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Abstract

A computational homogenization method to determine the effective parameters
of Mindlin’s Strain Gradient Elasticity (SGE) model from a local heterogeneous
Cauchy linear material is developed. The devised method, which is an extension
of the classical one based on the use of Quadratic Boundary Conditions, intents
to correct the well-known non-physical problem of persistent gradient effects when
the Representative Volume Element (RVE) is homogeneous. Those spurious effects
are eliminated by introducing a microstructure-dependent body force field in the
homogenization scheme together with alternative definitions of the localization ten-
sors. With these modifications, and by a simple application of the superposition
principle, the higher-order stiffness tensors of SGE are computed from elementary
numerical calculations on RVE. Within this new framework, the convergence of
SGE effective properties is investigated with respect to the size of the RVE. Finally,
a C1-FEM procedure for simulating the behavior of the effective material at the
macro scale is developed. We show that the proposed model is consistent with the
solutions arising from asymptotic analysis and that the computed effective tensors
verify the expected invariance properties for several classes of anisotropy. We also
point out an issue that the present model shares with asymptotic-based solutions
in the case of soft inclusions. Applications to anisotropic effective strain-gradient
materials are provided, as well as comparisons between fully meshed structures and
equivalent homogeneous models.
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1 Introduction

Architectured materials are multiscaled materials for which the inner structure
can be various, ranging from randomly distributed phases to perfectly orga-
nized architectures. In the last case, we are in the realm of periodic materials
and the mesoscopic scale is composed of a basic cell repeated according to a
regular lattice. Intermediate configurations are possible, for instance in biolog-
ical architectured materials, in which almost periodic structures or perturbed
lattices are often encountered [11]. The great influence of the mesostructure
on the overall properties of materials is known in condensed matter physics, at
least from the end of the 19th century, where it was found to drive optical and
electric properties of crystals [17]. At the scale of mechanical engineering, inter-
est in architectured materials lies in the possibility to obtain overall behaviors
which are not found in nature. Non-standard elastodynamics properties such
as, for instance, the cloaking effect, are at the very beginning of the studies
of what is presently known as metamaterials [43,47,41]. But interest is not
confined to dynamics, since non-standard static effects such as large auxetic
behavior have been investigated [52,19,56], or pure strain-gradient designed
structures [57,18,1]. The theoretical formulation of continuum mechanics with
microstructure has been investigated since the mid-60’s with the seminal works
of Mindlin, Toupin, and others [59,21,44]. All these works demonstrated that
the classical formulation of elasticity (Cauchy elasticity) is not rich enough
to model architecture effects in a continuum fashion, and that generalized
models have to be considered instead. However, despite their intrinsic inter-
ests and until recently, those results were confined to essentially theoretical
speculations due to, at least, two major problems:

(1) How to practically design architectured materials?
(2) How to determine the very large amount of parameters required by these

models?

With regard to the first point, recent developments in additive manufacturing
processes have led to a paradigm shift and, in recent years, new direct manu-
facturing methods have been developed. Today, 3D printing techniques have
allowed fabricating lattices [16] or bi-materials [50] with controlled microstruc-
tures over a wide range of scales and materials, from nano to micro lattices
[62] and made of metallic, polymer or ceramics materials, among many others.

However, due to the complex internal geometry of architectured materials, Di-
rect Numerical Simulations (DNS, i.e. when the geometry of the inner struc-
ture is explicitly meshed in simulations) are often limited to few unit cells,
or few Representative Volume Elements (RVEs). In other words, the full-field
computation of a structure made out of an architectured material can be pro-
hibitively expensive, especially in the design phase in which the structure is
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optimized. To solve these technical difficulties, a possible way is to substitute
the actual material by a homogeneous one having equivalent effective proper-
ties. However, due to the meso-structure coarseness, the usual scale separation
assumption may no more hold and standard homogenization techniques break
down. Further, to correctly catch the behavior of the original heterogeneous
material, the effective homogeneous medium cannot be Cauchy elastic and
should incorporate higher-order effects in its formulation. At this level the
questions are: (a) which generalized continuum to consider among the multi-
ple possibilities (Cosserat, Koiter, Strain-gradient, Micromorphic,...) (b) how
to compute the coefficients of the retained model from the knowledge of the
microstructure? It is where we meet the second problem previously evoked.

In the present paper, the model retained for the overall description of the
heterogeneous continuum is a strain gradient elastic continuum as described by
Mindlin [44,45]. The reasons for such as choice are three-fold: (a) SGE model
can be naturally constructed by asymptotic analysis [14,7,60,9]; (b) in statics,
SGE elasticity is rich enough to describe emergent properties without involving
as many parameters as the micromorphic elasticity [4]; (c) we have a good
understanding of the anisotropic features of this model [2,4]. The question
now lies in the determination of the parameters of the model.

With regard to this modelling issue, there is a large interest in the literature for
strain-gradient homogenization of heterogeneous structures [12,25,23,24,61,60,51].
For instance, in [7], Bacigalupo and Gambarotta provided a computational ho-
mogenization procedure for strain-gradient media with numerical solutions. In
[8], the same authors applied micropolar and strain-gradient homogenization
schemes to auxetic materials (hexachiral and tetrachiral honeycombs) and ob-
tained analytical expressions for effective higher-order coefficients, as well as
numerical values based on FEM calculations. An anisotropic effective strain-
gradient behavior has been constructed based on RVE of fibrous materials
in [29] using heuristic tests as boundary conditions. In [63], a micromechan-
ical model for macro behavior when prescribing a polynomial field based on
asymptotic analysis was introduced and a critical review of the different ap-
proaches proposed in the literature was provided. Following [14,58], Tran et al.
[60] derived closed-form estimates for stratified composites using asymptotic
expansion methods and a Fast Fourier Transform approach to compute the ef-
fective coefficients of the strain-gradient elastic model. In [29,13], second-order
coefficients have been obtained in a linear context using heuristic boundary
conditions while, in [33], the issue of enforcing boundary conditions in second-
order computational homogenization has been addressed using constrained
minimization. In [39], Li and Zhang combined asymptotic expansion and FFT
and discussed gradient effects. The approach is not restricted linear behav-
iors, and second-order computational homogenization has been extended to
the nonlinear context through the FE2 method in [35,36,22]. In [37], a FE2

extension of second-order homogenization with C1 macro discretization has
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been introduced.

Amongst the approaches used in the above examples, a very common strategy
to compute higher-order moduli is the use of Quadratic Boundary Conditions
(QBC) over the RVE [30,23,24]. This method is popular due to its inherent
simplicity, and to the fact that it is a straightforward extension of the classical
Kinematic Uniform Boundary Conditions (KUBC) used in classical homog-
enization [31,34,64]. This approach has been used in numerous situations to
determine strain-gradient effective parameters as in [27,36] and further ex-
tended to micromorphic effective media [25,24,15,32,26]. Despite its appealing
simplicity, as shown in [26,63,10], the method has two major flaws: (a) the
effective strain-gradient properties remain non zero either when the scale are
separated or when the material is homogeneous [26] which induces a contra-
diction with the local Cauchy behavior of the phases; (b) the effective strain-
gradient properties do not converge with respect to the RVE size [39,10], which
is also questionable. In [38,10], Barboura and Li proposed a correction to the
asymptotic analysis combined with the finite element method to remove these
spurious effects.

In the present paper, we provide a computational homogenization method
for evaluating higher-order tensors of a general effective anisotropic strain-
gradient (Mindlin) model using Finite Element Calculations on RVEs based
on the superposition principle. As compared to previous methods, body forces
are added to the Quadratic Boundary Conditions and a correction of the local-
ization tensor in a straightforward application of the superposition principle
is introduced to remove the above-mentioned issues. We show that the re-
sulting method is consistent with results obtained by asymptotic expansion
techniques [60]. Finally, a C1-FEM for the effective anisotropic Mindlin model
is provided, which can serve to validate the homogenized model.

The outline of the paper is as follows. After notational preliminaries in section
2, the localization problem with quadratic boundary conditions and additional
body forces is introduced in section 3. In section 4 the effective higher-order
tensors are derived. In section 5, a full C1-FEM to calculate the homogeneous
structure with the computed anisotropic strain-gradient behavior is provided.
Finally, numerical examples are presented in section 5.3 to validate and illus-
trate the approach, as well as presenting some current limitations in the case
of soft inclusions.

2 Preliminary notations

Throughout this paper, the physical space is modelled on the Euclidean space
Ed with Rd its associated vector space. Once an arbitrary reference point
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chosen, those spaces can be associated and P = {ek}1≤k≤d will denote an
orthonormal basis of Rd.

Vectors and second order tensors, as well as matrices, are denoted by bold
letters A. Third-order tensors are denoted by calligraphic uppercase letters G,
fourth-order, fifth-order and sixth-order tensors are denoted by double case

letters A. The simple, double and third-order contractions are written ·, :,
...

respectively. In components, with respect to P , these notations correspond to

a · b = aibi, A : B = AijBij, A...B = AijkBijk, (1)

where the Einstein summation on repeated indices is used. The order on which
components are summed has been chosen in such a way that the full contrac-
tion between same order tensors is a scalar product.

The outer product between two vectors is defined by (a⊗ b)ij = aibj. The
gradient operator is denoted by∇(.) and the divergence operator by∇·(.). The
classical second order identity tensor is denoted by I. When needed second-
order and fourth-order tensors will be represented as vectors and matrices
using the classical Voigt’s convention.

To characterize the symmetry of the architectured materials considered in this
paper, some definitions from group theory will be used. The following matrix
groups are considered:

• GL(d): the group of all linear invertible transformations of Rd, i.e. F ∈ GL(d)
iff det(F) ̸= 0;

• O(d): the orthogonal group, which is the group of all isometries of Rd i.e.
Q ∈ O(d) iff Q ∈ GL(d) and Q−1 = QT , where the superscript T denotes
the transposition;

• SO(d): the special orthogonal group, i.e. the subgroup of O(d) consisting of
transformations satisfying det(Q) = 1.

Due to its practical importance, let us detail the case d = 2. As a matrix
group, O(2) can be generated by:

R(θ) =

⎛

⎜⎝
cos θ − sin θ

sin θ cos θ

⎞

⎟⎠ , 0 ≤ θ < 2π, and P(e2) =

⎛

⎜⎝
1 0

0 −1

⎞

⎟⎠ ,

in which R(θ) is a rotation by an angle θ and P(n) is the reflection across the
line normal to n. SO(2) corresponds to the group of rotations generated by
R(θ). The following finite subgroups of O(2) will be used:

• 1, the identity group;
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• Zk, the cyclic group with k elements generated by R(2π/k). It is the sym-
metry group of chiral figures;

• Dk, the dihedral group with 2k elements generated by R(2π/k) and P(e2).
It is the symmetry group of regular polygons. The group D1 will also be
denoted by Zπ

2 , and is the symmetry group of a figure solely invariant by
P(e2).

Let u be the displacement vector and x a material coordinate, since the present
paper is devoted to linear strain-gradient elasticity we introduce the linear
strain tensor ε and ∇ε its gradient, defined by, respectively:

εij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)

, ∇εijk =
1

2

(
∂2ui

∂xj∂xk
+

∂2uj

∂xi∂xk

)

. (2)

The second gradient of displacement is defined as

Gijk =
∂2ui

∂xj∂xk
. (3)

The two tensors ∇ε and G are related by (see Appendix A):

Gijk = ∇εijk +∇εikj −∇εjki. (4)

In this work, we adopt the formalism of Mindlin strain-gradient elasticity as a
function of the strain-gradient ∇ε, this is the type II formulation as described
in [44,45]. The theory can also be formulated in terms of the second derivative
of displacement G (type I formulation), the correspondence between the two
formalisms can be found e.g. in [45,4].

• (·) indicates a macroscopic quantity;
• ⟨(·)⟩V denotes the volume averaging of the quantity (·) over the domain V :

⟨(·)⟩V =
1

|V |

∫

V
(·)dV.

3 Localization problem and boundary conditions

3.1 Definition of the localization problem

We consider a structure defined in a domain Ω ⊂ R2, which characteristic
size is L, constituted of a finite number of unit cells of elementary domain Y .
The material filling Ω is hence considered as a periodic medium characterized
by a RVE defined in a domain ω ⊂ R2 whose boundary is denoted by ∂ω
(see Fig. 1 (c)). It has to be noted that ω can be larger than Y , hence the
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Fig. 1. (a) heterogeneous structure; (b) equivalent strain-gradient homogeneous
structure; (c) RVE.

notions of RVE and of unit cell have to be distinguished. Note that in this
work we distinguish ω from Y because non periodic boundary conditions are
used on the boundary of the RVE. The RVE, whose characteristic size is
denoted by ℓ, is supposed constituted of N different Cauchy linear elastic
phases characterized by their elastic tensors Ci, i = 1, 2, ..., N . This RVE
ω is assumed to be subjected to (ε,∇ε) a couple of homogeneous strain and
strain gradient tensors, which are prescribed through boundary conditions and
body forces specified in the following. The scale separation ratio is defined
as ϵ = ℓ/L and is not vanishingly small. In that situation, the assumption
of scale separation is no longer valid and the effective medium may include
strain-gradient effects [55,48] (see section 4).

To extend the classical homogenization procedure based on Kinematic Uni-
form Boundary Conditions (KUBC) [31,34], Quadratic Boundary Conditions
(QBC) have been introduced in several works (see e.g. [30,23,24,3]) to pre-
scribe an effective strain-gradient over the RVE (see Appendix B):

u(x) = ε · x+
1

2
G : x⊗ x on ∂ω, (5)

where G is the macroscopic second gradient of displacement, which depends
on ∇ε according to (4). However, one obvious issue with such condition arises
when considering a homogeneous RVE characterized by a unique elastic tensor
C1.

In that case, and for ε = 0, it is expected that the local strain solution within
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the RVE should be equal to:

ε(x) = ∇ε · x ∀x ∈ ω. (6)

However generally (6) is not a statically admissible solution for boundary
conditions (5) since:

∇ ·
(
C1 :

[
∇ε x

])
= (C1 : ∇ε) : I ̸= 0. (7)

The inequality (7) holds because in the present work ∇ε can be chosen arbi-
trarily. Therefore, as observed in [26,39], fluctuations remain even when the
local continuum is homogeneous, leading to persistent non-physical gradient
effects. Indeed, when the local medium is Cauchy homogeneous, there is no
dependence on an internal length and the overall medium cannot be of gen-
eralized type. To cure this problem, and following the analysis conducted in
[46], we propose to prescribe body forces in addition to QBC (5) to enforce a
constant strain-gradient within the RVE when the material is homogeneous.
The new localization problem involves solving the equilibrium equation:

∇ · σ (u(x)) = f(∇ε) ∀x ∈ ω, (8)

where

f(∇ε) = ∇ ·
(
C0(x) : (∇ε · x)

)
. (9)

In the definition of f , C0(x) is an arbitrary elastic tensor field that has to
be specified. At this point, and without loss of generality, we assume a two-
phase composite whose elastic properties are described by C1 and C2, and
in which the phase 1 has the highest volume fraction. The RVE is elastically
homogeneous if either (a) the volume fraction of phase 2 goes to zero, i.e.
f 1 → 1, or (b) if the contrast between phase properties goes to one, i.e.
∥C2∥ → ∥C1∥. For each of these two conditions, the tensor C0(x) should
satisfy:

C0(x) → C1 if

⎧
⎪⎨

⎪⎩

f 1 → 1,

or ∥C2∥ → ∥C1∥
(10)

to satisfy (8).

Several choices are possible to respect condition (10), such as (among others):

Pointwise body force correction: C0(x) = C(x),
Effective body force correction: C0(x) = C,
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while the standard one is

Null body force (Standard QBC): C0(x) = O,

where C is the effective classical elastic tensor of the RVE. In the present
work, we consider the Effective Body Force Correction, but discuss the cases
C0(x) = C(x) (Pointwise Body Force Correction) as well as the case C0(x) = 0
(Null body force (Standard QBC)) for comparison. For this last choice, the
condition (10) is obviously not satisfied.

To summarize, the localization problem to be solved on the RVE is the fol-
lowing one:

Given ε and ∇ε, find u(x) such that:

∇ · σ (u(x)) = f(∇ε), ∀x ∈ ω, (11)

with
σ (x) = C(x) : ε (u(x)) , (12)

and subjected to the boundary conditions:

u(x) = εx+
1

2
G : x⊗ x ∀x ∈ ∂ω, (13)

and the source term:
f(∇ε) = ∇ ·

(
C0(x) : (∇ε · x)

)
. (14)

The problem defined by the equations (11)-(13) can be solved by classical
finite elements as described below.

3.2 FEM Formulation

Denoting by [ε(x)] the vector form associated with ε(x) and [σ(x)] the vector
form associated with σ(x), the weak form associated with (11) is given by:

∫

ω
[σ] · [ε(δu)]dΩ =

∫

ω
C(x)[η] · [ε(δu)]dΩ, (15)

where C is the matrix form associated to C and by setting:

[η] =

⎡

⎢⎢⎢⎢⎢⎣

∇ε111x1 +∇ε112x2

∇ε221x1 +∇ε222x2

∇ε121x1 +∇ε122x2

⎤

⎥⎥⎥⎥⎥⎦
. (16)
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Using classical FEM discretization, we obtain a linear system in the form:

Ku = F, (17)

with

K =
∫

ω
B(x)TC(x)B(x)dΩ, and F =

∫

ω
BT (x)C(x)[η]dΩ, (18)

where B(x) are the shape function derivatives in the elements of the RVE.

4 Calculation of effective higher-order tensors

4.1 The Strain-Gradient constitutive law

In its Type II formulation, the energy of a macroscopic linear strain-gradient
elastic medium has the following expression [44,45],:

E =
1

2
ε : C : ε+ ε : M ... ∇ε+

1

2
∇ε

... G ... ∇ε, (19)

where C denotes the effective elastic tensor, M is a fifth-order tensor coupling
first and second order strains, andG is the sixth-order strain-gradient elasticity
tensor. These tensors satisfy the following index permutation symmetry:

C(ij) (kl) ; M (ij)(kl)m ; G(ij)k (lm)n (20)

where the notation (..) stands for the minor symmetries, whereas .. stands for
the major one. In the case where the microstructure of a material is centro-
symmetric, the fifth-order elastic stiffness tensor M vanishes. This assumption
is often made in order to uncoupled the equations and hence to simplify the
problem. However, as demonstrated for example by [14] from an asymptotic
analysis, the moduli of M are of order ϵ while those of G are of order ϵ2 and
therefore, when they are present, the influence of M can be dominant over G.
In statics, some recent experiments on a non-centrosymmetric architectured
beam [48] have evidenced the necessity of involving M in modelling its over-
all behavior. In dynamics, the coupling described by M induces changes in
wave polarization and is associated to the acoustic activity of crystals and to
the so-called gyrotropic effects [59,49,42]. In this work, we consider arbitrarily
anisotropic RVEs, with M possibly different from zero. Then the second-order
stress tensor σ and the third-order hyperstress tensor S are defined, respec-
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tively, by:

σ =
∂E

∂ε
= C : ε+M ... ∇ε, (21)

S =
∂E

∂∇ε
= MT

: ε+G ... ∇ε. (22)

with
(
MT

)

ijklm
= Mlmijk.

According to the symmetries of the RVE, this constitutive law can belong, in
2D, to 14 non equivalent symmetry classes. Their characteristics are reported
together with their number of independent components in Table 1:

Name Oblique Rectangular Digonal Orthotropic Trichiral Trigonal Tetrachiral

[GL] [1] [Zπ
2 ] [Z2] [D2] [Z3] [D3] [Z4]

#indep(L) 45 (44) 27 36 (35) 16 15 (14) 10 13 (12)

Name Tetragonal Pentachiral Pentagonal Hexachiral Hexagonal Hemitropic Isotropic

[GL] [D4] [Z5] [D5] [Z6] [D6] [SO(2)] [O(2)]

#indep(L) 9 9 (8) 7 9 (8) 7 7 6

Table 1
Names, Sets of subgroups [GL] and numbers of independent components #indep(L)
for the 14 symmetry classes of L. The in-parenthesis number indicates the minimal
number of components of the law in an appropriate basis.

in which L = (C,M,G). Details concerning this classification can be found in
the following references [2,4]. The same analysis has also been conducting in
3D [6,5], but results are not reported here for the sake of conciseness.

4.2 Definition of the localization tensors

The local problem defined by the equations (11)-(13) is linear, hence using the
superposition principle, the local strain field ε(x) can be expressed as:

ε(x) = A0(x) : ε+ A1(x)
... ∇ε, (23)

where A0
ijkl(x) is the strain solution εij(x) obtained by solving the problem

(11)-(13) for:

(
ε =

1

2
(ek ⊗ el + el ⊗ ek) , ∇ε = 0

)
(24)
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and A1
ijklm(x) is the strain solution εij(x) obtained by solving the problem

(11)-(13) for:

(
ε = 0, ∇ε =

1

2
(ek ⊗ el + el ⊗ ek)⊗ em

)
. (25)

Even when prescribing appropriate body forces as described in the previous
section, the localization tensors as they were introduced do not prevent the
non-physical strain-gradient effects which show up in the case of a local ho-
mogeneous problem. To understand why, consider the case of a homogeneous
RVE with elastic tensor C1 and apply the homogenization scheme with pre-
scribed body forces to balance the QBC. In such a situation the localization
tensors are 1 :

A0(x) = I ∀x ∈ Ω, A1(x) = I⊗ x ∀x ∈ Ω, (26)

where I is the fourth-order symmetric identity tensor defined by (I)ijkl =
1
2 (δikδjl + δilδjk).

In that case, and using the standard local Hooke’s law, the expressions of the
strain and the stress fields are readily obtained as:

ε(x) = I : ε+ (I⊗ x) : ∇ε , σ(x) = C1 :
(
I : ε+ (I⊗ x)

... ∇ε
)
. (27)

The effective strain density energy associated with the RVE is expressed by:

E =
1

2
⟨σ(x) : ε(x)⟩ , (28)

and by introducing (27) in (28), we obtain:

E =
1

2
ε :

〈
I : C1 : I

〉
: ε+ ε :

〈
I : C1 : I⊗ x

〉 ... ∇ε

+
1

2
∇ε

...
〈
x⊗ I : C1 : I⊗ x

〉 ... ∇ε. (29)

Considering energy equivalence between micro and macro scales (Hill-Mandel
lemma’s extension [30,4]), and comparing (29) with (19) we deduce that for a
homogeneous RVE, M and G reduce to:

M ijklm = C1
ijkl ⟨xm⟩ , Gijklmp = C1

jklm ⟨xixp⟩ (30)

which are expected to be zero in the present situation. However, M can only
be zero if the RVE is of centrosymmetric shape and if the origin of the local

1 It should be observed, that for the body force free scheme, which corresponds to
C0(x) = 0 in (11), the expression of A1(x) is not correct.
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frame is located at the center of the RVE. For its part, G, is always different
from zero. In both cases, the values of M and G depend on the choice of the
origin related to the frame of the RVE, which is not satisfying. In conclusion,
the localization tensors as defined by the relation (23) are not appropriate to
remove spurious strain-gradient effects in the case of homogeneous RVEs. To
correct this, and following the analysis developed in [46], we propose to use
the modified relation:

ε(x) = A0(x) : ε+ Ã1(x)
... ∇ε (31)

in which

Ã1(x) = A1(x)− A0(x)⊗ x. (32)

The modified definition for Ã1 amounts to remove from A1 the influence of
linear part of the elastic field. By doing so, the second term of (31) only con-
tains purely strain-gradient contribution. Using the same procedure as above,
we recover the stress as:

σ(x) = C1(x) :
(
A0(x) : ε+ Ã1(x)

... ∇ε
)
. (33)

Introducing (31) and (33) in (28), we obtain:

E =
1

2
ε :

〈(
A0(x)

)T
: C(x) : A0(x)

〉
: ε

+ε :
〈(

A0(x)
)T

: C(x) : Ã1(x)
〉

... ∇ε

+
1

2
∇ε

...
〈(

Ã1(x)
)T

: C(x) : Ã1(x)
〉

... ∇ε. (34)

Considering energy equivalence between micro and macro scales, and com-
paring (34) with (19) the following expressions for the effective tensors are
obtained as:

C =
〈(

A0(x)
)T

: C(x) : A0(x)
〉
, (35)

M =
〈(

A0(x)
)T

: C(x) : Ã1(x)
〉
, (36)

G =
〈(

Ã1(x)
)T

: C(x) : Ã1(x)
〉
. (37)
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Using these new definitions for the effective tensors, it can easily be verified
that, for a homogeneous RVE, the following results are verified:

M = O, G = O. (38)

It is worth noting that the present model is consistent with the results ob-
tained by asymptotic expansion techniques [60], where the same expressions
for the effective higher-order tensors (36), (37) are obtained, and where the
localization tensors A0(x) and A1(x) are also solutions of an equilibrium prob-
lem with body forces involving the effective elastic tensor C.

The local equilibrium in the case C0(x) = C has been obtained by Boutin [14]
and also considered in Tran et al. [60] and Monchiet et al. [46]. Note that the
introduction of the body force in the asymptotic homogenization approach is
required to comply with the anti-periodicity of the traction on two opposite
sides of the unit cell.

The definition (32) for the correction term to the fundamental elastic solution
has been recently derived in Monchiet et al. [46]. In this paper, a connec-
tion has been established between higher order homogenization approaches
based on asymptotic expansions and Quadratic Boundary Condition on the
boundary. The principle of the approach consists in replacing the periodicity
condition by the condition u = 0 on the boundary for the fluctuation at any
order of the expansion series. By doing so, it has been found that the first
higher order term of the strain is given by:

ε̃1 = ε1 − ∂ε0

∂xk
yk (39)

where ε1 is the local strain in the RVE with prescribed macroscopic gradient
of strain and ε0 is the local strain due to prescribed macroscopic strain. It
must be emphasis that, by computing the difference between ε1 and ∂ε0

∂xk
yk,

we eliminate the fundamental elastic response and we only keep the flexural

effects. Replacing ε1 by A1(x)
... ∇ε and ε0 by A0(x)

... ε one recovers Eq. (32).

5 Macroscopic strain-gradient problem and C1 Finite Element dis-
cretization

In this section, we define the elastostatic problem associated with the ho-
mogeneous anisotropic Mindlin strain-gradient elasticity model together with
its Finite Element discretization. These results will be used in section 6 for
comparing fully-meshed computations with their strain-gradient homogenized
counterparts.
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5.1 From strong to weak form

Let Ω ⊂ R2 a domain associated with the homogeneous strain-gradient medium
and ∂Ω its boundary (see Fig. 1 (c)), the momentum balance for the strain-
gradient medium is given by (see e.g. [44,28]):

∇ · σ −∇ ·
(
∇ · S

)
= 0 in Ω, (40)

with boundary conditions:

u = u∗ on ∂Ωu, (41)

σ · n−
(
∇ · S

)
· n+∇S ·

(
S · n

)
= F

∗
on ∂ΩF , (42)

S : (n⊗ n) = 0 on ∂Ω, (43)

!S : (n1 ⊗ n2)" = 0 on ∂∂Ω, (44)

(see e.g. [40] for a justification), and where u∗ and F
∗
denote prescribed dis-

placements and tractions, respectively, ∂Ωu and ∂ΩF are the Dirichlet and
Neumann parts of the boundary ∂Ω, and ∇S· indicates the surface divergence
operator. As we assume no prescribed hyperstress over the structure, there is
nor additional condition involving a jump in the normal along the surface (44)
neither condition depending on the curvature of ∂Ω (42) .

The weak form associated with problem (40) is given by:

∫

Ω
σ : ε(δu) + S ... ∇ε(δu)dΩ =

∫

∂ΩF

F
∗ · δudΓ. (45)

Using (21) and (22) we obtain:

∫

Ω

(
C : ε(u) +M ... ∇ε(u)

)
: ε(δu)dΩ

+
∫

Ω

(
MT

: ε(u) +G ... ∇ε
)

... ∇ε(δu)dΩ =
∫

∂ΩF

F
∗ · δudΓ. (46)

5.2 FEM Discretization of the strain-gradient problem

In the following, we present the developments associated with the Finite El-
ement discretization of the above problem. For the sake of simplicity, the de-
velopments are restricted to 2D. A mesh of triangular elements is constructed
over the domain Ω, containing Ne elements. It is worth noting that Eq. (40)
is a fourth-order system of partial differential equations with respect to u,
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which require C1 continuity for the components of the displacement field. In
the present work, we have adopted C1 triangular Argyris elements [20] with
21 degrees of freedom per element for discretizing the displacements.

The 2D vector form associated with the components of ∇ε and of the hyper-
stress tensor S can be written as 2 :

[∇ε] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇ε111

∇ε221

2∇ε122

∇ε222

∇ε112

2∇ε121

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2u1
∂x2

1

∂2u2
∂x1∂x2

∂2u1
∂x2

2
+ ∂2u2

∂x1∂x2

∂2u2
∂x2

2

∂2u1
∂x1∂x2

∂2u1
∂x1∂x2

+ ∂2u2
∂x2

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, [S] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S111

S221

S122

S222

S112

S121

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (47)

In matrix form, the constitutive equations (21) and (22) are given by:

[σ] = C[ε] +M[∇ε], (48)

[
S
]
= M

T
[ε] +G[∇ε]. (49)

with

C =

⎡

⎢⎢⎢⎢⎢⎣

C1111 C1122 C1112

C1122 C2222 C2212

C1112 C2212 C1212

⎤

⎥⎥⎥⎥⎥⎦
, (50)

M =

⎡

⎢⎢⎢⎢⎢⎣

M11111 M11221 M11122 M11222 M11112 M11121

M22111 M22221 M22122 M22222 M22112 M22121

M12111 M12221 M12122 M12222 M12112 M12121

⎤

⎥⎥⎥⎥⎥⎦
, (51)

2 The notations retained here are different from the ones used in the references
[2,4], hence some cautions are needed when using the results coming from theses
papers.
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and

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G111111 G111221 G111122 G111222 G111112 G111121

G221221 G221122 G221222 G221112 G221121

G122122 G122222 G122112 G122121

G222222 G222112 G222121

Sym. G112112 G112121

G121121

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (52)

where we have taken into account the index symmetries of these tensors as
defined by the relation (20).

The vectors [ε] and [δε] are related to nodal displacements and test functions
in the element e through:

[ε] = Bue, [δε] = Bδue, (53)

where

B =
[
D(1); D(2); ... ;D(n)

]
, with D(I) =

⎡

⎢⎢⎢⎢⎢⎣

∂NI(X)
∂X1

0

0 ∂NI(X)
∂X2

∂NI(X)
∂X2

∂NI(x)
∂X1

⎤

⎥⎥⎥⎥⎥⎦
(54)

where n denotes the number of nodes of the element. Then the associated
vectors

[
∇ε(u)

]
and

[
∇ε(δu)

]
are related to displacement and test functions

through:

[
∇ε(u)

]
= B̃ue,

[
∇ε(δu)

]
= B̃δue, (55)

where

B̃ =
[
D̃(1); D̃(2); ... ; D̃(n)

]
, ,with D̃(I) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2NI(x)
∂x2

1
0

0 ∂2NI(x)
∂x1∂x2

∂2NI(x)
∂x2

2

∂2NI(x)
∂x1∂x2

0 ∂2NI(x)
∂x2

2

∂2NI(x)
∂x1∂x2

0

∂2NI(x)
∂x1∂x2

∂2NI(x)
∂x2

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (56)
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Introducing the above discretization in (46) we obtain

∫

Ω
(δue)T BTCBuedΩ+

∫

Ω
(δue)T BTMB̃uedΩ

+
∫

Ω
(δue)T B̃TM

T
BuedΩ+

∫

Ω
(δue)T B̃TGB̃uedΩ

=
∫

∂ΩF

(δue)T NTF
∗
dΓ, (57)

where NT is the matrix of shape functions such that u(x) = N(x)ue. Using
the arbitrariness of the trial function δue it yields the linear system:

Ku = F (58)

with

K =
∫

Ω
BTCB+BTMB̃+ B̃TM

T
B+ B̃TGB̃ dΩ, (59)

and

F =
∫

∂ΩF

NTF
∗
dΓ. (60)

5.3 Numerical evaluation of the effective tensors

The discrete form associated with (31) is given by:

[ε(x)] = A0(x) [ε] +
(
A1(x)−A0

x(x)
) [

∇ε
]

(61)

with

A0(x) = B(x)U, A1(x) = B(x)W, A0
x(x) = B(x)Wx(x), (62)

where B(x) is the matrix of shape functions derivatives in one element of the
RVE and U, W and Wx(x) are defined as:

U =
[
u1;u2;u3

]
, W =

[
u4;u5;u6;u7;u8;u9

]
,

Wx(x) =
[
xu1; yu1; xu2; yu2; xu3; yu3

]
. (63)

The displacement fields ui are the vector columns containing the nodal dis-
placement solution of the problems (11)-(13) formulated with the BC con-
tained in Table 2:
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Name (ε11, ε22, ε12) (∇ε111,∇ε221∇ε122,∇ε222,∇ε112,∇ε121)

u1 (1, 0, 0) (0, 0, 0, 0, 0, 0)

u2 (0, 1, 0) (0, 0, 0, 0, 0, 0)

u3 (0, 0, 1/2) (0, 0, 0, 0, 0, 0)

u4 (0, 0, 0) (1, 0, 0, 0, 0, 0)

u5 (0, 0, 0) (0, 1, 0, 0, 0, 0)

u6 (0, 0, 0) (0, 0, 1, 0, 0, 0)

u7 (0, 0, 0) (0, 0, 0, 1, 0, 0)

u8 (0, 0, 0) (0, 0, 0, 0, 1, 0)

u9 (0, 0, 0) (0, 0, 0, 0, 0, 1)

Table 2
Sets of elementary solution and corresponding activated strain and strain gradient
components.

Introducing (61) in (35), (36) and (37), we obtain:

C =
〈
UTBT (x)C(x)B(x)U

〉
, (64)

M =
〈
UTBT (x)C(x)B(x) [W −Wx]

〉
, (65)

G =
〈
[W −Wx]

T BT (x)C(x)B(x) [W −Wx]
〉
. (66)

6 Numerical examples

In the following examples, the different RVEs presented in Fig. 2 will be inves-
tigated. In what follows, the different phases are supposed filled by an isotropic
elastic material, and we denote by (Em, νm) and (Ei, νi) the Young’s moduli
and the Poisson’s ratios of the matrix and inclusions, respectively.

The RVE with the circular inclusion (see Fig. 2 (b)) is tetragonal (D4-invariance,
c.f. Tab.4.1) and hence centrosymmetric. As a consequence the overall cou-
pling tensor M should be null. The other RVEs are non centrosymmetric, and
hence exhibit non trivial M tensor. The RVE with triangular inclusions (see
Fig. 2 (b)) has Zπ

2 invariance 3 . The RVE of Fig 2 (c) has no symmetry. Finally,

3 The overall symmetry is the intersection of the symmetry group of the inclusion
and the one of the matrix, since the first one is D3-invariant while the other is D4-
invariant, only the mirror line of symmetry lies in their intersection, hence resulting

19



A B

C

D

E

0

C

(a)

A

B

(b)

(c)
(d)

0 0

0

R

A

B

C

DI

H

G F

E

Fig. 2. (a) RVE with circular inclusions; (b) RVE with triangular inclusions; (c)
Asymetric RVE; (d) arrow-shaped RVE.

the RVE of Fig. 2 (d), which is also Zπ
2 , is expected to produce large values

for the coupling tensor M. The arrow-shape is such that under uniaxial strain
along the x-direction the two upper bars are stretched and create a vertical
displacement of the vertical bar to the bottom leading to strain-gradient in
the y-direction. The geometric description of the different RVEs is provided
below.

RVE with circular inclusions (a) the radius is chosen such as to satisfy a

volume fraction f according to R = ℓ
√

f
π ;

RVE with triangular inclusions (b) the cell parameters are

A = {−0.4ℓ; 0.4ℓ} , B = {−0.4ℓ;−0.4ℓ} , C = {0.4ℓ; 0} ;

RVE with asymmetric inclusions (c) the cell parameters are

A = {−0.4ℓ; 0.4ℓ} , B = {0.4ℓ; 0.4ℓ} , C = {0.4ℓ; 0} , D = {0; 0} , E = {−0.4ℓ;−0.4ℓ} ;

RVE with arrow-shaped inclusions (d) the cell parameters are

A = {−0.5ℓ; 0.15ℓ} , B = {0.5ℓ; 0.42ℓ} , C = {0.5ℓ; 0.15ℓ} ,

in a Zπ
2 -invariance.
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D = {0.5ℓ;−0.05ℓ} , E = {0.1ℓ; 0.15ℓ} , F = {0.1ℓ;−0.3ℓ} , G = {−0.1ℓ;−0.3ℓ} ,

H = {−0.1ℓ; 0.15ℓ} , I = {−0.5ℓ;−0.05ℓ} .

Unless otherwise specified, the length of the RVE is chosen as ℓ = 1 mm.

The proposed numerical homogenization scheme will now be validated in dif-
ferent situations. Firstly, its results will be compared to those obtained using
asymptotic analysis. Secondly, the shape of the effective tensors will be an-
alyzed for different anisotropic RVEs, and finally the scaling of the effective
parameters will be studied. For all of these studies, the homogenization scheme
(11)-(13) will be applied considering the Effective Body Force Correction for
which C0 = C, and the RVE will consist in a cluster of 4× 4 unit cells.

6.1 Comparison with asymptotic solution

We first validate the present model by comparing it with the solution obtained
from asymptotic expansion analysis as obtained in [60]. In the mentioned work,
results obtained by asymptotic analysis have been computed on periodic mi-
crostructures using Fast Fourier Transform. For this comparison, we consider
the RVE with circular inclusions (see Fig. 2 (a)) and a volume fraction vary-
ing as a function of the ratio between the radius of the inclusions R and the
length of the unit cell ℓ. In this study, the material parameters are Em = 1,
νm = 0.45 for the matrix and Ei = 10, νi = 0.3 for the inclusion. It is worth
noting that here the elastic parameters are different than in [60]. Then, the
reference solution presented in Fig. 3 and referred to as Asymptotic analysis
has been re-computed using the FFT procedure described in [60] but with
the above elastic parameters for direct comparison. Results provided in Fig. 3
show a good agreement between both models. It is worth noting that results
obtained from the asymptotic analysis correspond to periodic cells, and thus
to converged values of the effective coefficients with respect to the number of
unit cells.

6.2 Symmetry classes

In this study, we show that the matrix formsM andG computed for anisotropic
RVEs with the present scheme are in agreement with the theoretically matrix
shapes predicted in [4]. We first consider the RVE of Fig. 2 (a) with circular
inclusions and f = 0.3. The elastic properties of the matrix are Em = 1 MPa
and νm = 0.3, the elastic properties of the inclusions are Ei = 102 MPa and
νi = 0.3. Since the RVE is tetragonal (its symmetry class is D4) it is expected
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Fig. 3. Comparison between the present model and effective moduli obtained from
asymptotic analysis and FFT method [60].

[4] that M = 0 and

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G111111 G111221 G111122 0 0 0

G221221 G221122 0 0 0

G122122 0 0 0

G111111 G111221 G111122

Sym. G221221 G221122

G122122

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N). (67)

The numerical values (not reported here) of components of M are found to be
of the order of 10−5 which are negligible as compared to the values found in
the next cases (see (73), (C.2) and (C.5)). The numerical values of C and G
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are given by:

C =

⎡

⎢⎢⎢⎢⎢⎣

2.221 0.804 0.000

0.804 2.221 0.000

0.000 0.000 0.601

⎤

⎥⎥⎥⎥⎥⎦
(MPa), (68)

and

G = 10−2 ×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.779 −0.627 0.163 0.000 0.000 0.000

−0.627 0.535 −0.023 0.000 0.000 0.000

0.163 −0.023 0.949 0.000 0.000 0.000

0.000 0.000 0.000 1.779 −0.627 0.163

0.000 0.000 0.000 −0.627 0.535 −0.023

0.000 0.000 0.000 0.163 −0.023 0.949

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N).(69)

It can further be checked that both matrix are positive definite, hence ensuring
the same property for the overall elastic energy. Comparing (69) and (67),
it can be verified that the homogenized matrices comply with the expected
symmetries. For another example, we consider the RVE of Fig. 2 (b) containing
triangular inclusions. For illustration, the elementary local strain states are
depicted in Fig. 4. For such RVE (Zπ

2 -symmetry), M is given by [4]:

M =

⎡

⎢⎢⎢⎢⎢⎣

M11111 M11221 M11122 0 0 0

M22111 M22221 M22122 0 0 0

0 0 0 M12222 M12112 M12121

⎤

⎥⎥⎥⎥⎥⎦
(N/mm), (70)

and G, which is orthotropic in this situation (D2-invariance) is given by

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G111111 G111221 G111122 0 0 0

G221221 G221122 0 0 0

G122122 0 0 0

G222222 G222112 G222121

Sym. G112112 G112121

G121121

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N). (71)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. ε11(x) strain field in deformed (×0.2) configurations for RVE with triangular
inclusions: (a) [ε] = [1; 0; 0], ∇ε = 0; (b) [ε] = [0; 1; 0], ∇ε = 0, (c) [ε] = [0; 0; 1/2],
∇ε = 0, (d) [ε] = 0, ∇ε = [1; 0; 0; 0; 0; 0]; (e) [ε] = 0, ∇ε = [0; 1; 0; 0; 0; 0];
(f) [ε] = 0, ∇ε = [0; 0; 1; 0; 0; 0], (g) [ε] = 0, ∇ε = [0; 0; 0; 1; 0; 0], (h) [ε] = 0,
∇ε = [0; 0; 0; 0; 1; 0], (i) [ε] = 0, ∇ε = [0; 0; 0; 0; 0; 1] .

We obtain, using the same elastic parameters as in the previous example:

C =

⎡

⎢⎢⎢⎢⎢⎣

2.822 0.784 0.000

0.784 2.586 0.000

0.000 0.000 0.748

⎤

⎥⎥⎥⎥⎥⎦
(MPa), (72)

M = 10−2×

⎡

⎢⎢⎢⎢⎢⎣

−8.432 0.641 −1.119 0.000 0.002 0.000

−0.893 −0.220 −0.414 0.000 0.000 0.000

0.000 0.000 0.001 0.370 −1.988 0.217

⎤

⎥⎥⎥⎥⎥⎦
(N/mm),(73)
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and

G = 10−3 ×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.124 −0.876 0.656 0.000 0.000 0.000

−0.876 0.672 −0.065 −0.001 0.000 0.000

0.656 −0.065 1.160 0.000 0.000 0.000

0.000 −0.001 0.000 2.883 −1.071 −0.160

0.000 0.000 0.000 −1.071 1.553 −0.083

0.000 0.000 0.000 −0.160 −0.083 1.501

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N).(74)

Here again, by comparing (73) and (70), and (74) and (71), it can be concluded
that M and G possess the expected invariance properties. Finally, the RVE
of Figs. 2 (c) (anisotropic RVE) and 2 (d) (arrow-shaped) have been analysed
and, for the sake of conciseness, their numerical values postponed to Appendix
C.

6.3 Size effects

Asymptotic analysis predicts that the values of M and G vary according to
ϵ and ϵ2 [14]. In this example, we show that this predicted size-effects are
accurately captured by the proposed model. To that aim, we consider the
RVE of Fig. 2 (b) with triangular inclusions and we use the same elastic
parameters as in the previous subsection. Here again, the RVE is composed of
4× 4 unit cells. The dimensions of the RVE are varied according to ϵ = ℓ/ℓ0,
where ℓ0 = 1 mm and ℓ is the length of the RVE. It appears clearly from figure
5 that M and G vary according to ϵ and ϵ2, respectively, as it should.

6.4 Comparison with other schemes

In this last subsection, the homogenization scheme involving Pointwise Body
Force Correction is compared with schemes involving other kind of body forces:

Null body force (Standard QBC): C0(x) = O.
Pointwise body force correction: C0(x) = C(x).

More specifically, different choices for C0 in Eq. (9) are compared together
with their respective influence on the obtained values of M and G.

For this study, a RVE made of several periodic N ×N unit cells with circular
inclusions is considered (see Fig. 2 (a)), the elastic properties of the matrix
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Fig. 5. Size-dependent effective strain-gradient properties for the RVE with trian-
gular inclusions.

are Em = 1 Mpa and ν = 0.3. In a first case, we chose the properties of the
inclusions as Ei = 103 MPa, νi = 0.3. the retained volume fraction is f = 0.3.

First, the effective properties are computed as a function of the number of
unit cells N while keeping the length of the unit cell to ℓ in order to maintain
the internal length R/ℓ constant. The effective values of G111111 are compared
in Figs. 6 (a)-(c).

It can be observed from Figs. 6 (a-b) that using C0 = 0 and C0 = C(x)
lead to divergent values of G111111 with respect to N . These effects have also
been observed in other studies, such as in [10] in the context of approaches
combining asymptotic analysis and finite element calculations. In contrast, the
choice C0 = C leads to convergent values of the effective component.

Secondly, we compare the different choices of C0 for a variation of phase con-
trast of properties between the inclusion and the matrix. We still consider
the RVE containing circular inclusions with a volume fraction f = 0.3 . This
time a 1 × 1 unit cell is considered in order to avoid the above-mentioned
divergence problems with respect to N . Results are presented in Figs. 7-8. It
can be noted from Fig. 7 (a) that the solution corresponding to C0 = 0 does
not lead to a vanishing the sixth-order tensor G when the material is homo-
geneous (Ei/Em = νi/νm = 1). On the contrary, as illustrated by Fig. 6 (b),
the choice of C0(x) = C(x) implies a null effective sixth-order tensor G for
homogeneous medium but leads to divergent higher-order properties for hard
inclusions. Results corresponding to the case in which C0 = C (Fig. 6 (c)) lead
to zero effective sixth-order tensor G in the same situation. However, it can be
observed that for soft inclusions, the effective higher-order properties diverge.
It is important to mention that this solution corresponds to the asymptotic
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Fig. 6. RVE with stiff circular inclusions (Ei/Em = 103), convergence of the values
of G111111 for: (a): C0 = C(x); (b) C0 = 0; (c) C0 = C.
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Fig. 8. Values of G111111 versus contrast of phase properties Ei/Em, C0 = C(x).
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Fig. 9. Values of G111111 versus contrast of phase properties Ei/Em, C0 = C.

solution obtained by Tran et al. [60]. However, the case of soft inclusions was
so far not discussed and this issue not reported.
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The conclusions of this numerical analysis are as follows:

(1) Using the present corrected scheme with body forces involving C0(x) = C
leads to convergent values of the higher-order properties with respect to
the size of the RVE (number of unit cells) while other solutions (no body
forces or C0(x) = C(x)) lead to properties which diverge with respect to
the size of the RVE.

(2) Using quadratic boundary conditions without body forces leads to non-
zero higher-order effective properties for homogeneous media and to an
effective strain-gradient medium even if the material is made of one phase
with local Cauchy behavior which is contradictory;

(3) The solutions with C0(x) = C and C0(x) = C(x) both satisfy vanish-
ing higher-order effective properties for homogeneous RVE but lead to
divergent properties for soft and hard inclusions, respectively. Regard-
ing the present scheme (C0 = C), this constitutes an issue shared with
asymptotic expansion solutions [60].

6.5 Structure calculations

In this last subsection, the approach is applied to structure calculations and
we study how the strain-gradient homogenized model is able to capture the
higher-order effects induced by the coarseness of the internal architecture.
The result of such a study allows to decide whether it is necessary, or not, to
include higher-order descriptors in the continuous description of a heteroge-
neous continuum. It is expected from asymptotic analysis that strain-gradient
effects should have a greater importance as soon as non centro-symmetric
microstructure are concerned.

x

y

0 L

H

Fig. 10. Heterogeneous structure: geometry and boundary conditions.

To investigate this point, the structure described on Fig. 10 is considered.
To obtain a strong coupling effect, the unit cell can be either the complete
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anisotropic one (Fig. 2 (c)) or the arrow-shaped one (Fig. 2 (d)). The length
of the structure is L = 5ℓ0 and H = 2ℓ0. We first consider the situation in
which the structure is made out of the full anisotropic unit cell. On the one
hand, we perform a complete structure calculation in which all phases are
meshed, and on the other hand, a computation on the same structure filled
out with the strain gradient effective material as determined by the current
approach. The complete structure calculation is made using a standard FEM
formulation, while the effective computation involves the specific numerical
scheme described in section 5.2.

Firstly, we consider the anisotropic RVE of Fig. 2 (c). The material properties
of the different phases are provided in Appendix C together with the tensors
describing the effective properties ((C.1)-(C.4)).

Concerning the boundary conditions, on the left boundary (x = 0) displace-
ment are blocked, i.e. ux = uy = 0, while on the right boundary (x = L) the
longitudinal displacement is prescribed ux = 2.5× 10−2 mm (uy is left free).

The results of the different simulations are depicted on Figs. 11. The subfig-
ures (a)-(b) represent the deformed configuration (exaggerated 50 times) of
the structure for the reference and the homogeneous model. It can be observed
that the deformed configuration is qualitatively well reproduced by the homo-
geneous model. However, in Fig. 11 (c) we plot the solution of the homogenized
model when we remove the strain-gradient effects (effective Cauchy medium).
It can be observed that there is no significant difference in the deformation
mode between the strain-gradient model and the Cauchy medium. In this
case the effect of the classical anisotropy elasticity is dominant as compared
to strain-gradient effects 4 .

4 Such a conclusion is restricted to a static analysis. For elastodynamics this van-
ishingly low correction can produce wave propagation that strongly differs from the
one described using Cauchy equivalent continuum [53].
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(a) (b)

(c)

Fig. 11. (a) Reference solution; (b) present homogeneous strain-gradient model; (c)
Cauchy medium (ε22 strain field); displacements exaggerated 50 times.

Secondly, we consider that the structure is generated from the unit cell de-
picted in Fig. 2 (d). The material properties of the different phases are pro-
vided in Appendix C. Here, concerning the boundary conditions, on the left
boundary (x = 0) displacement is blocked i.e. ux = uy = 0, , while on the right
boundary (x = L) the longitudinal displacement is prescribed ux = 2.5×10−2

mm and the transverse one blocked, uy = 0.

Comparisons between the reference model (direct numerical simulation), the
present homogenized model and the effective Cauchy medium are reported on
Fig. 12.
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(a) (b)

(c)

Fig. 12. (a) Reference solution; (b) present homogeneous strain-gradient model;
(c) Cauchy medium (ε22 strain field); displacements exaggerated 50 times in the
x-direction and 100 times in the y−direction to better appreciate the bending of
the structure.

Even if the effects are extremely small, it can be observed in Figs. 12 (a)
and (b) the bending of the structure under the action of the strain in the y−
direction due to the strain-gradient effects. It can be concluded from Fig. 12
(b) that the strain-gradient model is able to reproduce the global bending of
the structure associated with strain in the y−axis, while the Cauchy model is
not (see Fig. 12 (c)).

7 Conclusion

In this work, we have proposed a computational homogenization framework
to model anisotropic strain-gradient effects in elastic structures. The contri-
butions of this work are as follows: (a) we have introduced corrections in the
homogenization scheme to ensure that the strain-gradient effects vanish when
the material is homogeneous with a local Cauchy behavior, which is usually
not the case in the approaches reported in the literature and to avoid diver-
gence of higher-order properties with respect to the size of the RVE, which is
found when using classical quadratic boundary conditions; (b) we have vali-
dated the present scheme with respect to asymptotic expansion solutions and
available results on higher-order tensors symmetries for different classes of
anisotropy; (c) we have provided a C1 Finite Element Framework to solve the
strain-gradient macroscopic model and have compared some direct numerical
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simulations with the homogenized model to show its validity. Finally, we have
pointed out that the present framework is valid for stiff inclusions but that
for soft inclusions the effective higher-order properties diverge with respect to
the contrast of properties. This issue remains open and shall be the topic of
future extensions.

Concerning the importance of strain gradient effects in the overall description,
and hence the necessity to incorporate them, or not, in an effective model, the
study reveals that (a) in statics , (b) for the microstructures considered in
the present paper, the correction remains small. The correction due to the
introduction of the sixth-order tensor does not seem to be of much influence,
and strain-gradient effects become perceptible only for non centro-symmetric
structure for which the fifth-order elasticity tensor plays a role. Nevertheless
as shown by the different computations its presence seem to be necessary but
not sufficient and a specific micro-structure such as the arrow-shaped one is
necessary to maximize its contribution. Then, definition of discriminant bench-
mark tests for numerical validation of the effective sixth-order tensor remains
to be addressed. To enhance gradient effects in statics its seems necessary to
(a) decrease the influence of the standard elasticity and to tend toward a de-
generated first order elasticity such as in the pantographic structure [57,18,1],
(b) increase the contrast between phases. However, it is important to note
that theses comments are restricted to elastostatic. Indeed, as evidenced for
instance in [53,54], when it comes to dynamics and wave propagation strain
gradient contributions which have vanishingly low effects in statics can be of
great importance.

A Appendix: Relationship between second gradient of displace-
ments and strain-gradient tensors

The relationship between G and ∇ε is provided as follows:

Gijk =
∂2ui

∂xj∂xk

=
1

2

(
∂2ui

∂xj∂xk
+

∂2ui

∂xj∂xk
+

∂2uj

∂xi∂xk
− ∂2uj

∂xi∂xk
+

∂2uk

∂xi∂xj
− ∂2uk

∂xi∂xj

)

=
1

2

(
∂2ui

∂xj∂xk
+

∂2uj

∂xi∂xk
+

∂2ui

∂xk∂xj
+

∂2uk

∂xi∂xj
− ∂2uj

∂xk∂xi
− ∂2uk

∂xj∂xi

)

=
1

2

(
∂2ui

∂xj∂xk
+

∂2uj

∂xi∂xk

)

+
1

2

(
∂2ui

∂xk∂xj
+

∂2uk

∂xi∂xj

)

− 1

2

(
∂2uj

∂xk∂xi
− ∂2uk

∂xj∂xi

)
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= ∇εijk +∇εikj −∇εjki. (A.1)

B Appendix: Quadratic boundary conditions

We can show that the displacement field compatible with a linear strain field
in the form

εij(x) = ∇εijkxk (B.1)

is given by:

ui =
1

2
Gijkxjxk, (B.2)

as shown below. Starting from

εij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)

(B.3)

and using (A.1), we have:

∂ui

∂xj
=

1

2
Gipq (δpjxq + xpδqj) =

1

2

(
Gijqxq + Gipjxp

)
(B.4)

∂uj

∂xi
=

1

2
Gjpq (δpixq + xpδqi) =

1

2

(
Gjiqxq + Gjpixp

)
. (B.5)

Note that from (3) Gijp ̸= Gjip but Gijp = Gipj. Then:

εij =
1

2

(
Gijpxp + Gjpixp

)
. (B.6)

Using (A.1) and ∇εijp = ∇εjip

εij =
1

2

(
∇εijp +∇εipj −∇εjpi +∇εjip +∇εjpi −∇εipj

)
xp = ∇εijpxp.(B.7)

On the contrary, the choice

ui =
1

2
∇εijkxjxk (B.8)

does not lead to the strain field (B.1), as shown in the following:

∂ui

∂xp
=

1

2
∇εijk (δjpxk + xjδkp) =

1

2

(
∇εipkxk +∇εijpxj

)
, (B.9)

34



∂up

∂xi
=

1

2
∇εpjk (δjixk + xjδki) =

1

2

(
∇εpikxk +∇εpjixj

)
(B.10)

and

εip =
1

2

(
∂ui

∂xp
+

∂up

∂xi

)

(B.11)

=
1

4

(
∇εipkxk +∇εijpxj +∇εpikxk +∇εpjixj

)
(B.12)

=
1

2

(
∇εipkxk

)
+

1

4

(
∇εijpxj +∇εjpixj

)
̸= ∇εipkxk. (B.13)

C Appendix: numerical values of specific RVEs

The numerical values for the RVE of Figs. 2 (c) and 2 (d) are reported. For
each case, a 4 × 4 unit cells RVE has been used. For the anisotropic RVE of
Fig. 2 (c), the elastic properties of the matrix are Em = 1 MPa and νm = 0.3,
the elastic properties of the inclusions are Ei = 102 MPa and νi = 0.3. For
such RVE, there is no symmetry and the matrices M and G are expected to
be fully populated with independent constants. For this case, the values are
provided below.

C =

⎡

⎢⎢⎢⎢⎢⎣

4.112 0.868 0.213

0.868 2.956 0.106

0.213 0.106 0.902

⎤

⎥⎥⎥⎥⎥⎦
(MPa), (C.1)

M = 10−2×

⎡

⎢⎢⎢⎢⎢⎣

−4.416 0.323 −0.393 2.105 −0.851 0.121

0.135 0.294 0.503 5.539 0.806 0.701

−0.629 2.576 0.296 0.792 −1.139 0.594

⎤

⎥⎥⎥⎥⎥⎦
(N/mm),(C.2)
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and

G = 10−2 ×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.021 −0.100 0.071 0.087 0.102 0.038

−0.100 0.204 0.000 0.076 −0.105 0.130

0.071 0.000 0.174 0.029 0.104 0.002

0.087 0.076 0.029 0.347 −0.035 0.033

0.102 −0.105 0.104 −0.035 0.197 −0.038

0.038 0.130 0.002 0.033 −0.038 0.311

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N). (C.3)

For the RVE of Fig. 2 (d) (arrow-shape), the elastic properties of the matrix
are Em = 1 MPa and νm = 0.4, the elastic properties of the inclusions are
Ei = 103 MPa and νi = 0.3. The values are provided below.

C = 10×

⎡

⎢⎢⎢⎢⎢⎣

9.823 0.157 0.000

0.157 0.718 0.000

0.000 0.000 0.154

⎤

⎥⎥⎥⎥⎥⎦
(MPa), (C.4)

M = 10−1×

⎡

⎢⎢⎢⎢⎢⎣

0.070 0.000 0.000 0.332 0.324 −2.570

0.000 0.000 0.000 −0.324 −2.102 0.257

−0.754 −0.128 0.016 0.000 −0.001 −0.001

⎤

⎥⎥⎥⎥⎥⎦
(N/mm),(C.5)

and

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.353 −0.076 0.086 0.000 0.000 0.000

−0.076 0.002 0.000 0.000 0.000 0.000

0.086 0.001 0.008 0.000 0.000 0.000

0.000 0.000 0.000 0.119 −0.006 −0.003

0.001 0.000 0.000 −0.006 0.078 −0.041

0.000 0.000 0.000 −0.003 −0.041 0.055

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N). (C.6)
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