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TWO DIMENSIONAL NEIGHBORHOODS OF ELLIPTIC CURVES: ANALYTIC CLASSIFICATION IN THE TORSION CASE

We investigate the analytic classification of two dimensional neighborhoods of an elliptic curve with torsion normal bundle. We provide the complete analytic classification for those neighborhoods in the simplest formal class and we indicate how to generalize this construction to general torsion case. CONTENTS 1. Introduction and results 1 2. Preliminary remarks 3. Sectorial decomposition and sectorial symmetries 4. Analytic classification: an overview 5. Construction of U ϕ . 6. Construction of V ϕ . 7. Foliations 8. Symmetries 9. Sectorial normalization 10. Generalization to the case of trivial normal bundle 11. Torsion normal bundle. References 1 Strictly speaking, the linear part is more complicated in general, as it needs not fiber over the curve, as it is the case for the neighborhood of a conic in P 2 .

2 The moduli space is comparable with the ring of convergent power series C{X, Y }.

 and Perez-Marco [23], we can embed at least C{X} in the moduli space with a huge degree of freedom.

INTRODUCTION AND RESULTS

Let C be a smooth elliptic curve: C = C/Γ τ , where Γ τ = Z + τ Z, with (τ ) > 0. Given an embedding ι : C → U of C into a smooth complex surface U , we would like to understand the germ (U, ι(C)) of neighborhood of ι(C) in U . Precisely, we will say that two embeddings ι, ι : C → U, U are (formally/analytically) equivalent if there is a (formal/analytic) isomorphism Ψ : (U, ι(C)) → (U , ι (C)) between germs of neighborhoods making commutative the following diagram

(1.1) C ι / / id U Ψ C ι / / U
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By abuse of notation, we will still denote by C the image ι(C) of its embedding in U , and we will simply denote by (U, C) the germ of neighborhood.

1.1. Some historical background. The problem of analytic classification of neighborhoods of compact complex curves in complex surfaces goes back at least to the celebrated work of Grauert [START_REF] Grauert | Über Modifikationen und exzeptionelle analytische Mengen[END_REF]. There, he considered the normal bundle N C of the curve in U . The neighborhood of the zero section in the total space of N C , that we denote (N C , 0), can be viewed 1 as the linear part of (U, C). A coarse invariant is given by the degree deg N C which is also the self-intersection C • C of the curve. In this paper [START_REF] Grauert | Über Modifikationen und exzeptionelle analytische Mengen[END_REF], Grauert proved that the germ of neighborhood is "linearizable", i.e. analytically equivalent to the germ of neighborhood (N C , 0), provided that deg(N C ) is negative enough, namely deg(N C ) < 4 -4g for a curve of genus g > 0, and deg(N C ) < 0 for a rational curve g = 0. It was also clear from his work that even the formal classification was much more complicated when deg(N C ) > 0. At the same period, Kodaira investigated the deformation of compact submanifolds of complex manifolds in [START_REF] Kodaira | A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds[END_REF]. His result, in the particular case of curves in surfaces, says that the curve can be deformed provided that deg(N C ) is positive enough, namely deg(N C ) > 2g -2 for a curve of genus g > 0, and deg(N C ) ≥ 0 for a rational curve g = 0. Using these deformations, it is possible to provide a complete set of invariants for analytic classification for g = 0: (U, C) is linearizable when deg(N C ) ≤ 0 (Grauert for C.C < 0 and Savelev [START_REF] Savelev | Zero-type embeddings of the sphere into complex surfaces[END_REF] for C.C = 0), and there is a functional moduli 2 when deg(N C ) > 0 following Mishustin [START_REF] Mishustin | Neighborhoods of the Riemann sphere in complex surfaces[END_REF] (see also [START_REF] Luza | Projective structures and neighborhoods of rational curves[END_REF]). Also, when g > 0 and deg(N C ) > 2g -2, the analytic classification has been carried out by Ilyashenko [START_REF] Il Yashenko | Imbeddings of positive type of elliptic curves into complex surfaces[END_REF] and Mishustin [START_REF] Mishustin | Neighborhoods of Riemann curves in complex surfaces[END_REF]. In all these results, it is important to notice that formally equivalent neighborhoods are also analytically equivalent: the two classifications coincide for such neighborhoods. Such a rigidity property is called the formal principle (see the recent works [START_REF] Hwang | An application of Cartan's equivalence method to Hirschowitz's conjecture on the formal principle[END_REF][START_REF] Pereira | On the formal principle for curves on projective surfaces[END_REF] on this topic).

The case of an elliptic 3 curve g = 1 with deg(N C ) = 0, which is still open today, has been investigated by Arnold [START_REF] Arnol | Bifurcations of invariant manifolds of differential equations, and normal forms of neighborhoods of elliptic curves[END_REF] in another celebrated work. In this case, the normal bundle N C belongs to the Jacobian curve Jac(C) C = C/Γ τ and can be torsion 4 or not. Torsion points correspond to the image of Q + τ Q ⊂ C in the curve. Arnold investigated the non torsion case and proved in that case

• if N C is non torsion, then (U, C) is formally linearizable;

• if N C is generic 5 enough in Jac(C), then (U, C) is analytically linearizable;

• for non generic (and still non torsion) N C , there is a huge 6 moduli space for the analytic classification.

However, we are still far, nowadays, to expect a complete description of the analytic classification in the non torsion case. It is the first case where the divergence between formal and analytic classification arises. Also, it is interesting to note that the study of neighborhoods of elliptic curves in the case deg(N C ) = 0 has strong reminiscence with the classification of germs of diffeomorphisms up to conjugacy. It will be more explicit later when describing the torsion case. The goal of this paper is to investigate the analytic classification when the normal bundle is torsion, and show that we can expect to provide a complete description of the moduli space in that case. More precisely, the formal classification of such neighborhoods has been achieved in [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF]; we provide the analytic classification inside the simplest formal class, and we explain in Sections 10 and 11 how we think it should extend to all other formal classes, according to the same "principle".

1.2. Formal classification. An important formal invariant has been introduced by Ueda [START_REF] Ueda | On the neighborhood of a compact complex curve with topologically trivial normal bundle[END_REF] in the case deg(N C ) = 0 and g > 0. There, among other results, he investigates the obstruction for the curve to be the fiber of a fibration (as it would be in the linear case (N C , 0) when N C is torsion). The Ueda type k ∈ Z >0 ∪ {∞} is the largest integer for which the aforementioned fibration 7 of N C can be extended to the k th infinitesimal neighborhood of C (see [3, section 2] for a short exposition). When k = ∞, then we have a formal fibration, that can be proved to be analytic; the classification in that case goes back to the works of Kodaira, in particular in the elliptic case g = 1.

Inspired by Ueda's approach, it has been proved by Claudon, Pereira and the two first named authors of this paper (see [START_REF] Claudon | Compact leaves of codimension one holomorphic foliations on projective manifolds[END_REF]) that a formal neighborhood (U, C) with deg(N C ) = 0 carries many regular (formal) foliations such that C is a compact leaf. This construction has been improved in [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF][START_REF] Thom | Formal classication of two-dimensional neighborhoods of genus g ≥ 2 curves with trivial normal bundle[END_REF] showing that one can choose two of these foliations in a canonical way and use them to produce a complete set of formal invariants. In the elliptic case g = 1, there are k m + 1 independant formal invariants for finite fixed Ueda type k where m is the torsion order N ⊗m C = O C (see [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF]); for g > 1 and N C = O C (the trivial bundle), Thom founds infinitely many independant formal invariants in [START_REF] Thom | Formal classication of two-dimensional neighborhoods of genus g ≥ 2 curves with trivial normal bundle[END_REF].

In this paper, we only consider the case g = 1 where N C = O C is the trivial bundle, to which we can reduce via a cyclic cover whenever N C is torsion. Let us recall the formal classification in that case. For each Ueda type k ∈ Z >0 , let P ∈ C[X] be any polynomial of degree < k and ν ∈ C a scalar. To these data, we associate a germ of neighborhood (U k,ν,P , C) as follows. Writing C as a quotient of C * by a contraction:

C = C *
z / < z → qz > with z = e 2iπx and q = e 2iπτ , (|q| < 1) we similarly define (U k,ν,P , C) as the quotient of the germ of neighborhood (C * z × C y , {y = 0}) by the germ of diffeomorphism F k,ν,P = exp(v 0 + v ∞ ), where v 0 = y k+1 1+νy k ∂ y + 2iπτ

y k P ( 1 y ) 1+νy k z∂ z v ∞ = 2iπτ z∂ z or equivalently v 0 = 1 ξ k +ν (-ξ∂ ξ + 2iπτ zP (ξ)∂ z ) v ∞ = 2iπτ z∂ z by setting ξ = 1
y , in which case (U k,ν,P ) is regarded as a quotient of (C * z × C ξ , {ξ = ∞}). In the specific situation where k = 1, and then P is reduced to a constant P ≡ µ, we will use the notation (U 1,ν,µ , C) for the corresponding neighborhood.

The two vector fields v 0 and v ∞ span a commutative Lie algebra, and therefore an infinitesimal C 2 -action on the quotient neighborhood. By duality, we have a 2-dimensional vector space of closed meromorphic 1-forms spanned by -ω 0 = dy y k+1 + ν dy y

and ω ∞ = 1 2iπτ dz z -P ( 1 y ) y dy.

expressed also in the (z, ξ) coordinates as

ω 0 = ξ k-1 dξ + ν dξ ξ and ω ∞ = 1 2iπτ dz z + P (ξ) ξ dξ.
In particular, we get a pencil of foliations F t , t ∈ P 1 , by considering • either the phase portrait of the vector fields v t = tv 0 + v ∞ ,

• or ω t = 0 where ω t = ω 0 + tω ∞ .

When P = 0, F ∞ defines a fibration transversal to the curve C and the neighborhood is the suspension 8 of a representation : π 1 (C) → Diff(C, 0) taking values into the oneparameter group generated by v 0 = y k+1 1+νy k ∂ y . For t ∈ C finite, F t is always (smooth) tangent to C, i.e. C is a compact leaf; when P = 0, the same holds for F ∞ . For m + τ n ∈ Γ \ {0}, F τ n m+τ n is the unique foliation of the pencil whose holonomy along the corresponding loop m + τ n in π 1 (C) ∼ Γ is trivial (see Section 7). As proved in [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF]Theorem 1.3], the neighborhoods (U k,ν,P , C) span all formal classes of neighborhoods with trivial normal bundle N C = O C and finite Ueda type k; moreover, any two such neighborhoods are formally equivalent (U k,ν,P , C) ∼ for (U k ,ν ,P , C) if, and only if there is a k th -root of unity ζ such that: k = k , ν = ν and P (y) = P (ζy), ζ k = 1.

As explained in [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF]Theorem 1.5], the moduli space of those neighborhoods with two convergent foliations in a given formal class up to analytic conjugacy is infinite dimensional 9 , comparable with C{X}. A contrario, if a third foliation is convergent, then the neighborhood is analytically equivalent to its formal model (U k,ν,P , C). However, an example of a neighborhood without convergent foliation is given by Mishustin in [START_REF] Mishustin | On foliations in neighborhoods of elliptic curves[END_REF], and it is expected to be a generic property. In this paper, we describe the analytic classification of neighborhoods with Ueda type k = 1 in the most simple situation (Serre's example). We also provide in Sections 10 and 11 some evidence to the fact that a similar result holds more generally for torsion normal bundle N ⊗m C = O C , and finite Ueda type k < ∞. As we shall see, the moduli space is comparable with C{X, Y }.

1.3. The fundamental isomorphism. In order to explain our classification result, it is convenient to recall the following classical construction. For the simplest formal type (k, ν, P ) = (1, 0, 0), the neighborhood (U 1,0,0 , C) actually embeds into a ruled surface S 0 → C, namely one of the two indecomposable ruled surfaces over C after Atiyah [START_REF] Atiyah | Complex fibre bundles and ruled surfaces[END_REF]. Indeed, setting y = 1/ξ, the ruled surface is defined as the quotient S 0 = Ũ0 / < F 1,0,0 > where Ũ0 = C * z × C ξ and F 1,0,0 (z, ξ) = (qz, ξ -1) and the infinity section ξ = ∞ defines the embedding of the curve C ⊂ S 0 . The complement of the curve S 0 \ C is known to be isomorphic to the moduli space of flat line 8 in the sense of foliations 9 isomorphic to Écalle-Voronin moduli spaces bundles 10 over the elliptic curve, and has the structure of an affine bundle. The Riemann-Hilbert correspondance provides an analytic isomorphism with the space of characters Hom(π 1 (C), GL 1 (C)), which is isomorphic to C * × C * . Explicitely, the isomorphism is induced on the quotient S 0 by the following map

Π : S 0 \ C ∼ -→ C * X × C * Y ;
(z, ξ) → (e 2iπξ , ze 2iπτ ξ ). In this sense, we can view S 0 and P 1 X ×P 1 Y ⊃ C * X ×C * Y as two non algebraically equivalent compactifications of the same analytic variety. In fact, the algebraic structures of the two open sets are different as C * X × C * Y is affine, while S 0 \ C is not: there is no non constant regular function on it. This construction, due to Serre, provides an example of a Stein quasiprojective variety which is not affine (see [9, page 232]). Denote by D ⊂ P 1

X × P 1 Y the compactifying divisor, union of four projective lines: 

D = L 1 ∪ L 2 ∪ L 3 ∪ L 4 with
F t : {ω 0 + tω ∞ = 0} ←→ (1 -t)τ dX X + t dY Y = 0.
In particular, for m + τ n ∈ Γ ∼ π 1 (C) in the lattice, the unique foliation with trivial holonomy along m + τ n corresponds to the one with rational first integral X m Y n :

F τ n m+τ n ←→ m dX X + n dY Y = 0
and the ruling corresponds to a foliation with transcendental leaves:

F ∞ ←→ τ dX X - dY Y = 0.
Let us now study the isomorphism Π : S 0 \ C → P 1 × P 1 \ D near the compactifying divisors. Denote by V i a tubular neighborhood of L i in P 1 X × P 1 Y , of the form L i × disc say, and

V = V 1 ∪ V 2 ∪ V 3 ∪ V 4 the corresponding neighborhood of D. Denote by V * = V \ D the complement of D in V . On may think of U 1,0,0 \ C as Π -1 (V * ) 11 . Similarly, define V * i := V i \ D the complement of the divisor in V i and by U i = Π -1 (V * i ) the preimage: we have a decomposition neighborhood U 1,0,0 \ C = U 1 ∪ U 2 ∪ U 3 ∪ U 4 .
One can show that U i s look like sectorial domains of opening π in the variable y saturated by variable z (see Section 3.1). Our main result is that this sectorial decomposition together with isomorphisms Π i : U i → V * i persists for general neighborhoods (U, C) in the formal class (U 1,0,0 , C); we conjecture and actually give the strategy to prove that a similar result holds true for all formal types, whenever N C is torsion (see Section 10 ). 

F (z, y) = (qz + O(y 2 ), y + y 2 + y 3 + O(y 4 )).
There is a formal isomorphism

Ψ =   z + m≥2 a m (z)y m , y + n≥4 b n (z)y n   such that Ψ • F = F 1,0,0 • Ψ; we have a m , b n ∈ O(C * z )
and no convergence assumption in y-variable. We can also consider Ψ as a formal diffeomorphism (U, C) → (U 1,0,0 , C). The main ingredient of our classification result, proved in Section 9, is the 11 Actually, this correspondance is meaningful in the germified setting in the sense that a basis of neighborhood

(V α ) of D gives rise to a basis of neighborhoods (U α ) of C where U α = Π -1 (V α \ D) ∪ C.
Lemma A. Sectorial normalization. Denote = arg τ . For each interval

(1.3) I 1 =] -π, [, I 2 =]0, π[, I 3 = I 1 + π, I 4 = I 2 + π
there is a transversely sectorial domain 12 U i ⊂ U of opening I i and a diffeomorphism

Ψ i : U i → U 1,0,0
(onto its image) having Ψ as asymptotic expansion 13 along C, satisfying

Ψ i • F = F 1,0,0 • Ψ i .
After composition with the fundamental isomorphism Π :

U 1,0,0 → C * X × C * Y , we get Corollary B. The composition Π i = Π • Ψ i provides an isomorphism germ Π i : (U i , C) → (V * i , L i ) such that Π i = ϕ i,i+1 • Π i+1 on U i ∩ U i+1 for some diffeomorphism germs ϕ i,i+1 ∈ Diff(V i,i+1 , p i,i+1 ) 14 FIGURE 3. Sectorial normalization After patching copies of germs (V i , L i ) (P 1 X × P 1 Y , L i ) by the ϕ i,i+1 : (V i+1 , p i,i+1 ) → (V i , p i,i+1
), we get a new neighborhood germ (V ϕ , D) of the divisor D, where ϕ = (ϕ i,i+1 ) i∈Z4 , together with a diffeomorphism germ

Π : (U \ C, C) ∼ -→ (V ϕ \ D, D)
which does not depend on the choice of sectorial normalisations Ψ i .

More generally, consider a neighborhood (V, D) in which each component L i ⊂ D has zero self-intersection. Then after [START_REF] Savelev | Zero-type embeddings of the sphere into complex surfaces[END_REF], the neighborhood (V, L i ) is trivial (a product L i × disc). After identification with our model

ψ i : (V, L i ) ∼ → (P 1 X × P 1 Y , L i ),
we get that V takes the form V ϕ for a convenient 4-uple of diffeomorphisms ϕ. The gluing data 12 Given an interval 

I = [θ 1 , θ 2 ] ⊂ R, an open subset U 0 ⊂ U is
S(Iε, r) = {y ∈ C ; arg(y) ⊂ Iε, 0 < |y| < r}, Iε =]θ 1 + ε, θ 2 -ε[
for some r > 0 (See also Definitions 3.1 and 3.4). 13 The diffeomorphism Ψ i : U i → U 1,0,0 admits Ψi as an asymptotic expansion along C if the entries of its lift Ψi : Ũi → C * z × Cy admit the entries of Ψ as asymptotic expansion on each open subset C × S(Iε, r) (see Section 3.1). 14 These notations are explained in Subsection 3.3, but should be meaningful when looking at Picture 3.

ϕ is not unique as we can compose each embedding ψ i by an automorphism germ ϕ i ∈ Diff(V i , L i ) 15 Therefore, it is natural to introduce the following equivalence relation

ϕ ∼ ϕ ⇔ ∃ (ϕ i ∈ Diff(V i , L i )) i∈Z4 such that ϕ i • ϕ i,i+1 = ϕ i,i+1 • ϕ i+1 .
Clearly, the moduli space V of neighborhoods (V, D) up to analytic equivalence 16 identifies with the set of equivalence classes for ∼. Notice that each equivalence classe contains a representative ϕ such that ϕ 1,2 , ϕ 2,3 , ϕ 3,4 are tangent to the identity, and the linear part

ϕ 4,1 (X, Y ) = (aX + • • • , bY + • • • )
does not depend on the choice of such representative ϕ. Therefore, a, b ∈ C * are invariants for the equivalence relation, and we denote by V a,b the moduli space of those triples. With this in hand, we are able to prove:

Theorem C. We have a one-to-one correspondance between

U 1,0,0 ↔ V 1,1
• the moduli space U 1,0,0 of neighborhoods (U, C) formally equivalent to (U 1,0,0 , C) up to analytic equivalence 17 • the moduli space V 1,1 of neighborhoods (V ϕ , D) with all ϕ i,i+1 tangent to the identity.

Remark 1.1. A thorough look to the proof of the Sectorial Normalization Lemma (9) may prove that the correspondance is analytic in the sense that analytic families of neighborhoods t → (U t , C) correspond to analytic families of cocycles t → ϕ t . As the freedom lies in the choice of (essentially) one-dimensional diffeomorphisms ϕ i , it is quite clear that the moduli space is essentially parametrized by two-dimensional diffeomorphisms, and therefore quite huge.

In a similar vein, it is reasonable to expect that the analytic moduli space U 1,ν,µ of neighborhoods (U, C) formally equivalent to (U 1,ν,µ , C) is in one to one correspondance with V a,b with a = e -4π 2 ν and b = e -4π 2 τ (ν+µ) . Actually, we explain in Section 10 how to construct an embedding V a,b → U 1,ν,µ , but the surjectivity needs to adapt our Sectorial Normalization Lemma. This creates additional issues (of purely technical nature) and we just indicate briefly how to proceed. Actually, one directly adresses in loc.cit the general case Ueda type = k, where we inherit 4k sectors with opening π k and the moduli space would be then equivalent to the moduli of neighborhoods of cycles of 4k rational curves (the model must be thought as a degree k cyclic étale cover of (V, D)). A precise statement, summarizing the structure of the analytic moduli space when N C O C , is given in Section 10, Theorem E. With this in hand, it is not difficult to undertake the analytic classification of neighborhood when N C is torsion. The idea consists in reducing to the case of trivial normal bundle by an appropriate cyclic cover. This is settled in Section 11. 15 These notations are explained in Subsection 3.3, but should be meaningful when looking at Picture 3. 16 One requires each component of the cycle to be preserved 17 More precisely, we allow for this statement analytic isomorphisms inducing translations on C; see Proposition 4.3 for a more precise statement. 1.5. Foliations. A neighborhood (U, C) formally conjugated to (U 1,0,0 , C) admits a pencil of formal foliations Ft corresponding to F t in (1.2) via the formal normalization Ψ.

Theorem D. The foliation Ft is convergent if, and only if, there exists a representative ϕ in the corresponding equivalence class such that each ϕ i,i+1 preserves the foliation

(1 -t)τ dX X + t dY Y = 0.
In that case, these two foliations are conjugated via the isomorphism

U \ C → V \ D.
When F t is not of rational type, i.e. τ (1 -1 t ) ∈ Q ∪ {∞}, then F t is defined by a closed meromorphic 1-form and the logarithmic 1-form of the statement is also preserved by all ϕ i,i+1 and defines a global logarithmic 1-form on (V, D). On the other hand, in the rational case, Écalle-Voronin moduli of the holonomy provide obstruction to define the foliation by a closed meromorphic 1-form. For instance, when F 0 is convergent, Martinet-Ramis cocycle are given by the X-coordinate of ϕ 1,2 • ϕ 2,3 and ϕ 3,4 • ϕ 4,1 (see Section 7.9 for details).

In [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF], the two first authors with O. Thom provided the analytic classification of neighborhoods with 2 convergent foliations. In Section 7, we provide examples of neighborhoods with only one foliation, and also without foliation which is the generic case. An example without foliations has been given by Mishustin in [START_REF] Mishustin | On foliations in neighborhoods of elliptic curves[END_REF] few years ago and it would be nice to understand what is the corresponding invariant ϕ.

In Section 8, we investigate the automorphism group of neighborhood germs. We prove in Theorem 8.1 that it can be of three types: finite (the generic case), one dimensional and we get an holomorphic vector field (and in particular a convergent foliation), or two dimensional only in the Serre example.

1.6. SL 2 (Z) action. The analytic classification of resonant diffeomorphism germs of one variable is reminiscent in our classification result. However, there are strong differences like the fact that the sectorial trivialization is not unique in our case. Indeed, our sectorial decomposition U \ C = U 1 ∪ U 2 ∪ U 3 ∪ U 4 has been imposed by our choice of a basis for the lattice Γ = Z + τ Z. It comes from the sectorial decomposition of the holonomy maps of the two foliations F 0 and F 1 having cyclic holonomy, trivial along 1 and τ respectively. If we change for another basis

(m + τ n, m + τ n ), with m m n n ∈ SL 2 (Z)
then the change of coordinates

x = x m + τ n , ξ = (m + τ n)ξ + nx z = e 2iπx = z 1 m+τ n gives (S 0 , C) as the quotient of C * z × C ξ 18 by the transformation (z , ξ ) → (q z , ξ -1), q = e 2iπτ , τ = m + τ n m + τ n .
The new isomorphism is related to the previous one by a monomial transformation

(X , Y ) = (e 2iπξ , z e 2iπτ ξ ) = (X m Y n , X m Y n ).
Using sectorial normalization for a general neighborhood (U, C) with this new basis gives a new compactification (V , D) which is bimeromorphically equivalent to (V, D). 18 It may be useful to think of C * z × C ξ as the cyclic cover of S 0 associated to the subgroup m + nτ of Γ (see 9.1). 1.7. Concluding remarks. Contrary to the diophantine case (non torsion normal bundle), the classification of neighborhoods of elliptic curves with torsion normal bundle can be completely described, as shown in Theorem E. A naive reading of Arnold's work [START_REF] Arnol | Bifurcations of invariant manifolds of differential equations, and normal forms of neighborhoods of elliptic curves[END_REF] might suggest that classification of neighborhoods of elliptic curves with topologically trivial normal bundle could be similar to that of germs of one dimensional diffeomorphisms. In fact, the suspension of a representation Π 1 (C) → Diff(C, 0) permits to embed the moduli space of diffeomorphisms into that of neighborhoods. However, this latter one turns out to be much more complicated, even if the general approach by sectorial normalization and classifying cocycle is still in the spirit of Écalle-Voronin classification for resonant diffeomorphisms, or Martinet-Ramis' version. For instance, an unexpected phenomenon in the case of neighborhoods is that the sectorial covering is not unique, due to the SL 2 (Z)action. We can expect that the sectorial normalizations involve resurgent functions with lattice of singularities isomorphic to the lattice of the elliptic curve. Recall that the lattice of resurgence for resonant diffeomorphism has rank one. It would be interesting to better understand this phenomenon.

An important motivation to study neighborhoods was initially raised by Arnold: there is a close link with the study of germs of analytic diffeomorphisms of (C 2 , 0). Indeed, if we consider our model F 1,0,0 (z, y) = (qz, y 1-y ) at the neighborhood of (z, y) = (0, 0), then we get a semi-hyperbolic map whose space of orbits (when deleting z = 0) is obviously the neighborhood (U 1,0,0 , C) where C = C/ < qz >. One can investigate the analytic classification of small perturbations F := F 1,0,0 + • • • where dots are vanishing at sufficiently high order at the origin. Then, it is a classical fact that F has also an invariant manifold in the contracting direction |q| < 1, and the space of orbits gives rise to a neighborhood (U, C) formally equivalent to (U 1,0,0 , C). The analytic classification of these germs of semi-hyperbolic maps has been done by the last author with P. A. Fomina-Shaȋkhullina (see [START_REF] Voronin | Sectorial normalization of semihyperbolic mappings (Russian)[END_REF][START_REF] Shaȋkhullina | Functional invariants of typical germs of semihyperbolic mappings[END_REF]) and comparing the two moduli shows that moduli of maps embed in moduli of neighborhoods but is infinite codimensional. In fact, the analytic extension of the map F to the origin imposes strong restrictions on the corresponding invariants ϕ defined in subsection 1.4. It is interesting to consider the following hierarchy:

(1) one dimensional resonant diffeomorphisms in (C, 0), (2) singular points of foliation in (C 2 , 0) of resonant-saddle or saddle-node type, (3) singular points of vector fields in (C 2 , 0) of resonant-saddle or saddle-node type, (4) singular points of diffeomorphisms in (C 2 , 0) of resonant-saddle or saddle-node (i.e. semi-hyperbolic) type, (5) neighborhoods of elliptic curves with torsion normal bundle.

The first occurence gives rise to Écalle-Voronin moduli (see [START_REF] Écalle | Les fonctions résurgentes. Tome II. Les fonctions résurgentes appliquées à l'itération[END_REF][START_REF] Voronin | Analytic classification of germs of conformal mappings (C, 0) → (C, 0)[END_REF], and also [START_REF] Malgrange | Travaux d'Écalle et de Martinet-Ramis sur les systèmes dynamiques[END_REF]). One dimensional resonant diffeomorphisms also occur as monodromy map of those foliations arising in case [START_REF] Atiyah | Complex fibre bundles and ruled surfaces[END_REF]. These latter ones have been classified by Martinet-Ramis in [START_REF] Martinet | Problèmes de modules pour des équations différentielles non linéaires du premier ordre[END_REF][START_REF] Martinet | Classification analytique des équations différentielles non linéaires résonnantes du premier ordre[END_REF] and the classification on resonant-saddles and their monodromy map (1) turns out to be equivalent; however, saddle-node impose strong restriction to the invariants of its holonomy map (we can realize half of the moduli only). See [START_REF] Martinet | Problèmes de modules pour des équations différentielles non linéaires du premier ordre[END_REF][START_REF] Martinet | Classification analytique des équations différentielles non linéaires résonnantes du premier ordre[END_REF][START_REF] Malgrange | Travaux d'Écalle et de Martinet-Ramis sur les systèmes dynamiques[END_REF] for details. Classification of vector fields has been done by the third author with Meshcheryakova (see [START_REF] Voronin | Analytic classification of germs of holomorphic vector fields with a degenerate elementary singular point[END_REF] for instance) and independently by Teyssier [START_REF] Teyssier | Analytical classification of singular saddle-node vector fields[END_REF]. This gives rise to twice the moduli space of foliations: the classification of vector fields with same underlying foliation is solved by the linearization of the conjugacy equation for foliations. Still, the moduli space is parametrized by finitely many copies of C{x} (power-series in one variable). There is a huge step when we pass to diffeomorphisms in (C 2 , 0) as the moduli space is now parametrized by copies of C{x, y}. Diffeomorphisms occuring in (4) are actually one-time-map of formal vector fields of type (3), but divergent as a rule. We expect that resonant-saddle diffeomorphisms (4) have same classification as neighborhoods [START_REF] Écalle | Les fonctions résurgentes. Tome II. Les fonctions résurgentes appliquées à l'itération[END_REF], but classification of former ones looks somehow more delicate. It would also be nice to understand how Ueda's results [START_REF] Ueda | Local structure of analytic transformations of two complex variables[END_REF][START_REF] Ueda | Local structure of analytic transformations of two complex variables[END_REF] can be related to our work from that point of view. Also, diffeomorphisms of (C 2 , 0) arise as monodromy map of reduced singular foliations by curves in (C 3 , 0) and we can expect that the analytic classification is similar under generic conditions on the spectrum.

One might expect to investigate higher dimensional neighborhood of elliptic curve with trivial normal bundle by mimicking what has been done in [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF] for the formal classification, and in the present paper regarding analytic classification. We haven't considered this direction at all. However, it might be interesting to note that Ueda's Theory has been generalized to higher codimension by Koike in [START_REF] Koike | Higher codimensional Ueda theory for a compact submanifold with unitary flat normal bundle[END_REF]. What would be the higher dimensional analogue of Serre's isomorphism ? F (z, y) = (qz + yf (z, y), λ(z)y + y 2 g(z, y))

with f, g holomorphic on a neighborhood of {y = 0}, where q = e 2iπτ and λ ∈ O * (C * z ). Proof. The self-intersection C • C determines topologically the germ of neighborhood. Then, by taking a suitable small representative, U is homeomorphic to a product D × C. So, one can consider the cyclic covering Ũ → U extending the cyclic cover C → C. This gives rise to a neighborhood Ũ of C C * . Following Siu [START_REF] Siu | Every Stein subvariety admits a Stein neighborhood[END_REF], the germ of this neighborhhood along C is isomorphic to the germ of a neighborhood of the zero section {y = 0} in the normal bundle N C C * z × C y . The deck transformation of the (germ of) covering takes the form F of the statement.

Definition/Proposition 2.2. 19 Any two quotients ( Ũ , C)/ < F > and ( Ũ , C)/ < F > are analytically (resp. formally) equivalent, and we note

(U, C) an ∼ (U , C) (resp. (U, C) for ∼ (U , C)),
if there is a germ of analytic (resp. formal) diffeomorphism

(2.2) Ψ(z, y) = z + ∞ n=1 a n (x)y n , ∞ n=1 b n (x)y n such that Ψ • F = F • Ψ.
Although the formal classification is already done in [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF], we need the following formulation and give some basic steps. 19 Actually, one can, as usually, define analytic/formal conjugations between both neighborhoods in terms involving only the structural analytic/formal sheaves along C. The two definitions obviously coincide.

Proposition 2.3. A germ of neighborhood (U, C) is formally equivalent to (U 0 , C) = ( Ũ , C)/ < F 1,0,0 >, F 1,0,0 (z, y) = qz, y 1 -y
if, and only if, it is biholomorphic to a germ of the form ( Ũ , C)/ < F > where

(2.3)
F (z, y) = (qz + y 2 f (z, y), y + y 2 + y 3 + y 4 g(z, y)).

In that case, there exists a formal diffeomorphism (tangent to the identity along C)

(2.4) Ψ(z, y) = z + n>0 a n (z)y n , y + n>1 b n (z)y n with a n , b n ∈ O(C * z )
(and no convergence condition on y), such that (2.5)

Ψ • F = F 1,0,0 • Ψ.
Moreover, any other formal diffeomorphism Ψ of the form (2.4) satisfying (2.5) writes

(2.6) Ψ = Φ • Ψ where Φ(z, y) = (z, y 1 -ty ) = (z, y + ty 2 + • • • ), t ∈ C. Proof. Let g = n∈Z g n z n be holomorphic on C * z . The functional equation (2.7) φ(qz) -φ(z) = g(z)
admits a solution φ holomorphic on C * z if, and only if, g 0 = 0; then φ is unique up to the choice of φ(0). Indeed, if we write φ(z) = n∈Z φ n z n , then equation (2.7) writes φ n (q n -1) = g n for all n.

Let f be a holomorphic non vanishing function on

C * z . The functional equation (2.8) ϕ(qz)/ϕ(z) = f (z)
admits a solution ϕ holomorphic and non vanishing on C * z if, and only if, • f : C * → C * has topological index 0 so that g = log(f ) is well-defined,

• the coefficient g 0 of g = n∈Z g n z n vanishes. Indeed, topological index is multiplicative and those of ϕ(qz) and ϕ(z) are equal and cancel each other. Then we can solve the corresponding equation (2.8) for g and set ϕ = exp(φ), which is unique up to a multiplicative constant. Note that, if g 0 = 0, then we can solve (2.9) ϕ(qz)/ϕ(z) = f (z) a for a = exp(g 0 ).

Let us start with F like in (2.1). The change of coordinate Ψ 1 (z, y) = (z, f (z)y) yields

Ψ -1 1 • F • Ψ 1 (z, y) = (qz + O(y), ϕ(z) ϕ(qz) f (z)y + O(y 2 )).
We can easily check that the coefficient f in F defines the normal bundle N C in the quotient, and its topological index coincides with deg(N C ) which is zero in our case. Then we can find ϕ ∈ O * (C * z ) satisfying (2.8) and get

F 1 (z, y) = Ψ -1 1 • F • Ψ 1 (z, y) = (qz + O(y), ay + O(y 2 ))
. Moreover, ϕ is unique up to a multiplicative constant. The coefficient a can be interpreted as a flat connection on N C with trivial monodromy along the loop 1 ∈ Γ and monodromy a along the loop τ ∈ Γ. In our case, N C = O C and a = 1 and we can write

F 1 (z, y) = (qz + O(y), y + g(z)y 2 + O(y 3 )). Now the change of coordinate Ψ 2 (z, y) = (z, y + φ(z)y 2 ) gives Ψ -1 2 • F 1 • Ψ 2 (z, y) = (qz + O(y), y + [g(z) + φ(z) -φ(qz)]y 2 + O(y 3 )).
Solving equation (2.7), we get

F 2 (z, y) = Ψ -1 2 • F 1 • Ψ 2 (z, y) = (qz + O(y), y + by 2 + O(y 3 
)). In our case, b = 0 (i.e. Ueda type k = 1). By using a change (z, λy) (freedom in the choice of ϕ above) we can set b = 1 and write F 2 (z, y) = (qz + zf (z)y + O(y 2 ), y + y 2 + g(z)y 3 + O(y 4 )).

The change of coordinate Ψ 3 (z, y) = (z + ϕ(z)y, y + φ(z)y 3 ) gives

F 3 (z, y) = Ψ -1 3 • F 2 • Ψ 3 (z, y) = (qz + z[f (z) + ϕ(z) -ϕ(qz)]y + O(y 2 ), y + y 2 + [g(z) + φ(z) -φ(qz)]y 3 + O(y 4 )).
Solving twice equation (2.7), we get

F 3 (z, y) = (qz + αzy + O(y 2 ), y + y 2 + βy 3 + O(y 4 )).
Here, we have no freedom and α, β are formal invariants corresponding to µ, ν in the end of Section 1.4: in the formal class U 1,0,0 we get α = 0 and β = 1. Then, we can kill-out all higher order terms in F by a formal change of coordinate, or better normalize it to F 1,0,0 . Indeed, at the N th step, we get

F N (z, y) = (qz + zf (z)y N -1 + O(y N ), y + y 2 + y 3 + • • • + g(z)y N +1 + O(y N +2 )); the coordinate change Ψ N +1 (z, y) = (z + azy N -2 + ϕ(z)y N -1 , y + by N + φ(z)y N +1 ) gives F N +1 (z, y) = Ψ -1 N +1 • F N • Ψ N +1 (z, y) = (qz + z[f (z) + ϕ(z) -ϕ(qz) -(N -2)aq]y N -1 + O(y N ), y + y 2 + y 3 + • • • + [g(z) + φ(z) -φ(qz) -(N -4)b]y N +1 + O(y N +2 )).
We can clearly normalize the two coefficients into brackets by a constant, and can even choose the constant by means of a, b.

The composition of all changes of coordinates Ψ-

1 := Ψ 1 • Ψ 2 • Ψ 3 • • •
• converges in the formal topology as a formal diffeomorphism satisfying (2.5). For any other formal diffeomorphism Ψ of the form (2.4) satisfying (2.5), we have that Φ := Ψ • Ψ-1 is an automorphism of (U 0 , C) inducing the identity on C. As we shall see in Lemma 3.9, Φ is necessarily convergent and of the form (2.6).

SECTORIAL DECOMPOSITION AND SECTORIAL SYMMETRIES

In this section, we introduce the sectorial decomposition of U by transversely sectorial domains U i = Π -1 (V * i ) and compare spaces of functions on both sides. From now on, we work in the variable ξ = 1/y, at the neighborhood of ξ = ∞; this is much more convenient for computations. Notations are as in Section 1.3. 

(f ) = 0≤k≤m a k ξ -k ∈ O(C * z )[ξ -1 ] such that ∀ c >> 0, ∃ C c , R c > 0 such that ∀(z, ξ) ∈ S(I, R c ; c) ⊂ Σ I , we have (3.1) |f (z, ξ) -P m (f )(z, ξ)| ≤ C c |ξ m+1 | . Note that P m (f ) is necessarily unique. Define A(Σ I ) = m A m (Σ I ).
Then one can associate to f its asymptotic expansion along {ξ = ∞}. This is a formal

power series f ∈ O(C * z )[[ξ -1 ]
] whose truncation at order m coincide with P m (f ). The asymptotic expansion is then unique, and we have a well-defined morphism of C-algebras

A(Σ I ) → O(C * z )[[ξ]] ; f → f , whose kernel, denoted A ∞ (Σ I ), consists of flat functions.
When fixing only I and taking inductive limits associated to restriction maps, the collection of algebras of the form O(Σ I ) define an algebra of germs O I . The presheaf on S 1 defined by I → O I naturally gives rise to a sheaf on S 1 which we will denote by O. One can define on the same way the sheaves A m , A, A ∞ respectively associated to I → A m I , I → A I , I → A ∞ I and the last two are sheaves of differential algebras with respect to ∂ z and ∂ ξ . The stability by derivation is indeed a straighforward consequence of Cauchy's formula. As the asymptotic expansion is independant of the representative, we have a morphism of sheaves

A → O(C * z )[[ξ]] ; f → f whose kernel is A ∞ I (here O(C * z )[[ξ]
] is viewed as a constant sheaf over S 1 ). Remark 3.3. Mind that the inclusion O I → O(I) (resp. A I → A(I)) is strict. For instance, one must think that a section f ∈ A(I) can be represented for every interval J I by a function belonging to A(Σ J ) for suitable sectors of opening J but does not necessarily admit a representative on a sector of the form Σ I . In other words, the domain of definition of f is a transversely sectorial open set in the following sense.

Definition 3.4. Given an interval

I =]θ 1 , θ 2 [⊂ R, an open subset Σ ⊂ S(I, 0; ∞) ⊂ C *
z × C ξ is said transversely sectorial of opening I if, for arbitrary large c >> 0 and small > 0, there exists R c, > 0 such that

S(I , R c, ; c) ⊂ Σ, where I =]θ 1 + , θ 2 -[.
Remark 3.5. The sheaves O, A and A ∞ are invariant under the action of a diffeomorphism F of the form (2.3) (expressed in the (z, ξ) coordinates). Moreover, this action is stalk-preserving due to the fact that F is tangent to the identity along C on the transversal direction ξ. In particular, they define similar sheaves of sectorial functions on the quotient (U, C) = ( Ũ , C)/ < F > by considering those sections invariant under F . We will denote by O[F ], A[F ] and A ∞ [F ] these latter sheaves. In the next section, we characterize sections of A ∞ [F 1,0,0 ](I) for special intervals I. 

I 1 =] -, π -[, I 2 =] -π, 0[, I 3 = I 1 + π and I 4 = I 2 + π. Denote by V i a (small enough) neighborhood of L i ⊂ P 1 X × P 1 Y where L 1 : {Y = 0}, L 2 : {X = ∞}, L 3 : {Y = ∞} and L 4 : {X = 0}. Denote D = L 1 ∪ L 2 ∪ L 3 ∪ L 4 , and V * i = V i \ D. Let V i,i+1 = V i ∩ V i+1 for i ∈ Z 4 and V * i,i+1 = V i,i+1 \ D. Recall that Π : S 0 \ C ∼ -→ C * X × C * Y ; (z, ξ) → (e 2iπξ
, ze 2iπτ ξ ). Then we have: 

U i = Π -1 (V * i ) lifts on Ũ = C * z × C ξ as a
transversely sectorial open set of opening I i (in the sense of Definition 3.4). Moreover, the lift of

Π -1 (V * i,i+1 ) = U i ∩ U i+1 is a transversely sectorial of opening I i ∩ I i+1 . Proof.
For instance, for a, b, c > 0, we easily check that

U 4,1 = {(X, Y ) ∈ C * × C * ; |X| < exp(-a), |Y | < exp(-b)} contains the sectorial open set (z, ξ) ∈ C * × C ; e -c < |z| < e c , Im(ξ) > a 2π , Im(τ ξ) > b + c 2π .
The remaining cases are similar and straightforward.

Denote

p i,i+1 = L i ∩ L i+1 . Denote by O 0 (V i , L i ) (resp. O 0 (V i,i+1 , p i,i+1
)) the set of germs of holomorphic functions on

(V i , L i ) (resp. (V i,i+1 , p i,i+1 )) vanishing along L i (resp. at p i,i+1 ). Denote by A ∞ [F 1,0,0 ] the subsheaf of A ∞ whose sections f are invariant by F 1,0,0 (z, ξ) = (qz, ξ -1). Proposition 3.7. A section f ∈ O(I i ) (resp. O(I i,i+1 )) belongs to A ∞ [F 1,0,0 ](I i ) (resp. A ∞ [F 1,0,0 ](I i,i+1 ) if, and only if, f = g • Π with g ∈ O 0 (V i , L i ) (resp. O 0 (V i,i+1 , p i,i+1 )).
Proof. As before, we only give the proof for I 4,1 , the other cases are similar. 

If f = g • Π with g ∈ O 0 (V 4,1 , p 4,1 ), then g(X, Y ) = Xg 1 (X, Y ) + Y g 2 (X, Y ) with g k holomorphic at p 4,1 (and therefore bounded), so that f (z, ξ) = e 2iπξ f 1 (z, ξ) + e 2iπτ ξ f 2 (z, ξ) with f k bounded: clearly, f is (exponentially) flat at ξ = ∞ in restriction to any sector S(J, R; c) ⊂ U 4,1 , with J I 4,1 . Conversely, let f ∈ A ∞ [F 1,0,0 ](I 4,
∀(z 0 , ξ 0 ) ∈ U 4,1 , ∀(s, t) ∈ [0, 1] × [0, 1], then (z, ξ) = (ξ 0 + s, e 2iπ(τ s-t) z 0 ) ∈ U 4,1 . If we denote (X 0 , Y 0 ) = Π(z 0 , ξ 0 ), then the image of (z, ξ) while (s, t) runs over the square is (X, Y ) = Π(z, ξ) = (e 2iπs X 0 , e 2iπt Y 0 ) a product of two loops. Therefore, the image Π(U 4,1 ) contains an open set W which is saturated by the toric action of S 1 × S 1 on C * X × C * Y , i.e. a Reinhardt domain (see [25, Chap.1,sec.2]
), and which contains U 4,1 (just take W to be the image of all those (z, ξ) like above when (z 0 , ξ 0 ) runs over U 4,1 ). Since f is invariant under F 1,0,0 , i.e. f • F 1,0,0 = f , then it factors through Π and, maybe passing to another representative, we have f = g • Π where g ∈ O(W ). Mind that W (as well as Π(U 4,1 )) might not be of the form W \ (W ∩ D) for a neighborhood W of p 4,1 , but we will prove that the holomorphic hull of g is such a neighborhood.

As W is a Reinhardt domain, let us consider the (convergent) Laurent series of g:

g(X, Y ) = m,n∈Z a m,n X m Y n .
The coefficients are given by the integral

a n,m = 1 2iπ β ξ 0 ( 1 2iπ α ξ 0 g(X, Y )X -n-1 Y -m-1 dX)dY
where α ξ0 (s) = (e 2iπs X 0 , Y 0 ) and β ξ0 (t) = (X 0 , e 2iπt Y 0 ). This can be rewritten as

a n,m = 1 t=0 ( 1 s=0 g(X, Y )X -m 0 Y -n 0 e -2iπ(ms+nt) ds)dt
from which we deduce the estimate

|a n,m | ≤ 1 t=0 ( 1 s=0 |g(X, Y )X -m 0 Y -n 0 |ds)dt |a n,m | ≤ g(X, Y ) W |z 0 | n |e -2iπ(m+τ n)ξ0 | |a n,m | ≤ f U4,1 |z 0 | n e 2π {(m+τ n)ξ0} .
Now, given m, n ∈ Z, assume that there exists θ ∈ I 4,1 such that (e iθ (m + τ n)) > 0. The above inequality promptly implies that a n,m = 0 by fixing z 0 and making ξ 0 → ∞ in the direction θ (which is possible in U 4,1 as its opening is I 4,1 ). This is possible if, and only if

arg(m + τ n) + I 4,1 intersects ] -π, 0[ mod 2π which, since I 4,1 =]0, π -[, means that arg(m + τ n) ∈ ] -π, 0[ -]0, π -[ = ] -π, 0[ + ] -π, 0[ = ] -2π, 0[.
It promptly follows that the only non zero coefficients a m,n occur when

arg(m + τ n) ∈ [0, ]
which means that m, n ≥ 0, and g extends holomorphically at p 4,1 : X = Y = 0. Finally, since f → 0 as ξ → ∞, we get that a 0,0 = 0 and g(0, 0) = 0.

Remark 3.8. The second part of the proof does not use the fact that f is flat (i.e. admits asymptotic expansion zero) along C, but only the fact that it is bounded. As a consequence, any bounded holomorphic function on a transversely sectorial open set U i or U i,i+1 as above automatically admits a constant as asymptotic expansion along C. We note that bounded functions on U 1 , U 3 (resp. U 2 , U 4 ) therefore correspond to first integrals of the foliation F 1 (resp. F 0 ).

Sheaves of sectorial automorphisms.

Denote by Aut(S 0 ) the automorphism group of the ruled surface S 0 whose elements induce translations on C. It preserves the ruling as well as the section C ⊂ S 0 , inducing an action on the neighborhood of C. The subgroup Aut C (S 0 ) of elements fixing C point-wise is the one-parameter group generated by the flow of the vector field 21 ∂ ξ = 2iπ(X∂ X + τ Y ∂ Y ). We have an exact sequence

(3.2) 1 -→ Aut C (S 0 ) -→ Aut(S 0 ) -→ Aut 0 (C) -→ 1
where Aut 0 (C) is the translation group on C. The group Aut(S 0 ) is connected and generated by the flows of

(3.3) ∂ ξ + 2iπτ z∂ z = 2iπX∂ X and -2iπz∂ z = 2iπY ∂ Y
It is then easy to check that the full group of automorphisms Aut(S 0 ) of S 0 is generated by Aut(S 0 ) and a finite order map which, for a general curve C, is just an involution that can be chosen to be (z, ξ) → ( 1 z , -ξ). In fact, specializing Aut(S 0 ) to the neighborhood of the curve, we get all analytic, and even formal automorphisms of the neighborhood (S 0 , C): Lemma 3.9. Any formal automorphism Φ : (S 0 , C) fixing C point-wise is actually convergent and belongs to Aut C (S 0 ).

Proof. Recall [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF] that the only formal regular foliations on (S 0 , C) are those defined by ω = 0 where ω belongs to the vector space of closed 1-forms E = C dz z + Cdξ. Moreover, for ω ∈ E \ C dz z , F ω does not admit non constant formal meromorphic first integral, and the only formal closed meromorphic 1-forms defining F ω must be a constant multiple of ω, thus belonging to E. If

Φ(z, ξ) =   z + n>0 a n (z) ξ n , n≥0 b n (z) ξ n   21 See notations of section 1.3.
is a formal automorphism of (S 0 , C) fixing C point-wise, then it must preserve the vector space E. In particular, it must preserve C dz z (and z actually as it fixes C point-wise) and sends dξ to some other element α dz z + βdξ. A straightforward computation shows that

Φ writes Φ(x, ξ) = (z, α log(z) + βξ + γ) , γ ∈ C,
and we have α = 0. Finally, as Φ must commute with F 1,0,0 (z, ξ) = (qz, ξ -1), we get β = 1.

Corollary 3.10. 22 Any formal automorphism Φ : (S 0 , C) is actually convergent and belongs to Aut(S 0 ).

Proof. The formal diffeomorphism Φ induces an automorphism of C. Using exact sequence (3.2), after composing Φ by a convenient element of Aut(S 0 ), we can assume that it fixes C point-wise, and then apply Lemma 3.9.

Definition 3.11. Let us consider the germs of sectorial biholomorphisms in the direction arg(ξ) = θ of ( Ũ , C) that are tangent to the identity:

Φ(z, ξ) = (z + f 1 (z, ξ) ξ , ξ + f 2 (z, ξ) ξ ), f 1 , f 2 ∈ A θ .
The collection of these germs when varying θ naturally gives rise to a sheaf of groups (with respect to the composition law) on S 1 that will be denoted by G 1 . We will consider for further use the subsheaf G ∞ of G 1 of germs of sectorial biholomorphisms flat to identity, i.e. when

f 1 , f 2 ∈ A ∞ θ . Denote by G 1 [F 1,0,0 ] (resp. G ∞ [F 1,0,0 ]) the subsheaf of G 1 (resp. G ∞ ) defined by germs of transformations Φ commuting with F 1,0,0 : Φ•F 1,0,0 = F 1,0,0 •Φ.
Remark 3.12. Note that Φ ∈ G 1 [F 1,0,0 ] implies that its asymptotic expansion Φ also commutes with F 1,0,0 , i.e. Φ•F 1,0,0 = F 1,0,0 • Φ. According to the description of the formal centralizer of F 1,0,0 in Lemma 3.9, it turns out that G

1 [F 1,0,0 ] = G ∞ [F 1,0,0 ] Aut C (S 0 )
where Aut C (S 0 ) is regarded as a constant sheaf on S 1 .

We would like to apply characterization of A ∞ [F 1,0,0 ](I) obtained in the previous section for our special sectors I i and I i,i+1 to obtain a similar characterization of sections of G ∞ [F 1,0,0 ]. For this, denote by Diff(V i , L i ) the group of germs of biholomorphisms of (V i , L i ) which preserves the divisor (D ∩ V i ), for instance:

(3.4) Diff(V 1 , L 1 ) = {ϕ(X, Y ) = (Xa(Y ), Y b(Y )) ; a, b ∈ C{Y }, a(0), b(0) = 0}
and by Diff 1 (V i , L i ) the subgroup of germs tangent to the identity along L i , i.e. a(0) = b(0) = 1 in example (3.4). In a similar way, denote by Diff(V i,i+1 , p i,i+1 ) the group of germs of biholomorphisms of (V i,i+1 , p i,i+1 ) which preserve the germ of divisor (D ∩ V i,i+1 , p i,i+1 ) and by Diff 1 (V i,i+1 , p i,i+1 ) the subgroup of germs tangent to the identity at p i,i+1 . For instance:

Diff(V 4,1 , p 4,1 ) = {ϕ(X, Y ) = (Xa(X, Y ), Y b(X, Y )) ; a, b ∈ C{X, Y }, a(0), b(0) = 0}, and Diff 1 (V 4,1 , p 4,1 ) is characterized by a(0) = b(0) = 1.
Proposition 3.13. We have the following characterizations:

• Φ ∈ G ∞ [F 1,0,0 ](I i ) if and only if Π • Φ = ϕ • Π where ϕ ∈ Diff 1 (V , i L i ); • Φ ∈ G ∞ [F 1,0,0 ](I i,i+1 ) if and only if Π • Φ = ϕ • Π where ϕ ∈ Diff 1 (V i,i+1 , p i,i+1 ).
Proof. For any interval I, a section Φ of G ∞ (I) can be written

Φ(z, ξ) = (z(1+f 1 ), ξ+f 2 ) with f 1 , f 2 ∈ A ∞ (I). Then Φ belongs to G ∞ [F 1,0,0 ](I) if, and only if, f 1 , f 2 are invariant by F 1,0,0 , i.e. f 1 , f 2 ∈ A ∞ [F 1,0,0 ](I)
. Assume now I = I 4,1 , say. Then, by Proposition 3.7, one can write

f k = g k • Π, i.e. f k (z, ξ) = g k (X, Y ), with g k ∈ O 0 (V 4,1 , p 4,1
). Therefore, one can write

Π • Φ = (Xa(X, Y ), Y b(X, Y )) with a = e 2iπg2(X,Y ) , b = e 2iπτ g2(X,Y ) (1 + g 1 (X, Y )) -1 .
Clearly, a, b are holomorphic at (X, Y ) = (0, 0) and a(0,

0) = b(0, 0) = 1. Conversely, given ϕ ∈ Diff 1 (V 4,1 , p 4,1 ), thus of the form ϕ(X, Y ) = (Xa(X, Y ), Y b(X, Y )), we recover f 1 , f 2 ∈ A ∞ [F 1,0,0 ](I 4,1 ), and Φ(z, ξ) = (z(1 + f 1 ), ξ + f 2 )
, by setting

f 1 = a τ b -1 • Π and f 2 = log(a) 2iπ • Π. The description of elements of G ∞ [F 1,0,0 ](I i ), G ∞ [F 1,0,0 ](I i,i+1
) can be carried out exactly along the same line.

ANALYTIC CLASSIFICATION: AN OVERVIEW

Here, we would like to detail our main result, namely the analytic classification of all neighborhoods that are formally equivalent to (U 1,0,0 , C). The most technical ingredient is the sectorial normalization (Lemma A in the introduction) which now reads as follows. Let F be a biholomorphism like in Proposition 2.3

F (z, ξ) =   qz + n≥2 α n (z) ξ n , ξ -1 + n≥2 β n (z) ξ n   .
In particular, there is a formal diffeomorphism Ψ (that can be assumed to be tangent to the identity along

C) conjugating F to F 1,0,0 (z, ξ) = (qz, ξ -1), i.e. F • Ψ = Ψ • F 1,0,0 .
Lemma 4.1. Denote = arg τ . For each interval (4.1)

I 1 =] -, π -[, I 2 =] -π, 0[, I 3 = I 1 + π and I 4 = I 2 + π, there is a section Ψ i of G 1 (I i ) (see Definition 3.11) such that Ψ i • F = F 1,0,0 • Ψ i .
Section 9 is devoted to the proof of this lemma. Let us see how to use it in order to provide a complete set of invariants for the neighborhood (U, C) = ( Ũ , C)/ < F >. First of all, we note that Ψ i is unique up to left-composition by a section of G 1 [F 1,0,0 ](I i ), i.e. the composition of an element of the one-parameter group Aut C (S 0 ) with a section of G ∞ [F 1,0,0 ](I i ) (see Remark 3.12). Using this freedom, we may assume that asymptotic expansions coincide:

Ψi = Ψj = Ψ.
It follows that, on intersections I i,i+1 = I i ∩ I i+1 , we get sections

Φ i,i+1 := Ψ i • Ψ -1 i+1 ∈ G ∞ [F 1,0,0 ](I i,i+1
). Using Proposition 3.13, we have

Π • Φ i,i+1 = ϕ i,i+1 • Π for some ϕ i,i+1 ∈ Diff 1 (V i,i+1 , p i,i+1 ).

In other words, setting Π

i := Π • Ψ i , we get (4.2) Π i = Π • Ψ i = Π • Φ i,i+1 • Ψ i+1 = ϕ i,i+1 • Π • Ψ i+1 = ϕ i,i+1 • Π i+1
which proves Corollary B. We have therefore associated to each neighborhood (U, C) formally equivalent to (U 1,0,0 , C) a cocycle ϕ = (ϕ i,i+1 ) i∈Z4 which is unique up to the freedom for the choice of Ψ i 's.

Definition 4.2. We say that two cocycles ϕ and ϕ are equivalent if

∃t ∈ C, ∃ϕ i ∈ Diff 1 (V i , L i ) (4.3) such that ϕ i,i+1 = φ t • ϕ i • ϕ i,i+1 • ϕ -1 i+1 • φ -t where φ t = (e 2iπt X, e 2iπτ t Y ) is the one-parameter group of the vector field v τ = 2iπ(X∂ X + τ Y ∂ Y ).
We will denote this equivalence relation by ≈. Proof. According to the description of Aut C (S 0 ), a biholomorphism germ

(U, C) → (U , C) is indeed tangent to identity along C lifts-up to a global section Ψ ∈ G 1 (S 1 ) satisfying Ψ • F = F • Ψ. Let (Ψ i
) and (Ψ i ) be the sectorial normalizations used to compute the invariants ϕ and ϕ . Clearly, Ψ i • Ψ provides a new collection of sectorial trivializations for (U, C). We can write (using Remark 3.12)

Ψ i • Ψ = exp(t i ∂ ξ ) • Φ i • Ψ i with Φ i ∈ G ∞ [F 1,0,0 ](I i ).
However, as Ψi = Ψj and Ψ i = Ψ j , we have t i = t j =: t for all i, j. Therefore, we have

Φ i,i+1 = (Ψ i • Ψ) • (Ψ i+1 • Ψ) -1 = (exp(t∂ ξ ) • Φ i • Ψ i ) • (exp(t∂ ξ ) • Φ i+1 • Ψ i+1 ) -1 = exp(t∂ ξ ) • Φ i • Φ i,i+1 • Φ -1 i+1
• exp(-t∂ ξ ). After factorization through Π, using (3.3) and Proposition 3.13, we get the expected equivalence relation (4.3) for ϕ and ϕ . Conversely, if ϕ an ∼ ϕ , then we can trace back the existence of an analytic conjugacy Φ : (U, C) → (U , C) by reversing the above implications.

Remark 4.4. We can weaken the notion of analytic equivalence between neighborhoods by considering biholomorphism germs Φ : (U, C) → (U , C) inducing translations on C. This means that, in Definition 2.2, we now allow conjugacies Φ(z, y) = (cz + O(y), O(y)) with c ∈ C * in formula (2.2), i.e. translations on the elliptic curve. In that case, the corresponding cocycles are related by

ϕ i,i+1 = φ • ϕ i • ϕ i,i+1 • ϕ -1 i+1 • φ -1 where φ(X, Y ) = (aX, bY ) for arbitrary a, b ∈ C * 23 .
Having in mind the description given in (3.4), one observes that two cocycles are equivalent iff they lie on the same orbit over some action (that the reader will easily explicit) of the fiber product 23 Note that those are precisely the transformation arising from the natural torus action on P 1 × P 1 (see also Section 8). For the sake of clarity, we will state our general result (Section 10) modulo analytic isomorphisms inducing tranlations (and not only the identity) on C.

(O * × O * ) × 4 C * ×C *
of 4 copies of O * × O * with respect to the natural morphism O * × O * (f, g) → (f (0), g(0)) ∈ C * × C * .
To summarize, we have just associated to each (U, C)

for ∼ (U 1,0,0 , C) a cocycle (4.4) ϕ = (ϕ i,i+1 ) i∈Z4 , ϕ i,i+1 ∈ Diff 1 (V * i,i+1 , p i,i+1
) and constructed a map from the moduli space U 1,0,0 of such neighborhood up to analytic equivalence an ∼ to the moduli space C of cocycles ϕ like (4.4) up to equivalence (4.3):

(4.5) µ : U 1,0,0 = {(U, C) for ∼ (U 1,0,0 , C)}/an ∼ -→ C = {ϕ}/ ≈
which is proved to be injective in Proposition 4.3. In Section 5, we prove the surjectivity by constructing an inverse map ϕ → U ϕ . Before that, we want to reinterpret the cocycle ϕ as transition maps of an atlas for a neighborhood (V ϕ , D).

CONSTRUCTION OF U ϕ .

In this section, we construct a large class of non analytically equivalent neighborhoods, all of them formally equivalent to (U 1,0,0 , C). This is done by sectorial surgery, extending the complex structure along C by means of Newlander-Nirenberg Theorem. In order to do this, we have to work with smooth functions (i.e. of class C ∞ ). 

= (α 1 , α 2 , α 3 , α 4 ) ∈ N 4 , ∀n ∈ N, ∀K ⊂ C * compact, ∃C > 0 such that: ∀(z, ξ) ∈ Σ I , z ∈ K, we have ∂ α1+α2+α3+α4 f (z, ξ) ∂z α1 ∂ξ α2 ∂ zα3 ∂ ξα2 ≤ C |ξ n+1 | .
Passing to inductive limits and sheafification as in Section 3.1, we get a sheaf E ∞ of differential algebra on the circle S 1 . Like in Section 3.3, we can also define the sheaf of groups D ∞ on the circle, whose sections Ψ ∈ D ∞ (I) are smooth sectorial diffeomorphisms asymptotic to the identity, i.e. of the form Ψ(z, ξ)

= (z + h 1 , ξ + h 2 ) with h 1 , h 2 ∈ E ∞ (I).
The following property somehow expresses that a cocycle defined by a collection of sectorial biholomorphisms is a coboundary in the C ∞ category. Lemma 5.2. Let (J i ) i∈I be a covering of S 1 by open intervals threewise disjoints. Assume also that there exist on non empty intersections

J ij := J i ∩ J j a family of sectorial biholo- morphisms Φ ij ∈ G ∞ (J ij ) with Φ ji = Φ ij -1 (in particular Φ ii = id).
Then, there exist smooth sectorial diffeomorphisms flat to identy

ψ i ∈ D ∞ (J i ) such that Φ ij = ψ i • ψ j -1 .
Proof. One can extract from this covering a finite covering (J k ), k ∈ Z n such that only consecutive sectors J k and J k+1 intersect. It clearly suffices to prove the Lemma for this particular subcovering. Let (θ k ) a partition of the unity subordinate to this covering. Write

Φ k,k+1 (z, ξ) = (z + h 1 k,k+1 , ξ + h 2 k,k+1 ) with h 1 k,k+1 , h 2 k,k+1 ∈ A ∞ (J k,k+1 ). First define ψk ∈ D ∞ (J k ) for k ∈ Z n by ψk = Id when arg(ξ) ∈ J k \ J k,k+1 , Id + θ k+1 (arg ξ)(h 1 k,k+1 , h 2 k,k+1 ) when arg(ξ) ∈ J k,k+1 Next, define ψ k ∈ D ∞ (J k ) by ψ k = Φ k,k-1 • ψk-1 when arg(ξ) ∈ J k-1,k ψk when arg(ξ) ∈ J k \ J k-1,k
One easily check that ψ k are smooth, equal to the identity outside intersections, and satisfy

ψ k = Φ k,k-1 • ψ k-1
on intersections as expected.

Corollary 5.3. Notations and assumptions like in Lemma 5.2. There exist sectorial biholomorphisms tangent to identity

Ψ i ∈ G 1 (J i ) such that Φ ij = Ψ i • Ψ j -1 .
In particular, asymptotic expansions coincide Ψi = Ψj .

Proof. Let Ũi be the sectorial domain of definition of ψ i and Ũ be their union together with the section C defined by ξ = ∞. Lemma 5.2 allows to write

Φ ij = ψ i • ψ j -1
where ψ i ∈ D ∞ (I i ). In particular, denoting by I the standart complex structure on C 2 , J := ψ i * I = ψ j * I is a new complex structure on Ũ \ C which extends to Ũ as a complex structure by Newlander-Nirenberg's Theorem. In fact, because of flatness of ψ i to the identity, the almost complex structure J extends at 0 as a C ∞ almost complex structure on Ũ ; by construction, it is integrable on Ũi 's and therefore Nijenhuis tensor vanishes identically on Ũ \ C, and by continuity on Ũ . Then, Newlander-Nirenberg's Theorem tells us that J is integrable. Note that I = J in restriction to C which is then conformally equivalent to C * for both structures. Now, we use the fact that two-dimensional germs of neighborhood of C * are analytically equivalent as recalled in Section 2. This can be translated into the existence of a smooth diffeomorphism ψ of ( Ũ , C) such that ψ * I = J. Up to making a right composition by a biholomorphism of ( Ũ , C) with respect to I, one can suppose (exploiting that I = J on T Ũ| C ) that ψ is tangent to the identity along C. This implies that for every i,

Ψ i := ψ i • ψ ∈ G 1 (U i ) and, because the Φ ij 's are flat to identity, admit an asymptotic expansion Ψi along C = C * independant of i. By construction, we have Φ ij = Ψ i • Ψ j -1 as desired.
Obviously, all along this proof, we might have shrinked the domain Ũ of definition without mentionning it.

Remark 5.4. The use of the Newlander-Nirenberg in this context is not new and can be traced back to Malgrange [START_REF] Malgrange | Travaux d'Écalle et de Martinet-Ramis sur les systèmes dynamiques[END_REF] and Martinet-Ramis [START_REF] Martinet | Problèmes de modules pour des équations différentielles non linéaires du premier ordre[END_REF].

We now specialize to our covering of S 1 determined by the intervals I i defined by (4.1) in Lemma 4.1. Let us show how to construct a neighborhood realizing a given cocycle ϕ = (ϕ i,i+1 ) as in (4.4). We first define

Φ i,i+1 ∈ G ∞ [F 1,0,0 ](I i,i+1 ) satisfying Π • Φ i,i+1 = ϕ i,i+1 • Π. Then use Corollary 5.3 to obtain Ψ i ∈ G 1 (I i ) such that Φ i,i+1 = Ψ i • Ψ -1
i+1 . As Φ i,i+1 commute to F 1,0,0 , we have on intersections:

(Ψ i • Ψ -1 i+1 ) • F 1,0,0 = F 1,0,0 • (Ψ i • Ψ -1 i+1 ) which rewrites Ψ -1 i+1 • F 1,0,0 • Ψ i+1 = Ψ -1 i • F 1,0,0 • Ψ i .
Therefore, we can define a global diffeomorphism of ( Ũ , C) by setting In this section, keeping notations of Section 1.3, we generalize Serre isomorphism

F ϕ := Ψ -1 i • F 1,0,0 • Ψ i on U i
Π : U 1,0,0 \ C → C * X × C * Y to the case of a general neighborhood (U, C) for ∼ (U 1,0,0 , C).
Theorem 6.1. Given a germ of neighborhood (U ϕ , C) for ∼ (U 1,0,0 , C), there exists a neighborhood germ (V ϕ , D) of D where each L i have trivial normal bundle, and an isomorphism germ (6.1)

Π ϕ : (U ϕ \ C, C) ∼ -→ (V ϕ \ D, D)
canonically attached to the analytic class of (U ϕ , C) in the following sense: if (U ϕ , C) is another neighborhood germ, then

(6.2) (U ϕ , C) an ∼ (U ϕ , C) ⇔ (V ϕ , D) an ∼ (V ϕ , D)
where the analytic equivalence allows translations 24 on C for the left-hand-side, and preserves the numbering of lines L i on the right-hand-side.

Proof. Given a cocycle not necessarily tangent to the identity

ϕ = (ϕ i,i+1 ) i∈Z4 , ϕ i,i+1 ∈ Diff(V i,i+1 , p i,i+1 ),
we define a new germ of analytic neighborhood of D as follows. We consider the disjoint union of neighborhood germs (V i , L i ), and patch them together through the transition maps

ϕ i,i+1 : (V i+1 , p i,i+1 ) ∼ -→ (V i , p i,i+1
).

The resulting analytic manifold V ϕ contains a copy of D, namely the union of lines L i identified at points p i,i+1 , and only the germ of neighborhood V ϕ makes sense

(V ϕ , D) := i (V i , L i )/(ϕ i,i+1 ).
This germ of neighborhood comes with embeddings

ψ i : (V i , L i ) → (V ϕ , D).
Conversely, if (V, D) is a germ of neighborhood of D where all lines L i have zero selfintersection, then there exist trivialization maps (preserving D)

ψ i : (V i , L i ) ∼ -→ (V, L i )
(where (V, L i ) denotes the germ of V along D) in such a way that, near p i,i+1 we have

ψ i = ϕ i,i+1 • ψ j for some ϕ i,i+1 ∈ Diff(V i,i+1 , p i,i+1 ).
It is clear from above arguments that, for another cocycle ϕ , we have

(V ϕ , D) an ∼ (V ϕ , D) ⇔ ϕ ∼ ϕ where ϕ ∼ ϕ def ⇔ ∃ϕ i ∈ Diff(V i , L i ), ϕ i • ϕ i,i+1 = ϕ i,i+1 • ϕ i+1 ,
and in that case, the isomorphism V ϕ ∼ -→ V ϕ is given by patching

(V ϕ , D) ψi ←-(V i , L i ) ϕi -→ (V i , L i ) ψ i -→ (V ϕ , D).
From the linear part of equivalence relation ϕ ∼ ϕ , we see that any cocycle ϕ is equivalent to a cocycle such that

• ϕ 1,2 , ϕ 2,3 , ϕ 3,4 ∈ Diff 1 (V i,i+1 , p i,i+1
) (tangent to the identity),

• ϕ 4,1 (X, Y ) = (aX + • • • , bY + • • • ) for a, b ∈ C * independant of the choice.
The pair (a, b) is an invariant of the neighborhood V ϕ . Cocycles arising from (U, C) for ∼ (U 1,0,0 , C) have invariants a = b = 1. In order to prove the equivalence (6.2), we just have to note that, for equivalent cocycles ϕ ∼ ϕ normalized as above (in particular when all ϕ i,i+1 , ϕ i,i+1 are tangent to the identity) then all four conjugating maps ϕ i have the same linear part. Then apply Remark 10.7 to show that it corresponds to analytic equivalence of (U ϕ , C) and (U ϕ , C) up to a translation of the curve.

Finally, we construct the isomorphism (6.1) by patching together the sectorial ones

U i Πi -→ V * i ψi → V ϕ \ D
using the identity (10.13)

Π i = ϕ i,i+1 • Π i+1 .

FOLIATIONS

Recall that our model (U 1,0,0 , C) carries a pencil of foliations

F t : {ω 0 + tω ∞ = 0}, where ω 0 = dξ and ω ∞ = 1 2iπτ dz z ;
moreover, there is no other formal foliation on (U 1,0,0 , C) either tangent, or transversal to C (see [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF]Section 2.3]). Via the isomorphism Π : U 1,0,0 \ C → V 0 \ D, we get the corresponding pencil

Π * F t : (1 -t)τ dX X + t dY Y .
The monodromy (or holonomy) of F t is given by

π 1 (C) → Aut(C) ; 1 → [ξ → ξ + t τ ] τ → [ξ → ξ + t -1]
In particular, for m n ∈ Q ∪ {∞}, are equivalent • F t has trivial monodromy along m+τ n ∈ Γ\{0}, viewed as a loop of π 1 (C) Γ; • t = τ n m+τ n , or equivalently 1 t -1 τ = m n ; • Π * F t admits the rational first integral X m Y n . We will say that F t is of rational type if there is m n ∈ Q ∪ {∞} with these properties, and of irrational type if not. We note that rational type foliations are characterized by the fact that their holonomy group is cyclic (one generator), and also that the space of leaves (after deleting C and regarding them as global foliations on S 0 ) is somehow "rational", and not "elliptic".

If (U, C) is any analytic neighborhood with a formal conjugacy

Ψ : (U, C) ∼ -→ (U 1,0,0 , C),
then it also carries the pencil of formal foliations Ft := Ψ * F t . As we shall prove, these foliations are divergent in general. In fact, recall (see [14, Theorem 4])

Theorem 7.1. Let (U, C) be an analytic neighborhood formally equivalent to (U 1,0,0 , C). Assume • three elements Ft1 , Ft2 , Ft3 of the pencil are convergent,

• or two elements Ft1 , Ft2 of the pencil are convergent, both of irrational type:

1 ti -1 τ ∈ Q for i = 1, 2.
Then the full pencil Ft is convergent, and (U, C) is analytically equivalent to (U 1,0,0 , C) (in fact Ψ is convergent).

In [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF]Theorem 5], the two first authors and O. Thom construct infinite dimensional deformations of neighborhoods with two convergent foliations Ft1 and Ft2 , provided that one or two of them is of rational type. In fact, Écalle-Voronin moduli spaces are shown to embed in moduli spaces of neighborhoods through these bifoliated constructions. Now, we know from our main result Theorem C, that the moduli space of neighborhood is larger, comparable with C{X, Y }, in contrast with Écalle-Voronin moduli space which is comparable with C{X}. The point is that we have missed all neighborhoods with only one, or with no convergent foliation in the aforementioned work.

7.1. Existence of foliations. We now start examinating under which condition on the glueing cocycle ϕ = (ϕ i,i+1 ) the neighborhood (U ϕ , C) admits a convergent foliation. Here, we follow notations Ψ i , Π i , Φ i , ... of Section 4.

Lemma 7.2. Let t ∈ P 1 \ {0, 1}. If the formal foliation Ft of (U, C) is convergent, then the induced foliation Π i * Ft on V * i extends as a singular foliation on V i and is defined by a closed logarithmic 1-form (7.1)

θ i = (1 -t)τ dX X + t dY Y + η i with η i closed holomorphic on V i .
Remark 7.3. On V i with i = 1, 3 (resp. i = 2, 4), the closed holomorphic 1-form writes

η i = df with f ∈ C{X} (resp. f ∈ C{Y }).
We note that are equivalent:

• θ is a closed logarithmic 1-form on V i with poles supported by D,

• θ = α dX X + β dY Y + η with η holomorphic and closed on V i ,

• θ = ϕ i * α dX X + β dY Y where ϕ i ∈ Diff 1 (V i , L i ). For instance, on V 1 , if η 1 = df with f ∈ C{X}, then ϕ i = (Xe f (X) , Y ).
Proof. Let us start with the tangent case t = ∞. Then, by transversality of F 0 and F ∞ , and the fact that the ω t 's are F 1,0,0 -invariant, one deduces that Ft is defined by a unique 1-form writing as

ω = ω 0 -u • ω ∞ for a function u ∈ A[F 1,0,0 ](I i ), obviously satisfying û = t. If i = 1, 3, then u = t + f (X) with f ∈ C{X}, f (0) = 0 (see Proposition 3.7). Then, t u ω = t 1 -u u τ dX X + t dY Y = (1 -t)τ dX X + t dY Y - f t + f τ dX X . If i = 2, 4, then u = t + f (Y ) with f ∈ C{Y }, f (0) 
= 0, and we arrive at a similar situation

1 -t 1 -u ω = (1 -t)τ dX X + t dY Y + f 1 -t -f τ dX X .
Of course, we have used t = 0, 1 in order to divide. Let us end with the case F∞ . The foliation, in that case, can be defined by a closed holomorphic 1-form ω extending the holomorphic 1-form on C. Now, up to a multiplicative constant, we can write ω = ω t + η for a closed holomorphic 1-form η. One concludes as above.

Lemma 7.4. If the formal foliation F0 (resp. F1 ) of (U, C) is convergent, then the induced foliation Π i * Ft on V * i extends as a singular foliation on V i and is defined by a 1-form

θ i = dX X + f i (X) dY Y if i = 1, 3 dX X + η i if i = 2, 4 resp. θ i = dY Y + η i if i = 1, 3 dY Y + f i (Y ) dX X if i = 2, 4
with f i ∈ C{X} (resp. C{Y }), f i (0) = 0, and η i closed holomorphic 1-form on V i .

Proof. It is similar to the proof of Lemma 7.2. For the case t = 0, once we have defined

Ft by ω = ω 0 -u • ω ∞ for a function u ∈ A ∞ [F 1,0,0 ](I i ), then 1 1 -u ω = τ dX X + u 1 -u dY Y .
Again, by Proposition 3.7, we see

that if i = 2, 4, then u = f (Y ) with f ∈ C{Y }, f (0) 
= 0, and we are done. However, when i = 1, 3, then u = f (X), but we cannot divide by f 1-f to get a closed logarithmic 1-form as before: as f (0) = 0, the polar locus will increase (see remark 7.5).

Remark 7.5. In Lemma 7.4, we can always define the foliation Π i * Ft by a closed meromorphic 1-form on V i provided that we allow non logarithmic poles. For instance, in the case t = 0 and i = 1, 3, if f ≡ 0 (is identically vanishing), there is nothing to do, it is the logarithmic case; if f ≡ 0, then after division, we get

1 f ω = τ 1 -f f dX X + dY Y = f (X) dX X k+1 + dY Y
with f ∈ C{X}, f (0) = 0, and k ∈ Z >0 . As it is well-known (see [14, Section 2.2]), we can write

ϕ i * ω f = dX X k+1 + α dX X + dY Y for some α ∈ C (the residue of f (X) dX X k+1 ) and ϕ i ∈ Diff 1 (V i , L i ).
We can now prove Theorem D.

Corollary 7.6. The formal foliation Ft of (U ϕ , C) is convergent if, and only if, there exist η i closed holomorphic 1-forms on (V i , L i ) such that

(ϕ i,i+1 * θ i ) ∧ θ i+1 = 0 where θ i = (1 -t)τ dX X + t dY Y + η i .
Equivalently, there exists an equivalent cocycle ϕ ∼ ϕ such that

(ϕ i,i+1 * θ 0 ) ∧ θ 0 = 0 where θ 0 = (1 -t)τ dX X + t dY Y .
Proof. When t = 0, 1, the proof easily follows from Lemma 7.2. Indeed, all Π i * Ft are defined by θ i = 0 and have to patch via the glueing maps ϕ i,i+1 . Conversely, if θ i = 0 patch via the glueing maps ϕ i,i+1 , then this means that we get a foliation F on U ϕ \ C which is flat to Ft along C, and therefore extends by Riemann. Using Remark 7.3 and Definition 4.2, one easily derives the second (equivalent) assertion. Finally, in the case t = 0 for instance, after applying Lemma 7.4 in a very similar way, we note that θ i defines a regular foliation on V i for i = 2, 4 (as

η i = df , f ∈ C{X}).
On the other hand, on V i for i = 1, 3, θ i defines a singular foliation as soon as f i ≡ 0 (non identically vanishing), i.e. with a saddle-node singular points at the two points p i,i+1 and p i-1,i ; therefore, f i ≡ 0 in the case we have a global foliation and we are back to the logarithmic case. The proof ends-up like before.

Remark 7.7. The statement of Corollary 7.6 can be reformulated as follows. The formal foliation Ft of (U ϕ , C) is convergent if, and only if, there exists a foliation G t on (V ϕ , D) which is locally defined by a closed logarithmic 1-form with poles supported on D and having residues t on L 1 and (1 -t)τ on L 4 (we have automatically opposite residues on opposite sides of D). Indeed, the local foliations θ i = 0 patch together.

We can precise Corollary 7.6 for generic t as follows.

Proposition 7.8. If Ft is not of rational type, i.e. 1 t -1 τ ∈ Q, then are equivalent (1) Ft is convergent, (2) Ft is defined by a closed (convergent) meromorphic 1-form ω, (3) (ϕ i,i+1 ) * θ i = θ i+1 with θ i like in Corollary 7.6, (4) there is a closed logarithmic 1-form θ on (V ϕ , D) with poles supported on D and having residues t on L 1 and (1 -t)τ on L 4 . Obviously, ω = Π * ϕ θ up to a constant.

Proof. When Ft is not of rational type, then we have

(ϕ i,i+1 * θ i ) ∧ θ i+1 = 0 ⇔ (ϕ i,i+1 * θ i ) = θ i+1 .
Indeed, if ϕ i,i+1 * θ i is colinear to θ i+1 , then it is proportional to θ i+1 , i.e. it writes f i • θ i with f i meromorphic on V i (de Rham-Saito Lemma). But since it is also closed, we have

0 = d(f i • θ i ) = df i ∧ θ i + f i ∧ dθ i =0
and f i is a meromorphic first integral for θ i = 0, which must be constant in the irrational type. This constant must be = 1 as the residues are preserved. As a consequence, all θ i patch together on V ϕ . Finally, note that if Ft is convergent, then its holonomy is not cyclic (because not of rational type) and therefore preserves a meromorphic 1-form on the transversal that we can extend as a closed meromorphic 1-form ω defining the foliation.

Let us now illustrate how different is the situation for foliations of rational type by revisiting the classification [14, Theorem 5] of neighborhoods with 2 convergent foliations, in the particular case of F0 and F1 , corresponding respectively to vertical and horizontal foliations on V ϕ . The proof is a straightforward application of the above criteria.

Proposition 7.9. The formal foliations F0 and F1 on (U, C) are convergent if, and only if, (U, C) can be defined by a cocycle of the form

ϕ i,i+1 (X, Y ) = (α i (X), Y ) for i = 1, 3 ϕ i,i+1 (X, Y ) = (X, α i (Y )) for i = 2, 4
for 1-variable diffeomorphisms α i tangent to the identity, and the corresponding foliations on V ϕ are respectively defined in charts V i by dX = 0 and dY = 0. Moreover, this normalization is unique up to conjugacy by φ(X, Y ) = (e t X, e τ t Y ).

The space of leaves of F0 on U \ C corresponds to the space of orbits for its holonomy map, and therefore to Martinet-Ramis' "Chapelet de sphères" (see [17, page 591]). It is given by two copies of C * X patched together by means of diffeomorphism germs α 1 (X) at X = ∞ and α 3 (X) at X = 0. A similar description holds for F0 with Martinet-Ramis' cocycle α 2 and α 4 . The invariants found by the third author in [START_REF] Voronin | Analytic classification of germs of conformal mappings (C, 0) → (C, 0)[END_REF] are related with the corresponding periodic transformations in variable ξ.

Remark 7.10. It follows from [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF], or from the unicity of the formal pencil Ft , that for given t ∈ P 1 , one cannot find two different collections (θ i ) i and (θ i ) i defining two global logarithmic foliations G t and G t on V , like in Corollary 7.6. One way to see this directly from the point of view of this section is as follows. In the irrational case 1 t -1 τ ∈ Q, we see from Proposition 7.8 that θ i 's patch as a global closed logarithmic 1-form.

FIGURE 5. Martinet-Ramis moduli

But the difference between two closed logarithmic 1-forms with the same residues is a closed holomorphic 1-form η on (V, C). Now, η must be zero, even if we restrict on two consecutive line neighborhoods (V i , L i ) ∪ ϕi,i+1 (V i+1 , L i+1 ), as it only depends on X or on Y depending on the sector. In the rational case, 1 t -1 τ ∈ Q, there is also unicity of θ i 's on two consecutive line neighborhoods whose residues have quotient > 0; indeed, after blowing-up, we get a rational fibration which must be unique by Blanchard Lemma.

7.2.

Non existence of foliations. For a generic neighborhood (U ϕ , C), there is no convergent foliation. In order to prove this, it is enough to provide a single example without foliation. Such an example has been given quite recently by Mishustin in [START_REF] Mishustin | On foliations in neighborhoods of elliptic curves[END_REF]. With our Corollary 7.6, it is not too difficult to provide an example without foliations. Theorem 7.11. Let (U ϕ , C) be a neighborhood such that

ϕ 1,4 (X, Y ) = (X(1 + XY ), Y (1 + X 2 Y )).
Then all foliations Ft belonging to the formal pencil ( Ft ) t∈P 1 are divergent.

Even the transversal fibration F∞ is divergent in that case.

Proof. Suppose by contradiction that there exists at least one convergent foliation in the pencil. Then, by Corollary 7.6, there exists on each V i a non trivial logarithmic 1-form

θ i = α dX X + β dY Y + f i (X)dX if i even f i (Y )dY if i odd with f i : (C, 0) → C holomorphic, such that θ i+1 ∧ (ϕ i,i+1 ) * θ i = 0. One has (ϕ 1,4 ) * θ 1 = α dX X + α d(XY ) 1 + XY + β dY Y + β d(X 2 Y ) 1 + X 2 Y +f 1 (Y (1 + X 2 Y )) • ((1 + 2X 2 Y )dY + 2XY 2 dX).
The residual parts of the 2-form θ 4 ∧ (ϕ 1,4 ) * θ 1 at X = 0 and Y = 0 respectively write

(7.2) αf 1 (Y ) dX X ∧ dY and βf 4 (X)dX ∧ dY Y .
Both expressions must be vanishing identically. If β = 0, then α = 0 and we deduce from (7.2) that f 1 ≡ 0. This implies that (ϕ 1,4 ) * θ 1 only depends on X(1 + XY ), while θ 4 only depends on X, contradiction. Assume now α = 0 (and β = 0); then, by (7.2), we have f 4 ≡ 0. Again, we conclude that (ϕ 1,4 ) * θ 1 only depends on X(1 + X 2 Y ), while θ 4 only depends on Y , contradiction. Finally, assume that α = 0 and β = 0; then, by (7.2), we have f 1 , f 2 ≡ 0 and we obtain

θ 4 ∧ (ϕ 1,4 ) * θ 1 = α(α -β) + β(α -2β)X + (α 2 -2β 2 )X 2 Y (1 + XY )(1 + X 2 Y ) dX ∧ dY.
Clearly, this expression cannot be zero if α and β are both non zero.

7.3.

Only one convergent foliation. To complete the picture, it is interesting to provide an example of a foliation having only one convergent foliation Ft0 in the pencil ( Ft ) t∈P 1 for an arbitrary t 0 .

Theorem 7.12. Let t 0 = [u 0 : v 0 ] ∈ P 1 , and let (U ϕ , C) be the neighborhood such that

ϕ 1,4 = (X(1 + XY e Y ) -β0 , Y (1 + XY e Y ) α0 )
where α 0 = τ (v 0 -u 0 ) and β 0 = u 0 and ϕ i,i+1 = Id for i = 1, 2, 3.

Then Ft0 is the unique convergent foliation in the formal pencil ( Ft ) t∈P 1 .

Proof. Note that ϕ preserves the foliation defined by the logarithmic form α 0 dX X + β 0 dY Y which then descends on V ϕ , i.e. the formal foliation Ft0 is indeed convergent on U ϕ . Assuming by contradiction that there is another convergent foliation Ft with t = t 0 , let θ i be the associated logarithmic 1-form on V i . As in the proof of Theorem 7.11, we get

θ 1 = α dX X + β dY Y + f 1 (Y )dY and θ 4 = α dX X + β dY Y + f 4 (X)dX with f i : (C, 0) → C holomorphic, and [α : β] = [α 0 : β 0 ]. We derive (ϕ 1,4 ) * θ 1 = α dX X + β dY Y + (α 0 β -αβ 0 ) d(XY e Y ) 1 + XY e Y +f 1 (Y (1 + XY e Y ) α0 ) • d(Y (1 + XY e Y )).
The residual parts of the 2-form θ 4 ∧ (ϕ 1,4 ) * θ 1 at X = 0 and Y = 0 respectively write

(7.3) αf 1 (Y ) dX X ∧ dY and βf 4 (X)dX ∧ dY Y .
We are led to a similar discussion as in the proof of Theorem 7.11. When β = 0, then f 1 ≡ 0 and (ϕ 1,4 ) * θ 1 only depends on X(1 + XY ) -β0 , while θ 4 only depends on X; we get a contradiction since β 0 = 0 in this case. When α = 0, then f 4 ≡ 0 and (ϕ 1,4 ) * θ 1 only depends on Y (1 + XY ) α0 , while θ 4 only depends on Y ; contradiction. Finally, when both α = 0 and β = 0, then

θ 4 ∧ (ϕ 1,4 ) * θ 1 = (α 0 β -αβ 0 ) =0 d(XY e Y ) 1 + XY e Y ∧ α dX X + β dY Y
which cannot be zero, again a contradiction.

Remark 7.13. More generally, given f ∈ C{X, Y } vanishing along X = 0 and Y = 0, the same proof shows that the cocycle defined by ϕ 1,4 = (Xe -β0f , Y e α0f ) and ϕ i,i+1 = Id otherwise also provides a neighborhood (U ϕ , C) with only one convergent foliation, namely Ft0 , provided that df ∧ d(X p Y q ) ≡ 0 for all p, q ∈ Z >0 . Moreover, one easily checks that two different such f , says f and f , define non equivalent neighborhoods provided that their difference do not take the form f -f = g(X) + h(Y ).

SYMMETRIES

Let (U ϕ , C) be a neighborhood formally equivalent to (U 1,0,0 , C). Via formal conjugation, formal symmetries (or automorphisms) of (U ϕ , C) which restrict to translations on C are those of (U 1,0,0 , C), i.e. of the form (see Corollary 3.10):

(z, ξ) → (cz, ξ + t) c ∈ C * , t ∈ C ↔ (a, b) : (X, Y ) → (e 2iπt a X, c -1 e 2iπτ t b Y )
The subgroup Aut(U ϕ , C) of convergent automorphisms thus identifies with a subgroup of the two dimensional linear algebraic torus:

G ⊂ Aut 0 (P 1 × P 1 , D) C * × C * .
Theorem 8.1. Let (U ϕ , C) and G be as above. Then the subgroup G ⊂ C * × C * is algebraic. In particular, we are in one of the following cases:

• G is finite and G = {(a, b) ; a p b q = a p b q = 1} for some non proportional (p, q), (p , q ) ∈ Z 2 \ (0, 0); • G = {(a, b) ; a p b q = 1} for some (p, q) ∈ Z 2 \ (0, 0); in particular, a finite index subgroup of G is generated by the flow of the rational vector field pX∂ X + qY ∂ Y ;

• G = C * × C * and (U ϕ , C) an ∼ (U 1,0,0 , C).
Moreover, in the first two cases, up to equivalence ≈, the cocycle takes the form

ϕ i,i+1 (X, Y ) = (X • u i,i+1 , Y • v i,i+1 )
where u i,i+1 , v i,i+1 are Laurent series in X p Y q and X p Y q (resp. in X p Y q ) and the action of G is linear in each chart (V i , L i ).

Remark 8.2. Note that G is not algebraic in general as a subgroup of Aut(U 1,0,0 , C) = Aut 0 (S 0 ). Actually, the correspondance between Aut(U 1,0,0 , C) and Aut 0 (P 1 × P 1 , D) specified above is only of analytic nature.

Proof. By similar arguments as in the proof of Lemma 7.2, we see that each automorphism of (U ϕ , C) corresponds to a collection of automorphisms of g i ∈ Diff(V i , L i ) satisfying

g i • ϕ i,i+1 = ϕ i,i+1 • g i+1
and that the corresponding element (a, b) in C * × C * is the linear part of g i at the crossing points p i-1,i , p i,i+1 (in particular, it is independant of i).

We first prove that g i can be linearized in each chart. Indeed, for instance on (V 4 , L 4 ), g 4 acts by transformations of the form

(X, Y ) → (aX • u(X), bY • v(X)), u(0) = v(0) = 1.
The gluing condition for ϕ 4,1 shows that the restriction ϕ 4 | L1 : X → aX • u(X) becomes linear in the chart (V 1 , L 1 ). Therefore, after changing X coordinates on (V 4 , L 4 ), we can assume

g 4 (X, Y ) = (aX, bY • v(X)), v(0) = 1.
But g 4 must also preserve the fibration dY = 0 of (V 1 , L 1 ) which is preserved by g 1 ; that can be normalized to dY = 0 in the chart (V 4 , L 4 ) and this implies that v(X) ≡ 1 also. We therefore conclude that for each automorphism in Aut(U ϕ , C), the corresponding transformation in (V ϕ , D) can be linearized in all charts (V i , L i ).

As a by-product, G must contain the Zariski closure of < (a, b) >⊂ C * × C * . Indeed, all ϕ i,i+1 have to commute with g(X, Y ) = (aX, bY ).

Writing ϕ i,i+1 (X, Y ) = (X • u(X, Y ), Y •v(X, Y ))
, we see that u, v have to be invariant by g, i.e. u•g = u for instance; equivalently, all non zero monomials of u and v are g-invariant. These monomials define an algebraic subgroup H ⊂ C * × C * which is the group of linear transformations commuting with ϕ i,i+1 . We conclude that (a, b) ∈ H ⊂ G.

If g was Zariski dense in C * ×C * , we are done: the commutation of ϕ i,i+1 with all linear transformations shows that ϕ i,i+1 is linear (hence trivial) and (U ϕ , C) an ∼ (U 1,0,0 , C). Now, assuming that G is a strict subgroup of C * × C * , we want to prove that it can be linearized globally.

Assume first that G is finite. Then it can be linearized on each line neighborhood (V i , L i ). Indeed, for instance on (V 4 , L 4 ), G acts by transformations of the form

g(X, Y ) = (aX • u(X), bY • v(X)), u(0) = v(0) = 1.
and we denote by lin(g) its linear part (aX, bY ). Then the transformation

ϕ 4 := 1 #G g∈G lin(g) -1 • g is of the form ϕ 4 (X, Y ) = (X • u(X), Y • v(X)
), u(0) = v(0) = 1 and linearizing the group:

ϕ 4 • g = lin(g) • ϕ 4 , ∀g ∈ G.
We can therefore assume that G acts linearly in each chart (V i , L i ) and the cocycle ϕ has to commute with all elements. It is well known that the group G is generated by two elements (a 1 , b 1 ) and (a 2 , b 2 ) of finite order; moreover, by duality, G is defined by 2 independant monomial equations a p b q = a p b q = 1. Gluing conditions with ϕ i,i+1 show that u i,i+1 , v i,i+1 must be G-right-invariant and therefore factor through the two monomial equations.

On the other hand, if G contains an element g of infinite order, then we can first linearize this element. The Zariski closure H of its iterates < g > in C * × C * is one dimensional, if strictly smaller than C * × C * , and defined by a monomial equation a p b q = 0. If G is larger than H, then it is generated by an element of finite order g and we can linearize the finite group < g > like above; since g and its linear part both commute with H, the linearizing transformations also commute with H and G is linearized. It is therefore algebraic, defined by monomial equations of ϕ i,i+1 , and they all factor into a single monomial. Remark 8.3. From the description above, we note that the convergence of a non trivial automorphism g of (U ϕ , C) inducing the identity on C implies that (U ϕ , C) an ∼ (U 1,0,0 , C), since the group generated by g must be Zariski dense in C * × C * . Remark 8.4. In Proposition 7.9, the foliation F0 is defined by a holomorphic vector field if, and only if, α 2 (Y ) = α 4 (Y ) = Y . Equivalently, the Martinet-Ramis invariant of F1 are trivial, i.e. F1 can be defined by a closed 1-form.

SECTORIAL NORMALIZATION

We maintain the foregoing notations. Recall that we have set = arg τ ∈]0, π[. Let (U, C) be formally equivalent to (U 1,0,0 , C). We want to show that (U, C) has the form U ϕ . In other word, we want to prove Lemma A, or equivalently Lemma 4.1. 9.1. Overview of the proofs. One can suppose that (U, C) = ( Ũ , C)/F where

F (z, ξ) = F 1,0,0 (z, ξ) (qz,ξ-1) +(∆ 1 , ∆ 2 ) with ∆ i = O(ξ -N )
where N >> 0 is an arbitrarily large integer, so that there exists a formal diffeomorphism

Ψ(z, ξ) = (z + ĝ, ξ + ĥ), ĥ = n≥1 a n ξ -n , ĝ = n≥1 b n ξ -n
where a n , b n are entire functions on C = C * such that

F • Ψ = Ψ • F 1,0,0 .
This can be reformulated as

(9.1) ĝ • F 1,0,0 -qĝ = ∆ 1 • Ψ (9.
2) ĥ • F 1,0,0 -ĥ = ∆ 2 • Ψ Basically, we will show that there exists a holomorphic solution Ψ = Id + (h, g) of the previous fonctional equations F • Ψ = Ψ • F 1,0,0 , i.e. with h, g satisfying

(9.3) g • F 1,0,0 -qg = ∆ 1 • Ψ (9.4) h • F 1,0,0 -h = ∆ 2 • Ψ
defined on "suitable sectorial domains", namely on U i := Π -1 (V i -L i ), i = 1, 2, 3, 4, and admitting asymptotic expansion along C compatible with the formal conjugacy map Ψ. More precisely h, g ∈ A(I i ) with the notations of section 3.1 with respective asymptotic expansions ĥ and ĝ. To this end, we will first exhibit solutions in O(I i ) satisfying some suitable growth behaviour of the following linearized equations:

(9.5) g • F 1,0,0 -qg = ∆ 1 (9.6) h • F 1,0,0 -h = ∆ 2
Most of section 9 is devoted to the construction of such sectorial solutions on the sector U 1 , and it will be explained in subsection 9.6 how to deduce normalization on other sectors.

Remark 9.1. The equation (9.5) can be reduced to equation (9.6); indeed, after setting

g(z, ξ) = zg(z, ξ) and ∆ 1 (z, ξ) = qz ∆ 1 (z, ξ), we get g • F 1,0,0 -g = ∆ 1 .
This will enable us to solve by a fairly standard fixed point method the initial functional equations (9.3) and (9.4). In order to get rid of the coefficient q on the left hand side, note that both equations can be reformulated as:

(9.7) g(qz, ξ -1) -g(z, ξ) = (1 + g(z, ξ)) ∆ 1 z(1 + g(z, ξ)), ξ + h(z, ξ) (9.8) h(qz, ξ -1) -h(z, ξ) = ∆ 2 z(1 + g(z, ξ)), ξ + h(z, ξ)
where the symbol stands for the same modification than in Remark 9.1 for the linear case. 9.2. The linearized/homological equation. Our purpose is to construct some sectorial solution of the linearized functional equations (9.6) (and therefore (9.5) by Remark 9.1) belonging to O(I 1 ). Actually, one will just firstly state some results and use this material to undertake the resolution of the complete (non linear) conjugacy equation (over I 1 ). We will detail the resolution of the linearized equation (the most technical part) in subsection 9.5. The existence of other sectorial conjugacy maps over I i , i = 1 can be obtained in a very similar way and we indicate briefly how to proceed in subsection 9.6. Let us first settle some notations. Recall that q = e 2iπτ with τ > 0, so that |q| < 1. As one only focuses on transversal sectorial domain determined by I 1 =] -, π -[, = arg(τ ), we are going to work in domains S of the following shape. Fix 0 < a < b such that a < |q|b and consider the annulus

C a,b = {a ≤ |z| ≤ b}. Let δ (a,b) > 0 small enough and for 0 < δ ≤ δ (a,b) , set S a,b,δ = {(z, ξ) ∈ C 2 | |Y (z, ξ)| ≤ δ and z ∈ C a,b } where Y (z, ξ) = ze 2iπτ ξ (recall that |Y | < δ corresponds to a neighborhood V 1 of L 1 ).
Alternatively, this set can be described by the equation (2iπτ ξ) < log( δ |z| ), z ∈ C a,b so that in particular arg ξ ∈ I 1 =] -, π -[ or equivalently (τ ξ) > 0. Note that F 1,0,0 (S a,b,δ ) = S |q|a,|q|b,δ . It is thus coherent to investigate the existence of a solution h of (9.6) on the domain S |q|a,b,δ = S a,b,δ ∪ F 1,0,0 (S a,b,δ ).

In what follows, we will indeed provide a solution of (9.6) with "good estimates" on a domain of the form S |q|a,b,δ using a "leafwise" resolution with respect to the foliation defined by the levels of Y . For the sake of notational simplicity we will omit for a while the subscript a, b by setting S δ := S a,b,δ and S δ := S |q|a,b,δ . If δ 1 ≤ δ 2 , remark that S δ1 and S δ1 are respectively subdomains of S δ2 and S δ2 . To state precisely our result, let us fix some additional notations and definitions. Let m ≥ 3 a positive integer and consider the subspace H m δ of H(S δ ) 25 defined by the functions ∆ such that

∆ m := sup (z,ξ)∈S δ |∆(z, ξ)||ξ| m < ∞.
We will also introduce the space H ∞ δ of bounded holomorphic functions h on S δ equipped with the natural norm h ∞ := sup (1)

(z,ξ)∈S δ |h(z, ξ)| < ∞.
h δ • F 1,0,0 -h δ = ∆ δ . (2) h δ ∞ ≤ C ∆ δ m . (3) For every (z, ξ) ∈ S δ ∩ { (ξ) ≥ 1}, we have |h δ (z, ξ)| ≤ C ∆ δ m √ (ξ) .
In addition, there exists a positive constant D θ only depending on θ ∈]0, π 2 ] such that

|h δ (z, ξ)| ≤ D θ ∆ δ m |ξ| m-2 for every (z, ξ) ∈ S δ ∩ {θ -≤ arg ξ ≤ π -θ -}.
As mentioned before, we will postpone the proof of Theorem 9.2 to subsection 9.5. Condition ( 3) is needed for the unicity, and after to produce a norm with a unique fixed point when solving the functional equation. For the time being, we detail how it provides a section Ψ 1 of G 1 (I 1 ) of the form (z + g, ξ + h) such that the pair (g, h) admits (ĝ, ĥ) as asymptotic expansion and satisfies in addition the equations (9.8) and (9.7). In other words, we are going to exhibit a transversely sectorial conjugacy map between F and F 1,0,0 :

F • Ψ 1 = Ψ 1 • F 1,0,0 .
9.3. Solving the functional equation. Notations as in Theorem 9.2. It is worth mentioning that the strategy developped here as well as the resolution of the linearized/homological equation in the forthcoming Section 9.5 owes a lot to [START_REF] Voronin | Sectorial normalization of semihyperbolic mappings (Russian)[END_REF].

As before, a, b are fixed, δ (a,b) > 0 is small enough and may be adjusted from line to line in order to guarantee the validity of the estimates below. We will denote by δ any positive number such that 0 < δ ≤ δ (a,b) . We will omit for a while the subscript (a, b). Let us introduce two Banach spaces. On the other hand, let H ∞,∞ δ be the subspace of those

(h 1 , h 2 ) ∈ H(S δ ) × H(S δ ) defined by N ∞ (h, g) < ∞ where N ∞ (h 1 , h 2 ) := h 1 ∞ + h 2 ∞ with h ∞ := sup (z,ξ)∈S δ |h(z, ξ)| h ∞ + sup (z,ξ)∈S δ ∩I(ξ)≥1 |h(z, ξ)| |I(ξ)|.
Note that both normed spaces are Banach spaces, and from Theorem 9.2, one inherits a continuous linear map between them:

L : (H m,m δ , N m ) → (H ∞,∞ δ , N ∞ ) ; - → D = (D 1 , D 2 ) → - → h = (h 1 , h 2 )
defined by solving

h i • F 1,0,0 -h i = D i for i = 1, 2.
To be more precise, for every δ small enough, and every

- → D ∈ H m,m δ , one has N ∞ (L( - → D)) ≤ C • N m ( - → D)
with the positive constant C given by Theorem 9.2. We now define a non linear continuous map in the other way. Let us come back to the expression of the transformation F = F 1,0,0 + (∆ 1 , ∆ 2 ) defining the formally equivalent neighborhood (U, C) as explicited in subsection 9.1. One can assume ∆ i (z, ξ) = O(ξ -N ) for a fixed arbitrary integer N ≥ 4. Recall that the ∆ i 's are analytic on a neighborhood of {ξ = ∞} and consequently are well defined as an element of H m δ whose m norm tends to zero when δ goes to zero. For every M > 0, set us denote by

H m,m δ (M ) ⊂ H m,m δ and H ∞,∞ δ (M ) ⊂ H ∞,∞
δ the respective balls of radius M . Then, for δ small enough, we a have a well defined map

R : H ∞,∞ δ (1) → H m,m δ ; - → h = (h 1 , h 2 ) → - → D = (D 1 , D 2 )
where

D 1 (z, ξ) = (1 + h 2 (z, ξ)) ∆ 1 z(1 + h 2 (z, ξ)), ξ + h 1 (z, ξ) D 2 (z, ξ) = ∆ 2 z(1 + h 2 (z, ξ)), ξ + h 1 (z, ξ) Indeed, if N ∞ (h 1 , h 2 ) ≤ 1, then in particular h i ∞ ≤ 1, i = 1, 2, and therefore ∆ 1 , ∆ 2 are holomorphic at (z(1 + h 2 (z, ξ)), ξ + h 1 (z, ξ)) whenever (z, ξ) ∈ S δ . Because ∆ i = O(ξ -N ), note also that the image of H ∞,∞ δ (1) by R lies in H m,m δ (R δ ) where lim δ→0 R δ = 0.
The proof of the following is straighforward:

Lemma 9.3. Let ε > 0.
Then, for δ small enough, one has

∀ - → h , - → g ∈ H ∞,∞ δ (1) ⇒ N m (R( - → h ) -R( - → g )) ≤ ε • N ∞ ( - → h -- → g ).
In particular, R is continuous (Lipschitz).

Let ε > 0 such that εC < 1. Then, the composition L • R induces a (non linear) contracting map of the complete metric space H ∞,∞ δ (1). The unique fixed point is a solution to the functional equations (9.8), (9.7). This provides a solution of the original functional equations (9.6) and (9.5), taking into account the renormalization indicated in Remark 9.1. By uniqueness, the solution -→ h δ attached to δ induces by restriction the solution attached to δ for δ ≤ δ.

One can complete this picture by taking into account all the properties required in the statement of Theorem 9.2. This leads to the following list of properties of the solution exhibited above as a fixed point of a non linear operator. We reintroduce the susbcript (a, b) (with obvious notations) in order to recall that the choice of δ depends on a fixed arbitrary annulus in the z variable: Proposition 9.4. Notations as above. Let ∆ 1 , ∆ 2 = O(ξ -N ) two germs of holomorphic functions in the neighborhood of C ⊂ C 2 with N ≥ 4 (as defined from the conjugation equation introduced in Section 9.1). Let m < N . Let 0 < a < b < +∞ such that a < |q|b. Then there exists δ (a,b) > 0 such that for every 0 < δ ≤ δ (a,b) , the system of equations (9.7), (9.8) admits a unique solution

(h δ,a,b , gδ,a,b ) ∈ H ∞,∞ δ,a,b (1) × H ∞,∞ δ,a,b (1). Moreover, • (h δ ,a,b , gδ ,a,b ) is the restriction of (h δ,a,b , gδ,a,b ) if 0 < δ ≤ δ ≤ δ (a,b) . • lim δ→0 N ∞ (h δ,a,b , gδ,a,b ) = 0.
• there exists a positive number D = D(θ) depending only θ ∈]0, 

- tional equation in H ∞,∞ δ,a,b (1) × H ∞,∞ δ,a,b (1) 
. In particular,(h δ,a,b , gδ,a,b ) is the restriction of (h δ,a ,b , g). Then, if one takes projective limit with respect to a → 0, b → +∞ and exploits the last asymptotic estimate in the Proposition 9.4, one get a solution (h, g) well defined as a flat element of A m-3 (I 1 ) × A m-3 (I 1 ). Now, consider an integer p >> N arbitrarily large. Let k be a positive integer and consider the truncation (or k-jet) J k Ψ of Ψ at order k:

J k Ψ(z, ξ) = z + k n=1 b n ξ -n , ξ + k n=1 a n ξ -n .
If k is large enough, then one has

(J k Ψ) -1 • F • J k Ψ (ξ, z) = qz + ∆ k 1 (z, ξ), ξ -1 + ∆ k 2 (z, ξ) where ∆ k i (z, ξ) = O( 1 ξ p ).
One can apply Proposition 9.4 to get existence and uniqueness of

h k δ , gk δ ∈ H ∞,∞ δ,a,b (1) 
(δ small enough) such that

F • J k Ψ • Ψ k = J k Ψ • Ψ k • F 0 with Ψ k = Id+(g k δ , h k δ ), where g k δ (z, ξ) = zg k δ (z, ξ).
As before, these solutions are in fact induced by a flat element of A p-4 (I 1 ) × A p-4 (I 1 ). Set Ψ = Id + (g, h) with g = zg and recall that F • Ψ = Ψ • F 1,0,0 . Invoking again uniqueness and restrictions considerations, one obtains that Ψ = J k Ψ • Ψ k . Thus,

Ψ =   z + Inf(α,p-4) n=1 a n ξ -n , ξ + Inf(α,p-4) n=1 b n ξ -n   + R k
where R k ∈ A p-4 (I 1 ) is flat. As k (hence p) can be chosen arbitrarily large, we eventually get that Ψ ∈ G 1 (I 1 ) and admits Ψ as asymptotic expansion. We have thus obtain the sought normalization Ψ 1 := Ψ on the germ of sector of opening I 1 . 9.5. Solving the linearized equation. The goal of this section is to prove Theorem 9.2.

Consider the foliation defined by the level sets {Y = c} of Y = ze 2iπτ ξ . For every complex number c, 0

< |c| < δ, consider S a,b,c := {J = c} ∩ S a,b,δ = {(z, ξ) = (ce -2iπτ ξ , ξ) ; ξ ∈ Σ a,b,c } where Σ a,b,c = {ξ ∈ C : (log |c| -log b) ≤ (2iπτ ξ) ≤ (log |c| -log a)}.
Note that 0<|c|<δ S a,b,c = S a,b,δ and the linearized equation has a simple form restricted to these slices. To simplify the presentation, we introduce the notation ζ = 2iπτ ξ and λ := -2iπτ with λ = λ 1 + iλ 2 , λ 1 , λ 2 ∈ R and note that the real part λ 1 > 0. In particular, the linearized/homological equation

h δ • F 1,0,0 -h δ = ∆ δ
can be then rewritten as (9.9)

ϕ c (ζ + λ) -ϕ c (ζ) = ∆ c (ζ)
where

ϕ c (ζ) = h(ce -ζ , -ζ λ ), and ∆ c (ζ) = ∆ δ (ce -ζ , -ζ λ )
. We are then led to solve the family of difference equations (9.9) with respect to the parameter c in the vertical strip Suppose moreover that, for some m ≥ 3, we have:

∆ m := sup ζ∈S A,B |∆(ζ)||ζ| m < ∞.
Then, there exists a bounded holomorphic function ϕ on Σ A,B+λ1 which solves

(9.10) ϕ(ζ + λ) -ϕ(ζ) = ∆(ζ).
Moreover ϕ is unique modulo an additive constant.

Proof. First notice that, if ϕ 1 , ϕ 2 are two bounded holomorphic functions solving (9.10), the difference ϕ 1 -ϕ 2 extends as a bounded λ-periodic entire function, hence constant. Uniqueness part of Theorem 9.5 is therefore obvious. Concerning the existence part, let us first observe, by Cauchy formula, that (9.11)

∆(ζ) = 1 2iπ L+ ∆(t) t -ζ dt F + 0 (ζ) - 1 2iπ L- ∆(t) t -ζ dt F - 0 (ζ) , A < ζ < B
where L -= { t = A} and L + = { t = B} are both oriented from bottom to top. Since ∆ m < ∞, we see that the two integrals are well defined, and holomorphic in ζ. Observe that F - 0 and F + 0 are respectively defined on the half-planes A < ζ and ζ < B, and can be extended to the boundary by continuity, likely as ∆, by using equality (9.11). Then we define, for n ≥ 0 (9.12)

F - n (ζ) := F - 0 (ζ + nλ) holomorphic on A -nλ 1 ≤ ζ < ∞ F + n (ζ) := F + 0 (ζ -nλ) holomorphic on -∞ < ζ ≤ B + nλ 1
The solution ϕ to (9.10) is therefore given by the following series

(9.13) ϕ(ζ) := n≥1 F + n (ζ) + n≥0 F - n (ζ) = F - 0 (ζ) + n≥1 F + n (ζ) + F - n (ζ) Fn(ζ) 
that will be proved to converge uniformly on the large strip Σ A,B+λ1 in Lemma 9.6. We can already check that it is indeed a solution:

ϕ(ζ + λ) = n≥0 F + n (ζ) + n≥1 F - n (ζ) = ϕ(ζ) + F + 0 (ζ) -F - 0 (ζ) ∆(ζ)
.

Therefore, Theorem 9.5 is an immediate consequence of the following Lemma which actually provides further informations.

Lemma 9.6. For ∆ like in Theorem 9.5, the series (9.13) is well defined, holomorphic on Σ A,B+λ1 providing a solution of (9.10). Moreover, there exists a positive number C = C(B -A) only depending on B -A26 such that

(9.14) sup ζ∈Σ A,B+λ 1 |ϕ(ζ)| ≤ C ∆ m L + |dt| |t| m Proof. Set I m := L+ |dt| |t| m .
We will also use repeatedly (and without mentioning it) that, for a < 0, t=a

|dt| |t| m = |a| 1-m t=1 |dt| |t| m . In particular, since A < B ≤ 1, we have L- |dt| |t| m < L+ |dt| |t| m = I m . If A + λ1 2 ≤ u, one has 1 2iπ L- ∆(t) t -u dt ≤ 1 2π L- |∆(t)||t| m |t -u| |dt| |t| m ≤ 1 2π ∆ m λ 1 /2 L- |dt| |t| m ≤ ∆ m πλ 1 I m . If A ≤ u ≤ A + λ1
2 , Cauchy's formula yields the inequality

1 2iπ L- ∆(t) t -u dt ≤ |∆(u)| + ∆ m I m πλ 1 ≤ ∆ m + ∆ m I m πλ 1 ≤ C 1 ∆ m I m with C 1 = 1 I m + 1 πλ 1 .
Following the same principle, we get the inequality

1 2iπ L+ ∆(t) t -u dt ≤ C 1 ∆ m I m
where A ≤ u ≤ B. This eventually leads to the upper bound

(9.15) |F n (ζ)| ≤ 2C 1 ∆ m I m ∀n ≥ 0, ∀ζ ∈ Σ A,B+λ1 .
Moreover, when n > A-B λ1 , Cauchy's formula allows to write

L- ∆(t) t -ζ -nλ dt = L+ ∆(t) t -ζ -nλ dt.
Consequently, for these values of n one has

F n (ζ) = 1 2iπ L+ 2(t -ζ)∆(t) (t -ζ -nλ)(t -ζ + nλ) dt
The key point will be to find a suitable upper bound for

A(t, ζ) = n≥n0 1 (t -ζ -nλ)(t -ζ + nλ) where n 0 > 2 B-A λ1 + 1 , t ∈ L + , ζ ∈ Σ A,B+λ1 . For n ≥ n 0 , Cauchy-Schwarz inequality gives (9.16) A(t, ζ) ≤   n≥n0 1 (v -nλ 2 ) 2 + ( n 2 λ 1 ) 2   1 2   n≥n0 1 (v + nλ 2 ) 2 + ( n 2 λ 1 ) 2   1 2
where v = (t -ζ) and λ = λ 1 + iλ 2 . Here, we have used the fact that

| (t -ζ)| ≤ B -A + λ 1 ≤ n 2 λ 1 whenever n ≥ n 0 .
Therefore, (9.17)

A(t, ζ) ≤ n≥n0 1 ( n 2 λ 1 ) 2 ≤ 2 λ 1 2 n≥n0 1 n 2 ≤ 2 λ 1 2 +∞ n0-1 dt t 2 ≤ 2 λ 1 2 .
This, together with the fact that ∆ m < ∞ for some m ≥ 3, proves immediately that the serie F n converges uniformly on every compact of Σ A,B+λ1 . The function ϕ is then well defined and holomorphic on Σ A,B+λ1 .

For n ≥ n 0 , consider the decomposition

F n = G n + H n where G n (ζ) = 1 2iπ {t∈L+,|v|≤1} 2(t -ζ)∆(t) (t -ζ -nλ)(t -ζ + nλ) dt and H n (ζ) = 1 2iπ {t∈L+,|v|>1} 2(t -ζ)∆(t) (t -ζ -nλ)(t -ζ + nλ) dt.
Consequently, when |v| ≤ 1, we deduce that |t -ζ| ≤ 1 + (B -A) 2 so that, by (9.17), we find

n≥n0 |G n (ζ)| ≤ C 2 ∆ m I m where C 2 = 2 λ 1 2 1 + (B -A) 2 π .
In order to achieve the proof of Lemma 9.6, one needs a little bit more analysis to estimate n≥n0 |H n (ζ)| (and justify a posteriori the choice of |v| > 1). This also relies on (9.16), firstly noticing that the first factor in the left-hand-side can be rewritten as

  n≥n0 1 (v -nλ 2 ) 2 + ( n 2 λ 1 ) 2   1 2 = 1 c 1 |v|   n≥n0 1 (c 2 n v + c 3 ) 2 + 1   1 2
with constants c 1 , c 2 , c 3 ∈ C depending only on λ 1 , λ 2 , so that it can be bounded by

(9.18) 1 c 1 |v| R dt (c 2 t v + c 3 ) 2 + 1 1 2 = √ π c 1 c 2 |v| .
By a similar computation, we get the same bound for the second factor of A(t, ζ):

  n≥n0 1 (v + nλ 2 ) 2 + ( n 2 λ 1 ) 2   1 2 ≤ √ π c 1 c 2 |v| . Therefore, using that |t-ζ| |v| = (B-A) 2 |v| 2 + 1 ≤ (B -A) 2 + 1 for |v| > 1, we conclude that n≥n0 |H n (ζ)| ≤ π (B -A) 2 + 1 2(c 1 c 2 ) 2 C3 ∆ m I m
for a constant C 3 depending only on B -A. By putting together the inequalities above involving C 1 , C 2 , C 3 , one obtains that ϕ satisfies the estimate (9.14) of Lemma 9.6, thus proving Theorem 9.5. 9.5.2. Choice of a canonical solution. In this section, we are going to replace the solution

ϕ(ζ) = F - 0 (ζ) + n≥1 F n (ζ)
constructed in the proof of Theorem 9.5 by another one

ψ(ζ) = ϕ(ζ) + m 0 where m 0 is a constant, so that ψ → 0 while (ζ) → -∞. As we shall see, the right constant is m 0 = 1 2λ L- ∆(t)dt = 1 2λ L+ ∆(t)dt.
Indeed, we have: Lemma 9.7. Keeping notations as in the proof of Theorem 9.5, set

ψ(ζ) = F - 0 (ζ) + n≥1 F n (ζ) ϕ(ζ) + 1 2λ L+ ∆(t)dt m0 .
Then, ψ is the unique solution to the difference equation (9.10) such that, for every ζ ∈ Σ A,B+λ1 satisfying ( ζ λ ) ≤ -1 (i.e. (ξ) ≥ 1), one has

(9.19) |ψ(ζ)| ≤ F ∆ m | ( ζ λ )| . for a constant C = C(B -A) depending only on B -A.
Moreover, for every θ ∈]0, π 2 ], there exists a real number

D = D(θ, B -A) > 0 such that for ζ ∈ K θ := Σ A,B+λ1 ∩ { π 2 + θ ≤ arg ζ ≤ 3π 2 -θ}, we have (9.20) |ψ(ζ)| ≤ ( A B ) m-2 D ∆ m |ζ| m-2 .
The first condition (9.19) insures that the solution ψ → 0 at least when

( ζ λ ) → -∞ (or equivalently (ζ) → -∞ in the strip S A,B+λ1
). The second condition is used to prove existence of asymptotic expansions of the sectorial normalization.

Proof. Let ζ ∈ Σ A,B+λ1 such that ( ζ λ ) < 0, so that ζ / ∈ λZ. Write F n (ζ) = 1 2iπ L+ ∆(t) t -ζ + nλ dt + L+ ∆(t) ζ -nλ dt + L- ∆(t) t -ζ -nλ dt + L- ∆(t) ζ + nλ dt - L+ ∆(t) ζ -nλ dt - L- ∆(t) ζ + nλ dt Now using that L-∆(t)dt = L+ ∆(t)dt and n∈Z 1 ζ + nλ = π λ cot (π ζ λ ),
and summing-up the previous equalities, one obtains

ϕ(ζ) = 1 2iπ n≥1 L+ t∆(t) (ζ -nλ)(t -ζ + nλ) dt + 1 2iπ n≥0 L- t∆(t) (ζ + nλ)(t -ζ -nλ) dt - π 2iπλ cot (π ζ λ ) L+ ∆(t)dt
which makes sense whenever ( ζ λ ) = 0. Now, we start proceeding mimicking the proof of Lemma 9.6 to bound the terms in ϕ assuming that ( ζ λ ) ≤ -1. For each n, we can majorate

1 2iπ L- t∆(t) (ζ + nλ)(t -ζ -nλ) dt ≤ 1 2π|λ| L- ∆ m | ζ λ + n| |t -ζ -nλ| |dt| |t m-1 | ≤ 1 2π|λ| L- ∆ m | ( ζ λ )|( n 2 λ 1 ) |dt| |t m-1 | ≤ ∆ m I m-1 πnλ 2 1 | ( ζ λ )| (we have used that |t -ζ -nλ| ≥ | (t -ζ -nλ)| = | (t -ζ) -nλ 1 | ≥ n 2 λ 1 )
. This allow us to bound terms for small values of n. Now, for large n, consider a positive integer n 0 ≥ 2( B-A λ1 + 1), and define

B(t, ζ) = n≥n0 1 (ζ + nλ)(t -ζ -nλ) for (t, ζ) ∈ L -× Σ A,B+λ1 .
Here, proceeding as for proving (9.16) and (9.17), Cauchy-Schwarz inequality gives us

B(t, ζ) ≤   n≥n0 1 |ζ + nλ| 2   1/2   n≥n0 1 |t -ζ -nλ| 2   1/2 .
The left-hand-side is bounded by

n≥n0 1 |ζ + nλ| 2 ≤ 1 |λ| 2 R dt (t + ( ζ λ )) 2 + | ( ζ λ )| 2 = π |λ| 2 | ( ζ λ )
| and right-hand-side by (9.18) so that we eventually get the bound

B(t, ζ) ≤ C 1 | ( ζ λ
)v| where v = (t -ξ) and C 1 is some positive constant. Then, as in the proof of Lemma 9.6, we end-up considering separately the cases |v| ≤ 1 and |v| > 1 when integrating along L -and establish in a similar way the following bound: for every ζ ∈ Σ A,B+λ1 satisfying ( ζ λ ) ≤ -1, we get:

1 2iπ n≥0 L- t∆(t) (ζ + nλ)(t -ζ -nλ) dt ≤ C 2 ∆ m | ( ζ λ )|
where C 2 > 0 only depends on B -A. We skip the details. Similarly, one gets

1 2iπ n≥1 L+ t∆(t) (ζ -nλ)(t -ζ + nλ) dt ≤ C 3 ∆ m | ( ζ λ )|
where C 3 > 0 only depends on B -A as well. Finally, for ( ζ λ ) ≤ -1, a straightforward calculation gives

π 2iπλ cot (π ζ λ ) - 1 2λ ≤ e 2π ( ζ λ ) |λ|(1 -e -2π ) ≤ C 4 | ( ζ λ )| for some constant C 4 > 0.
These different estimates prove (9.19). Now, let us establish the upper-bound (9.20). For this end, observe that, on K θ , we have

|B + λ 1 | ≤ |ζ| ≤ |A|
sin θ so that we have in particular:

| t ζ | ≥ B sin θ A for every t ∈ L + .
From Lemma 9.6, one deduces that Proof. Define ϕ δ by the formula (compare Lemma 9.7)

sup ζ∈K θ |ϕ(ζ)| ≤ C ∆ m |ζ| m-2 A B sin θ m-2 L +
ϕ δ (c, ζ) := 1 2iπ L c - ∆ δ (c, t) t -ζ dt F - 0 (c,ζ) + ∞ n=1 1 2iπ ( L c + ∆ δ (c, t) t -ζ + nλ dt + L c - ∆ δ (c, t) t -ζ -nλ dt) Fn(c,ζ) + 1 2λ L c + ∆ δ (c, t)dt m0(c) setting L c -= { t = A c }, L c + = { t = B c }.
From this integral formula, it is clear that F - 0 and F n are well defined as holomorphic functions on S |q|a,b,δ and that m 0 depends analytically on c. Moreover, one can easily verifies (as in subsection 9.5.1) that the series F n converges uniformly on every compact subset of S |q|a,b,δ . Thus ϕ ∈ H(S |q|a,b,δ ) and fullfills the properties stated in the Proposition as a direct application of the construction performed in subsections 9.5.1 and 9.5.2.

Then, the proof of Theorem 9.2 immediately follows when translating this existence and uniqueness result into the original variable (z, ξ), with c = ze -2iπτ ξ and ζ = 2iπτ ξ (see Section 9.5) together with the upper bound (9.20) of Lemma 9.7.

Recall that once we have solutions to the linearized equation as achieved above, we are in position to obtain a solution to the general functional equations (9.8) and (9.7) by a standard fixed point Theorem as developped in subsection 9.3. This eventually finishes (at least on sectors of opening I 1 ) the proof of Lemma A (and more precisely Lemma 4.1). One can construct others normalizing conjugacy biholomorphisms on the remaining sectors, namely I 2 , I 3 , I 4 without further real complications. This is explained below. 9.6. Construction of other sectorial normalizations. Here again, this amounts to solve an analytic family of difference equations where the solutions satisfy some estimates which eventually leads by the same fixed point consideration to a normalizing conjugation map. This can be carried out following verbatim the same method. 9.6.2. On I 2 and I 4 . Here, we can use the SL 2 (Z) action described in subsection 1.6 to deduce existence of sectorial normalization on remaining sectors. Indeed, if we consider the cyclic covering determined by M = 0 -1 1 0 (see subsection 1.6) then we are led to

an alternate presentation of (U, C). Our model (U 1,0,0 , C) is now viewed as the quotient of (C * z × C ξ , {ξ = ∞}) by the semi-hyperbolic transformation F 1,0,0 (z , ξ ) = (q z , ξ -1) where τ = -1 τ , q = e -2iπ τ and z = z

1 τ , ξ = τ ξ + log(z) 2iπ .
In these coordinates (U, C) is isomorphic to a quotient of the form (C * z × C ξ {ξ = ∞}) by a biholomorphism F such that F (z , ∞) = (z , ∞). We can then apply the results of previous sections and obtain an analytic sectorial conjugation taking into account that arg(ξ ) ∼ + arg(ξ) asymptotically. Maybe composing Ψ by an automorphism of our model (U 1,0,0 , C) (see subsection 3.3), we can assume that the asymptotic expansion fits with that of previous sectorial normalizations: Ψ = Ψ.

F • Ψ = Ψ • F 1,

GENERALIZATION TO THE CASE OF TRIVIAL NORMAL BUNDLE

10.1. General formal classification: recollections and symmetries. We first recall here the results obtained in [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF] (and partially exposed in 1.2) under a slightly more synthesized form including the case of torsion normal bundle and finite Ueda type. As already mentioned in Section 1.2, we do not address the case where C fits into a formal fibration (corresponding to infinite Ueda type). According to a result due to Ueda, this fibration is indeed analytic and we fall into the case which satisfies the formal principal: there is no differences between analytic and formal classification and this latter is very easy to describe, see for instance [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF]Section 5.1].

Let m be the torsion order of the normal bundle N C and let k > 0 be the Ueda type. Recall that this latter is necessary a multiple of m. The linear monodromy of the corresponding unitary connection along the loops 1 and τ is respectively determined by two roots of unity a 1 , a τ of respective orders m 1 and m τ such that lcm(m 1 , m τ ) = m. The triple (a 1 , a τ , k) is obviously a formal invariant of the neighborhood. A complete set of invariants is indeed provided in [14, Section 5.2], from which we borrow and adapt the notation. In particular, there exists on each normal form described below a pencil of regular foliations (F t ) t∈P 1 fullfilling one of the following properties:

(

1) C is F t invariant for t ∈ C , (2) 
F ∞ is either tangent to C, either totally transverse to C . Conversely every formal foliation satisfying one of these two properties fits into this pencil and is in particular convergent. Moreover, this family of foliations can be defined by a pencil of closed meromorphic forms ω t = ω 0 + tω ∞ whose expression is recalled below according the value of the parameters characterizing the normal forms that we proceed to describe now.

Set ϕ k,ν = exp ( y k+1 1+νy k ∂ y ), and given P (z) = 2), such that (U, C) is formally equivalent 27to the quotient U k,ν,P,a1,aτ of (C x × C y , {y = 0}) by the group generated by

(10.3) φ 1 (x, y) = (x + 1 , a 1 y) φ τ (x, y) = (x + τ + g k,ν,P (y) , a τ ϕ k,ν (y))
The pencil ω t = ω 0 + tω ∞ of closed 1-forms is generated by (10.4) -ω 0 = dy y k+1 + ν dy y

and ω ∞ = dx τ -ω P .

Actually (see [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF]), the case P = 0 (i.e ω P = 0) corresponds exactly to the existence of a (necessarily unique) transverse fibration (Property (2) above), given at the level of the formal normal forms described above by ω ∞ = dx τ . If in addition, k = 1, ν = 0 (and necessarily m = 1) one recovers Serre's example. The case where P = µ is the constant polynomial, is covered by [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF]Theorem 5.3] whereas deg(P ) > 0 is covered by [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF]Theorem 5.4]. When m = 1, that is N C analytically trivial, one will denote (as in 1.2) the corresponding neighborhood by U k,ν,P . One then observes that φ τ is the flow at time 1 of the holomorphic vector field v k,ν,P = v 0 + v ∞ where

v 0 = y k+1 1 + νy k ∂ y + τ P ( 1 y ) y k 1 + νy k ∂ x . and v ∞ = τ ∂ x
are the dual vector fields of the pair (-ω 0 , ω ∞ ). For general neighborhoods U k,ν,P,a1,aτ , one can notice that φ τ = A τ • exp v k,ν,P where A τ (x, y) = (x, a τ y).

In the non torsion case (m = 1) and in the coordinates z = e 2iπx and ξ = 1/y, the corresponding presentations are (in accordance with 1.2)

(U k,ν,P , C) := (C * z × C ξ , {ξ = ∞})/ F k,ν,P where F k,ν,P = exp v k,ν,P and v k,ν,P = v 0 +v ∞ with v 0 = 1 ξ k +ν (-ξ∂ ξ +2iπτ zP (ξ)∂ z ), v ∞ = 2iπτ z∂ z .
This can be directly borrowed from the presentation given in the (x, y) variable.

Concerning the structure of the automorphism group Aut(U k,ν,P , C) of formal automorphisms inducing translations on C, we have the following characterization which generalizes Lemma 3.9 Lemma 10.2. Any formal automorphism in Aut(U k,ν,P , C) is actually convergent and there exists a nonnegative integer n = n(k, P ) dividing k such that Aut(U k,ν,P , C) is isomorphic to Z/n × (C * × C * ). Moreover the Lie algebra associated to the infinitesimal action of the second factor C * × C * is spanned by v 0 and v ∞ Proof. Let E be the C-vector space generated by ω 0 and ω ∞ . Set G = Aut(U k,ν,P , C). This group acts naturally on the pencil of foliations (F t ) and because there is no constant meromorphic function constant on C (finiteness of the Ueda type), also on E -{0}. Moreover, any g ∈ G acts trivially on H 1 (C), then for any ω ∈ E -{0}, ω = ω ∞ , g * ω and ω must have the same periods (one refers to [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF]Section 2.4] for the notion of periods involved). As the period mapping is injective on E -{0} (see [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF]Corollary 2.7]), one concludes that g * is the identity on E. In particular, according to the writing of ω 0 and ω ∞ and up to composition with the flow of v ∞ , we deduce that g takes the form g(x, y) = x + yh(y), a exp (

ty k+1 1 + νy k ∂ y )
where

• a k = 1,
• ω P is invariant by the rotation y → ay and

• yh(y) = τ y 0 [exp ( ty k+1 1+νy k ∂ y ) * ω P -ω P ].
Note that, when a = 1, g is nothing but exp tv 0 . Conversely, the transformation defined by (x, y) → (x, ay) where a satisfies the conditions above and exp tv 0 are elements of G.

Set n = k if P is constant. When P has positive degree, let d P be the supremum of the positive integer d such that P is invariant under the action of the group of d th roots of unity over the polynomials (µ, P (X)) → P (µX) Set n = gcd(k, d P ). From the remarks above, we observe that for every g ∈ G, there exists (l, t) ∈ Z/n × C uniquely defined such that g = h n l • exp tv 0 and h n (z, ξ) = (z, e 2iπ n ξ), whence the sought isomorphism. Note that n = 1 in general.

We are now ready to undertake the analytic classification.

10.2. Trivial normal bundle, finite Ueda type: the fundamental isomorphism. Still using the formal classification of [START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF] as recalled in Section 10.1, one can investigate, without any further fundamental change, the analytic classification of neighborhood of elliptic curves with arbitrary finite Ueda type. For the sake of simplicity, we will first focus on the case where the normal bundle N C of C is analytically trivial. The formal normal forms (U k,ν,P , C) are parametrized by the triple (ν, k, P ) where ν is a complex number, k ∈ N >0 is the Ueda type and P is a polynomial map of one indeterminate of degree < k; P is uniquely defined modulo a certain action of the k th roots of unity on the coefficients of P as described in subsection 10.1. Following subsection 10.1, one has

F k,ν,P = Φ -1 • F 1,0,0 • Φ where Φ(z, ξ) = (ze 2iπτ P (ξ)dξ ξ , ξ k k + ν log ξ)
and consequently

Φ -1 (z, ξ) = (ze -Q(ϕ -1 (ξ)) , ϕ -1 (ξ))
where ϕ(ξ) = ξ k k + ν log ξ, and Q(ξ) = 2iπτ P (ξ)dξ ξ Note that Φ and Φ -1 make sense as univalued functions on sectors (with respect to the ξ variable) of opening < 2π and that their expressions depend on the choice of the determination of log ξ. Moreover ϕ -1 (ξ) = k

1 k ξ 1 k + o(|ξ| 1 k ).
Note that Φ provides a conjugation between the pencils of foliations respectively attached to (U k,ν,P , C) and (U 1,0,0 , C).

Let us choose 4 intervals I l i , i = 1, ..., 4 ∈ Z 4 , l = 0, ..., k -1 ∈ Z k as follows:

I 0 1 =] - k , π - k [, I 0 2 =]0, π k [, I 0 3 = I 0 1 + π k , I 0 4 = I 0 2 +
π k so that kI 0 i = I i and I 0 i ∩ I 0 i+1 = ∅, and for l = 0, set

I l i = I 0 i + 2lπ k . Define Π k,ν,P (z, ξ) := Π • Φ(z, ξ) = e 2iπξ k k ξ 2iπν , ze P1(ξ)+2iπτ ξ k k ξ 2iπτ (ν+a0)
where a 0 = P (0) is the constant term of P and P 1 is a polynome of degree < k whose exact expression is not relevant in the sequence. This transformation Π k,ν,P maps the germ of transversely sectorial domains U l i of opening I l i (which is F k,ν,P invariant) onto the germ of deleted neighborhood of L i . The full picture is thus obtained by taking the successive family of sectors with consecutive overlaps (I 0 1 , ..., I 0 4 , I 1 1 , ..........., I k-1 1 , ...., I k-1
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) and their corresponding system of transversal sectorial neighborhoods. This defines a cover of the deleted neighborhhood U k,ν,P \ C equipped with a system of semi-local charts defined by Π k,ν,P . If one follows the cyclic order defined by the succession of overlapping sectors, one conclude that this deleted neighborhood can be represented by the union of deleted neighborhoods V l i -L l i of the components of a cycle D = L l i of 4k rational curves of zero type, namely the image under Π k,ν,P of these sectors. The neighborhood V l i of L l i is equipped with the standard coordinate system of V i (neighborhood of L i in P 1 × P 1 ).

We will also set

V l i,i+1 := V l i ∩ V l i+1 if i = 0 mod 4, V l 4,1 := V l-1 4 
∩ V l 1 and consider p l i,i+1 ∈ V l i,i+1 the crossing points of D. To summarize we have thus constructed via Π k,ν,P a two dimensional germ of neighborhood V k,ν,P of D such that each component of D is embedded with zero self intersection and such that V k,ν,P \ D U k,ν,P \ C.

The complex structure of V K,ν,P is determined by trivial glueings (with respect to the (X, Y ) coordinate) along the intersections V l i,i+1 except on V 0 4,1 where identification is made by the monodromy of Π k,ν,P which is given by the linear diagonal map

d ν,P : (V 0 1 , p 0 4,1 ) → (V k-1 4 , p 0 4,1 ) (X, Y ) → (e -4π 2 ν X, e -4π 2 τ (ν+a0) Y )
Let us denote by V k,ν,P the neighborhood of four lines obtained by this process. If one specializes this serie of observations to k = 1 and then P = µ automatically constant, one obtains an isomorphism between the deleted neighborhoods

V 1,ν,µ \ D U 1,ν,µ \ C.
In this context, D is a cycle of 4 rational curve, and one recovers the description of Serre's example for the value (0, 0) of the parameter (ν, µ).

Remark 10.3. On V k,ν,P , the vector fields induced respectively by v ∞ and v 0 simply read as

X ∞ = 2iπτ Y ∂ Y and X 0 = -2iπX∂ X -2iπτ Y ∂ Y . In particular the C * × C * part of Aut(U k,ν,P , C)
corresponds at the level of V k,ν,P to transformations of type (X, Y ) → (aX, bY ), a, b ∈ C * . According to the description given in (the proof of) Lemma 10.2 it remains to determine the action corresponding to g = h n : (z, ξ) → (z, e 2iπ n ξ). These latter is given in restriction to V l i , 0 ≤ l < k, of the following transformation

(1) Θ n : (X, Y ) ∈ V l i → e -4π 2 ν n X, e -4π 2 τ (ν+a 0 ) n Y ∈ V l+ k n i , when l ≤ k -1 -k n , (2) 
Θ n : (X, Y ) ∈ V l i → e 4π 2 ν(1-1 n ) X, e -4π 2 τ (ν+a0)(1-1 n ) Y ∈ V l+ k n i otherwise.
This is done by a straightforward computation.

10.3. The analytic moduli space. Notations of Section 10.2. Our purpose is to give a simple characterization of neighborhhoods (U, C) formally conjugated to (U k,ν,P , C) up to analytic equivalence. The way to proceed is actually suggested in the previous Section where things are basically "modeled" on Serre's example.

Let us settle some notations in accordance with Section 3. For this, denote by Diff 1 (V l i , L l i ) the group of germs of biholomorphisms of (V l i , L l i ) which preserves the germ of divisor (D ∩ V l i ) and tangent to the identity along L l i and by Diff 1 (V l i,i+1 , p l i,i+1 ) the group germs of diffeomorphisms of (V l i,i+1 , p l i,i+1 ) which preserves the germ of divisor (D ∩ V i,i+1 ) and tangent to the identity at p l i,i+1 . Definition 10.4. By definition, a cocycle consists in the datum of a family of 4k germs of diffeomorphisms ϕ = (ϕ l i,i+1 ) where ϕ l i,i+1 ∈ Diff 1 (V l i,i+1 , p l i,i+1 ). Analogously to the case of Serre's example, we investigate in terms of cocycle the structure of the moduli space U k,ν,P of neighborhoods (U, C) formally equivalent to (U k,ν,P , C) up to analytic equivalence. 28 10.3.1. Normalizing sectorial maps. Concerning the construction of normalizing maps, let us explicit as before the modifications needed: let (U, C) be formally equivalent to (U k,P,ν , C).

One can suppose that (U, C) = ( Ũ , C)/F where F (z, ξ) = F k,ν,P (z, ξ) + (∆ 1 , ∆ 2 ) with ∆ i = O(ξ -N ) where N >> 0 is a positive integer arbitrarily large and that there exists a formal diffeomorphism of ( Ũ , C)

Ψ(z, ξ) = (z + ĝ, ξ + ĥ) =   z + n≥1 b n ξ -n , ξ + n≥1 a n ξ -n   where a n , b n are entire functions on C = C * , such that F • Ψ = Ψ • F k,ν,P .
One wants to generalize the construction performed in Section 9 and replace Ĥ by a collection of transversely sectorial biholomorphisms

Ψ l i ∈ G 1 (I l i ), Ψ l i = Ψ, 29 that is (10.5) F • Ψ l i = Ψ l i • F k,ν,P 28 
Recall that we allow for this statement analytic isomorphisms inducing translations on C 29 Notations and definitions of Section 3.3

One adopts the notation of loc.cit without systematically mentioning the parameters (k, ν, P ).

As before, we will just detail the construction of a normalizing conjugation map on the germ of transversal sectorial domain determined by I 1 := I 

= c} ∩ {arg ξ ∈ I 1 }, c "small" of Y k,ν,P = Y • Φ = ze P1(ξ)+2iπτ ξ k k ξ 2iπτ (ν+a0) = ze 2iπτ ξ k k +R(ξ)
where

R(ξ) = o(ξ k ). It corresponds to the fibration dY = 0 on a neighborhood V l 1 of L l 1 . Let δ(a, b) > 0 sufficiently small. For every 0 < δ ≤ δ(a, b), set S a,b,δ = {(z, ξ) ∈ C 2 | |Y k,ν,P (z, ξ)| ≤ δ, z ∈ C a,b , arg ξ ∈ I 1 }.
For every complex number c, 0 < |c| ≤ δ, consider S a,b,c = {Y k,ν,P = c} ∩ S a,b,δ . Note that 0<|c|≤δ S a,b,c = S a,b,δ and that F k,ν,P (S a,b,δ ) ≈ S |q|a,|q|b,δ . It is thus coherent to investigate the existence of a solution Ψ = Ψ 1 ∈ G 1 (I 1 ) of (10.5) on the domain S a,b,δ = S a,b,δ ∪ F k,ν,P (S a,b,δ ).

Remark now that the conjugacy equation (10.5) can be equivalently rewritten

F Φ • Ψ Φ = Ψ Φ • F 1,0,0 where F Φ = Φ • F • Φ -1 , Ψ Φ = Φ • Ψ • Φ -1
. This amounts to determine Ψ Φ on the domain Φ(S a,b,δ ). To do this, note that in view of asymptotic behavior of ϕ and ϕ -1 described in Section 10.2, one has

F Φ = F 1,0,0 + (∆ 1,Φ , ∆ 2,Φ ) where one can verifies that ( ∆ 1,Φ , ∆ 2,Φ ) = O( 1 ξ N ) setting z ∆ 1,Φ = ∆ 1,Φ .
We are looking for solution of the form Ψ Φ = Id + (h Φ , g Φ ). Here again, this can be reformulated as

(10.6) h Φ • F 1,0,0 -h Φ = ∆ 2,Φ • Ψ Φ (10.7) g Φ • F 1,0,0 -qg Φ = ∆ 1,Φ • Ψ Φ
First, we will still deal with the linearized equations This can be reformulated as

(10.8) h • F 1,0,0 -h = ∆ 2 (10.9) g • F 1,0,0 -qg = ∆ 1
where we have omit the subscript Φ for notational convenience.

In what follows, we will indeed provide a solution of (10.8) (hence also for (10.9) by the usual transform) with "good estimates" on a domain of the form Φ(S a,b,δ ) using a "leafwise" resolution with respect to the foliation defined by the levels of Y . This consists as before in solving a family of difference equations parametrized by the leaves space in the variable ξ where the domains are slightly modified as explained now. For every complex number c, 0 < |c| ≤ δ, consider S a,b,c = {Y k,ν,P = c} ∩ S a,b,δ and Φ(S a,b,c ) = {(z, ξ) = (ce -2iπτ ξ , ξ)} where ξ belongs to

Σ c,a,b = {ξ ∈ C : (log |c| -log b) ≤ (2iπτ ξ + Q(ϕ -1 (ξ)) ≤ (log |c| -log b)}
where a determination of the logarithm has been chosen in the sector in which we are working, namely arg ξ ∈ I 1 . Note also that Q(ϕ -1 (ξ)) = o(ξ) and consequently the middle term in the above inequation "behaves" like (2iπτ ξ). The remaining part of the proof then follows mutatis mutandis the same line by noticing that the equation h • F 1,0,0 -h = ∆ 2 can be then rewritten as (10.10)

ϕ c (ζ + λ) -ϕ c (ζ) = ∆ c (ζ) where λ = -2iπτ , ζ = 2iπτ ξ, ϕ c (ζ) = h(ce -ζ , ζ 2iπτ ), and ∆ c (ζ) = ∆ δ (ce -ζ , ζ 2iπτ ) with 0 < |c| ≤ δ.
We are then reduced to solve a family difference equations in the "quasi" vertical strip

Σ c = {ζ ∈ C : log |c| -log b ≤ (ζ + Q(ϕ -1 ( ζ 2iπτ 
))) ≤ log |c| -log a} depending analytically on the parameter c and we investigate the existence of an solution ϕ c on the domain Σ c ∪ (Σ c + λ). This can be carried out by resolving equation (9.10) using the same method (that is, essentially Cauchy formula) replacing accordingly in the expression (9.13) the integration along the vertical lines

L -, L + by l(ζ) = A, B where l(ζ) = (ζ -R(ϕ -1 ( ζ 2iπτ 
))). One also obtain in a similar way the same kind of estimates imposing the uniqueness of the solution. This allows by the fixed point method detailed in the previous section to solve the conjugation equation under the forms (10.6) and (10.7) on the relevant domains and finally exhibit a conjugacy sectorial transformation

Ψ = Φ -1 • Ψ Φ • Φ,
well defined as a section of G 1 over I 1 and having Ψ as asymptotic expansion. One can analogously construct conjugacy maps on other sectors of opening I l i , i = 1, 3, l ∈ Z k and also on I l i , i = 2, 4 by exchanging the roles of the foliations F 0 and F 1 following the process described in Section 9.6. 10.3.2. Cocycles versus analytic class and statement of the main result. One borrows notation from Section 3 and defines G ∞ [F k,ν,P ] to be the subsheaf of G ∞ formed by germs sectorial holomorphic transformations flat to identity along C and commuting to F k,ν,P . By exploiting the Proposition 3.13 and the fact that (U k,ν,P , C) is "sectorially modeled" on (U 0 , C) as described in Section 10.2, one obtains the following Proposition: Proposition 10.5. We have the following characterizations:

• Φ ∈ G ∞ [F k,ν,P ](I l i ) if and only if Π k,ν,P • Φ = ϕ • Π k,ν,P where ϕ ∈ Diff 1 (V l i , L l i ); • Φ ∈ G ∞ [F k,ν,P ](I l i,i+1
) if and only if Π k,ν,P • Φ = ϕ • Π k,ν,P where ϕ ∈ Diff 1 (V l i,i+1 , p l i,i+1 ) except for i = 4 and l = k -1 for which one has Π k,ν,P • Φ = d ν,P • ϕ • Π k,ν,P .

Definition 10.6. We say that two cocycles ϕ and ϕ are equivalent if ∃t, t ∈ C, ∃ϕ l i ∈ Diff 1 (V l i , L l i ), ∃m ∈ Z n (10.11) such that ϕ

l+m k n i,i+1 = θ m n • φ • ϕ l i • ϕ l i,i+1 • ϕ l+ε(i) i+1 -1 • φ -1 • θ -m n
where φ = exp (tX 0 + t X ∞ ) has thus the form φ(X, Y ) = (aX, bY ) (cf. Remark 10.3). We will denote this equivalence relation by ≈.

Firstly, let us explain as in Section 3 how to associate a cocycle to a neighborhood (U, C) = ( Ũ , C)/ < F > formally conjugated to (U k,ν,P , C). Recall that this means that there is a formal diffeomorphism (that can be assumed to be tangent to the identity along C) Ψ conjugating F to F k,ν,P i.e. F • Ψ = Ψ • F k,ν,P . Recall (cf.10.2) that for every pair (i, l), there exists a section Ψ l i of G 1 (I l i ) such that Ψ l i • F = F k,ν,P • Ψ l i . According to the description of Aut(U k,ν,P , C), namely the fact that it contains only convergent automorphisms, one can assume that the asymptotic expansion of the Ψl i is constant equal to Ψ. The Ψ l i are unique up to post composition by a sectorial diffeomorphism g l i ∈ G 1 [F k,ν,P ](I l i ) having the form (10.12)

g l i = exp (tv 0 ) • h l i where h i,l ∈ G ∞ [F k,ν,P ](I l i ). Actually, the flow of v 0 contains exactly all the automorphisms tangent to identity along C.

It follows that, on intersections I l i,i+1 = I l i ∩ I l+ε(i) i+1 , ε(i) = δ i4 , one obtains 4k germs of sectorial glueing biholomorphisms

Φ l i,i+1 := Ψ l i • Ψ l+ε(i) i+1 -1 ∈ G ∞ [F 0 ](I l i,i+1
).

One can now invoke Proposition 10.5: setting Π l i := Π k,ν,P • Ψ l i (and taking into account the determination of Π k,ν,P on the corresponding sectors), one can associate 4k corresponding cocycles: (10.13)

Π l i = Π • Ψ i = Π • Φ i,i+1 • Ψ i+1 = ϕ l i,i+1 • Π • Ψ l i+1 = ϕ l i,i+1 • Π l i+1
except for i = 4 and l = k -1 for which one has Π k-1
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= d ν,P • ϕ 0 1,4 • Π 0 1 . We have therefore associated to each neighborhood (U, C) formally equivalent to (U k,ν,P , C) a cocycle ϕ = (ϕ l i,i+1 ) i∈Z 4k which is unique up to the freedom for the choice of Ψ i 's. We have now all the ingredients to state and prove our main Theorem Theorem E. Two neighborhood (U, C) and (U , C) formally equivalent to (U k,ν,P , C) are analytically equivalent 30 if, and only if, the corresponding cocycles are equivalent Moreover, every cocycle can be realized by the process described above.

Proof. Now, consider a biholomorphism between two neighborhood (U, C) → (U , C) formally conjugated to (U k,ν,P , C). According to the description of Aut(U k,ν,P , C), it is represented by a bihomorphism of ( Ũ , C) taking the form h m n • exp (t v ∞ ) • Ψ where Ψ ∈ G 1 (S 1 ) and satisfying

h m n • exp (t v ∞ ) • Ψ • F = F • h m n • exp (t v ∞ ) • Ψ. Let (Ψ l i
) and (Ψ i l ) be the sectorial normalizations used to compute the invariants ϕ and ϕ .

Clearly, (h

m n • exp (t v ∞ )) -1 • Ψ i l+m k n • (h m n • exp (t v ∞ ))
• Ψ provides for (U, C) a new collection of sectorial trivializations defined on I l i tangent to identity. By virtue of 10.12, we can then write

Ψ i l+m k n • h m n • exp (t v ∞ ) • Ψ = (h m n • exp (t v ∞ )) • exp(tv 0 ) • Φ l i • Ψ l i 30
Recall that that formal/analytic conjugations are allowed to induce tranlations on C.

with Φ l i ∈ G ∞ [F k,ν,P ](I l i ). Therefore, we have

Φ l+m k n i,i+1 = (Ψ l+m k n i • h m n • exp (t v ∞ ) • Ψ) • (Ψ l+m k n +ε(i) i+1 • h m n • exp (t v ∞ ) • Ψ) -1 = h m n • ϕ • Φ l i • Φ l i,i+1 • Φ l+ε(i) i+1 -1 • ϕ -1 • h -m n .
where ϕ := exp (tv 0 ) • exp (t v ∞ ) = exp (t v ∞ ) • exp (tv 0 ). After factorization through Π k,ν,P , using Proposition 10.5, we get the expected equivalence relation (10.14) for ϕ and ϕ . Conversely, if ϕ ≈ ϕ , then we can trace back the existence of an analytic conjugacy Φ : (U, C) → (U , C) by reversing the above implications. Finally, it suffices to mimick the construction performed in Section 5 in order to realize every cocycle.

Remark 10.7. One thus observes that two cocycles are equivalent iff they lie on the same orbit over some action (that the reader will easily explicit) of Z/n × (O * × O * ) × 4k C * ×C * . One can strenghten the analytic equivalence by demanding that conjugations induce the identity on C. In that case, we have to replace φ by exp (tX 0 ) in the statement of definition 10.6.

TORSION NORMAL BUNDLE.

Recall that the elliptic curve is regarded as the quotient C = C/Z ⊕ τ Z. We maintain notations of Theorem 10. If one adopts the presentation in the variable (z, ξ), this corresponds to the neighborhood labeled identically as in Section 10.1 (except that C is replaced by its cover C m or equivalently τ par τ ): its presentation as a quotient is given by (C * z × C ξ , {ξ = ∞})/ F k,ν ,P where F k,ν ,P = exp v k,ν ,P and v k,ν ,P = 1 ξ k +ν (-ξ∂ ξ + 2iπτ zP (ξ)∂ z ) + 2iπτ z∂ z . The foliations F 0 and F 1 are respectively defined by the levels of ξ and Y k,ν ,P = ze 2iπτ ( ξ k k +V (ξ m )) ξ 2iπτ (ν +a 0 ) where V is a polynomial of degree < k = k m that we do not need to explicit and a (0) = P (0). From Section 10.2, one knows that (U m , C m ) is parametrized by a neighborhood V k,ν ,P = V l i of 4k lines via the map Π k,ν ,P = (e 2iπξ k k ξ 2iπν , J k,ν ,P ).

For the sake of clarity and coherence, it will be natural to denote this neighborhood by (U k,ν,P , C ) where C = C m . In order to recover the structure of the original neighborhood, we have to determine the identifications induced by the deck transformation group G which is cyclic of order m and generated by a transformation

g v,w = Φ v 1 • Φ w τ = A • exp (-β 1 v k,ν ,P ), Φ 1 := α • φ 1 • α -1 , Φ τ := α • φ τ • α -1 where
• (v, w) is the fixed pair of integers such that a v 1 a w τ = e -2iπ m , • β 1 = -wd mτ , • A is the affine map A(x, y) = (x + β 2 , e -2iπ m y) with β 2 = v m1 -wld m . In the (z, ξ) coordinates, A corresponds to the linear map d(z, ξ) = (e 2iπβ2 z, e 2iπ m ξ). In particular, one has d m = id. Note that the vector field X k,ν ,P = -2iπX∂ X on V k,ν ,P corresponds via Π k,ν ,P to v k ,ν ,P . Its flow at time -β 1 preserves each individual neighborhood V l i of the component L l i of the cycle and reads as (X, Y ) → (e 2iπβ1 X, Y ).

The action of g v,w by "sectorial permutation" is then explicitely given in the (X, Y ) coordinates (determining the neighborhood of 4k lines as described in Section10. At the level of the neighborhood V k,ν ,P of rational curves, these identifications are given is by the action of the order m cyclic permutation D and we eventually end up with a neighborhood of 4k rational curves of zero type, namely the quotient ] by the choice of a determination of the logarithm of u. One can notice that G acts transitively on the set of sectors of Ũ l i and that Π G k,ν ,P is G invariant. On the other hand, Π G k,ν ,P coincides with Π k,ν ,P (up to left composition with a diagonal linear map) on each sector V l i , hence is constant and separating along the orbits of F k,ν ,P . This shows, as claimed previously, that the (deleted) neighborhood (U G k,ν ,P , C) can be represented as the (deleted) neighborhood V G k,ν ,P of a cycle D = Ll i of 4k rational curves of zero type. More precisely, each individual neighborhood Ṽ l i , of Ll i is the image under Π G k,ν ,P of Ũ l i and is thus equipped as before by coordinates (X, Y ) determined by each component of Π G k,ν ,P . These coordinates glue together trivially on overlaps except on Ṽ 0 1 (defined as in Section 10.2) where it is given by the linear diagonal map d G : (X, Y ) → (e (-4π 2 ν m +2iπβ1) X, e (-4π 2 τ ( nu +a 0 m )+2iπβ2) Y ).

V G k,
The reader should compare with the case of resonant diffeomorphisms of one variable [17, Section 10.3, p. 592 ]. Let (U 1 , C) be a neighborhood formally conjugated to (U G k,ν ,P , C). Again by making use of [START_REF] Siu | Every Stein subvariety admits a Stein neighborhood[END_REF] (See proof of Lemma 2.1), one can suppose that (U 1 , C) can be represented as the quotient (C x × C y , {y = 0})/ φ 1 , φ 1 τ so that there exists a formal diffeomorphism of (C x × C y , {y = 0}) commuting with φ 1 that can be assumed to be tangent to the identity along C and conjugating φ 1 τ to φ τ . By taking the same triple of integer (l, v, w) than before, one can argue passing through the m-cyclic (U 1 m , C m ) cover of (U 1 , C) trivializing the normal bundle. It can be represented as the quotient (C * z × Cξ , {ξ = ∞})/F . Let G 1 be the attached deck transformation group with generator g 1 v,w = Φ v 1 •Φ 1 τ w where one sets as before

Φ 1 := α•φ 1 •α -1 , Φ 1 τ := α • φ 1 τ • α -1 .
Let ρ : G → G 1 the isomorphism of cyclic group mapping g v,w to g 1 v,w . The formal conjugation between the original neighborhoods, can be translated into the existence of a formal transformation map Ψ conjugating F to F k,ν,P , i.e. F • Ψ = Ψ • F k,ν,P and which is in addition equivariant with respect to ρ: ∀g ∈ G, Ψ • g = ρ(g) • Ψ. Recall (cf.10.2) that for every pair (i, l), there exists a section Ψ l i of G 1 (I l i ) such that Ψ l i • F k,ν,P = F • Ψ l i . such that Ψl i = Ψ. Moreover, the collection of these sectorial normalisations can be chosen equivariantly, ie:

Ψ l+j jk m i • g j v,w = ρ(g j v,w ) • Ψ l i .
This last point is justified by the fact that G and G 1 lie respectively in the centralizer of F k,ν ,P and F .

This thus provides a "multisectorial conjugation" on each Ũ l i . One can mimick the arguments presented in Section 10 and thus obtain the description of the analytic moduli space which is thus determined by a cocycle ϕ with 4k components modulo the identifications given in Theorem E.
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  said to be a transversely sectorial of opening I if the lift Ũ0 ⊂ Ũ ⊂ C * z × Cy contains, for arbitrary large and relatively compact open set C C * and arbitrary small > 0, a sector C × S(Iε, r) where

Lemma 2 . 1 .

 21 2. PRELIMINARY REMARKSRecall that C = C * / < q >, and we denote by C C * → C the corresponding cyclic cover. Denote Ũ = C * z × C y and C = {y = 0} ⊂ Ũ . The following is already mentioned by Arnol'd[START_REF] Arnol | Bifurcations of invariant manifolds of differential equations, and normal forms of neighborhoods of elliptic curves[END_REF]. Any germ of neighborhood (U, C) with C 2 = 0 is biholomorphic to a germ of the form ( Ũ , C)/ < F > where (2.1)

3. 1 .Definition 3 . 2 .

 132 Some sheaves of functions on the circle of directions. Let S 1 := R/2πZ and I be an open interval of R (regarded as the universal covering of S 1 ).Definition 3.1. For (c, R) ∈]0, +∞] × [0, +∞[, denote by S(I, R; c) = {(z, ξ) ∈ C * z × C ξ ; arg(ξ) ⊂ I, R < |ξ|, e -c <|z| < e c }. A sector of opening I is an open subset Σ I ⊂ S(I, 0; ∞) such that for all c >> 0, there exists R c > 0 such that S(I, R c ; c) ⊂ Σ I . Let Σ I be an open sector as above. Then, O(Σ I ) contains the subalgebra A(Σ I ) of holomorphic functions admitting an asymptotic expansion along C * z in the sense defined below: Let m be a positive integer. A function f ∈ O(Σ I ) belongs to A m (Σ I ) if there exists a polynomial P m
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  1 ), defined on a sectorial open set U 4,1 of opening I 4,1 . Let U 4,1 be the domain of definition of f , a transversely sectorial open set of opening I 4,1 (see definition 3.4). One can find another one U 4,1 ⊂ U 4,1 such that

Proposition 4 . 3 .

 43 (Proof of Theorem C) Two neighborhood (U, C) and (U , C) formally equivalent to (U 1,0,0 , C) are analytically equivalent if, and only if, the corresponding cocycles are equivalent (U, C) an ∼ (U , C) ⇔ ϕ ≈ ϕ .

Definition 5 . 1 .

 51 For any open sector Σ I (Definition 3.1), we denote by E ∞ (Σ I ) the Calgebra of those complex smooth functions f : Σ I → C satisfying the following estimates ∀α

  's and extending by continuity as the identity mapping on C. By construction, the quotient (U ϕ , C) := ( Ũ , C)/ < F ϕ > has cocycle ϕ and is formally equivalent to U 1,0,0 . This proves the surjectivity of the map (4.5) whose injectivity has been proved in Proposition 4.3. It remains to prove the Sectorial Normalization Lemma 4.1 (i.e. Lemma A in the introduction), which will be done in Section 9. Modulo this technical but central Lemma, we have achieved the proof of Theorem C. 6. CONSTRUCTION OF V ϕ .

Theorem 9 . 2 .

 92 Fix a, b as above. Then, there are positive constants δ (a,b) , C such that: for every δ ≤ δ (a,b) and every function ∆ δ ∈ H m δ , m ≥ 3, there exists a unique function h δ ∈ H ∞ δ satisfying25 Let A ⊂ C N , in this paragraph and hereafter, H(A) will denote the algebra of holomorphic functions on A, that is the C-valued continuous functions on A which are holomorphic in the interior in the usual sense.

First, let m ≥ 3 ,

 3 and consider H m,m δ the subspace of those (D 1 , D 2 ) ∈ H(S δ ) × H(S δ ) defined by N m (D 1 , D 2 ) < ∞ where N m (D 1 , D 2 ) := D 1 m + D 2 m (recall that D m := sup (z,ξ)∈S δ |D(z, ξ)||ξ| m ).

π 2 ] 9 . 4 .

 294 such that for every δ ≤ δ (a,b) and every (z, ξ) ∈ S δ,a,b ∩ {θ -≤ arg ξ ≤ π -θ -}, one has |h δ,a,b (z, ξ)| ≤ D |ξ| m-2 and |g δ,a,b (z, ξ)| ≤ D |ξ| m-2 . Asymptotic expansion. Notations as above. We start by fixing N ≥ 4 and a, b as before. Let us denote by (h a,b , , ga,b ) the germ of sectorial solution induced by (h δ,a,b , gδ,a,b ) by taking δ → 0. Let a , b be positive real numbers such that a ≤ a < b ≤ b . By Proposition 9.4, note that the unique solution of (9.7), (9.8) lying in H ∞,∞ δ,a ,b (1) × H ∞,∞ δ,a ,b (1) induces by restriction the unique solution of the same func

Σ

  a,b,c = {ζ ∈ C : log |c| -log b ≤ (ζ) ≤ log |c| -log a} where we impose ϕ c to be holomorphic, defined on the larger strip Σ |q|a,b,c = {ζ ∈ C : log |c| -log b ≤ (ζ) ≤ log |c| -log a + λ 1 } and to depend analytically on the parameter c in order to recover a holomorphic solution to (1) in Theorem 9.2.

FIGURE 6 .

 6 FIGURE 6. Strips Σ from ξ-plane to ζ-plane

|dt| |t| 2 where 9 . 5 . 3 . 1 >0 +iλ 2 .Proposition 9 . 8 . 1 ) 2 )

 2953129812 C = C(B -A) is the constant appearing in loc.cit. Moreover one gets trivially that |m 0 | ≤ ∆ m L + |dt| |t| m Consequently D := C+1 (sin θ) m-2 t=1 |dt| |t| 2 satisfies (9.20). Version with parameters and end of the proof of Theorem 9.2. We resume to notations introduced in Section 9.2 and the beginning of Section 9.5. We have fixed τ with τ > 0 and set λ = -2iπτ = λ Consider 0 < a < b such that a < |q|b or equivalently log a + λ 1 < log b, and let δ (a,b) > 0 small enough. For every positive number δ ≤ δ (a,b) and complex number c such that 0 < |c| ≤ δ, consider the vertical strips defined in the complex line by Σ a,b,c = {ζ ∈ C : log |c| -log b Ac ≤ (ζ) ≤ log |c| -log a Bc }. Consider also the subset of C 2 S a,b,δ = |c|≤δ {c} × Σ a,b,c . It is worth mentioning that B c -A c = log b -log a > (2iπτ ) does not depend on c. By a suitable choice of δ (a,b) , one can moreover assume that A c , B c ≤ -1 and Ac Bc ≤ 2. Let ∆(c, ζ) be a holomorphic function defined on S a,b,δ and assume in addition that ∆ m := sup S a,b,δ |∆(c, ζ)||ζ| m < ∞ for some m ≥ 3. From the results collected in subsections 9.5.1, 9.5.2, one promptly obtains the following statement: Let δ small enough and ∆ ∈ H(S a,b,δ ) with ∆ m < ∞, m ≥ 3. Then, there exists a unique function ϕ ∈ H(S |q|a,b,δ ) with the following properties (For every (c, ζ) ∈ S a,b,δ , one has ϕ(c, ζ + λ) -ϕ(c, ζ) = ∆(c, ζ). (There exists a positive number C = C(a, b) such that for all 0 < δ ≤ δ (a,b) , sup S |q|a,b,δ |ϕ(c, ζ)| ≤ C ∆ m sup S |q|a,b,δ ∩{ ( ζ λ )≤-1} |ϕ(c, ζ)| ≤ C ∆ m | ( ζ λ )| .
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 61 On I 3 . It is just a slight modification of the previous construction for I 1 . The starting domain consists again in the resolution of the linearized equation (9.6) on the corresponding domain. In this situation, it is relevant to deal with the levels Y = c of the first integral Y = ze 2iπτ ξ for |c| >> 0. One adapts the notation of Section 9.2 by defining S a,b,δ = {(z, ξ) ∈ C 2 | |Y (z, ξ)| > δ and z ∈ C a,b } (δ >> 0).

  0,0 defined on sectorial domains of the shape arg(ξ ) ∈ I 1 =] -π, [ and arg(ξ ) ∈ I 3 = I 1 + π, = arg(τ ) = π-. Moreover, Ψ admits an asymptotic expansion Ψ solving the same conjugacy equation. Finally, going back the (z, ξ) coordinates, we get that Ψ provides the sought sectorial conjugation on arg(ξ) ∈ I 1 -=] -π, 0[= I 2 and arg(ξ) ∈ I 3 -= I 4

k - 1 i=0

 1 λ i z i a polynomial, k = mk , define (10.1) ω P := P ( 1 y m ) dy y , and g k,ν,P (y) := τ y 0 [(a τ ϕ k,ν ) * ω P -ω P ] = τ y 0 [ϕ k,ν * ω P -ω P ]. The group Z k of k th roots of unity acts on the set of polynomials P as follows: (10.2) (µ, P (X)) → P (µX) Theorem 10.1. [14] Notations as above. There exist ν ∈ C and P ∈ C[z] of degree at most k -1, unique up to the Z k -action (10.

FIGURE 7 .

 7 FIGURE 7. The isomorphism Π k,ν,P for k = 2

l0 1 where l 0 ∈

 0 Z k has been fixed. Consider the annulus C a,b = {a ≤ |z| ≤ b}, a, b > 0, b > |q| -1 a. Consider the locus where the foliation F 1 is defined by the level sets {Y k,ν,P

(

  10.14) (U, C) an ∼ (U , C) ⇔ ϕ ≈ ϕ .

, φ l 1 • φ mτ d τ where l is an integer such that a l 1 a mτ d τ = 1 . 1 k

 11 1 and we also set d := gcd(m 1 , m τ ). Let (U m , C m ) be an mcyclic cover trivializing the normal bundle having the following form:(U m , C m ) = (C x × C y , {y = 0})/ φ m1 1 The deck transformation group G = Z/m is then generated by φ v 1 • φ w τ where (v, w) is any pair of integers fullfilling a v 1 a w τ = e -2iπm . Note that, as an effect of this cover, the modulus of the elliptic curve changes accordingly and more precisely C m is determined by the lattice m 1 , l + mτ d τ . An easy calculus yields (11.1)φ m1 1 (x, y) = (x + m 1 , y) φ l 1 • φ mτ d τ (x, y) = (x + l + mτ d τ + τ y 0 [(ϕ k,ν mτ d ) * ω P -ω P ] , ϕ k,ν mτ d (y))and conjugating by the transformation α : (x, y) → ( x m1 , ay), where a = ( mτ d ) , one can reduce to the simplest and usual normal formal form(U m , C m ) (C x × C y , {y = 0})/(F 1 , F τ )where F 1 (x, y) = (x + 1, y), F τ (x, y) = (x + τ + h k,ν ,P (y), ϕ k,ν (y)), ω P -ω P ].

  k -1 -k m , and by(11.3)D : (X, Y ) ∈ V l i → (e 4π 2 ν (1-1 m )+2iπβ1 X, e 4π 2 τ (ν +a 0 )(1-1 m )+2iπβ2 Y ) ∈ V l+ k m iotherwise. We will denote by (U G k,ν ,P , C) := (U k,ν , C )/G this description of the original neighborhood as a finite quotient.

  ν ,P := V k,ν ,P /D. Indeed, set u = ξ m and consider the functionΠ G k,ν ,P (z, ξ) = (ξ -mβ1 e 2iπu k k u 2iπν m +β1 , ξ -mβ2 ze 2iπτ ( u k k +V (u)) u 2iπτ ( ν +a 0 m )+β2 )as defined and univaluate on each of the 4k "multisectorial domains "

More generally, in the non torsion case, we may try to extend the foliation defined by the unitary connection on N C .

i.e. lines bundles together with a holomorphic connection

Mind that these intervals for arg(ξ) correspond to those defined in Lemma A for arg(y) = -arg(ξ).

We will generalize this result in subsection 10.2 using the notion of periods as defined in [14, Section 2.4],and their invariance under automorphisms.

We emphasize that this is not exactly the equivalence relation defined in Definition 2.2.

In order to give an unambiguous statement, τ, m are fixed but A, B, ∆ are allowed to vary provided they satisfy assumptions of Theorem 9.5.

As noticed in[START_REF] Loray | Two dimensional neighborhoods of elliptic curves: formal classification and foliations[END_REF], this result is unchanged if one allows formal conjugacy maps inducing translation on C.