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Abstract

Fast neuronal oscillations in gamma frequencies are observed in neocortex
and hippocampus during essential arousal behaviors. Through a four-variable
Hodgkin-Huxley type model, Wang and Buzsáki have numerically demonstrated
that such rhythmic activity can emerge from a random network of GABAergic
interneurons via minimum synaptic inputs. In this case, the intrinsic neuronal
characteristics and network structure act as the main drive of the rhythm. We
investigate inhibitory network synchrony with a low complexity, two-variable adap-
tive exponential integrate-and-fire (AdEx) model, whose parameters possess strong
physiological relevances, and provide a comparison with the two-variable Izhike-
vich model and Morris-Lecar model. Despite the simplicity of these three models,
AdEx model shares two important results with the previous biophysically detailed
Hodgkin-Huxley type model: the minimum number of synaptic input necessary
to initiate network gamma-band rhythms remains the same, and this number is
weakly dependent on the network size. Meanwhile, Izhikevich and Morris-Lecar
neurons demonstrate different results in this study. We further investigate the
necessary neuronal, synaptic and connectivity properties, including gap junctions
and shunting inhibitions, for AdEx model leading to sparse and random network
synchrony in gamma rhythms and nested theta gamma rhythms. These findings
suggest a computationally more tractable framework for studying synchronized
networks in inducing cerebral gamma band activities.

1 Introduction

Neuronal oscillations of gamma frequency in the brain are known to be related to cogni-
tive functions [23, 40, 53, 52], such as perception [36, 26], attention [18, 12], and mem-
ory [25, 34]. There are various network structures to induce gamma oscillations in the
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brain, and the most fundamental structure and prototype are the interneuronal networks
without the involvement of pyramidal neurons. We focus our study on interneuron net-
works and it is therefore significant to determine the essential intrinsic and synaptic neu-
ron properties that lead to network oscillations in gamma rhythms [45, 53, 51, 55, 56, 32].
The studies of coupled neuronal pairs have provided valuable information in understand-
ing the mechanisms of synchronous oscillations in networks [51, 11, 13, 14, 15]. Depend-
ing on a network architecture, it is possible to predict network synchrony through the
information of neuronal pairs. Recent advances in neural anatomy and imaging have
opened up new studies in detailed wiring diagrams of functional circuits [8, 35, 39].
Studies of synchronous oscillations with different non-complex network architectures
have been considered, and among them, all-to-all globally connected networks and ran-
dom networks are popularly studied [53]. Studying mutually coupled paired neurons
brings insights to all-to-all connected network synchrony [51, 24, 20, 19, 30, 9, 37, 58],
but provides little information in random network synchrony.

In addition, it is shown that, in areas of local circuits in hippocampus, synaptic cou-
pling is not all-to-all, and the probability of any pair of cells being connected can be
as low as 0.1 to 0.2 [41]. These networks are considered as sparsely and randomly con-
nected [7, 41, 42, 33]. Intuitively, it is reasonable to assume that when the connection
probability being gradually reduced from 1 (i.e. all-to-all coupling), the network syn-
chrony is to be lost eventually [1, 54, 38, 4]. With such a network structure of Hodgkin-
Huxley (H-H) type neurons, Wang and Buzsáki [53] numerically demonstrate that the
minimum number of each synaptic inputs needed to show an initiation of interneuronal
network gamma rhythm, approximately 25-90 Hz, is about 60. Evidently, this minimum
number depends on (1) intrinsic and synaptic properties of the neurons, (2) a sufficiently
large ratio between the synaptic decay time constant and oscillation period, and (3) a
modest heterogeneity of individual neurons. In a similar study, Golomb and Hansel [21]
showed theoretically that, in a sparse and random network of identical integrate-and-fire
(IF) models, such minimum number is about 360, and also modulated by the intrinsic
and synaptic properties of the neurons.

Hence, to study sparse random networks based on results of Wang and Buzsáki [53] and
Golomb and Hansel [21], H-H type neurons, instead of IF neurons, would predict gamma
network frequencies more easily. However, the dependence of network synchrony on a
model type is not clear, and a remaining question is that whether the detailed neuronal
physiological properties are necessary to enable an onset network synchrony. We aim to
answer this question by studying network behaviors emerged from network structures of
interest, and adopting a simple and becoming increasingly popular two-variable adaptive
exponential integrate-and-fire (AdEx) model [3, 46, 17] equipped with a subthreshold
adaptation and a spike-triggered adaptation features [49, 32]. More importantly, its
parameters resemble salient physiological features and quantities [3, 46], and it has been
fitted successfully to approximate the behavior of H-H type neurons as well as real
recordings from cortical neurons [3, 10, 29]. We compare same network structures of
two-variable Izhikevich and Morris-Lecar models, as Izhikevich model [27, 28], exhibits
a rich dynamical structure and a wide range of firing patterns as in AdEx model [46, 10],
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and Morris-Lecar model [28, 16], without a reset mechanism, possesses a rather different
neuronal feature and oscillatory behaviors from AdEx model. We consider and discuss
the effects of gap junctions and shunting inhibitions in studying gamma rhythms, and
the generation of nested theta and gamma activities seen in hippocampus.

2 Models and Methods

We first study single neurons then network behaviors of AdEx model, including com-
parisons with networks of Izhikevich and Morris-Lecar models.

2.1 Networks of AdEx Model

Neuron model and synaptic connection: Each neuron is described by AdEx neuron,
and time evolutions of membrane potential V and current adaptation w are expressed
as (more details in [3, 46])

C
dV

dt
= −gL(V − EL) + gL∆T e

V−VT
∆T − Ishunt − w + Isyn(t) + Igap + I (1)

τw
dw

dt
= a(V − EL)− w (2)

where the evolution of membrane potential depends on a leak term, gL being leak conduc-
tance and EL being leak reversal potential, and an exponential spike initiation, ∆T de-
scribing the sharpness of the spike initiation and VT being the onset of membrane poten-
tial, followed by a linear coupling with the adaptive current, w(t), Ishunt = gshunt(V −Vr)
is the shunting inhibition component with conductance gshunt and reset voltage Vr,
Igap = ggap(Vpre − Vpost) is the electrical synapse via gap junction with conductance ggap
and membrane potential of pre/post synaptic neuron respectively, and synaptic input is
described as Isyn(t) = −gsyns(t)(V − Esyn) via a bi-exponential synaptic function

s(t) = c
∑
tj≤t

(e
−(t−tj)

τd − e
−(t−tj)

τr ). (3)

Here, gsyn is synaptic peak conductance, Esyn is synaptic reversal potential, τd and τr are
synaptic decay and rise time constants respectively, c is a normalization factor chosen
to have the peak of s(t) = 1, and tj is the spike time from neuron j. I is a constant
external stimulus bringing membrane potential sufficiently close to or on the spiking
region. Whenever the membrane potential reaches threshold Vth, the neuron spikes and
immediately resets to Vr and adaptation current w is increased by a positive amount of
b as

V → Vr (4)

w → w + b

As a good comparison with H-H type neuron, gap junction and shunting inhibition are
not considered until sparse random networks (Section 3.5).
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Parameters: The following parameters are chosen to be close to realistic neurons,
C = 0.1 nF, EL = −70 mV, ∆T = 2 mV, Vr = −60 mV, VT = −50 mV, Esyn = −75
mV, τr = 0.1 ms, τd = 10 ms, and Vth = −30 mV. For neurons exhibiting type I f–I
curve, we have gL = 10 nS, τm = 10 ms, τw = 100 ms, a = 2 nA, b = 4 nA, and the
total synaptic inputs gmax = 2 nS. For neurons exhibiting type II f–I curve, we have
gL = 4 nS, τm = 25 ms, τw = 25 ms, a = 12 nA, b = 0 nA, and the total synaptic inputs
gmax = 32 nS. In the following section, we first explain the ranges and other parameters
to be chosen to observe a single neuron of frequency about 40 Hz, and network gamma
frequency of approximately 30 Hz.

2.2 Networks of Izhikevich Model

Neuron model and synaptic connection: Each neuron is described by Izhikevich
neuron [28, 45], and time evolution is expressed as

dV

dt
= 0.04V 2 + 5V + 140− u+ Isyn(t) + I (5)

du

dt
= a(bV − u) (6)

where the evolution of membrane voltage is described by a specific dimensionless quadratic
polynomial, followed by a linear and dimensionless recovery variable, u(t), and synaptic
input function Isyn(t) is the same as in eq. (3). The parameters in Izhikevich model are
normalized with limited physiological relevances. When a membrane potential reaches
threshold Vth, the neuron spikes and immediately resets to c and recovery variable u is
increased by d, as

V → c (7)

u→ u+ d

The notations of the parameters a, b, c and d remain the same as in [27] to reduce con-
fusion. These parameters are dimensionless, and their notations are however irrelevant
to those from the AdEx model’s.

Parameters: With same values of Vth = −30, τr = 0.1 and τd = 10 as in AdEx
model, the following parameter values are chosen. For neurons of type I f–I curve, we
have a = 0.02, b = −0.1, c = −65, d = 6, I = 34 and gmax = 6. For neurons of type II
f–I curve, we have a = 0.1, b = 0.26, c = −60, d = −1, I = 15 and gmax = 2.
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2.3 Networks of Morris-Lecar Model

Neuron model and synaptic connection: Each neuron is described by Morris-Lecar
neuron [28, 16], and time evolution is expressed as

C
dV

dt
= −gL(V − EL)− gKn(V − EK)− gCam∞(V )(V − ECa) + Isyn(t) + I (8)

dn

dt
= φ(n∞(V )− n)/τn(V ) (9)

Where the evolution of membrane voltage is described by a leak, a potassium channel
and a calcium channel, and coupled with a potassium gating variable. Further more,
m∞(V ) = 1

2
[1 + tanh(V−V1

V2
)], n∞(V ) = 1

2
[1 + tanh(V−V3

V4
)], and τn(V ) = 1/ cosh V−V3

2V4
,

where parameters V1, V2, V3, and V4 are chosen to fit voltage-clamp data, φ is a constant,
and the synaptic input Isyn(t) is the same as in eq. (3).

Parameters: With same time constants τr = 0.1 ms and τd = 10 ms as in AdEx
model, the following parameter values are chosen. C = 20 µF/cm2, V1 = −1.2 mV,
V2 = 18 mV, V3 = 12 mV, V4 = 17.4 mV, gCa = 6 mS/cm2, gK = 30 mS/cm2, gL = 2
mS/cm2, ECa = 120 mV, EK = −90 mV, EL = −65 mV, φ = 1./15, I = 110 µA.

2.4 Methods

Random network connections: For networks of total N neurons, the directional cou-
pling between a pair of neurons is randomly assigned with a probability p. The all-to-all
coupled networks are with a probability p = 1 between each pair of neurons. In this
study, maximum synaptic conductance gsyn is divided by the number of synaptic inputs
Msyn = N ·p. Therefore, the number of synaptic inputs Msyn may vary, but, on average,
the total synaptic drive per neuron remains the same. Nevertheless, we demonstrate
that Msyn plays an important role in network behaviors.

A measure of network synchrony: To quantify the degree of network synchrony,
we adopt a network coherence index as a measurement, and it is defined based on a co-
herence index between synchrony of each spiking pairs in a weak sense [53]. A coherence
index between two neurons i and j is measured by their normalized cross-correlation of
spike trains at zero time lag within each time bin of τ over a time interval of the firing
period T , i.e. τ ∈ [0, T ]. More specifically, when two spike trains are given by X(l) = 0
or 1, and Y (l) = 0 or 1, l = 1, 2, · · · , K, with K = T/τ , we define a coherence index for
the pair of neurons as

κij(τ) =

∑K
l=1X(l)Y (l)√∑K

l=1X(l)
∑K

l=1 Y (l)
(10)

The coherence index of a network of neurons, κ(τ), is defined as the average of κij(τ)
over all discrete pairs of neuron in the network of N neurons, with i < j for all i, j ∈ N ,
and it provides information about neuronal interactions and network synchrony. A net-
work coherence index κ(τ) is calculated by averaging over a subset of discrete neuronal
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pairs that are drawn randomly from all possible combinations in the network.

A measure of network frequency: Network frequency is computed as the aver-
age frequency of all neuronal frequencies.

Numerical simulations: Network simulations are performed through Brian 2 soft-
ware developed by Romain Brette, et al. [22] and Marcel Stimberg, et al. [43], released
under the CeCILL license. Plotting of the results is performed in Python 2.7. The
simulations are done with a time step of 0.01 ms, coherence index is calculated after
discarding the first 500 ms transients, and time bin is chosen for 1 ms with single neu-
ronal frequency about 40 Hz and network synchrony about 30 Hz as in [53] for a good
comparison.

Organization of the results: Firstly we identify the intrinsic characteristics in single
AdEx neurons that lead to network oscillations within gamma rhythms. Based on these
characteristics, we next determine other intrinsic properties necessary to induce net-
work synchrony first for identical AdEx neurons then followed by heterogeneous AdEx
neurons in all-to-all coupled networks. The next step is to study synchrony of heteroge-
neous AdEx neurons in randomly connected networks, and to demonstrate the minimum
number of synaptic connections needed in each neuron to initiate network synchrony.
We then demonstrate the minimum number of synaptic connections needed per neuron
under the same network structure through Izhikevich and Morris-Lecar neurons. Lastly,
for a sparsely and randomly connected network of heterogeneous AdEx neurons, with a
high degree of network synchrony for frequency about 30 Hz, we demonstrate the ranges
of parameters necessary to achieve such performance. We also discuss the inclusion
of gap junctions and shunting inhibitions in such networks to induce gamma rhythms,
and their roles in impacting network synchrony and frequency. Finally, we validate the
network gamma rhythms with experimental recording data from rodent, and further
consider the more complex theta-nested gamma oscillations that may be generated via
AdEx models.

3 Results

3.1 Single neurons to a population of uncoupled heterogenous
neurons

We first investigate the distinct intrinsic neuronal adaptation properties, a and b, of
AdEx neurons, and show how they impact neuronal/network frequency leading to gamma
rhythms.

Intrinsic neuronal properties It is essential to understand all-to-all network be-
haviors in order to gain insights in studying special networks. We first identify the
intrinsic characteristics in single AdEx neurons that lead to oscillations with gamma
rhythms. The most distinct characteristics of AdEx neuron is the adaptation property:
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subthreshold adaptation a and spike-triggered adaptation b (eq. (1), (4)). Their f–I
curves, frequency response to input current functions, are shown in (Fig. 1). For a fixed

Figure 1: frequency vs applied current curves from left to right are (left) a = 0, 2, 4 (nS)
(with b = 4 nA); (middle) b = 0, 4, 8 (nA) (with a = 2 nS). Both indicate frequency
slows down, as a or b increases. (right) df/dI curve illustrates that the slope of frequency
curve is steep at low current input, and becomes moderate showing frequency slowing
down (a = 2 nS, b = 4 pA).

current I, as adaptation a (or b) increases (Fig. 1 (left) or (middle)), the firing frequency
decreases accordingly. Both figures show an initial nonlinear sharp frequency increase,
then slowed down and followed by a nearly linear growth. The derivative of f–I curve
(Fig. 1 (right)) illustrates this property. Hence, the adaptations should be relatively
moderate in order to maintain gamma rhythms. We take subthreshold adaptation a = 2
nS, spike-triggered adaptation b = 4 nA, and input current I = 0.25 nA in single AdEx
neurons to study network gamma rhythms about 30 Hz.

Collective frequency of a population of uncoupled heterogeneous neurons
In order to understand the sensitivity of heterogenous input in relation to collective
population frequency, we simulate a population of 100 uncoupled heterogeneous neurons,
each receiving an input current drawn from Gaussian distribution with mean Iµ and
standard deviation Iσ. By varying mean input current Iµ with a fixed fluctuation Iσ =
0.3 pA, we show that the relative fluctuation of population frequency, fσ/fµ, is slightly
larger at low applied current (near rheobase) (Fig. 2 (left)) (or at low population mean
frequency (Fig. 2 (right))) but is generally very small, implying less population frequency
fluctuations to be observed at slightly higher Iµ or fµ.

3.2 Synaptic characteristics and all-to-all coupled networks

We now demonstrate the necessary synaptic characteristics to induce network frequency
in all-to-all coupled identical neurons.

Synaptic characteristics: We show that, in simulating AMPA-mediated type ex-
citatory coupling networks with parameters to maintain 30 Hz frequency, networks fail
to synchronize and neurons fire essentially arbitrarily (Fig. 3 (left)). Particularly, net-
work coherence index κ(τ) increases linearly with time bin size τ ∈ [0, T ] from 0 to 1
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Figure 2: Both coefficient of variation, fσ/fµ, plots are relatively similar, despite that the
plots are against mean input current Iµ (left) or mean population frequency fµ (right).
It demonstrates that frequency fluctuation is reduced by stronger mean input current
Iµ (left) and by higher mean population frequency fµ.

(Fig. 3 (right)), showing that the relative firing time of neural pairs is nearly uniformly
distributed between 0 and the period of firing T indicating network asynchrony.
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Figure 3: (left) Raster plot shows network asynchronous (right) Network coherence index
increases linearly with time bin size. It is a signature of network asynchrony. (Esyn = 0
mV, τr = 0.1 ms, τd = 5 ms, I = 0.235 nA, a = 2 nA, b = 4 nS, I = 0.25)

Network synchrony and synaptic potential: We next examine the degree of net-
work synchrony with inhibitory synaptic coupling, such as in GABAergic interneurons,
and all the intrinsic cell properties remained, through a network of N = 100 identical
neurons with all-to-all coupling, without neuronal heterogeneity. We demonstrate that
network synchrony is greatly affected by the level of the synaptic reversal potential Esyn.
With a low Esyn = −90 mV, the network synchronizes quickly after several spikes (Fig. 4
(left)). As Esyn increases to near Vr = −60 mV, such as Esyn = −75 mV, the network
synchronizes after a longer period of transients (Fig. 4 (middle)). While Esyn increases
and passes Vr, such as Esyn = −40 mV, network synchrony deteriorates rapidly and
leads to asynchrony (Fig. 4 (right)). The relationship between intrinsic and synaptic
properties of minimum membrane voltage remaining above the synaptic reversal poten-
tial Esyn is found to be an important condition leading to network coherent synchrony.
Fig. 5 demonstrates how network synchrony is affected by synaptic reversal potential
Esyn. It indicates a gradual decrease in network synchrony, as Esyn approaches Vr. It
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Figure 4: (top) raster plots (bottom) membrane potentials of two arbitrary neurons
(blue and green) from the network, with the value of Esyn marked in dotted line. (left)
Esyn = −90 mV (middle) Esyn = −75 mV (right) Esyn = −40 mV (I = 0.25 nA, network
frequency ≈ 30 Hz.)

then followed by a rapid decrease, as Esyn passes Vr. Compared to the abrupt decrease
of H-H type neural networks [53], network synchrony of AdEx neurons deteriorates more
smoothly near the critical value of Esyn. Hence, Esyn = −75 mV is taken in remaining
simulations to ensure that the effect of synaptic inputs is hyperpolarizing to achieve
some degree of network synchrony.

Figure 5: As Esyn increases, κ decreases first gradually then sharply around Vr = −60
mV followed by asynchronous networks. (I = 0.25 nA.)

Network synchrony and time constants: We demonstrate how time constants, such
as intrinsic adaptation time constant τw, and synaptic rise and decay time constants τr
and τd, influence the coupling behaviors in leading to different degrees of network syn-
chrony. Plots in (Fig. 6 (left)) show that stronger τw slows down network frequency
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but only reduces network synchrony slightly. On the other hand, within a range of
synaptic rise time constant τr, network frequency and synchrony are nearly preserved
(Fig. 6 (middle)). (Fig. 6 (right)) shows that as τd increases, network synchrony is low
initially, due to neuronal phase locking. As τd continues to increase, the phase locking
difference decreases. Once the phase locking difference becomes less than the time bin
for calculating κ, it shows a sudden increase of network synchrony κ. This reflects on
the sudden jumps of network frequency and network coherence index near τd = 4 ms.
These indicate the significant role played by the synaptic decay time constant in net-
work synchrony, while the role of synaptic rising time constant is less influential under
such conditions. To achieve network synchrony with frequency approximately 30 Hz,
τw = 100 ms, τr = 0.1 ms, and τd = 10 ms are taken thereafter.

Figure 6: Network frequency/synchrony ((left) top/bottom) decreases, as τw in-
creases; ((middle) top/bottom) persists, as τr increases; ((right) top/bottom) de-
creases/increases, as τd increases. A fast synaptic decay time constant leads to a low
degree of network synchrony, while a slow synaptic decay time constant helps to promote
network synchrony. (I = 0.25 nA)

Network synchrony and adaptations: We demonstrate how network synchrony
changes with the variations of subthreshold adaptation a and spike-triggered adaptation
b. It is shown that if a > gL

τm
τw

, the system undergoes subcritical Hopf bifurcation [46].
The neuron no longer fires, once the subthreshold adaptation parameter a passes a
critical value ac (leading to subcritical Hopf bifurcation) which can be calculated as

ac = gL(
1− τm

τw
+ I

∆T gL

ln(1− τm
τw

)− EL−VT
∆T

− 1) (11)
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This indicates that the value of a is limited by ac for firing neurons (Fig. 7 (left)), while
b (independent of bifurcation) can have a broader range of choices (Fig. 7 (right)) to
maintain neuronal firings. We now examine the way a affects the associated coherence

Figure 7: frequency plots: (left) a has a maximumvalue to elicit spikes. Once a >
ac = 3.54 nS, neuronal firing is lost. (right) b can continue to grow and spike frequency
continues to drop down towards zero. (I = 0.25 nA)

index κ(τ) in such networks accordingly (Fig. 8 (left)). The subthreshold adaptation a
needs to be relatively modest and away from the critical value ac = 3.54 nS to achieve
network synchrony in these networks. We choose a = 2 nS in our network simulations.
The way spike-triggered adaptation b affects the associated coherence index κ(τ) over

Figure 8: Network synchrony plots: Networks become less synchronous then become
asynchronous, as a (left) or b (right) increases.

various values of a is shown in (Fig. 8(right)). For a = 2 nS, in order to maintain a high
degree of network synchrony, the spike-triggered adaptation b needs to be no less than
6 nA. Hence, b = 4 nA is taken in our network simulations.

3.3 Network synchrony of heterogeneous neurons via random
coupling

We have demonstrated that network synchrony can be achieved under all-to-all in-
hibitory network of identical AdEx neurons to exhibit gamma rhythms. This is in-
terneuronal network gamma rhythm, as one of the fundamental structures of generating
gamma frequencies [44, 45, 60, 59]. It is expected that network synchrony will deteriorate
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if the differences among neuronal frequencies become greater, or the number of synaptic
coupling is decreased in each neuron. We start with networks of heterogeneous neurons,
via an all-to-all coupling, to observe the way that individual neural frequencies affect
their network synchrony, then we study randomly connected networks to demonstrate
the minimum coupling number needed in each neuron to observe the onset of network
synchrony.

3.3.1 All-to-all coupled network synchrony of heterogeneous neurons

We demonstrate the effects of network heterogeneity on network behaviors, under the
applied current with amplitudes drawn from a Gaussian distribution with a mean of
Iµ and a standard deviation of Iσ. As demonstrated (Fig. 9 (left)), network synchrony
decreases sharply, as the variation of input currents begins to widen approaching to
Iσ = 0.3 pA. It continues to decrease and eventually loses any synchrony as the variation
of input current increases approaching to Iσ = 2 pA. (Fig. 9 (right)) indicates that,
with small dispersions in current input, the average of network frequency fµ fluctuates
slightly. As the dispersion of input current begins to increase furthermore, the dispersion
of individual neuron frequency fσ also increases while the average of network frequency
fµ decreases slightly.

Figure 9: (left) network synchrony κ vs heterogeneity Iσ plot: It shows that κ deteri-
orates, as neurons become more heterogeneous. (right) network frequency f vs hetero-
geneity Iσ plot: It indicates fµ deteriorates while fσ increases, as neurons become more
heterogeneous.

This kind of dispersion increase in each neuron and decrease in the network frequencies
for AdEx neurons are relatively mild, as supposed to those of H-H type of neurons
being more pronounced [53]. Associated with the parameters marked as the left arrow
in (Fig. 9 (left)), we demonstrate that network synchrony κ also depends on the time
bin size τ chosen. With Iσ = 0.3 nA, (Fig. 10 (top left)) illustrates a partial network
synchrony with κ approximately to be 0.4 (with τ = 2 ms). High nonlinearity of the
curve (Fig. 10 (top right)) indicates the network coherence index increases for the time
bin size from 1 to 5 ms. That shows partial network synchrony can be achieved within
a limited range of small time bin τ . Once the time bin size reaches approximately
τ = 10 ms, the full network synchrony can be achieved accordingly. On the contrary,
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associated with the parameters marked as the right arrow in (Fig. 9 (left)), for the
larger input dispersion Iσ = 2 pA, the raster plot (Fig. 10 (bottom left)) shows an
asynchronous network with no sign of synchrony. The linearity of network synchrony
curve indicates network asynchrony. These results imply that to observe some degree of
network synchrony in all-to-all networks of heterogeneous neurons, the input dispersion
Iσ should remain relatively moderate. We will take Iσ = 0.3 pA to allow a range of
heterogeneous neurons, as we progress to networks of heterogeneous neurons with a
lower degree of connectivity than all-to-all in the next discussion.

Figure 10: (upper left) Raster plot shows partial network synchrony of κ = 0.4 (Iσ = 0.3
pA). (upper right) Network synchrony vs time bin plot confirms the partial synchrony.
(lower left) Raster plot shows network asynchrony (Iσ = 2 pA ). (lower right) The
linearity of network synchrony curve validates network asynchrony. (Iµ = 0.25 nA)

3.3.2 Minimum connections in randomly connected heterogeneous networks

We now discuss networks of heterogeneous neurons reducing all-to-all coupling to ran-
dom connections with a constant number of coupling per neuron on average. Random
connections in a network can be considered as a neuron making synaptic contact to a
second neuron with a probability p. That is, if N is the total number of neurons, then
there are Msyn = pN pre-synaptic neurons that converge to a post-synaptic neuron on
average. (We consider that the sum of total synaptic inputs into each neuron remains
the same, and it is divided into Msyn pre-synaptic neurons.) It is shown previously that
networks can synchronize through all-to-all connectivity (Msyn = N, p = 1) with proper
choices of synaptic reversal potential Esyn, subthreshold adaptation parameter a, spike-
triggered adaptation parameter b, adaptive current time constant τw, along with the
time constants for synaptic rise τr and decay τd. On the contrary, it is easy to see that
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without any connections (Msyn = 0), the networks cannot achieve synchrony. We aim to
identify Mmin

syn , the minimum connections necessary to observe the onset of network syn-
chrony, say κ ≈ 0.05, in randomly connected networks. In Fig. 11 (left), we demonstrate

Figure 11: κ vs Msyn plots for networks of N = 100 neurons. (left) For gsyn = 1 or 2 nS,
Mmin

syn ≈ 60, and for gsyn = 4 nS, Mmin
syn is higher. (I = 0.25 pA) (right) As the current

I increases moderately (in maintaining low gamma rhythms), Mmin
syn remains about 60.

For I = 0.4 nA, network frequency is above gamma oscillations (gsyn = 2 nS).

that Mmin
syn , the minimum connections necessary to show the onset of network synchrony

are approximately 60 for synaptic conductance gsyn = 1 and 2 nS, and a slightly higher
minimum number for a stronger synaptic conductance of gsyn = 4 nS. In Fig. 11 (right),
we illustrate that though input current can also affect Mmin

syn , a moderate range of input
current affects it very weakly. Similarly, for response frequencies between 30 to 60 Hz,
an onset of network synchrony is also about 60 minimum connections per neuron.

Figure 12: κ vs Msyn and M eff
syn plots for networks of N neurons. (left) The onset of

network synchrony of each curve is about 60. That is, Mmin
syn ≈ 60 which is relatively

insensitive to the network size N . (right) All normalized curves become one which
remains flat until M eff

syn crossing Mmin
syn connections (I = 0.25, gsyn = 2 nS).

A significant result from Fig. 12 (left) shows that Mmin
syn is about 60 for N = 100, 200, 500,

or 1000, with sum of gsyn = 2 nS per neuron while maintaining network frequency about
30 Hz. In this case, Mmin

syn remains small and is not a fraction of the network size N .
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Mmin
syn only weakly depends on N . This result is surprisingly similar to H-H type neu-

rons [53].

Let M eff
syn be the effectiveness of Msyn. It can be formulated as

1

M eff
syn

=
1

Msyn

− 1

N
(12)

We demonstrate that all curves from (Fig. 12 (left)) converge into one normalized curve
through the effectiveness of the minimum number of connections (Fig. 12 (right)), and
the nonlinearity of this curve can be observed once M eff

syn reaches about 60. This indi-
cates that, to achieve a higher degree of network synchrony beyond the onset, Mmin

syn is
weakly depending on network size N .

κ versus Msyn curves as parameter varies: Though most parameters are kept
constant while measuring network synchrony on Msyn (and M eff

syn ), the results are rel-
atively similar while most parameters varying within gamma rhythms. For instance, if
Esyn = −85 mV (similarly for a = 1 nS or b = 6 nA is taken respectively), network
synchrony responses on Msyn shown in (Fig. 13 (left)) are nearly identical with those
in (Fig. 12 (left)). Results of network synchrony responses on M eff

syn (not shown) are
also the same as those in (Fig. 12 (right)). If τw = 50 ms is taken, network index
responses (Fig. 13 (middle)) are nearly identical with those in (Fig. 12 (left)), except
when N = 1000. The reason is when intrinsic current becomes much faster (compared
to τw = 100 ms in (Fig. 12 (left))) in low connectivity networks (for N = 1000 up to
Msyn = 300 in the plot), network synchrony is more difficult to achieve. To main gamma
oscillations, synaptic rise time constant τr needs to be small (see (Fig. 6)). Varying τr
within a reasonable range does not affect network coherent index leading to same net-
work index responses on Msyn as in (Fig. 12 (left)). If a faster synaptic decay time
constant τd = 5 ms is taken (compared to τd = 10 ms in (Fig. 12 (left))), network
sychrony is expected to decrease (see (Fig. 6)) on Msyn as in (Fig. 13 (right)) and a
full-scale synchrony fails (κ 6= 1). The less than smooth appearance on the curves is due
to the random connectivity on the networks.

Figure 13: κ vs Msyn: (left) Esyn = −85 mV (middle) τw = 50 ms (right) τd = 5 ms
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3.3.3 Minimum connections and type II AdEx neurons

As Neurons of different membrane excitability associated with different types of f–I
curve and corresponding to distinct neural dynamics, they consequently impact network
synchrony. We point out that neurons in these networks are behaving like type I f–I
curve as shown in (Fig. 1). Hence, we explore Mmin

syn for AdEx neuron of type II f–I
curve (referred as type II neurons thereafter). Fig. 14 (left) demonstrates that, AdEx
neurons of type II, network synchrony is first unobserved then followed by a sudden
onset of network synchrony which is network size dependent. The full-scale network
synchrony is difficult to reach (κ 6= 1). For large network sizes of N = 500 and 1000,
network synchrony increases relatively slowly, as Msyn increases. Fig. 14 (right) indicates
that Mmin

syn is network size dependent.

Figure 14: κ vs Msyn and M eff
syn plots for AdEx neurons of type II. (left) The onset of

network synchrony is sudden and varied in each curve. (right) Normalized curves do not
converge showing Mmin

syn being network size dependent.

3.4 Izhikevich model and Morris-Lecar model

3.4.1 Minimum connections and Izhikevich neurons

Due to similarities of the richness in neural dynamics and broad range of neural activity
patterns in Izhikevich model [27, 28], we also study networks of Izhikevich neurons under
the concept of determining Mmin

syn . Fig. 15 (left) illustrates that Mmin
syn ≈ 110 for type I

Izhikevich neurons with sufficient network sizes N ≥ 200. For a smaller network size,
N = 100, it shows Mmin

syn is less than 110. Fig. 15 (right) further illustrates that all
normalized curves converge into one before M eff

syn reaching about 110, then diverge off
afterwards. This indicates that though Mmin

syn remains about 110, to achieve network
synchrony beyond the onset, Mmin

syn is network size dependent. Fig. 16 (left) illustrates
that network synchrony is first unobserved then followed by a sudden onset of network
synchrony for smaller network sizes (N ≤ 500), and Mmin

syn is generally low (≈ 30) for
type II Izhikevich neurons. Fig. 16 (right) indicates that, to achieve network synchrony
beyond the onset, Mmin

syn is network size dependent.
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Figure 15: κ vs Msyn and M eff
syn plots for networks of N Izhikevich neurons of type I.

(left) Mmin
syn ≈ 110 for N ≥ 200. (right) All normalized curves converge to one until

M eff
syn reaching about 110, then become separate afterwards (I = 34 pA, gsyn = 6 nS).

Figure 16: κ vs Msyn and M eff
syn plots for networks of N Izhikevich neurons of type II.

(left) Mmin
syn ≈ 30. (right) Normalized curves do not converge (I = 15 pA, gsyn = 2 nS).

3.4.2 Minimum connections and Morris-Lecar neurons

As a comparison to two-variable models of a different nature, such as a continuous
model, we study networks of Morris-Lecar neurons under the concept of determining
Mmin

syn . Fig. 17 (left) illustrates that Mmin
syn is about 200 for Morris-Lecar neurons of

type I, and network synchrony grows only slightly beyond the onset followed by a full
network synchrony at all-to-all connections. The normalized curves do not converge
(Fig. 17 (right)), indicating that, to achieve network synchrony beyond the onset, Mmin

syn

is network size dependent.

The fact that the f–I curve of Morris-Lecar model exhibits a slow rise frequency be-
fore damping down to zero with increasing currents may explain the network behavior
difference between this model and other models presented here. Type II Morris-Lecar
neurons exhibit similar behaviors to type I neurons, hence they are not shown.

In summary, Fig. 12 to Fig. 17 provide road maps for the minimum synaptic connec-
tions needed to build neuronal networks via these three models (of either types I or II
neurons) to achieve expected network synchrony. These model simulations demonstrate
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Figure 17: κ vs Msyn and M eff
syn plots for networks of N Morris-Lecar neurons of type

I. (left) Network synchrony is difficult to observe for small network, N = 100, until all-
to-all connection (Msyn = 100) is reached. For larger networks, N ≥ 200, Mmin

syn ≈ 200.
(right) Normalized curves do not converge.

that to generate interneuronal network gamma rhythms approximately 30 Hz, adopting
AdEx neurons behaving like type I is an appropriate choice for studying sparse and
random inhibitory networks found in hippocampal CA1 area, and more importantly the
minimum connections needed in such networks are relatively independent of network
size. We will focus the rest of our study on the AdEx model (more about this choice in
the following section).

3.5 Gamma rhythms in hippocampus via sparse and random
networks

We are now ready to build networks via sparse and random connections to generate
gamma rhythms found in hippocampus, and explore parameter regimes for inducing
such oscillations. Under the consideration of more realistic networks, one may take into
account of intrinsic or extrinsic noise, or other coupling features, and it will bring the
network synchrony down. Hence, with that in mind, we build networks with network
synchrony higher than its onset. For κ ≈ 0.3, we take a network size N = 1000 and the
minimum connections of Msyn = 200 > Mmin

syn = 60 (κ ≈ 0.05) (see Fig. 12 (left)) reflect-
ing a sparse connection with the probability as low as p = 0.2. This network structure
indeed demonstrates a more pronounced and strong network synchrony with network
frequency within gamma rhythms. For this purpose under the same N , Msyn and p, (1)
type II AdEx neuron would have only achieved κ = 0.18, (2) type I Izhikevich neuron
would have only achieved κ = 0.18, (3) type II Izhikevich neuron would have achieved
κ = 0.3, and (4) type I/II Morris-Lecar neuron would have only achieved κ = 0.05, and
they are all network size dependent. Though type II Izhikevich neuron can also achieve
similar network sychrony, it exhibits none convergent effectiveness of the Msyn curves
and possesses none physiological relevant parameters. Hence, we favor the AdEx nerron
of type I in this study.

We further explore the range of parameters, such as both adaptations a and b, adaptive
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time constant τw, synaptic time constants τr and τd, synaptic conductance gsyn, and the
mean input current Iµ to understand how network synchrony and frequency can be pro-
duced and maintained within gamma rhythms found in hippocampus. We include the
considerations of gap junction and shunting inhibition in sparse and random connection
networks, and discuss how they may affect network synchrony and frequency. We also
validate our results with experimental recording data, and discuss networks of AdEx to
induce theta-nested gamma rhythms.

Intrinsic properties affect the networks: In general, increasing mean input cur-
rent Iµ simultaneously increases network frequency and decreases network synchrony
(Fig. 18). In (Fig. 18 (left top/bottom)), we demonstrate that, for the same a, a higher
mean input current Iµ induces higher gamma rhythms, and decreases the network syn-
chrony accordingly. Similarly for b in network frequency, however, it behaves differently
in network synchrony. Once b reaches an optimal value, network synchrony deteriorates
to asynchrony (Fig. 18 (middle top/bottom)). For τw, similarly to a or b, a higher
input mean current Iµ induces higher frequencies in gamma rhythm (Fig. 18 (right
top/bottom)), but eventually decreases network synchrony. These plots show how vari-
ations of intrinsic properties can reflect network frequency and synchrony in generating
gamma rhythms in hippocampus.

Figure 18: Frequency/synchrony vs a, b and τw; All three plots indicate that a higher
input mean current Iµ leads to a higher network frequency (top row), and leads to a
lower network synchrony before deteriorating to asynchrony (bottom row).

Synaptic properties affect the networks: In the aspects of synaptic input leading
to network synchrony, the ranges of synaptic conductance gsyn and the rising and decay
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time constants, τr and τd, are demonstrated respectively. Similar to intrinsic properties,
in general, increasing mean input current Iµ simultaneously increases network frequency
and decreases network synchrony (Fig. 19). In (Fig. 19 (left top/bottom)), it is shown
that network frequency increases while network synchrony decreases, as the maximaum
gsyn increases. The variation of rising synaptic time constant τr is relatively insensi-
tive to the network frequency and synchrony (Fig. 19 (middle top/bottom)). Similar to
synaptic conductance gsyn, decay synaptic time constant τd impacts network frequency
and synchrony more substantially (Fig. 19 (right top/bottom)). The plots suggest that
there is an optimal decay time constant for each mean current input to produce higher
gamma rhythms and maintain higher network synchrony. Once delay time constant
passes that optimal value, both network frequency and synchrony deteriorate.

Figure 19: Frequency/synchrony plots: Increasing mean input current Iµ increases net-
work frequency and decreases network synchrony. (top left) Stronger gsyn decreases
network frequency. (bottom left) Network synchrony appears to be insensitive to gsyn.
(top middle) Network frequency nearly remains, as τr varies. (bottom middle) Increasing
τr influences network synchrony slightly. (top right) When τd is small and at certain op-
timal value, network frequency achieves maximum. Once the value is exceeded, network
frequency continues to decrease. (bottom right) Similarly, network synchrony decreases
as τd passes an optimal value.

Optimal synchronization in gamma rhythms: Based on the demonstrations of how
intrinsic and synaptic properties influence network frequency and synchrony via sparse
random networks, we further demonstrate these networks exhibit a peak preferred fre-
quency range (Fig. 20 (left)). It shows that network frequency about 25 Hz induces
the peak network synchrony. As network frequency increases, the network synchrony
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decreases accordingly. Hence, varying synaptic conductance gsyn within a small range
exhibits a preferred network frequency of gamma rhythms while ensuring the degrees of
network synchrony.

Figure 20: (left) All curves show a preference of peak network synchrony around 25 Hz
(right) Network frequency responses to synaptic time constant of experimental recordings
in rat hippocampus (circles) and model simulations (dots) in [48].

Experimental recording data: Experimental recordings of rodent by Traub et al. [48]
show that interneuronal network of gamma rhythms in CA1 of the hippocampus can be
induced in vitro during blockade of ionotropic glutamate receptors, and network fre-
quency declines with synaptic time constant prolonged (Fig. 20 (right)). We compare
the gamma network frequency generated by sparse randomly connected networks (Fig. 19
(top right)) with experimental recordings shown in (Fig. 20 (right)), and find that both
network frequency responses to synaptic (decay) time constant are remarkably compa-
rable.

Gap junctions: Studies have shown that electrical synapses among interneuronal net-
works may play an important but different role from chemical synapses in contribut-
ing to network synchrony [31]. Previously, we demonstrated that, in sparse randomly
connected networks inducing gamma oscillations, stronger chemical synapses reduce
network frequency and maintain similar network synchrony (Fig. 19 (left)). In con-
trast, with the inclusion of electrical synapses, the simulation demonstrates a strong
enhancement in network synchrony while maintaining similar frequency (Fig.21). It in-
dicates that electrical synapses can enhance network synchrony of gamma oscillations
in sparse randomly connected interneuron networks rather effectively [47]. Our simula-
tions demonstrate that, without electric synapses, network frequency is 24, 33, 42 (Hz)
for I = 0.25, 0.27, 0.29 (nA) with standard deviation 0.30, 0.44, 0.57 (Hz) respectively in
sparse random networks. In contrast, with the inclusion of electric synapses of ggap = 0.5
nS, though network frequency is preserved respectively, all standard deviations become
zero. This indicates that interneurons with electrical synapses via AdEx model improve
network synchrony significantly leading to greater robustness. This result is consistent
with the finding that inhibitory synaptic coupling can increase the dispersion of neuronal
voltages between spikes, whereas electrical coupling reduces such dispersion [31].
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Figure 21: Stronger gap junction maintains similar network frequency (left), but en-
hances network synchrony significantly (right).

Shunting inhibition: When shunting inhibition is included [50] in sparse random
networks, network frequency slows down (Fig.22), while network synchrony remains rel-
atively the same. Previous study suggests that shunting inhibition may enhance gamma
oscillations with greater robustness [50]. Our simulations demonstrate that, without
shunting inhibition, network frequency is 24, 33, 42 (Hz) for I = 0.25, 0.27, 0.29 (nA)
with standard deviation 0.30, 0.44, 0.57 (Hz) respectively in sparse random networks.
With the inclusion of shunting inhibition of gshunt = 1 nS, network frequency reduces
to 19, 29, 37 (Hz) with standard deviation increased to 0.32, 0.45, 0.53 (Hz) respectively
in sparse random networks. This indicates that interneurons with shunting inhibitions
via AdEx model lower network frequency and increase dispersion of network frequency.
(which behaves similar to H-H type neuron as in [53]).

Figure 22: Stronger shunting inhibition (left) reduces network frequency, and (right)
keeps network synchrony relatively constant (but increase the frequency dispersion).

Theta-nested gamma rhythms: A particularly prominent rhythmic pattern is that of
oscillations exhibit nested activity at theta and gamma frequencies seen under conditions
of active exploration in the rat hippocampal formation. It is believed to be a set of struc-
tures necessary for declarative memory [57, 5]. Gamma rhythms may be generated lo-
cally by interactions within a class of interneurons mediating fast GABAA (GABAA,fast)
inhibitory post-synaptic currents. Recent evidence indicates that a slower class of
GABAA (GABAA,slow) interneurons in the hippocampus projects to the GABAA,fast in-
terneurons that contribute to hippocampal mixed theta-gamma rhythms [57, 5]. These
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two synaptic responses, GABAA,fast and GABAA,slow, appear to arise from distinct popu-
lations of interneurons. In much the same way that GABAA,fast cells seem to control the
gamma rhythm, and GABAA,slow cells represent a prime candidate mechanism, wholly
within the hippocampal formation, that may contribute to the theta rhythm. We use
AdEx models coupling populations of GABAA,fast and GABAA,slow interneurons via net-
work of Fig. 23 (left) for generating nested theta and gamma rhythms in region CA1
of the hippocampus. In (Fig.23 (right)), it demonstrates that the population of slow
GABAA interneurons oscillate in theta rhythm and the population of fast GABAA in-
terneurons oscillate in gamma rhythm to induce a theta-nested gamma rhythm reflecting
the active responses found in rat hippocampus.

Figure 23: (left) Two populations of interneuronal circuity in region CA1 for theta-
nested gamma oscillations; (right) A population of 500 GABAA,slow interneurons oscillate
in theta band (≈ 10Hz) and a population of 500 GABAA,fast interneurons oscillate
in gamma band (≈ 30Hz). Random connection probability p = 0.2; synaptic peak
conductance: gsyn(fast, fast)= 0.0307 nS, gsyn(fast,slow)= 0.001 nS, gsyn(slow,fast)= 0.002 nS,
gsyn(slow, slow)= 0.15 nS; synaptic rise and decay time constants: τr(fast)= 0.1 ms, τd(fast)=
10 ms, τr(slow)= 5 ms, τd(slow)= 50 ms; sinusoidal input current at theta band: I = 0.28
nA+0.15 sin(24πt) nA

3.6 Discussion and conclusions

Gamma rhythms in the brain may be induced through three network mechanisms, such
as pure interneurons, an interplay between interneurons and pyramidal neurons, and
a weak participation of pyramidal neurons with interneurons. Among them, networks
of interneurons are the most significant and fundamental mechanism to induce gamma
band activities, and it is therefore the one focused in this study. With this mechanism,
though frequencies of individual neurons are higher than the network frequency, they
are near the network frequency. Our findings in this study shows persistence with this
property. Ultimately interneuron networks are generally embedded in larger networks
with a participation of pyramidal neurons, and it will be of interest to investigate the
interplay of interneurons and pyramidal neurons or the more complex network with a
weak pyramidal participation to generate gamma rhythms.

AdEx neuronal networks coupled with AMPA-mediated type excitatory synapses fail
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to synchronize as expected, whereas GABAergic inhibitory coupling leads to collective
activities in gamma band. This result is in agreement with the previous studies in the
same direction, such as [53, 24, 51] on excitatory networks, [53, 55, 56, 51] on inhibitory
networks, and [53, 2, 61, 48] on the generation of interneuron gamma rhythms. We exam-
ine the emergence of gamma rhythms from networks which can be observed in neocortex
and in hippocampus during behavioral arousal through AdEx neuron, and identify the
following necessary conditions for such network synchrony via GABAergic synaptic cou-
pling. (1) For single neurons, the subthreshold and spike-triggered adaptations need to
be small to maintain gamma rhythms, the time constant of neuronal adaptation current
(τw) is less sensitive by allowing a wide range to show gamma rhythms, and the hyper-
polarization after a spike should be above the synaptic reversal potential to ensure the
synaptic inputs being hyperpolarizing. (2) As a synaptic property, the synaptic decay
should be relatively slow such that the ratio between the synaptic decay time constant
and the spiking period is not too small, to observe the effects of synaptic inputs. (3) As a
network property, the heterogeneities of input currents should be adequately small to as-
sure network synchrony. In addition, random and heterogenous networks based on these
properties, shows a minimum number of connections per neuron necessary to generate
network synchrony, and this number is weakly dependent on the network size. Though
subthreshold and spike-triggered adaptation features are unique to neurons equipped
with adaptation parameters such as AdEx model, they are prevalent in biological neu-
rons and known to slow down network frequency similar to those observed in condition
(1). Time constant in synaptic rising is generally fast compared to its slow decay as
shown in conditions (2). However, the slower synaptic decay induces slower network fre-
quency. Interneuronal network gamma rhythms are often fragile against heterogeneity
and noise, such as in interneuron gamma oscillation studies [53, 56, 6] and experimental
recording [48], and this result is consistent with our study stated in condition (3).

Electrical and chemical synapses both exist within the same interneuron networks, and
each type of synapse is able to promote network synchrony through playing different
roles. In interneuron networks of gamma rhythms, the γ-aminobutyric acid type A,
GABAA, mediated inhibition is relatively strong. Under this condition, addition of
a small electrical conductance can increase the degree of network synchrony far more
than a much larger increase in inhibitory conductance. The electrical synapses increase
network synchrony through suppressing the heterogeneity in the network. Hence, elec-
trical synapses significantly improve network synchrony and robustness. It is shown that
GABAA mediated inhibition in mature interneurons of the hippocampus demonstrate
gyrus is shunting rather than hyperpolarizing. Nevertheless, when shunting inhibition is
incorporated into our study, network synchrony barely improved. It indicates that AdEx
model does not reflect well with mature interneurons of the hippocampus to generate
gamma rhythms.

Meanwhile, it was thought that, with more biophysically realistic models, less neu-
rons maybe needed to observe network synchrony than with less biophysically detailed
models. Nevertheless, the results in our study shows remarkable similarity to those of
H-H type neuron study shown in [53]. We provide a significant road map to work out
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the minimum synaptic connections needed in order to achieve any desired degree of
network synchrony according to the network size for AdEx model. The existence of a
minimum number of connections necessary to generate network synchrony has also been
found in other network structures [1, 54], indicating that this weak-dependence may be
a general feature of sparsely connected and random networks. While type I Izhikevich
model may do well in synchronizing network activities, it is network size sensitive and
of less biophysical relevance.

Rhythms within a neuronal network can be generated by local mechanisms, driven by
remote inputs, or induced by a combination of extrinsic and intrinsic properties. We use
new evidence for connections from GABAA,slow cells to the more well-known GABAA,fast

interneurons to create a network based on two populations of inhibitory neurons. The
network is able to autonomously create the nested theta-gamma rhythm observed in
hippocampus, under the conditions of strong connections among population, weaker
connections between populations, and carefully tuned input drives. This indicates that
the fragility of nested theta-gamma rhythms induced through such network structures
may be improved, possibly via the inclusion of pyramidal neurons or synaptic delays.

This study demonstrates that a low complexity AdEx model performs similarly to and
can do as well as H-H type model type model. This provides researchers a novel mean
of studying various rhythmic activities found in hippocampus through a biophysical
relevant and low dimensional neuron model.
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