Trace theory for Sobolev mappings into a manifold - Archive ouverte HAL Access content directly
Journal Articles Annales de la Faculté des Sciences de Toulouse. Mathématiques. Year : 2021

Trace theory for Sobolev mappings into a manifold

Abstract

We review the current state of the art concerning the characterization of traces of the spaces $W^{1,p}({\mathbb B}^{m-1}\times (0,1), {\mathcal N})$ of Sobolev mappings with values into a compact manifold ${\mathcal N}$. In particular, we exhibit a new analytical obstruction to the extension, which occurs when $p$ < $m$ is an integer and the homotopy group $\pi_p({\mathcal N})$ is non trivial. On the positive side, we prove the surjectivity of the trace operator when the fundamental group $\pi_1({\mathcal N})$ is finite and $\pi_2({\mathcal N})=\cdots=\pi_{\lfloor p \rfloor}({\mathcal N})\simeq\{ 0\}$. We present several open problems connected to the extension problem.
Fichier principal
Vignette du fichier
extension_manifolds_20200502.pdf (274.05 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02431628 , version 1 (08-01-2020)
hal-02431628 , version 2 (02-05-2020)

Identifiers

Cite

Petru Mironescu, Jean van Schaftingen. Trace theory for Sobolev mappings into a manifold. Annales de la Faculté des Sciences de Toulouse. Mathématiques., In press, ⟨10.5802/afst.1675⟩. ⟨hal-02431628v2⟩
169 View
218 Download

Altmetric

Share

Gmail Facebook X LinkedIn More