identified. Thus, the selection of one of them can be well
justified and probed, as well as its suitability for specific user needs and scenarios.

Although the systematic approach provides a comprehensive method to compare WSN
simulators, there are still aspects to be covered. For example, the study of energy modelling
can be extended to include the support for the battery model. When considering the
estimation of the node lifetime, the model that traces the remaining energy is different
from the one that traces the consumed energy. The support of parallel processing is
another item that can be extended as well. This feature exists in some simulators and has
a huge effect on performance. Besides, wireless link protocols have special role in WSN.
Thus, it is recommended to separate it from the protocol items and consider additional
aspects that concerns to the support of different bit rates and fragmentation.

Finally, WSNs are still in developing and new technologies will be adapted. Thus, new
features will be added and WSN simulators have to answer to that. As a result, there
is no fixed approach to address WSNs simulators, as they are still constantly changing,
the approach that describes and evaluate them will be continuously modified. Our ap-
proach faces all these challenges by being extensible, flexible, and generic, and still being
a powerful tool to evaluate and compare network simulators.



7.Conclusions and Future Work

We have addressed the difficulty of selecting a WSN simulator to fit a given scenario. To
achieve that, we extend our previous proposed methodological approach, by integrating
new criteria to address WSN evaluation, such as scalability and the modelling of mobility,
wireless medium, and energy consumption. In order to demonstrate the efficiency and
suitability of our systematic approach, we elaborate the state of the art of WSN simulators,
following a systematic review of most cited and recent scientific papers. From this review,
we select the three most cited WSN simulators (i.e.., NS2, TOSSIM, and OMNeT++)
to evaluate and compare them following our proposed methodological approach. The
application of the methodological process proves that it does not only highlight general
aspects of the simulators behaviors but it shows their disadvantages as well.

We plan to include other evaluation criteria, such as the capacity of simulators for parallel
processing and support of different bit rates and fragmentation. We are also working on
proposing an energy consumption model to include the support for the battery behaviour
modelling and on the implementation of a recommender system to support the selection.
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[6] R. Chéour, M. W. Jmal, O. Kanoun, and M. Abid, “Evaluation of simulator tools
and power-aware scheduling model for wireless sensor networks,” IET Computers &
Digital Techniques, vol. 11, no. 5, pp. 173–182, 2017.

[7] P. Chhimwal, D. S. Rai, and D. Rawat, “Comparison between different wireless sen-
sor simulation tools,” IOSR Journal of Electronics and Communication Engineering,
vol. 5, no. 2, pp. 54–60, 2013.

[8] S. G Gupta, M. Ghonge, P. D P M Thakare, and P. Jawandhiya, “Open-source
network simulation tools: An overview,” Internat. Journal of Advanced Research in
Computer Engineering and Tech., vol. 2, no. 4, pp. 1629–1635, 2013.

[9] K. Garg, A. Förster, D. Puccinelli, and S. Giordano, “Towards realistic and credible
wireless sensor network evaluation,” vol. 89, pp. 49–64, 2011.

[10] J. Helkey, L. Holder, and B. Shirazi, “Comparison of simulators for assessing the
ability to sustain wireless sensor networks using dynamic network reconfiguration,”
Sustainable Computing: Informatics and Systems, vol. 9, pp. 1–7, 2016.



[11] K. Lahmar, R. Cheour, and M. Abid, “Wireless sensor networks: Trends, power
consumption and simulators,” in Sixth Asia Modelling Symposium, pp. 200–204, 2012.

[12] I. Minakov, R. Passerone, A. Rizzardi, and S. Sicari, “A comparative study of recent
wireless sensor network simulators,” ACM Transactions on Sensor Networks (TOSN),
vol. 12, no. 3, pp. 20:1–39, 2016.
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