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Abstract

The complex transverse water proton magnetization subject to diffusion-encoding magnetic field
gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch-
Torrey partial differential equation. Under the assumption of negligible water exchange between
compartments, the time-dependent apparent diffusion coefficient can be directly computed from
the solution of a diffusion equation subject to a time-dependent Neumann boundary condition.

This paper describes a publicly available MATLAB toolbox called SpinDoctor that can be used 1)
to solve the Bloch-Torrey partial differential equation in order to simulate the diffusion magnetic
resonance imaging signal; 2) to solve a diffusion partial differential equation to obtain directly the
apparent diffusion coefficient; 3) to compare the simulated apparent diffusion coefficient with a
short-time approximation formula.

The partial differential equations are solved by P1 finite elements combined with built-in MATLAB
routines for solving ordinary differential equations. The finite element mesh generation is performed
using an external package called Tetgen.

SpinDoctor provides built-in options of including 1) spherical cells with a nucleus; 2) cylindrical
cells with a myelin layer; 3) an extra-cellular space enclosed either a) in a box or b) in a tight
wrapping around the cells; 4) deformation of canonical cells by bending and twisting; 5) permeable
membranes; Built-in diffusion-encoding pulse sequences include the Pulsed Gradient Spin Echo and
the Oscillating Gradient Spin Echo.

We describe in detail how to use the SpinDoctor toolbox. We validate SpinDoctor simulations
using reference signals computed by the Matrix Formalism method. We compare the accuracy and
computational time of SpinDoctor simulations with Monte-Carlo simulations and show significant
speed-up of SpinDoctor over Monte-Carlo simulations in complex geometries. We also illustrate
several extensions of SpinDoctor functionalities, including the incorporation of T2 relaxation, the
simulation of non-standard diffusion-encoding sequences, as well as the use of externally generated
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geometrical meshes.

Keywords: Bloch-Torrey equation, diffusion magnetic resonance imaging, finite elements,
simulation, apparent diffusion coefficient.

1. Introduction1

Diffusion magnetic resonance imaging is an imaging modality that can be used to probe the tissue2

micro-structure by encoding the incohorent motion of water molecules with magnetic field gradient3

pulses. This motion during the diffusion-encoding time causes a signal attenuation from which the4

apparent diffusion coefficient , (and possibly higher order diffusion terms, can be calculated [1–3].5

For unrestricted diffusion, the root of the mean squared displacement of molecules is given by6

x̄ =
√

2 dimσ0t, where dim is the spatial dimension, σ0 is the intrinsic diffusion coefficient, and t is7

the diffusion time. In biological tissue, the diffusion is usually hindered or restricted (for example,8

by cell membranes) and the mean square displacement is smaller than in the case of unrestricted9

diffusion. This deviation from unrestricted diffusion can be used to infer information about the10

tissue micro-structure. The experimental parameters that can be varied include11

1. the diffusion time (one can choose the parameters of the diffusion-encoding sequence, such as12

Pulsed Gradient Spin Echo [2] and Oscillating Gradient [4]).13

2. the magnitude of the diffusion-encoding gradient (when the magnetic resonance imaging sig-14

nal is acquired at low gradient magnitudes, the signal contains only information about the15

apparent diffusion coefficient, at higher values, Kurtosis imaging [5] becomes possible);16

3. the direction of the diffusion-encoding gradient (many directions may be probed, as in high17

angular resolution diffusion imaging [6]).18

Using diffusion magnetic resonance imaging to get tissue structural information in the mamalian19

brain has been the focus of much experimental and modeling work in recent years [7–14]. The pre-20

dominant approach up to now has been adding the diffusion magnetic resonance imaging signal from21

simple geometrical components and extracting model parameters of interest. Numerous biophysical22

models subdivide the tissue into compartments described by spheres, ellipsoids, cylinders, and the23

extra-cellular space [7–9, 11, 12, 15–19]. Some model parameters of interest include axon diameter24

and orientation, neurite density, dendrite structure, the volume fraction and size distribution of25

cylinder and sphere components and the effective diffusion coefficient or tensor of the extra-cellular26

space.27

Numerical simulations can help deepen the understanding of the relationship between the cellular28

structure and the diffusion magnetic resonance imaging signal and lead to the formulation of appro-29

priate models. They can be also used to investigate the effect of different pulse sequences and tissue30

features on the measured signal which can be used for the development, testing, and optimization31

of novel diffusion magnetic resonance imaging pulse sequences [20–23].32

Two main groups of approaches to the numerical simulation of diffusion magnetic resonance imaging33

are 1) using random walkers to mimic the diffusion process in a geometrical configuration; 2) solving34
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the Bloch-Torrey PDE , which describes the evolution of the complex transverse water proton35

magnetization under the influence of diffusion-encoding magnetic field gradients pulses.36

The first group is referred to as Monte-Carlo simulations in the literature and previous works include37

[13, 24–27]. A GPU-based acceleration of Monte-Carlo simulation was proposed in [28, 29]. Some38

software packages using this approach include39

1. Camino Diffusion MRI Toolkit developed at UCL (http://cmic.cs.ucl.ac.uk/camino/);40

2. DIFSIM developed at UC San Diego (http://csci.ucsd.edu/projects/simulation.html);41

3. Diffusion Microscopist Simulator [25] developed at Neurospin, CEA.42

The second group relies on solving the Bloch-Torrey PDE in a geometrical configuration. In [30–43

32] a simplifying assumption called the narrow pulse approximation was used, where the pulse44

duration was assumed to be much smaller than the delay between pulses. This assumption allows45

the solution of the diffusion equation instead of the more complicated Bloch-Torrey PDE. More46

generally, numerical methods to solve the Bloch-Torrey PDE. with arbitrary temporal profiles47

have been proposed in [33–36]. The computational domain is discretized either by a Cartesian grid48

[33, 34, 37] or finite elements [30–32, 35, 36]. The unstructured mesh of a finite element discretization49

appeared to be better than a Cartesian grid in both geometry description and signal approximation50

[35]. For time discretization, both explicit and implicit methods have been used. In [32] a second51

order implicit time-stepping method called the generalized α−method was used to allow for high52

frequency energy dissipation. An adaptive explicit Runge-Kutta Chebyshev method of second order53

was used in [34, 35]. It has been theoretically proven that the Runge-Kutta Chebyshev method54

allows for a much larger time-step compared to the standard explicit Euler method [38]. There is an55

example showing that the Runge-Kutta Chebyshev method is faster than the implicit Euler method56

in [35]. The Crank-Nicolson method was used in [36] to also allow for second order convergence in57

time. The efficiency of diffusion magnetic resonance imaging simulations is also improved by either a58

high-performance FEM computing framework [39, 40] for large-scale simulations on supercomputers59

or a discretization on manifolds for thin-layer and thin-tube media [41].60

In this paper, we present a MATLAB Toolbox called SpinDoctor that is a simulation pipeline going61

from the definition of a geometrical configuration through the numerical solution of the Bloch-62

Torrey PDE to the fitting of the apparent diffusion coefficient from the simulated signal. It also63

includes two other modules for calculating the apparent diffusion coefficient. The first module is a64

homogenized apparent diffusion coefficient mathematical model, which was obtained recently using65

homogenization techniques on the Bloch-Torrey PDE. In the homogenized model, the apparent dif-66

fusion coefficient of a geometrical configuration can be computed after solving a diffusion equation67

subject to a time-dependent Neumann boundary condition, under the assumption of negligible wa-68

ter exchange between compartments. The second module computes the short time approximation69

formula for the apparent diffusion coefficient. The short time approximation implemented in Spin-70

Doctor includes a recent generalization of this formula to account for finite pulse duration in the71

pulsed gradient spin echo. Both of these two apparent diffusion coefficient calculations are sensitive72

to the diffusion-encoding gradient direction, unlike many previous works where the anisotropy is73

neglected in analytical model development.74

75
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In summary, SpinDoctor76

1. solves the Bloch-Torrey PDE in three dimensions to obtain the diffusion magnetic resonance77

imaging signal;78

2. robustly fits the diffusion magnetic resonance imaging signal to obtain the apparent diffusion79

coefficient;80

3. solves the homogenized apparent diffusion coefficient model in three dimensions to obtain the81

apparent diffusion coefficient;82

4. computes the short-time approximation of the apparent diffusion coefficient;83

5. computes useful geometrical quantities such as the compartment volumes and surface areas;84

6. allows permeable membranes for the Bloch-Torrey PDE (the homogenized apparent diffusion85

coefficient assumes negligible permeabilty).86

7. displays the gradient-direction dependent apparent diffusion coefficient; in three dimensions87

using spherical harmonics interpolation;88

SpinDoctor provides the following built-in functionalities:89

1. placement of non-overlapping spherical cells (with an optional nucleus) of different radii close90

to each other;91

2. placement of non-overlapping cylindrical cells (with an optional myelin layer) of different radii92

close to each other in a canonical configuration where they are parallel to the z-axis;93

3. inclusion of an extra-cellular space that is enclosed either94

(a) in a tight wrapping around the cells; or95

(b) in a rectangular box;96

4. deformation of the canonical configuration by bending and twisting;97

Built-in diffusion-encoding pulse sequences include98

1. the Pulsed Gradient Spin Echo ;99

2. the Oscillating Gradient Spin Echo (cos- and sin- type gradients).100

SpinDoctor uses the following methods:101

1. it generates a good quality surface triangulation of the user specified geometrical configuration102

by calling built-in MATLAB computational geometry functions;103

2. it creates a good quality tetrehedra finite elements mesh from the above surface triangulation104

by calling Tetgen [42], an external package (executable files are included in the Toolbox105

package);106
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3. it constructs finite element matrices for linear finite elements on tetrahedra (P1) using routines107

from [43];108

4. it adds additional degrees of freedom on the compartment interfaces to allow permeability109

conditions for the Bloch-Torrey PDE using the formalism in [44];110

5. it solves the semi-discretized FEM equations by calling built-in MATLAB routines for solving111

ordinary differential equations .112

The SpinDoctor toolbox has been developed in the MATLAB R2017b and requires no additional113

MATLAB toolboxes. The toolbox is publicly available at:114

https://github.com/jingrebeccali/SpinDoctor115

Abbreviations frequently used in the text116

MRI - magnetic resonance imaging117

dMRI - diffusion magnetic resonance imaging118

ADC - apparent diffusion coefficient119

HADC - homogenized ADC120

PGSE - pulsed gradient spin echo121

OGSE - oscillating gradient122

ECS - extra-cellular space123

BTPDE - Bloch-Torrey partial differential equation124

PDE - partial differential equation125

ODE - ordinary differential equation126

HARDI - high angular resolution diffusion imaging127

STA - short time approximation128

FE - finite elements129

2. Theory130

Suppose the user would like to simulate a geometrical configuration of cells with an optional myelin131

layer or a nucleus. If spins will be leaving the cells or if the user wants to simulate the extra-cellular132

space (ECS), then the ECS will enclose the geometrical shapes. Let Ωe be the ECS, Ωini the nucleus133

(or the axon) and Ωouti the cytoplasm (or the myelin layer) of the ith cell. We denote the interface134

between Ωini and Ωouti by Γi and the interface between Ωouti and Ωe by Σi, finally the outside135

boundary of the ECS by Ψ.136
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2.1. Bloch-Torrey PDE137

In diffusion MRI, a time-varying magnetic field gradient is applied to the tissue to encode water
diffusion. Denoting the effective time profile of the diffusion-encoding magnetic field gradient by
f(t), and letting the vector g contain the amplitude and direction information of the magnetic field
gradient, the complex transverse water proton magnetization in the rotating frame satisfies the
Bloch-Torrey PDE:

∂

∂t
M in
i (x, t) = −Iγf(t)g · xM in

i (x, t) +∇ · (σin∇M in
i (x, t)), x ∈ Ωini , (1)

∂

∂t
Mout
i (x, t) = −Iγf(t)g · xMout

i (x, t) +∇ · (σout∇Mout
i (x, t)), x ∈ Ωouti , (2)

∂

∂t
Me(x, t) = −Iγf(t)g · xMe(x, t) +∇ · (σe∇Me(x, t)), x ∈ Ωe, (3)

where γ = 2.67513×108 rad s−1T−1 is the gyromagnetic ratio of the water proton, I is the imaginary138

unit, σl is the intrinsic diffusion coefficient in the compartment Ωli. The magnetization is a function139

of position x and time t, and depends on the diffusion gradient vector g and the time profile f(t).140

We denote the restriction of the magnetization in Ωini by M in
i , and similarly for Mout

i and Me.141

Some commonly used time profiles (diffusion-encoding sequences) are:142

1. The pulsed-gradient spin echo (PGSE) [2] sequence, with two rectangular pulses of duration
δ, separated by a time interval ∆− δ, for which the profile f(t) is

f(t) =


1, t1 ≤ t ≤ t1 + δ,

−1, t1 + ∆ < t ≤ t1 + ∆ + δ,

0, otherwise,

(4)

where t1 is the starting time of the first gradient pulse with t1 + ∆ > TE/2, TE is the echo143

time at which the signal is measured.144

2. The oscillating gradient spin echo (OGSE) sequence [4, 45] was introduced to reach short
diffusion times. An OGSE sequence usually consists of two oscillating pulses of duration T ,
each containing n periods, hence the frequency is ω = n 2π

T , separated by a time interval τ−T .
For a cosine OGSE, the profile f(t) is

f(t) =


cos (n 2π

T t), t1 < t ≤ t1 + T,

− cos (n 2π
T (t− τ)), τ + t1 < t ≤ t1 + τ + T,

0, otherwise,

(5)

where τ = TE/2.145

The BTPDE needs to be supplemented by interface conditions. We recall the interface between
Ωini and Ωouti is Γi, the interface between Ωouti and Ωe is Σi, and the outside boundary of the ECS
is Ψ. The two interface conditions on Γi are the flux continuity and a condition that incorporates
a permeability coefficient κin,out across Γi: :

σin∇M in
i (x, t) · nini = −σout∇Mout

i (x, t) · nouti , x ∈ Γi,

σin∇M in
i (x, t) · nini = κin,out

(
Mout
i (x, t)−M in

i (x, t)
)
, x ∈ Γi,
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where n is the unit outward pointing normal vector. Similarly, between Ωouti and Ωe we have

σout∇Mout
i (x, t) · nouti = −σe∇Me(x, t) · ne, x ∈ Σi,

σout∇Mout
i (x, t) · nouti = κout,e

(
Me(x, t)−Mout

i (x, t)
)
, x ∈ Σi.

Finally, on the outer boundary of the ECS we have

0 = σe∇Me(x, t) · ne, x ∈ Ψ.

The BTPDE also needs initial conditions:

M in
i (x, 0) = ρin, Mout

i (x, 0) = ρout, Me(x, 0) = ρe.

where ρ is the initial spin density.146

The dMRI signal is measured at echo time t = TE > ∆ + δ for PGSE and TE > 2σ for OGSE. This
signal is the integral of M(x, TE):

S :=

∫
x∈

⋃
{Ωin

i , Ωout
i , Ωe}

M(x, TE) dx. (6)

In a dMRI experiment, the pulse sequence (time profile f(t)) is usually fixed, while g is varied
in amplitude (and possibly also in direction). S is usually plotted against a quantity called the
b-value. The b-value depends on g and f(t) and is defined as

b(g) = γ2‖g‖2
∫ TE

0

du

(∫ u

0

f(s)ds

)2

.

For PGSE, the b-value is [2]:

b(g, δ,∆) = γ2‖g‖2δ2 (∆− δ/3) . (7)

For the cosine OGSE with integer number of periods n in each of the two durations σ, the corre-
sponding b-value is [33]:

b(g, σ) = γ2‖g‖2 σ3

4n2π2
= γ2‖g‖2 σ

ω2
. (8)

The reason for these definitions is that in a homogeneous medium, the signal attenuation is e−σb,147

where σ is the intrinsic diffusion coefficient.148

2.2. Fitting the ADC from the dMRI signal149

An important quantity that can be derived from the dMRI signal is the “Apparent Diffusion Co-150

efficient” (ADC), which gives an indication of the root mean squared distance travelled by water151

molecules in the gradient direction g/‖g‖, averaged over all starting positions:152

ADC := − ∂

∂b
log

S(b)

S(0)

∣∣∣∣
b=0

. (9)

We numerically compute ADC by a polynomial fit of

logS(b) = c0 + c1b+ · · ·+ cnb
n,

increasing n from 1 onwards until we get the value of c1 to be stable within a numerical tolerance.153
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2.3. HADC model154

In a previous work [46], a PDE model for the time-dependent ADC was obtained starting from the
Bloch-Torrey equation, using homogenization techniques. In the case of negligible water exchange
between compartments (low permeability), there is no coupling between the compartments, at least
to the quadratic order in g, which is the ADC term. The ADC in compartment Ω is given by

HADC = σ − 1∫ TE
0

F (t)2dt

∫ TE

0

F (t) h(t) dt, (10)

where F (t) =
∫ t

0
f(s) ds, and

h(t) =
1

|Ω|

∫
∂Ω

ω(x, t) (ug · n) ds (11)

is a quantity related to the directional gradient of a function ω that is the solution of the homoge-
neous diffusion equation with Neumann boundary condition and zero initial condition:

∂

∂t
ω(x, t)−∇ (σ∇ω(x, t)) = 0, x ∈ Ω,

σ∇ω(x, t) · n = σF (t)ug · n, x ∈ ∂Ω,

ω(x, 0) = 0, x ∈ Ω,

(12)

n being the outward normal and t ∈ [0, TE], ug is the unit gradient direction. The above set of155

equations, (10)-(12), comprise the homogenized model that we call the HADC model.156

2.4. Short diffusion time approximation of the ADC157

A well-known formula for the ADC in the short diffusion time regime is the following short time
approximation (STA) [47, 48]:

STA = σ

(
1− 4

√
σ

3
√
π

√
∆

A

dim V

)
,

where
A

V
is the surface to volume ratio and σ is the intrinsic diffusivity coefficient. In the above

formula the pulse duration δ is assumed to be very small compared to ∆. A recent correction to
the above formula [46], taking into account the finite pulse duration δ and the gradient direction
ug, is the following:

STA = σ

[
1− 4

√
σ

3
√
π
Cδ,∆

Aug

V

]
, (13)

where

Aug =

∫
∂Ω

(ug · n)
2
ds,

and

Cδ,∆ =
4

35

(∆ + δ)
7/2

+ (∆− δ)7/2 − 2
(
δ7/2 + ∆7/2

)
δ2 (∆− δ/3)

=
√

∆

(
1 +

1

3

δ

∆
− 8

35

(
δ

∆

)3/2

+ · · ·

)
.

When δ � ∆, the value Cδ,∆ is approximately
√

∆.158
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3. Method159

Below is a chart describing the work flow of SpinDoctor.

Read cells parameters

Create cells
(canonical configuration) Plot cells

Read simulation domain parameters

Create surface triangulation
(canonical configuration)

Plot surface triangulation

Create FE mesh on
canonical configuration;

bend and twist the FE mesh nodes
by analytical transformation.

Plot FE mesh

Read experiment parameters Compute STA

Solve BTPDE Solve HADC

Plot magnetization and ADC Plot HADC

Figure 1: Flow chart describing the work flow of SpinDoctor

160

The physical units of the quantities in the input files for SpinDoctor are shown in Table 1, in161

particular, the length is in µm and the time is in µs. Below we discuss the various components of162

SpinDoctor in more detail.163

3.1. Read cells parameters164

The user provides an input file for the cell parameters, in the format described in Table 2.165
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Parameter Unit
length µm
time µs
diffusion coefficient µm2/µs = mm2/s
permeability coefficient µm/µs = m/s

b-value µs/µm2 = s/mm
2

q-value (µsµm)−1

Table 1: Physical units of the quantities in the input files for SpinDoctor.

Line Variable name Example Explanation
1 cell shape 1 1 = spheres;

2 = cylinders;
2 fname params cells ’current cells’ file name to store cells description
3 ncell 10 number of cells
4 Rmin 1.5 min Radius
5 Rmax 2.5 max Radius

6 dmin 1.5 min (%) distance between cells: dmin× (Rmin+Rmax)
2

7 dmax 2.5 max (%) distance between cells dmax× (Rmin+Rmax)
2

8 para deform 0.05 0.05 [α β];
α defines the amount of bend;
β defines the amount of twist

9 Hcyl 20 height of cylinders

Table 2: Input file containing cells parameters.

3.2. Create cells (canonical configuration)166

SpinDoctor supports the placement of a group of non-overlapping cells in close vicinity to each167

other. There are two proposed configurations, one composed of spheres, the other composed of168

cylinders. The algorithm is described in Algorithm 1.169

Algorithm 1: Placing ncell non-overlapping cells.

Generate a large number of possible cell centers.
Compute the minimum distance, dist, between the current center and previously accepted
cells.

Find the intersection of [dist− dmax×Rmean, dist− dmin×Rmean] and [Rmin,Rmax],
where Rmean = Rmin+Rmax

2 . If the intersection is not empty, then take the middle of the
intersection as the new radius and accept the new center. Otherwise, reject the center.

Loop through the possible centers until get ncell accepted cells.

10



3.3. Plot cells170

SpinDoctor provides a routine to plot the cells to see if the configuration is acceptable (see Fig. 2).171

Figure 2: SpinDoctor plots cells in the canonical configuration.

172

3.4. Read simulation domain parameters173

The user provides an input file for the simulation domain parameters, in the format described in174

Table 3.175

3.5. Create surface triangulation176

Finite element mesh generation software requires a good surface triangulation. This means the177

surface triangulation needs to be water-tight and does not self-intersect. How closely these require-178

ments are met in floating point arithmetic has a direct impact on the quality of the finite element179

mesh generated.180

It is often difficult to produce a good surface triangulation for arbitrary geometries. Thus, we181

restrict the allowed shapes to cylinders and spheres. Below in Algorithms 2 and 3 we describe how182

to obtain a surface triangulation for spherical cells with nucleus, cylindrical cells with myelin layer,183

and the ECS (box or tightly wrapped). We describe a canonical configuration where the cylinders184

are placed parallel to the z-axis. More general shapes are obtained from the canonical configuration185

by coordinate transformation in a later step.186
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Line Variable name Example Explanation
1 Rratio 0.0 if Rratio is outside [0,1], it is set to 0;

else Rratio = Rin

Rout
;

2 include ECS 2 0 = no ECS;
1 = box ECS;
2 = tight wrap ECS;

3 ECS gap 0.3 ECS thickness:
a. if box: as percentage of domain length;
b. if tight wrap: as percentage of mean radius

4 dcoeff IN 0.002 diffusion coefficient in IN cmpt:
a. nucleus;
b. axon (if there is myelin);

5 dcoeff OUT 0.002 diffusion coefficient in OUT cmpt:
a. cytoplasm;
b. axon (if there is no myelin);

6 dcoeff ECS 0.002 diffusion coefficient in ECS cmpt;
7 ic IN 1 initial spin density in In cmpt:

a. nucleus;
b. axon (if there is myelin)

8 ic OUT 1 initial spin density in OUT cmpt:
a. cytoplasm;
b. axon (if there is no myelin);

9 ic ECS 1 initial spin density in ECS cmpt:
10 kappa IN OUT 1e-5 permeability between IN and OUT cmpts:

a. between nucleus and cytoplasm;
b. between axon and myelin;

11 kappa OUT ECS 1e-5 permeability between OUT and ECS cmpts:
a. if no nucleus: between cytoplasm and ECS;
b. if no myelin: between axon and ECS;

12 Htetgen -1 Requested tetgen mesh size;
-1 = Use tetgen default;

13 tetgen cmd ’SRC/TETGEN/
tetGen/win64/
tetgen’

path to tetgen cmd

Table 3: Input file of simulation domain parameters.

3.6. Plot surface triangulation187

SpinDoctor provides a routine to plot the surface triangulation (see Fig. 3).188

3.7. Finite element mesh generation189

SpinDoctor calls Tetgen [42], an external package (executable files are included in the toolbox190

package), to create a tetrehedra finite elements mesh from the surface triangulation generated by191
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Algorithm 2: Surface triangulation of spherical cells and ECS.

Suppose we have ncell spherical cells with nucleus. Denote a sphere with center c and
radius R by S(c,R), we use the built-in functions (convex hull, delaunnay triangulation)
in MATLAB to get its surface triangulation, T (c,R). Call the radii of the nucleus
r1, · · · , rncell and the radii of the cells R1, · · · , Rncell. Then the boundaries between the
cytoplasm and the nucleus are

{Γi = T (ci, ri)}, i = 1, · · · , ncell;

and between the cytoplasm and the ECS

{Σi = T (ci, Ri)}, i = 1, · · · , ncell;

For the box ECS, we find the coordinate limits of the set⋃
i

S(ci, Ri) ∈ [x0, xf ]× [y0, yf ]× [z0, zf ]

and add a gap k = ECS gap×max{xf − x0, yf − y0, zf − z0} to make a box

B = [x0 − k, xf + k]× [y0 − k, yf + k]× [z0 − k, zf + k].

We put 2 triangles on each face of B to make a surface triangulation Ψ with 12 triangles.
For the tight-wrap ECS, we increase the cell radius by a gap size and take the union

W =
⋃
i

S(ci, Ri + ECS gap×Rmean),

where Rmean = Rmin+Rmax
2 . We use the alphaShape function in MATLAB to find a

surface triangulation Ψ that contains W .

Algorithms 2 and 3. The FE mesh is generated on the canonical configuration. The numbering of192

the compartments and boundaries used by SpinDoctor are given in Tables 4 and 5. The labels are193

related to the values of the intrinsic diffusion coefficient, the initial spin density, and the perme-194

ability requested by the user. Then the FE mesh nodes are deformed analytically by a coordinate195

transformation, described in Algorithm 4.196

3.8. Plot FE mesh197

SpinDoctor provides a routine to plot the FE mesh (see Fig. 4 for cylinders and ECS that have198

been bent and twisted).199

3.9. Read experimental parameters200

The user provides an input file for the simulation experimental parameters, in the format described201

in Table 6.202
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Algorithm 3: Surface triangulation of cylindrical cells and ECS.

Suppose we have ncell cylindrical cells with a myelin layer, all with height H. Denote a
disk with center c and radius R by D(c,R), and the circle with the same center and radius
by C(c,R). Let the radii of the axons be r1, · · · , rncell and the radii of the cells be
R1, · · · , Rncell, meaning the thickness of the myelin layer is Ri − ri.

The boundary between the axon and the myelin layer is:

C(ci, ri)× [−H/2, H/2]

We discretize C(ci, ri) as a polygon P (ci, ri) and place one at z = −H/2 and one at
z = H/2. Then we connect the corresponding vertices of P (ci, ri)× {−H/2} and
P (ci, ri)× {H/2} and add a diagonal on each panel to get a surface triangulation Γi.

Between the myelin layer and the ECS we discretize C(ci, Ri) as a polygon and place one
at z = −H/2 and one at z = H/2 to get a surface triangulation Σi.

For the box ECS, we find the coordinate limits of the union of D(ci, Ri) and add a gap to
make a rectangle in two dimensions. Then we place the rectangle at z = −H/2 and at
z = H/2 to get a box. Finally, the box is given a surface triangulation with 12 triangles.

For tight-wrap ECS, we increase the cell radius by a gap size and take the union

W =
⋃
i

D(ci, Ri + kRmean).

We use the alphaShape function in MATLAB to find a two dimensional polygon Q that
contains W . We place Q at z = −H/2 and at z = H/2 and connect correponding vertices,
adding a diagonal on each panel. Suppose Q is a polygon with n vertices, then the surface
triangulation of the side of the ECS will have 2n triangles.

The above procedure produces a surface triangulation for the boundaries that are parallel
to z-axis. We now must close the top and bottom. The top and bottom boundaries is just
the interior of Q. However, the surface triangulation cannot be done on Q directly. We
must cut out D(ci, ri), the disk which touches the axon, and Ai = D(ci, Ri)−D(ci, ri),
the annulus which touches the myelin. Then we triangulate Q−

⋃
iDi −

⋃
iAi using the

MATLAB built-in function that triangulates a polygon with holes to get the boundary
that touches the ECS. The surface triangulation for Ai and D(ci, ri) are straightforward.

3.10. BTPDE203

The spatial discretization of the BTPDE is based on a finite element method where interface (ghost)204

elements [35] are used to impose the permeable interface conditions. The time stepping is done205

using the MATLAB built-in ODE routine ode23t. See Algorithm 5.206

3.11. HADC model207

Similarly, the DE of the HADC model is discretized by finite elements. See Algorithm 6.208
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Figure 3: SpinDoctor plots the surface triangulation of the canonical configuration. Left: spherical cells with ECS;
Right: cylindrical cells with ECS.

Spherical cells without nucleus
Cmpt Cytoplasm Nucleus ECS
Label OUT ECS
Number [1 : ncell] ncell + 1

Spherical cells with nucleus
Cmpt Cytoplasm Nucleus ECS
Label OUT IN ECS
Number [1 : ncell] [ncell + 1 : 2ncell] 2ncell + 1

Cylindrical cells without myelin
Cmpt Axon Myelin ECS
Label OUT ECS
Number [1 : ncell] ncell + 1

Cylindrical cells with myelin
Cmpt Axon Myelin ECS
Label IN OUT ECS
Number [1 : ncell] [ncell + 1 : 2ncell] 2ncell + 1

Table 4: The labels and numbers of compartments.

3.12. Some important output quantities209

In Table 7 we list some useful quantities that are the outputs of SpinDoctor. The braces in the210

”Size” column denote MATLAB cell data structure and the brackets denote MATLAB matrix data211

structure.212

15



Spherical cells without nucleus
Boundary Sphere Outer ECS boundary
Label OUT ECS κ = 0
Number 1 : ncell ncell + 1

Spherical cells with nucleus
Boundary Outer sphere Inner sphere Outer ECS boundary
Label OUT ECS IN OUT κ = 0
Number 1 : ncell ncell + 1 : 2ncell 2ncell + 1

Cylindrical cells without myelin
Boundary Cylinder

side wall
Cylinder
top and bottom

Outer ECS boundary
minus cylinder top/bottom

Label OUT ECS κ = 0 κ = 0
Number 2[1 : ncell]− 1 2[1 : ncell] 2ncell + 1

Cylindrical cells with myelin
Boundary Inner cylinder

side wall
Inner cylinder
top and bottom

Label IN OUT κ = 0
Number 4[1 : ncell]− 3 4[1 : ncell]− 2

Outer cylinder
side wall

Outer cylinder
top and bottom

Outer ECS boundary
minus cylinder top/bottom

Label OUT ECS κ = 0 κ = 0
Number 4[1 : ncell]− 1 4[1 : ncell] 4ncell + 1

Table 5: The labels and numbers of boundaries.

4. SpinDoctor examples213

In this section we show some prototypical examples using the available functionalities of SpinDoctor.214

215

4.1. Comparison of BTPDE and HADC with Short Time Approximation216

In Fig. 5 we show that both BTPDE and HADC solutions match the STA values at short diffusion217

times for cylindrical cells (compartments 1 to 5). We also show that for the ECS (compartment218

6), the STA is too low, because it does not account for the fact that spins in the ECS can diffuse219

around several cylinders. This also shows that when the interfaces are impermeable, the BTPDE220

ADC and that from the HADC model are identical. The diffusion-encoding sequence here is cosine221

OGSE with 6 periods.222

4.2. Permeable membranes223

In Fig. 6 we show the effect of permeability: the BTPDE model includes permeable membranes224

(κ = 1×10−3 m/s) whereas the HADC has impermeable membranes. We see in the permeable case,225

the ADC in the spheres are higher than in the impermeable case, whereas the ECS show reduced226
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Algorithm 4: Bending and twisting of the FE mesh of the canonical configuration.

The external package Tetgen [42] generates the finite element mesh that keeps track of the
different compartments and the interfaces between them. The mesh is saved in several
text files.

The connectivity matrices of the finite elements and facets are not modified by the
coordinates transformation described below. The nodes are transformed by bending and
twisting as described next.

The set of FE mesh nodes {xi, yi, zi} are transformed in the following ways:
Twisting around the z-axis with a user-chosen twisting parameter αtwist is defined byxy

z

→
cos(αtwistz) − sin(αtwistz) 0

sin(αtwistz) cos(αtwistz) 0
0 0 1

xy
z

 .
Bending on the x− z plane with a user-chosen bending parameter αbend is defined byxy

z

→
x+ αbendz

2

y
z

 .
Given [αbend, αtwist], bending is performed after twisting.

ADC because the faster diffusing spins in the ECS are allowed to moved into the slowly diffusing227

spherical cells. We note that in the permeable case, the ADC in each compartment is obtained by228

using the fitting formula involving the logarithm of the dMRI signal, and we defined the ”signal”229

in a compartment as the total magnetization in that compartment at TE, which is just the integral230

of the solution of the BTPDE in that compartment.231

4.3. Myelin layer232

In Fig. 7 we show the diffusion in cylindrical cells, the myelin layer, and the ECS. The ADC is233

higher in the myelin layer than in the cells, because for spins in the myelin layer diffusion occurs234

in the tangential direction (around the circle). At longer diffusion times, the ADC of both the235

myelin layer and the cells becomes very low. The ADC is the highest in the ECS, because the236

diffusion distance can be longer than the diameter of a cell, since the diffusing spins can move237

around multiple cells.238

4.4. Twisting and bending239

In Fig. 8 we show the effect of bending and twising in cylindrical cells in multiple gradient directions.240

The HADC is obtained in 20 directions uniformly distributed in the sphere. We used spherical241

harmonics interpolation to interpolate the HADC in the entire sphere. Then we deformed the242

radius of the unit sphere to be proportional to the interpolated HADC and plotted the 3D shape.243

The color axis also indicates the value of the interpolated HADC.244
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Figure 4: FE mesh of cylinders and ECS after bending and twisting. Compartment number is 1 to 8 for the cylinders
and 9 for the ECS.

4.5. Timing245

In Table 8 we give the average computational times for solving the BTPDE and the HADC. All246

simulations were performed on a laptop computer with the processor Intel(R) Core(TM) i5-4210U247

CPU @ 1.70 GHz 2.40 GHz, running Windows 10 (1809). The geometrical configuration includes248

2 axons and a tight wrap ECS, the simulated sequence is PGSE (δ = 2.5ms,∆ = 5ms). In249

the impermeable case, the compartments are uncoupled, and the computational times are given250

separately for each compartment. In the permeable membrane case, the compartments are coupled,251

and the computational time is for the coupled system (relevant to the BTPDE only).252

5. Numerical validation of SpinDoctor253

In this section, we validate SpinDoctor by comparing SpinDoctor with the Matrix Formalism254

method [49, 50] in a simple geometry. The Matrix Formalism method is a closed form representation255

of the dMRI signal based on the eigenfunctions of the Laplace operator subject to homogeneous256

Neumann boundary conditions. These eigenfunctions are available in explicit form for elementary257
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Line Variable name Example Explanation
1 ngdir 20 number of gradient direction;

if ngdir > 1, the gradient directions are dis-
tributed uniformly on a sphere;
if ngdir = 1, take the gradient direction from the
line below;

2 gdir 1.0 0.0 0.0 gradient direction; No need to normalize;
3 nexperi 3 number of experiments;
4 sdeltavec 2500 10000 10000 small delta;
5 bdeltavec 2500 10000 10000 big delta;
6 seqvec 1 2 3 diffusion sequence of experiment;

1 = PGSE; 2 = OGSEsin; 3 = OGSEcos;
7 npervec 0 10 10 number of period of OGSE;
8 solve hadc 1 0 = do not solve HADC;

Otherwise solve HADC;
9 rtol deff,

atol deff
1e-4 1e-4 [rtol atol]; relative and absolute tolerance for

HADC ODE solver;
10 solve btpde 1 0 = do not solve BTPDE;

Otherwise solve BTPDE;
11 rtol bt,

atol bt
1e-5 1e-5 [rtol atol]; relative and absolute tolerance for

BTPDE ODE solver;
12 nb 2 number of b-values;
13 blimit 0 0 = specify bvec;

1 = specify [bmin,bmax];
2 = specify [gmin,gmax];

14 const q 0 0: use input bvalues for all experiments;
1: take input bvalues for the first experiment and
use the same q for the remaining experiments

15 bvalues 0 50 100 200 bvalues or [bmin, bmax] or [gmin, gmax];
depending on line 13;

Table 6: Input file for simulation experiment parameters.

geometries such as the line segment, the disk, and the sphere [51–54]. The dMRI signal obtained258

using the Matrix Formalism method will be considered the reference solution in this section.259

The accuracy of the SpinDoctor simulations can be tuned using three simulation parameters:260

1. Htetgen controls the finite element mesh size;261

(a) Htetgen = −1 means the FE mesh size is determined automatically by the internal262

algorithm of Tetgen to ensure a good quality mesh (subject to the constraint that the263

radius to edge ratio of tetrahedra is no larger than 2.0).264

(b) Htetgen = h requests a desired FE mesh tetrahedra height of h µm (in later versions of265

Tetgen, this parameter has been changed to the desired volume of the tetrahedra).266
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Algorithm 5: BTPDE.

FE matrices are generated for each compartment by the finite element method with
continuous piecewise linear basis functions (known as P1). The basis functions are
denoted as ϕk for k = 1, . . . , Nv, where Nv denotes the number of mesh nodes (vertices).
All matrices are sparse matrices. M and S are known in the FEM literature as mass and
stiffness matrices which are defined as follows:

Mij =

∫
Ω

ϕiϕj dx, Sij =

∫
Ω

σi∇ϕi · ∇ϕj dx.

J has a similar form as the mass matrix but it is scaled with the coefficient g · x, we
therefore call it the scaled-mass matrix

Jij =

∫
Ω

g · xϕiϕj dx.

We construct the matrix based on the flux matrix Q

Qij =

∫
∂Ω

wϕiϕj ds

where a scalar function w is used as an interface marker. The matrices are assembled
from local element matrices and the assembly process is based on vectorized routines of
[43], which replace expensive loops over elements by operations with 3-dimensional arrays.
All local elements matrices in the assembly of S,M ,J are evaluated at once and stored in
a full matrix of size 4× 4×Ne, where Ne denotes the number of tetrahedral elements.
The assembly of Q is even simpler; all local matrices are stored in a full matrix of size
3× 3× nbe, where nbe denotes the number of boundary triangles.

Double nodes are placed at the interfaces between compartments connected by permeable
membrane. Q is used to impose the interface conditions and it is associated with the
interface (ghost) elements. Specifically, assume that the double nodes are defined in a pair
of indices {i, ī}, Q is defined as the following

Qij =

{
Qij , if vertex i and j belong to one interface

−Qīj̄ if vertex i and j belong to two different interfaces

The fully coupled linear system has the following form

M
∂ξ

∂t
= −

(
Iγf(t)J + S + Q

)
ξ (14)

where ξ is the approximation of the magnetization M . SpinDoctor calls MATLAB
built-in ODE routine ode23t to solve the semi-discretized system of equations.

2. rtol controls the accuracy of the ODE solve. It is the relative residual tolerance at all points267

of the FE mesh at each time step of the ODE solve;268
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Algorithm 6: HADC model.

Eq. (12) can be discretized similarly as described for the BTPDE and has the matrix form

M
∂ζ

∂t
= −S ζ + Q ζ̄ (15)

where ζ is the approximation of w and ζ̄i = σi F (t)ug · n(xi). We note that the matrices
here are assembled and solved separately for each compartment. SpinDoctor calls
MATLAB built-in ODE routine ode23t to solve the semi-discretized equation.

Variable name Size Explanation
TOUT {nexperi×nb×Ncmpt}[1 ×nt] ODE time discretization
YOUT {nexperi×nb×Ncmpt}[Nnodes ×nt] Magnetization
MF cmpts [Ncmpt × nexperi × nb] integral of magnetization at TE

in each compartment.
MF allcmpts [nexperi × nb] integral of magnetization at TE

summed over all compartments.
ADC cmpts [Ncmpt × nexperi ] ADC in each compartment.
ADC allcmpts [nexperi × 1] ADC accounting for all compart-

ments.
ADC cmpts dir [ngdir × Ncmpt × nexperi ] ADC in each compartment in

each direction.
ADC allcmpts dir [ngdir × nexperi × 1] ADC accounting for all compart-

ments in each direction.

Table 7: Some important SpinDoctor output quantities.

FE mesh size
BTPDE BTPDE

HADC
b = 50 s/mm

2
b = 1000 s/mm

2

Uncoupled: Axons 5865 nodes, 19087 ele 7.89 sec 9.07 sec 8.80 sec
Uncoupled: ECS 6339 nodes, 19618 ele 10.14 sec 13.95 sec 11.87 sec
Coupled: Axons+ECS 7344 nodes, 38705 ele 39.14 sec 43.24 sec N/A

Table 8: Computational times for solving the BTPDE and the HADC. All simulations were performed on Intel(R)
Core(TM) i5-4210U CPU @ 1.70 GHz 2.40 GHz, running Windows 10 (1809). The geometrical configuration includes
2 axons and a tight wrap ECS, the simulated sequence is PGSE (δ = 2.5ms,∆ = 5ms).

3. atol controls the accuracy of the ODE solve. It is the absolute residual tolerance at all points269

of the FE mesh at each time step of the ODE solve;270

We varied the finite element mesh size and the ODE solve accuracy of SpinDoctor and ran 6271

simulations with the following simulation parameters:272

SpinD Simul 5-1: rtol = 10−3, atol = 10−6, Htetgen = −1;273
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Figure 5: Geometry: 5 cylinders, tight wrap ECS, ECS gap = 0.2, ug = [1, 1, 1], σout = σecs = 2 × 10−3 mm2/s,
κ = 0 m/s, OGSE cosine (δ = 14ms,∆ = 14ms, number of periods = 6). The vertical bars indicate the ADC in
each compartment. The ADC in the rightmost position is the ADC that takes into account the diffusion in all the
compartments.

SpinD Simul 5-2: rtol = 10−6, atol = 10−9, Htetgen = −1;274

SpinD Simul 5-3: rtol = 10−9, atol = 10−12, Htetgen = −1;275

SpinD Simul 5-4: rtol = 10−3, atol = 10−6, Htetgen = 1;276

SpinD Simul 5-5: rtol = 10−6, atol = 10−9, Htetgen = 1;277

SpinD Simul 5-6: rtol = 10−9, atol = 10−12, Htetgen = 1;278

The geometry simulated is the following:279
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Figure 6: Geometry: 3 spheres, tight wrap ECS, ECS gap = 0.3, ug = [1, 1, 0], σin = σecs = 2 × 10−3 mm2/s,
κ = 1 × 10−3 m/s (left), κ = 0 m/s (right). PGSE (δ = 5ms,∆ = 5ms). The vertical bars indicate the ADC in
each compartment. The ADC in the rightmost position is the ADC that takes into account the diffusion in all the
compartments.

• 3LayerCylinder is a 3-layer cylindrical geometry of height 1µm and the layer radii, R1 =280

2.5µm, R2 = 5µm and R3 = 10µm. The middle layer is subject to permeable interface281

conditions on both the interior and the exterior interfaces, with permeability coefficient κ.282

The exterior boundary R = R3 is subject to impermeable boundary conditions. The top and283

bottom boundaries are also subject to impermeable boundary conditions.284

• For this geometry, Htetgen = −1 gives finite elements mesh size (nnodes = 440, nelem = 1397).285

Htetgen = 1 gives finite elements mesh size (nnodes = 718, nelem = 2088).286

The dMRI experimental parameters are the following:287
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• the diffusion coefficient in all compartments is 2× 10−3 mm2/s;288

• the diffusion-encoding sequence is PGSE (δ = 10ms, ∆ = 13ms);289

• 8 b-values: b = {0, 100, 500, 1000, 2000, 3000, 6000, 10000} s/mm
2
;290

• 1 gradient direction: [1, 1, 0];291

In Figure 9 we show the signal differences (in percent) of the reference Matrix Formalism method
and the SpinDoctor simulations, normalized by the reference signal at b = 0:

E(b) =

∣∣SMF (b)− SSpinD(b)
∣∣

SMF (b = 0)
× 100. (16)

We see that the signal difference is less than 0.35% for κ = 10−5 m/s and it is less than 0.25% for292

κ = 10−4 m/s for all 6 SpinDoctor simulations. The signal difference becomes smaller when the293

ODE solve tolerances are changed from (rtol = 10−3, atol = 10−6) to (rtol = 10−6, atol = 10−9),294

but there is no change when the tolerances are further reduced to (rtol = 10−9, atol = 10−12). If295

we refine the FE mesh, but keep the ODE solve tolerances the same, the signal difference is in fact296

larger using the refined mesh than using the coarse mesh at the smaller b-values, though this effect297

disappears at higher b-values and larger permeability. This is probably due to parasitic oscillatory298

modes on the finer mesh that need smaller time steps to be sufficiently damped.299

6. Computational time and comparison with Monte-Carlo simulation300

In this section, we compare SpinDoctor with Monte-Carlo simulation using the publicly available301

software package Camino Diffusion MRI Toolkit [26], downloaded from http://cmic.cs.ucl.ac.302

uk/camino. All the simulations were performed on a server computer with 12 processors (Intel (R)303

Xeon (R) E5-2667 @2.90 GHz), 192 GB of RAM, running CentOS 7. SpinDoctor was run using304

MATLAB R2019a on the same computer.305

We give SpinDoctor computational times for three relatively complicated geometries. We also give306

Camino computational times for the first two geometries. We did not use Camino for the third307

geometry due to the excessive time required by Camino.308

The number of the degrees of freedom in the SpinDoctor simulations is the finite element mesh size309

(the number of nodes and the number of elements). For Camino it is the number of spins. The time310

stepping choice of the SpinDoctor simulations is given by the ODE solve tolerances. For Camino311

it is given by the number of time steps. Camino has an initialization step where it places the spins312

and we give the time of this initialization step separately from the Camino random walk simulation313

time.314

Given the interest of the dMRI community in the extra-cellular space [11] and neuron simulations,315

we chose the following three geometries:316

1. ECS400axons. See Figure 10. This models the extra-cellular space outside of 400 axons. We317

generated 400 cylinders with height 1µm and radii ranging from 2 − 5µm, randomly placed318

according to Algorithm 1. The small height of the cylinders means that this geometry should319
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be used only for studying transverse diffusion. We used a tight-wrap ECS: this choice means320

we do not need to have a complicated algorithm to avoid large empty spaces as would be the321

case when the ECS is box-shaped.322

2. DendriteBranch. See Figure 11. This is a dendrite branch whose original morphological323

reconstruction SWC file published in NeuroMorpho.Org [55]. By wrapping the geometry324

described in the SWC file in a new watertight surface and using the external FE meshing325

package GMSH [56], we created a FE mesh for this dendrite branch. The FE mesh was in326

imported and used in SpinDoctor. We note this is an externally generated FE mesh and this327

illustrate the capacity of SpinDoctor to simulate the dMRI on general geometries provided328

by the user.329

3. ECS200axons. See Figure 12. This models the extra-cellular space outside of 200 axons. To330

study 3-dimensional diffusion, the height of the cylinders was increased to 50µm. To keep the331

finite element mesh size reasonable, we decreased the number of axons to 200, keeping the332

range of radii between 2− 5 microns, placed randomly as above, with a tight-wrap ECS.333

The dMRI experimental parameters are the following:334

• the diffusion coefficient is 2× 10−3 mm2/s;335

• the diffusion-encoding sequence is PGSE (δ = 10ms, ∆ = 13ms);336

• 8 b-values: b = {0, 100, 500, 1000, 2000, 3000, 6000, 10000} s/mm
2
;337

• 1 gradient direction: [1, 1, 0].338

The SpinDoctor simulations were done using one compartment. The boundary of compartment is339

subject to impermeable boundary conditions. We took the surface triangulations associated with340

the finite element mesh for the SpinDoctor simulations and used them as the input PLY files for341

Camino. Camino is called with the command datasynth. The options of Camino that are relevant342

to the simulations in the above three geometries are the following:343

• -walkers ${N}: N is the number of walkers ;344

• -tmax ${T}: T is the number of time steps;345

• -p ${P}: P is the probability that a spin will step through a barrier. We set P to zero;346

• -voxels 1: using 1 voxel for the experiment;347

• -initial intra: random walkers are placed uniformly inside the geometry and none outside348

of it; In the case of the extra-cellular space, intra means inside the geometry, with the349

geometry representing the extracellular space;350

• -voxelsizefrac 1: the signal is computed using all the spins inside the geometry described351

by the PLY file, and not just in a center region;352

• -diffusivity 2E-9: the diffusion coefficient (m2/s);353
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• -meshsep ${xsep} ${ysep} ${zsep}: specifies the seperation between bounding box for354

mesh substrates. We used a box that fully contains the geometry described by the PLY file;355

• -substrate ply: mesh substrates are constructed using a PLY file;356

• -plyfile ${plyfile}: the name of the PLY file. We wrote a MATLAB function that outputs357

the list of triangles that make up the boundary of the finite element mesh and formatted it358

as a PLY file. We note these triangles form a surface triangulation;359

6.1. ECS of 400 axons360

SpinDoctor was run with the following 3 sets of simulation parameters:361

SpinD Simul 6.1-1: rtol = 10−3, atol = 10−6, Htetgen = 0.5;362

SpinD Simul 6.1-2: rtol = 10−3, atol = 10−6, Htetgen = 1;363

SpinD Simul 6.1-3: rtol = 10−3, atol = 10−6, Htetgen = −1;364

For this geometry, Htetgen = −1 gives finite elements mesh size (nnodes = 53280, nelem = 125798).365

Htetgen = 1 gives finite elements mesh size (nnodes = 58018, nelem = 139582). Htetgen = 0.5 gives366

finite elements mesh size (nnodes = 70047, nelem = 177259).367

Camino was run with the following 2 sets of simulation parameters:368

Camino Simul 6.1-1: N = 1000, T = 200;369

Camino Simul 6.1-2: N = 4000, T = 800;370

The reference signals are SpinD Simul 6.1-1, the SpinDoctor signals computed on the finest FE371

mesh (Htetgen = 0.5).372

We computed the signal differences between the reference simulations and the 2 remaining Spin-
Doctor simulations as well as the two Camino signals:

E(b) =

∣∣∣∣S(b)

S(0)
− Sref (b)

Sref (0)

∣∣∣∣× 100. (17)

In Figure 13 we see E(b) for the SpinDoctor simulation on the coarsest mesh (Htetgen = −1) is373

less than 0.4% for all b-values and for the SpinDoctor simulation on the mesh (Htetgen = 1) it374

is less than 0.2%. The Camino simulation with (N = 1000, T = 200) has a signal difference of375

1.9% for b-value up to 2000 s/mm
2
, and the Camino simulation with (N = 4000, T = 800) has a376

signal difference of 0.7% for b-value up to 2000 s/mm
2
. However, for b-value b = 3000 s/mm

2
and377

greater, it seems the first Camino simulation is closer to the reference signal than the second Camino378

simulation. It likely means that 4000 spins and 800 time steps are not enough to achieve signal379

convergence at higher b-values. In fact, they are below the recommended values for Monte-Carlo380

simulations [26], but we chose them to keep the Camino simulations running within a reasonable381

amount of time. On the other hand, the refinement of the FE mesh for the SpinDoctor achieves382

convergence for all b-values up to 10000 s/mm
2
. There is a significant increase of the computational383
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time of SpinDoctor as the diffusion-encoding amplitude is increased from 0.03 T/m to 0.37 T/m. At384

the finest mesh, the computational time increased from 35 seconds to 200 seconds. At the coarsest385

mesh, the computational time increased from 20 seconds to 115 seconds. This is due to the fact386

that at higher gradient amplitudes, the magnetization is more oscillatory, so to achieve a fixed ODE387

solver tolerance, smaller time steps are needed.388

In Table 9 we show the total computational time to compute the dMRI signals at the 8 b-values389

for 2 SpinDoctor and 2 Camino simulations. We also include the time for Camino to place the390

initial spins in the geometry described by the PLY file. We include in the Table the maximum391

signal differences for b-values up to 2000 s/mm
2

instead of all the b-values because Camino is not392

convergent for b-values greater than 3000 s/mm
2
. We see that at a similar level of signal difference393

(0.4% for SpinDoctor versus 0.7% for Camino), the total computational time of SpinDoctor (438394

seconds) is more than 100 times faster than Camino (59147 seconds).

ECS400axons
SpinDoctor Camino

Htet = -1 Htet = 0.5 T = 200 T = 800
Degrees 53280 nodes 70047 nodes

1000 spins 4000 spins
of freedom 125798 elements 177259 elements

Max signal difference
0.4% Ref signal 1.9% 0.7%

(b ≤ 2000 s/mm
2
)

Initialization time (sec) 69 305
Solve time (sec), 8 bvalues 438 667 3949 58842

Total time (sec) 438 667 4018 59147

Table 9: The geometry is ECS400axons. The total computational times (in seconds) to simulate the
dMRI signal at 8 b-values using SpinDoctor and Camino. The initialization time is the time for Camino
to place initial spins inside the geometry described by the PLY file. The b-values simulated are b =
{0, 100, 500, 1000, 2000, 3000, 6000, 10000} s/mm2. The maximum signal differences are given for b-values up to
2000 s/mm2 because Camino is not convergent for b-values greater than 3000 s/mm2. The diffusion coefficient is
2× 10−3 mm2/s; The diffusion-encoding sequence is PGSE (δ = 10ms, ∆ = 13ms); The gradient direction is [1, 1, 0].

395

6.2. Dendrite branch396

SpinDoctor was run with the following 2 sets of simulation parameters:397

SpinD Simul 6.2-1: rtol = 10−3, atol = 10−6;398

SpinD Simul 6.2-2: rtol = 10−2, atol = 10−4;399

The finite elements mesh was generated by an external package and imported into SpinDoctor. The400

finite elements mesh size is (nnodes = 24651, nelem = 91689). We do not refine the FE mesh, rather,401

we vary the ODE solve tolerances in the SpinDoctor simulations.402

Camino was run with the following 3 sets of simulation parameters:403

Camino Simul 6.2-1: N = 1000, T = 200;404

27



Camino Simul 6.2-2: N = 2000, T = 400;405

Camino Simul 6.2-3: N = 4000, T = 800;406

The reference signal is SpinD Simul 6.2-1, the SpinDoctor signal with the higher ODE solve407

tolerances (rtol = 10−3, atol = 10−6).408

In Figure 14 we see the signal difference E(b) for the SpinDoctor simulation with the bigger ODE409

solve tolerances (rtol = 10−2, atol = 10−4) is less than 0.6% for all b-values. The Camino simulation410

with (N = 1000, T = 200) has a maximum signal difference of 6.4%, the Camino simulation with411

(N = 4000, T = 800) has a maximum signal difference of 1.0%. As the gradient amplitude is412

increased from 0.03 T/m to 0.37 T/m, at the larger ODE solve tolerances, the computational time413

increased from 5 seconds to 17 seconds. At smaller ODE solve tolerances, the computational time414

increased from 7 seconds to 42 seconds. Again, this increase is due to the fact that at higher gradient415

amplitudes, the magnetization is more oscillatory, so to achieve a fixed ODE solver tolerance, smaller416

time steps are needed. In Table 10 we see for the same level of accuracy (0.6% for SpinDoctor and417

and 1% for Camino), SpinDoctor (109 seconds) is 400 times faster than Camino (43918 seconds).418

Dendrite SpinDoctor Camino
Branch rtol = 10−2 rtol = 10−3 T = 200 T = 400 T = 800
Degrees 24651 nodes

1000 spins 2000 spins 4000 spins
of freedom 91689 elements

Max signal difference 0.6% Ref signal 6.4% 2.2% 1.0%
Initialization time (sec) 5897 11739 23702

Solve time (sec), 8 bvalues 109 207 1336 5138 20216
Total time (sec) 109 207 7233 16877 43918

Table 10: The geometry is DendriteBranch. The total computational times in seconds to simulate the
dMRI signal at 8 b-values using SpinDoctor and Camino. The initialization time is the time for Camino
to place initial spins inside the geometry described by the PLY file. The b-values simulated are b =
{0, 100, 500, 1000, 2000, 3000, 6000, 10000} s/mm2. The diffusion coefficient is 2×10−3 mm2/s; The diffusion-encoding
sequence is PGSE (δ = 10ms, ∆ = 13ms); The gradient direction is [1, 1, 0].

6.3. Three dimensional ECS of 200 axons419

Due to computational time limitations, we only computed 4 b-values, b = {0, 100, 500, 1000} s/mm
2
,420

for the geometry ECS200axons (see Figure 12 for the finite element mesh).421

SpinDoctor was run with the following 2 sets of simulation parameters:422

SpinD Simul 6.3-1: rtol = 10−3, atol = 10−6, Htetgen = −1423

SpinD Simul 6.3-2: rtol = 10−3, atol = 10−6, Htetgen = 0.3.424

For this geometry, Htetgen = −1 gives finite elements mesh size (nnodes = 846298, nelem =425

2997386). Htetgen = 0.3 gives finite elements mesh size (nnodes = 1017263, nelem = 3950572).426

The difference inthe signals between the two simulations is less than 0.35% (not plotted), meaning427

the FE meshes are fine enough to produce accurate signals. In Table 11, we see that using about428
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846K nodes required 1.8 hours at b = 100 s/mm
2
, 2.7 hours at b = 500 s/mm

2
, 3.3 hours at429

b = 1000 s/mm
2
. We did not use Camino for ECS200axons due to the excessive time required by430

Camino.431

ECS200 axons
SpinDoctor

Htet = -1 Htet = 0.3

Mesh
846298 nodes 1017263 nodes

2997386 elements 3950572 elements
Max signal difference 0.35% Ref signal

Solve time (sec), b = 100, 500, 1000 s/mm
2

(6611, 9620, 12107) (16978, 23988, 32044)

Table 11: The geometry is ECS200axons. The computational times in seconds to simulate the dMRI signal at 3 b-
values b = {100, 500, 1000} s/mm2 using SpinDoctor. The times are listed separately for each b-value. The diffusion
coefficient is 2 × 10−3 mm2/s; The diffusion-encoding sequence is PGSE (δ = 10ms, ∆ = 13ms); The gradient
direction is [1, 1, 0].

6.4. SpinDoctor computational time432

We collected the computational times of the SpinDoctor simulations for ECS400axons, Dendrite-433

Branch, and ECS200axons, that had the ODE solve tolerances (rtol = 10−3, atol = 10−6). In434

addition, for ECS400axons and DendriteBranch, we performed simulations for another PGSE se-435

quence (δ = 10ms, ∆ = 23ms).436

Now we examine the computational time as a function of the finite element mesh size for those437

simulations with ODE solve tolerances (rtol = 10−3, atol = 10−6). There are 3 FE meshes of438

ECS400axons, 1 FE mesh of DendriteBranch, and 2 FE meshes of ECS200axons. In Figure 15 we439

plot the computational times to simulate the dMRI signal at two b-values (b = 100 s/mm
2

and440

b = 1000 s/mm
2
) as a function of the number of FE nodes. We see at fewer than 100K finite441

element nodes, the SpinDoctor simulation time is less than 1 minute per b-value. At 1 million FE442

nodes, the SpinDoctor simulation time is about 4.7 hours for b = 100 s/mm
2

and 8.9 hours for443

b = 1000 s/mm
2
.444

7. SpinDoctor permeability and Monte-Carlo transmission probability445

Here we illustrate the link between the membrane permeability of Spindoctor and the transmission446

probability of crossing a membrane in the Camino simulation. The geometry is the following:447

• Permeable Sphere involves uniformly placed initial spins inside a sphere of radius 5µm, subject448

to permeable interface condition on the surface of the sphere, with permeability coefficient κ.449

No spins are initially placed outside of this sphere. In the SpinDoctor simulation, this sphere450

is enclosed inside a sphere of diameter 30µm, subject to impermeable boundary condition on451

the outermost interface. In the Camino simulation, this sphere is enclosed in a box of side452

length 30µm, subject to periodic boundary conditions. The inner sphere is far enough from453

the outer sphere in SpinDoctor and from the outer box in Camino so that there is no influence454

of the outer surface during the simulated diffusion times.455
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The dMRI experimental parameters are the following:456

• the diffusion coefficient in all compartments is 2× 10−3 mm2/s;457

• the diffusion-encoding sequence is PGSE (δ = 10ms, ∆ = 13ms);458

• 8 b-values: b = {0, 100, 500, 1000, 2000, 3000, 6000, 10000} s/mm
2
;459

• 1 gradient direction: [1, 1, 0].460

SpinDoctor was run with the following 3 sets of simulation parameters:461

SpinD Simul 7-1: rtol = 10−3, atol = 10−6, Htetgen = 0.5;462

SpinD Simul 7-2: rtol = 10−3, atol = 10−6, Htetgen = 1;463

SpinD Simul 7-3: rtol = 10−3, atol = 10−6, Htetgen = −1;464

For this geometry, Htetgen = −1 gives finite elements mesh size (nnodes = 46384, nelem = 196920).465

Htetgen = 1 gives finite elements mesh size (nnodes = 49618, nelem = 218007). Htetgen = 0.5 gives466

finite elements mesh size (nnodes = 52803, nelem = 237613).467

Camino was run with the following 2 sets of simulation parameters:468

Camino Simul 7-1: N = 4000, T = 800;469

Camino Simul 7-2: N = 8000, T = 3200;470

The reference signal is SpinD Simul 7-1, the SpinDoctor signal on the finest FE mesh.471

In [57], there is a discussion about the transmission probability of random walkers as they en-
counter a permeable membrane with permeability κ. The formula found in that paper is (for three
dimensions)

PEX = Cdim
κ

σ

√
2 dimσ δt, Cdim =

2

3
, dim = 3, (18)

σ being the intrinsic diffusion coefficient, δt is the time step.472

In Figure 16 we show the three SpinDoctor simulations at κ = 10−5 m/s and the two Camino473

simulations using the above formula for PEX . We considered the SpinDoctor signal computed on474

the finest FE mesh as the reference signal and we computed the signal differences between the475

reference signal and the other two SpinDoctor signals and the Camino signals. We see that the476

Camino signals approach the reference signal as the number of spins and times steps in Camino477

are increased, the maximum difference decreasing from 3.8% to 2.4%. The SpinDoctor signals have478

signal differences of less than 0.5% and 0.1%, respectively.479

8. Extensions of SpinDoctor480

Here we mention two extensions in the functionalities of SpinDoctor that are planned for a future481

release.482
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8.1. Non-standard diffusion-encoding sequences483

Given the interest in nonstandard diffusion sequences beyond PGSE and OGSE, such as double484

diffusion encoding (see [58–61]) and multidimensional diffusion encoding (see [62]), it is natural that485

SpinDoctor should easily support arbitrary diffusion-encoding sequences. Besides the PGSE and486

the sine and cosine OGSE sequences that are provided in the SpinDoctor package, new sequences487

can be straightforwardly implemented by changing three files in the SpinDoctor package488

• SRC/DMRI/seqprofile.m defines f(t)489

• SRC/DMRI/seqintprofile.m defines the integral F (t) =
∫ t

0
f(s)ds490

• SRC/DMRI/seqbvaluenoq.m defines the associated b−value.491

In the example below, we simulate the double-PGSE (Eq. 19) sequence:

f(t) =



1, 0 ≤ t ≤ δ,
−1, ∆ < t ≤ ∆ + δ,

1, τ ≤ t ≤ δ + τ,

−1, ∆ + τ < t ≤ ∆ + δ + τ,

0, otherwise.

(19)

Here δ is the duration of the diffusion-encoding gradient pulse, ∆ is the time delay between the492

start of the two pulses, and τ is the distance between the two pairs of pulses (τ ≥ δ + ∆). The493

geometry is made of cylindrical cells, the myelin layer, and the ECS (see Figure 7). In Figure 17 we494

show the dMRI signals for the PGSE (δ = 10ms,∆ = 13ms) and dPGSE sequences (δ = 10ms,∆ =495

13ms, τ = δ + ∆), the diffusion-encoding direction is ug = [1, 1, 1].496

8.2. T2 relaxation497

When T2−relaxation is considered, the Bloch-Torrey PDE (Eq. 1) takes the following form

∂

∂t
M in
i (x, t) = −Iγf(t)g · xM in

i (x, t)− M in

T in2

+∇ · (σin∇M in
i (x, t)), x ∈ Ωini , (20)

∂

∂t
Mout
i (x, t) = −Iγf(t)g · xMout

i (x, t)− Mout

T out2

+∇ · (σout∇Mout
i (x, t)), x ∈ Ωouti , (21)

∂

∂t
Me(x, t) = −Iγf(t)g · xMe(x, t)− Me

T e2
+∇ · (σe∇Me(x, t)), x ∈ Ωe, (22)

We plan to incorporate T2 relaxation effects in the next official release of SpinDoctor. In the mean-498

time, this additional functionality can be found in a development branch of SpinDoctor available499

on GitHub. The source code in this development branch allows the ability to add relaxation, with500

different relaxivities in the different compartments [63, 64].501

T2 relaxation is incorporated using the format T2 = [T in2 , T out2 , T e2 ] where T in2 , T out2 , T e2 are the T2

values for the three compartments, respectively. To verify the correctness of our implementation, we
check the following. Let SNo-T2(b) be the signal without T2 effects. If there is no exchange between
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compartments, then the T2 effects can be cancelled from the signals in the three compartments that
include T2 effects in the following way:

Scancel(b) =
Sin(b)

e
− TE

Tin
2

+
Sout(b)

e
− TE

Tout
2

+
Se(b)

e
−TE

Te
2

. (23)

In Fig. 18, we compare SNo-T2(b) with S(b) where T2 = [50ms, 20ms, 100ms], for the PGSE se-502

quences (δ = 10ms,∆ = 13ms) and ug = [1, 1, 1]. We also compute Scancel(b), using Eq. 23. The503

geometry (see Figure 7) is made of cylindrical cells, the myelin layer, and the ECS. The T2 effects504

on the signal S(b) are clearly seen. The T2 effects are completely canceled out using Eq. (23).505

9. Discussion506

Built upon MATLAB, SpinDoctor is a software package that seeks to reduce the work required to507

perform numerical simulations for dMRI for prototyping purposes. There have been software pack-508

ages for dMRI simulation that implements the random walkers approach. A detailed comparison509

of the Monte-Carlo/random walkers approach with the FEM approach is beyond the scope of this510

paper. SpinDoctor offers an alternative, solving the same physics problem using PDEs.511

After surveying other works on dMRI simulations, we saw a need to have a simulation toolbox that512

provides a way to easily define geometrical configurations. In SpinDoctor we have tried to offer513

useful configurations, without being overly general. Allowing too much generality in the geometrical514

configurations would have made code robustness very difficult to achieve due to the difficulties515

related to problems in computational geometry (high quality surface triangulation, robust FE mesh516

generation). The geometrical configuration routines provided by SpinDoctor are a helpful front517

end, to enable dMRI researchers to get started quickly to perform numerical simulations. Those518

users who already have a high quality surface triangulation can use the other parts of SpinDoctor519

without passing through this front end.520

The bulk of SpinDoctor is the numerical solutions of two PDEs. When one is only interested in the521

ADC, then computing the HADC model is the good option. When one is interested in higher order522

behavior in the dMRI signal, then the BTPDE model is a good option for accessing high b-value523

behavior.524

Because time stepping methods for semi-discretized linear systems arising from finite element dis-525

cretization is a well-studied subject in the mathematical literature, the ODE solvers implemented526

in MATLAB already optimize for such linear systems. For example, the mass matrix is passed into527

the ODE solver as an optional parameter so as to avoid explicit matrix inversion. In addition, the528

ODE solution is guaranteed to stay within a user-requested residual tolerance. We believe this type529

of optimization and error control is clearly advantageous over simulation codes that do not have it.530

To mimic the phenomenon where the water molecules can enter and exit the computational do-531

main, the pseudo-periodic boundary conditions were implemented in [33–35]. At this stage, we532

have chosen not to implement this in SpinDoctor, instead, spins are not allowed to leave the com-533

putational domain. Implementing pseudo-periodic boundary conditions would make the code more534

complicated, and it remains to be seen if it is a desired feature among potential users. If it is, then535

it could be part of a future development.536
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The twising and bending of the canonical configuration is something unique to SpinDoctor. It537

removes many computational geometry difficulties by meshing first the canonical configuration538

before deforming the FE mesh via an analytical coordinate transformation. This is a way to539

simulate fibers that are not parallel, that bend, for example. For fibers that disperse, perhaps more540

complicated analytical coordinate transformations can be performed on the canonical configuration541

to mimic that situation. This is a possible future direction to explore.542

SpinDoctor depends on MATLAB for the ODE solve routines as well as for the computational543

geometry routines to produce the tight wrap ECS. To implement SpinDoctor outside of MATLAB544

would require replacing these two sets of MATLAB routines. Other routines of SpinDoctor can be545

easily implemented in another programming language.546

SpinDoctor can be downloaded at https://github.com/jingrebeccali/SpinDoctor.547

In summary, we have validated SpinDoctor simulations using reference signals from the Matrix For-548

malism method, in particular in the case of permeable membranes. We then compared SpinDoctor549

with the Monte-Carlo simulations produced by the publicly available software package Camino550

Diffusion MRI Toolkit [26]. We showed that the membrane permeability of SpinDoctor can be551

straightforwardly linked to the transmission probability in Monte-Carlo simulations. For numerous552

examples, it was seen that the SpinDoctor and the Camino simulations can be made close to each553

other if one increases the degrees of freedom (the finite element mesh size for SpinDoctor and the554

number of spins for Camino) and increase the accuracy of the time stepping (by tightening the555

ODE solve tolerances in SpinDoctor and by increasing the number of time steps in Camino).556

At high gradient amplitudes, the ocsillatory nature of the magnetization requires the use of smaller557

time steps to maintain accuracy. For this reason, the computational time to simulate the dMRI558

signal at high gradient amplitudes must be longer than at low gradient amplitudes. This adaptivity559

in the time stepping as a function of gradient amplitude is done automatically in SpinDoctor.560

We have computed the dMRI signals on several complicated geometries on a stand-alone computer.561

For these examples, we have shown that SpinDoctor can be more than 100 times faster than Camino.562

Of course, in simple configurations such as straight, parallel cylinders, it is much more efficient to563

use an analytical representation of the diffusion environment rather than a triangulated mesh in564

Camino. In addition, some recent implementations of random walk simulations [65, 66] should be565

faster than Camino.566

With a finite element mesh of 100K nodes, SpinDoctor takes less than one minute per b-value. At 1567

million finite element nodes, limited computer memory resulted in a computational time 4.7 hours568

for b = 100 s/mm
2

and 8.9 hours for b = 1000 s/mm
2
. This issue will be taken into account in the569

future with high performance computing techniques in MATLAB and on other platforms. One of570

our recent works [40] is promising for this purpose.571

We also illustrated several extensions of SpinDoctor functionalities, including the incorporation of572

T2 relaxation, the simulation of non-standard diffusion-encoding sequences. We note the dendrite573

branch example illustrates SpinDoctor’s ability to import and use externally generated meshes574

provided by the user. This capability will be very useful given the most recent developments in575

simulating ultra-realistic virtual tissues [65, 67].576
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10. Conclusion577

This paper describes a publicly available MATLAB toolbox called SpinDoctor that can be used578

to solve the BTPDE to obtain the dMRI signal and to solve the diffusion equation of the HADC579

model to obtain the ADC. SpinDoctor is a software package that seeks to reduce the work required580

to perform numerical simulations for dMRI for prototyping purposes.581

SpinDoctor provides built-in options of including spherical cells with a nucleus, cylindrical cells with582

a myelin layer, an extra-cellular space enclosed either in a box or in a tight wrapping around the583

cells. The deformation of canonical cells by bending and twisting is implemented via an analytical584

coordinate transformation of the FE mesh. Permeable membranes for the BTPDE is implemented585

using double nodes on the compartment interfaces. Built-in diffusion-encoding pulse sequences586

include the Pulsed Gradient Spin Echo and the Ocsillating Gradient Spin Echo. Error control in587

the time stepping is done using built-in MATLAB ODE solver routines.588

User feedback to improve SpinDoctor is welcomed.589

Acknowledgment590

The authors gratefully acknowledge the French-Vietnam Master in Applied Mathematics program591

whose students (co-authors on this paper, Van-Dang Nguyen, Try Nguyen Tran, Bang Cong Trang,592

Khieu Van Nguyen, Vu Duc Thach Son, Hoang An Tran, Hoang Trong An Tran, Thi Minh Phuong593

Nguyen) have contributed to the SpinDoctor project during their internships in France in the past594

several years, as well as the Vice-Presidency for Marketing and International Relations at Ecole595

Polytechnique for financially supporting a part of the students’ stay. Jan Valdman was supported596

by the Czech Science Foundation (GACR), through the grant GA17-04301S. Van-Dang Nguyen597

was supported by the Swedish Energy Agency, Sweden with the project ID P40435-1 and MSO4SC598

with the grant number 731063.599

References600

[1] E. L. Hahn, Spin echoes, Phys. Rev. 80 (1950) 580–594.601

[2] E. O. Stejskal, J. E. Tanner, Spin diffusion measurements: Spin echoes in the presence of602

a time-dependent field gradient, The Journal of Chemical Physics 42 (1) (1965) 288–292.603

doi:10.1063/1.1695690.604

[3] D. L. Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, M. Laval-Jeantet, MR imaging605

of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.,606

Radiology 161 (2) (1986) 401–407, pMID: 3763909.607

[4] M. D. Does, E. C. Parsons, J. C. Gore, Oscillating gradient measurements of water diffu-608

sion in normal and globally ischemic rat brain, Magn. Reson. Med. 49 (2) (2003) 206–215.609

doi:10.1002/mrm.10385.610

[5] J. H. Jensen, J. A. Helpern, A. Ramani, H. Lu, K. Kaczynski, Diffusional kurtosis imaging:611

The quantification of non-Gaussian water diffusion by means of magnetic resonance imaging,612

Magnetic Resonance in Medicine 53 (6) (2005) 1432–1440. doi:10.1002/mrm.20508.613

34



[6] D. S. Tuch, T. G. Reese, M. R. Wiegell, N. Makris, J. W. Belliveau, V. J.614

Wedeen, High angular resolution diffusion imaging reveals intravoxel white mat-615

ter fiber heterogeneity, Magnetic Resonance in Medicine 48 (4) (2002) 577–582.616

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.10268, doi:10.1002/mrm.10268.617

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.10268618

[7] Y. Assaf, T. Blumenfeld-Katzir, Y. Yovel, P. J. Basser, Axcaliber: A method for mea-619

suring axon diameter distribution from diffusion MRI, Magnetic Resonance in Medicine620

59 (6) (2008) 1347–1354. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.21577,621

doi:10.1002/mrm.21577.622

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.21577623

[8] D. C. Alexander, P. L. Hubbard, M. G. Hall, E. A. Moore, M. Ptito, G. J. Parker, T. B. Dyrby,624

Orientationally invariant indices of axon diameter and density from diffusion MRI, NeuroImage625

52 (4) (2010) 1374–1389.626

URL http://www.sciencedirect.com/science/article/pii/S1053811910007755627

[9] H. Zhang, P. L. Hubbard, G. J. Parker, D. C. Alexander, Axon diameter mapping in the628

presence of orientation dispersion with diffusion MRI, NeuroImage 56 (3) (2011) 1301–1315.629

URL http://www.sciencedirect.com/science/article/pii/S1053811911001376630

[10] H. Zhang, T. Schneider, C. A. Wheeler-Kingshott, D. C. Alexander, NODDI: Practical in vivo631

neurite orientation dispersion and density imaging of the human brain, NeuroImage 61 (4)632

(2012) 1000–1016.633

URL http://www.sciencedirect.com/science/article/pii/S1053811912003539634

[11] L. M. Burcaw, E. Fieremans, D. S. Novikov, Mesoscopic structure of neuronal tracts from time-635

dependent diffusion, NeuroImage 114 (2015) 18 – 37. doi:10.1016/j.neuroimage.2015.03.061.636

[12] M. Palombo, C. Ligneul, J. Valette, Modeling diffusion of intracellular metabolites in the637

mouse brain up to very high diffusion-weighting: Diffusion in long fibers (almost) accounts638

for non-monoexponential attenuation, Magnetic Resonance in Medicine 77 (1) (2017) 343–350.639

doi:10.1002/mrm.26548.640

[13] M. Palombo, C. Ligneul, C. Najac, J. Le Douce, J. Flament, C. Escartin, P. Hantraye,641

E. Brouillet, G. Bonvento, J. Valette, New paradigm to assess brain cell morphology by642

diffusion-weighted MR spectroscopy in vivo, Proceedings of the National Academy of Sci-643

ences 113 (24) (2016) 6671–6676. arXiv:http://www.pnas.org/content/113/24/6671.full.pdf,644

doi:10.1073/pnas.1504327113.645
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Figure 7: Geometry: 5 cylinders, myelin layer, Rin/Rout = 0.5, tight wrap ECS, ECS gap = 0.3, κ = 0 m/s,
ug = [1, 1, 1], σin = σout = σecs = 2 × 10−3 mm2/s, 3 experiments: PGSE (δ = 5ms,∆ = 5, 10, 20ms). Left: the
magnetization at ∆ = 5ms. Right: the ADC values. The vertical bars indicate the ADC in each compartment. The
ADC in the rightmost position is the ADC that takes into account the diffusion in all the compartments.
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Figure 8: Geometry: 2 cylinders, no myelin layer, tight wrap ECS, ECS gap = 0.3, κ = 0 m/s, σout = σecs =
2× 10−3 mm2/s, PGSE (δ = 2.5ms,∆ = 5ms).
Left: canonical configuration. Middle: bend parameter = 0.05. Right: twist parameter = 0.30. Top: FE mesh
of the ECS (the FE mesh of the axon compartments numbered 1 and 2 not shown). Bottom: interpolated values
of the HADC on the unit sphere, and then the sphere was distorted to reflect the value of the HADC. The color
axis also gives the value of the HADC in the various gradient directions. The black dots indicate the 20 original
gradient-directions in which the HADC was simulated. The spherical harmonics interpolation takes the 20 original
directions into 900 directions uniformly distributed on the sphere.
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Figure 9: Signal difference between the Matrix Formalism signal (reference) and the SpinDoctor signal. Left: κ =
10−5 m/s. Right: κ = 10−4 m/s. The geometry is 3LayerCylinder. The diffusion coefficient in all compartments
is 2 × 10−3 mm2/s; the diffusion-encoding sequence is PGSE (δ = 10ms, ∆ = 13ms); Simul 1: rtol = 10−3,
atol = 10−6, Htetgen = −1; Simul 2: rtol = 10−6, atol = 10−9, Htetgen = −1; Simul 3: rtol = 10−9, atol = 10−12,
Htetgen = −1; Simul 4: rtol = 10−3, atol = 10−6, Htetgen = 1; Simul 5: rtol = 10−6, atol = 10−9, Htetgen = 1;
Simul 6: rtol = 10−9, atol = 10−12, Htetgen = 1;

Figure 10: The geometry is ECS400axons. This finite elements mesh size is (nnodes = 53280, nelem = 125798).

43



Figure 11: The geometry is DendriteBranch. This finite elements mesh size is (nnodes = 24651, nelem = 91689)

Figure 12: The geometry is ECC200axons. This finite elements mesh size is (nnodes = 846298, nelem = 2997386)
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Figure 13: The geometry is ECS400axons. Top: SpinD Simul 1 is the reference signal, compared to two Camino
simulations. Bottom left: the signal difference between the reference simulation and two SpinDoctor simulations
and two Camino simulations. Bottom right: the computational times of SpinDoctor simulations as a function of the
gradient amplitude. The diffusion coefficient is 2×10−3 mm2/s; The diffusion-encoding sequence is PGSE (δ = 10ms,
∆ = 13ms); The gradient direction is [1, 1, 0]. SpinD Simul 1: rtol = 10−3, atol = 10−6, Htetgen = 0.5; SpinD
Simul 2: rtol = 10−3, atol = 10−6, Htetgen = 1; SpinD Simul 3: rtol = 10−3, atol = 10−6, Htetgen = −1; Camino
Simul 1: N = 1000, T = 200; Camino Simul 2: N = 4000, T = 800;
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Figure 14: The geometry is DendriteBranch. Top: SpinD Simul 1 is the reference signal, compared to three Camino
simulations. Bottom left: the signal difference between the reference simulation and a SpinDoctor simulation and
three Camino simulations. Bottom right: the computational times of SpinDoctor simulations as a function of the
gradient amplitudes. The diffusion coefficient is 2×10−3 mm2/s; The diffusion-encoding sequence is PGSE (δ = 10ms,
∆ = 13ms); The gradient direction is [1, 1, 0]. SpinD Simul 1: rtol = 10−3, atol = 10−6; SpinD Simul 2: rtol = 10−2,
atol = 10−4; Camino Simul 1: N = 1000, T = 200; Camino Simul 2: N = 2000, T = 400; Camino Simul 3: N = 4000,
T = 800;
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Figure 15: Computational times of SpinDoctor to simulate one b-value (either b = 100 s/mm2 or b = 1000 s/mm2).
The x-axis gives log 10 of the number of finite elements nodes. The data include 3 FE meshes of ECS400axons, 1
FE mesh of DendriteBranch, and 2 FE meshes of ECS200axons. The y-axis gives the log 10 of the comptational
time in minutes. Below y = 0 are computational times that are less than one minute. The two sequences simulated
are PGSE sequence (δ = 10ms, ∆ = 13ms) and PGSE sequence (δ = 10ms, ∆ = 23ms). The diffusion coefficient is
2× 10−3 mm2/s; The gradient direction is [1, 1, 0].

47



0 2000 4000 6000 8000 10000

b-value (s/mm2)

0

0.2

0.4

0.6

0.8

1
S

ig
na

l

SpinD Simul 1 (Ref)
Camino Simul 1
Camino Simul 2

0 2000 4000 6000 8000 10000

b-value (s/mm2)

0

0.5

1

1.5

2

2.5

3

3.5

4

S
ig

na
l d

iff
er

en
ce

 (
%

)

SpinD Simul 2
SpinD Simul 3
Camino Simul 1
Camino Simul 2

Figure 16: The Permeable Sphere example involves uniformly placed initial spins inside a sphere of radius 5µm,
subject to permeable interface condition on the surface of the sphere, with permeability coefficient κ = 10−5 m/s.
Left: the SpinDoctor simulation on the finest mesh as the reference signal and two Camino signals. Right: the signal
difference between the reference signal and two SpinDoctor simulations and two Camino simulations. SpinD Simul
1: rtol = 10−3, atol = 10−6, Htetgen = 0.5; SpinD Simul 2: rtol = 10−3, atol = 10−6, Htetgen = 1; SpinD Simul
3: rtol = 10−3, atol = 10−6, Htetgen = −1; Camino Simul 1: N = 4000, T = 800; Camino Simul 2: N = 8000,
T = 3200; The diffusion coefficient in all compartments is 2×10−3 mm2/s; The diffusion-encoding sequence is PGSE
(δ = 10ms, ∆ = 13ms); The gradient direction is [1, 1, 0].
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Figure 17: DMRI signals of the PGSE and the double PGSE diffusion-encoding sequences. The geometry is made
of cylindrical cells, the myelin layer, and the ECS (see Figure 7). The diffusion coefficient in all compartments is
2×10−3 mm2/s and the compartments do not experience spin exchange, with all permeability coefficients set to zero.
The diffusion-encoding sequeces are PGSE (δ = 10ms,∆ = 13ms) and dPGSE sequences (δ = 10ms,∆ = 13ms, τ =
δ + ∆), the diffusion-encoding direction is ug = [1, 1, 1].
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Figure 18: DMRI signal including T2 = [50ms, 20ms, 100ms] relaxation is lower than the signal without relaxation
effects (”no T2”). The T2 effects are completely canceled out using Eq. 23 so that the curve ”cancel T2” coincides with
the no relaxation signal. The geometry is made of cylindrical cells, the myelin layer, and the ECS (see Figure 7). The
diffusion coefficient in all compartments is 2× 10−3 mm2/s and the compartments do not experience spin exchange,
with all permeability coefficients set to zero. The diffusion-encoding sequece is PGSE (δ = 10ms,∆ = 13ms), the
diffusion-encoding direction is ug = [1, 1, 1].
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