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Neutrino detectors participate in the indirect search for the fundamental constituents of dark matter (DM) in form 
of weakly interacting massive particles (WIMPs). In WIMP scenarios, candidate DM particles can pair-annihilate into 
Standard Model products, yielding considerable fluxes of high-energy neutrinos. A detector like ANTARES, located in 
the Northern Hemisphere, is able to perform a complementary search looking towards the Galactic Centre, where a 
high density of dark matter is thought to accumulate. Both this directional information and the spectral features of 
annihilating DM pairs are entered into an unbinned likelihood method to scan the data set in search for DM-like 
signals in ANTARES data. Results obtained upon unblinding 3170 days of data reconstructed with updated methods 
are presented, which provides a larger, and more accurate, data set than a previously published result using 2101 
days. A non-observation of dark matter is converted into limits on the velocity-averaged cross section for WIMP pair 
annihilation.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction: dark matter signals at neutrino telescopes

The existence of cold, non-baryonic dark matter (DM), evi-
denced on macroscopic scale by astrophysical observations [1], en-
courages the searches for its possible particle constituents. Among 
those candidates, most WIMP scenarios accommodate the DM relic 
density reported by astrophysical measurements through a freeze-
out mechanism. This could imply that typical WIMP interactions 
of the DM candidate, especially its annihilation cross section, lie 
near the electroweak scale; beyond that, other parameters like the 
candidate WIMP mass or the specific details of the DM model are 
left unbound. Under the hypothesis that a WIMP coincides with its 
antiparticle, indirect searches for WIMPs are possible by detecting 
a signature of WIMP annihilation into Standard Model particles. 
Such signals are therefore searched from the direction of massive 
astrophysical environments, where WIMPs can be gravitationally 
attracted. DM builds up in and around massive celestial bodies and 
gravitational accumulators, and is organized in halos and clumps. 
The distribution of dark matter with density ρ at a given sky loca-
tion (r, θ, φ) is described through the J -factor

J =
∫

d�(θ,φ)

∫
ρ2 (s(r, θ,φ))ds, (1)
� l.o.s.
with � being the solid angle under which the source is observed, 
and s the radial coordinate integrated over the line of sight (l.o.s.) 
(see [2] for a detailed discussion). For neutrino telescopes, which 
have a very broad field of view, values as large as 10◦ − 30◦ can be 
considered for the opening angle characterising the solid angle �. 
Preferred locations where dark matter is predicted to accumulate 
are:

1. the Galactic Centre, having the largest J -factor;
2. massive, non-luminous galaxies like dwarf spheroidals;
3. the Sun or other nearby very massive celestial bodies.

DM messengers for indirect searches are neutrinos, γ rays or 
charged cosmic rays (e+ , p̄), produced either as primary or as 
secondary products of a WIMP pair annihilation, through different 
channels. The Galactic Centre is not only a promising source for its 
large predicted DM density; it is also a target of complementary 
searches for neutrino detectors and γ -ray telescopes, due to the 
low source contamination that would give way to an unambiguous 
signal identification. Lastly, the Galactic Centre is in good visibil-
ity for neutrino telescopes located in the Northern Hemisphere (as 
will be clarified in Section 2), or for γ -ray telescopes installed in 
the Southern Hemisphere. The flux of neutrinos reaching the Earth 
from a WIMP pair annihilation can be expressed as a function of 
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the thermally averaged cross section 〈σ v〉 for WIMP pair annihi-
lation, of the energy distribution of outcoming particles per WIMP 
pair collision dN/dEν , and of the DM distribution represented by 
the J -factor:

d	(Eν)

dEν
= 1

4π M2
WIMP

〈σ v〉
2

dN(Eν)

dEν
J , (2)

where the factor 1/2, used in this analysis, holds for self-conjugate 
WIMPs, and is to be replaced by a factor 1/4 otherwise. Similarly, 
the term 1/M2

WIMP arises from the presence of two WIMPS in the 
process, keeping into account that both the mass and the volumet-
ric density are expressed in energy units. Through the relation in 
Equation (2), a measurement of the integrated neutrino and an-
tineutrino flux from the region of the Galactic Centre

	ν+ν̄ =
∫

dEν
d	ν

dEν
+

∫
dE ν̄

d	ν̄

dE ν̄
(3)

is converted into limits on the thermally averaged cross section 
〈σ v〉 for WIMP pair annihilation. A lower bound on this quantity of 
3 · 10−26 cm3 s−1 can be made based upon cosmology arguments 
[3].

1.1. Directional and morphological information

Indirect searches for dark matter are unavoidably subject to 
large uncertainties, mostly arising from the parameterisation of the 
unknown DM distribution. The spherically averaged DM density 
profile ρ contained in the J -factor (Equation (1)) is modelled ac-
cording to different assumptions, leading to considerably different 
results. The main assumptions on ρ are based on cosmological N-
body simulation results and/or dynamical constraints on the Milky 
Way or spiral galaxies. Even if baryonic physics (star formation 
and feedbacks) is not fully under control in hydrodynamics simula-
tions, the baryons may steepen or even flatten the inner behaviour 
of the DM profile (see e.g. [4–7]). Alternatively, dynamical studies 
of galaxies show a large diversity in rotation curves [8] and can 
suggest a cored DM profile [9,10]. A popular and simple parame-
terisation of the DM density obtained in pure (without baryons) 
DM cosmological simulations is the Navarro-Frenk-White (NFW) 
profile [11]:

ρN F W (r) = ρ0

r
rs

(
1 + r

rs

)γ (4)

with γ = 2. The NFW profile is adopted in the present analysis 
with ρ0 = 1.40 · 107 M�/kpc3 and rs = 16.1 kpc [12]. For the sake 
of illustrating those DM density uncertainties, other two cases are 
considered: the profile from the recent study of McMillan [13] giv-
ing an internal power law r0.79±0.32, and the Burkert profile [14]
for which the inner density is constant.

1.2. Energy information

The energy distribution of a neutral massive particle pair-
annihilating into Standard Model products can be effectively de-
scribed with a Monte Carlo generator such as PYTHIA or HER-
WIG [15,16]. The PPPC4 cookbook [17], used in this analysis, di-
rectly provides spectra for WIMP annihilations into Standard Model 
modes which are straightforward to adapt to any kind of indirect 
searches.

PPPC4 yields the energy distribution for an isotropic flux of 
Standard Model particles originated in the WIMP pair annihila-
tion at the source. Several final states of the annihilation process, 
resulting in different decay modes (τ+τ− , W +W − , bb̄, μ+μ− , 
νν̄) have been simulated, evaluating the spectrum of the result-
ing neutrino flux, dNν/dEν , for each WIMP mass. Each channel is 
considered with a 100% branching ratio (BR). Note that the matter 
density in the Galactic Centre is not enough to cause distortions or 
absorption effects in outcoming neutrino spectra.

Flavour oscillations occur between source and detection point. 
The three neutrino flavours are equally produced in WIMP pair an-
nihilations, and the data set considered here only contains muon 
neutrinos recorded at the detector. The oscillations νe, ντ into νμ , 
as well as the loss of νμ into the other two flavours, have been 
accounted for. The energy distribution of neutrino final states is 
therefore obtained from a modulated superposition of the three 
flavours, in the long-baseline approximation,1 with coefficients 
taken from [1]. Neutrinos and antineutrinos are symmetrically pro-
duced in WIMP annihilations, and are detected indistinctly by cur-
rent neutrino telescopes. This analysis is restricted to muon neu-
trino events at the detector, as will be described in Section 2.

2. Detector and data set

ANTARES is an underwater Cherenkov detector situated in the 
Mediterranean Sea 40 km offshore from Toulon. It is composed 
of 12 detection lines instrumented with photomultiplier tubes en-
closed in optical modules [18]. ANTARES data analysis allows for 
energy and directional reconstruction of charged particle tracks 
originated from a neutrino interaction occurring around the detec-
tor. The very large background of muons produced in atmospheric 
interactions of cosmic rays is suppressed by considering events 
with arrival directions crossing the Earth. Under this condition, the 
Galactic Centre, located at a declination of −29.01◦ , is visible from 
the detector latitude about 70% of the time [19].

In this paper, 11 years of data collected with ANTARES between 
May 2007 and December 2017 are analysed, updating upon prior 
searches [20]. Signatures of neutrinos from DM annihilation are 
searched for in a data sample composed of reconstructed muon 
tracks originating from charged current (CC) interactions of neu-
trinos around the detector. A set of pre-selection cuts has been 
applied to discriminate these νμ CC-induced events from atmo-
spheric muon background; this first discrimination is based on 
the zenith angle of provenience of the event and on the quality 
of the track reconstruction. Tracks are reconstructed in ANTARES 
from the position and times of photomultiplier hits, recorded in 
general from different detector lines. The quality parameter is, in 
the standard approach, a maximum likelihood � obtained with a 
multi-line reconstruction fit [21]. At low energies, however, it is 
possible to best reconstruct those tracks hitting only one line of 
the detector using a single-line reconstruction [22]; this fit is based 
on a χ2 minimization and the χ2 value serves as a quality param-
eter. The single-line reconstruction is more efficient for energies 
below ∼ 100 GeV.

The parameters � and χ2 are used as quality indicator for 
multi-line and single-line tracks respectively. Additionally, an an-
gular error estimate β , provided by the multi-line reconstruction 
fit, has been considered. Variable cuts have been applied as re-
ported in Table 1, and the values yielding best sensitivity have 
been chosen to unblind the data, as explained later in section 3.1.

This sample is composed of 8976 tracks reconstructed with 
the multi-line algorithm and 2522 tracks with the single-line al-
gorithm recorded over 3170 days of effective livetime; note that 
in the text that follows the term neutrinos stands for ν + ν̄ , as 
the events generated by their interactions are seen indistinguish-
ably in current neutrino telescopes. Tracks are reconstructed with 

1 The E/L dependency of the oscillations are averaged out for GeV–TeV neutrino 
energies over the distance between the Earth and the Galactic Centre.
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Table 1
Final selection criteria applied to the data set. The 
quality of the multi-line reconstruction fit is evalu-
ated by a likelihood � and angular error estimate β; 
χ2 characterises the single-line fit; the angle θ is com-
plementary to the zenith, such that cosθ > 0 identifies 
an upgoing track, coming from across the Earth.

Fit Cut value

Multi-line � > −5.2
Multi-line β < 1◦
Single-line χ2 < 0.7
Both cos θ > 0

an angular resolution of the order of 1◦ at the energies relevant 
for this search [23]. Given its geometry and volume, the ANTARES 
telescope is optimised for the detection of neutrinos with energies 
from about 20 GeV to a few PeV. The DM analysis is, therefore, in 
the medium WIMP mass range. The amount of Cherenkov photons 
induced along the paths of the propagating charged particles is 
proportional to the amount of deposited energy and, consequently, 
the number of hit optical modules, NHITS, is a good proxy of the 
neutrino energy Eν .

A set of simulated data has been produced in correspon-
dence with the environmental and trigger conditions of each data 
run [24], and has been adapted to the specific DM analysis through 
the use of weights reproducing the energy distribution dNν/dEν of 
each WIMP annihilation channel. The simulated data used for this 
search contain νμ CC induced muons; the contribution of muons 
from ντ → τ and subsequent τ decay is not considered in the sim-
ulated sample used in this analysis.

The search is optimised on shuffled (blind) right-ascension data, 
which are unblinded after having established the best selection 
criteria. A newly released version of the ANTARES reconstruction 
software [21,22] was run on the full data set. With the new pro-
cessing and reconstruction of the data a considerable amount of 
livetime could be recovered with respect to the previous 9-year 
study [20].

The search method used for this analysis is the same as that 
used in the previous study [20], keeping into account the cor-
rection of a computation problem which affected the previous re-
sults [20].

3. Method

The signal from DM annihilation is expected to appear as a 
cluster of neutrino events scattered around the position of the 
Galactic Centre according to the J -factor profile, whose energy 
distribution reproduces the WIMP annihilation spectra [17]. This 
spatial cluster of signal events is to be found over a background 
of atmospheric neutrinos [25]. Both background estimation and 
search optimisation use shuffled (blinded) real data, by replacing 
the right ascension value with a random value between 0◦ and 
360◦ . This random shuffle washes out any possible spatial cluster-
ing in correspondence to the source, permitting to use real data 
with fake coordinates to accurately describe the background distri-
bution of events.

For identifying the signal, discriminating variables are the di-
rection of the reconstructed neutrino track and the energy proxy, 
NHITS, whose normalised distributions are used as an input in a 
likelihood function as probability density functions (PDFs). The sig-
nal PDF, S , is built from simulated data weighted according to 
the WIMP annihilation spectra [17]; the background PDF, B, is ob-
tained from shuffled data. To assess the signal significance, a large 
number of skymaps (pseudo-experiments) are generated injecting 
an variable number of signal events, ns , according to the signal 
PDF, over a set of N = ns +nbg events, with nbg background events. 
The total number of events, N , is obtained from the total number 
of tracks in the data sample. The algorithm used to search for an 
excess of events coming from the region of the Galactic Centre is 
based on an unbinned likelihood function, L, associated with each 
skymap (containing N events)

logL(ns) =
N∑

i=1

log
[
nsS(ψi, Ni

HITS,qi)

+ nbgB(δi, Ni
HITS,qi)

]
− nbg − ns,

(5)

where ψi is the angular distance of the i-th event from the Galac-
tic Centre; δi , the Equatorial declination of the i-th event; Ni

HITS, 
the number of light hits recorded by the detector and associated 
with the i-th reconstructed track, and qi , the quality of the re-
construction. The likelihood maximisation returns the number of 
signal events, n∗

s , found to belong to a cluster around the fixed 
coordinates of the Galactic Centre (α, δ) = (266◦ ,−29.01◦). The sig-
nificance of a cluster is established by the test statistics, TS, which 
is a function of the ratio between the maximum and the pure 
background likelihood

T S = − log
L(n∗

s )

L(ns = 0)
. (6)

To determine the significance of the observed TS, a series of 
pseudo-experiments is generated. This is performed by creating a 
large number of skymaps with a variable number of injected signal 
events, ns , and running a maximum likelihood algorithm on each, 
returning the fitted number of events n∗

s for each of them. The 
number of events in each set of pseudo-experiments is subject to 
fluctuations following a Poisson distribution. To include this effect, 
a transformation through a Poisson function, P , is performed, re-
turning the TS as a function of the Poissonian mean μ:

P (T S(μ)) =
N∑

n∗
s =1

P
(
T S(n∗

s )
)
P(n∗

s ,μ), (7)

where P (T S) indicates the TS distribution.
The main source of systematic uncertainties comes from the 

determination of the neutrino track direction. The track reconstruc-
tion relies on the time resolution of the detector, dependent on 
the photomultiplier time spread, on the calibration and on possible 
space misalignment of the detector lines. The effect of systematic 
uncertainties was estimated in a previous analysis [23] to a total 
of 15%. A Gaussian smearing of 15% is applied to the signal PDFs 
to account for detector systematics.

3.1. Sensitivity of the search method

Following Neyman’s prescription [26], an average upper limit on 
the number of signal events is computed from the median of the 
background test statistics T S0, compared with each distribution 
P (T S) for each pseudo-experiment set. The sensitivity is defined 
as the 90% C.L. upper limit for a measurement equal to the median 
of the background TS distribution. The analysis cuts are optimised 
to yield the best sensitivity (see Section 2 and values reported in 
Table 1). If, after unblinding, a value smaller than the median of 
the background TS is observed in the data, limits are set equal to 
the sensitivity.

In case of a non-observation, a limit of the total number of 
signal events in the data (μ90) is converted into a limit on the in-
tegrated flux, 	ν+ν̄ , through the acceptance, A, and the livetime, 
t , as



A. Albert et al. / Physics Letters B 805 (2020) 135439 5
Fig. 1. Upper limits at 90% C.L. on the thermally averaged cross section for WIMP 
pair annihilation as a function of the WIMP candidate mass set with 11 years of 
ANTARES data, shown for five independent annihilation channels (each with 100% 
branching ratio) and NFW halo model [11].

	ν+ν̄ = μ90

A · t
. (8)

The acceptance is defined as the convolution of the effective area, 
Aef f [23], with each annihilation mode spectrum dNν/dEν [17]:

A(M) =
M∫

E0

Aν
ef f (Eν)

dNν(Eν)

dEν
dEν + [ν → ν̄], (9)

where M is the considered WIMP mass, E0 the energy threshold 
of the detector, determined from the first non-empty bin of the 
effective area, and [ν → ν̄] indicates a symmetric term for antineu-
trinos. The detector effective area increases with energy due to the 
raise with energy of the CC cross section, combined with the better 
track definition of high-energy events, and with an increase in the 
muon range, making such that partially contained tracks can still 
be measured. The acceptance calculation relies on spectra provided 
by PPPC4. The integrated flux of Equation (8) is converted into a 
measurement (limit) on the thermally averaged cross section for 
WIMP annihilation 〈σ v〉 using Equation (2), for a given J -factor 
assuming a specific parameterisation of the DM halo model.

4. Results

Upon unblinding, the TS computed for 11 years of ANTARES 
data is compatible with background. We observed a TS smaller 
than the background median for all cases (masses and channels), 
hence we set all limit values equal to the corresponding sen-
sitivities. This measurement sets limits on the cross section for 
WIMP-pair annihilation shown in Fig. 1 and computed according 
to Equation (2). This figure shows limits for the five most promi-
nent WIMP pair annihilation channels:

WIMP WIMP → bb̄, τ+τ−, W +W −, μ+μ−, νν̄ (10)

independently computed with 100% BR. The total amount of dark 
matter within a 30◦ angle around the Galactic Centre is taken into 
account, which corresponds to the solid angle � in Equation (1). 
Best limits are obtained for the direct νν̄ channel, as seen in Fig. 1, 
which has the highest acceptance and the best sensitivity in num-
ber of events, due to the shape of the energy spectrum which 
peaks around the WIMP candidate mass; channels with steeply 
falling spectra such as bb̄ give the least stringent limits. Predictions 
on neutrino fluxes deriving from DM annihilation strongly rely on 
the parameterisation of the J -factor, as mentioned in Section 1.1. 
Fig. 2 shows the 90% C.L. limits on 〈σ v〉 for the τ+τ− channel for 
Fig. 2. Upper limits at 90% C.L. on the thermally averaged cross section for WIMP 
pair annihilation as a function of the WIMP candidate mass set with 11 years of 
ANTARES data for three different halo models [11,13,14]. Here, only the τ+τ− chan-
nel is shown.

Fig. 3. Limits on the thermally averaged cross section for WIMP pair-annihilation 
set with 11 years of ANTARES data, compared with current similar searches from 
IceCube [27] and from γ -ray telescopes HESS [28], VERITAS [29] and Fermi-LAT + 
MAGIC [30]. All curves are for the τ+τ− benchmark channel.

three different halo models. The NFW profile [11] gives predictions 
over one order of magnitude more stringent than flat profiles such 
as Burkert [14]. An intermediate result is achieved for the McMil-
lan profile [13] which has an intermediate inner slope. The results 
presented in this work represent an improvement ranging from a 
factor 1.1 to 1.4 with respect to the previous 9-year study [20], ac-
cording to the WIMP mass and channel considered.

5. Discussion and conclusions

Limits on the thermally averaged cross section 〈σ v〉 for DM an-
nihilation towards the Galactic Centre were placed using 11 years 
of ANTARES data. Some of the channels considered for this search 
also yield γ γ pairs as a final product. For this case, ANTARES lim-
its are set in context with existing limits from γ -ray telescopes 
(Fig. 3) for the τ+τ− channel. In particular, the HESS Galactic 
Centre survey [28] gives strong constraints thanks to the good vis-
ibility of this source from their location and to the prolongued 
observation campaign performed on this target. Note that both 
the MAGIC and the VERITAS detectors are located in the Northern 
Hemisphere and therefore they obtain their limits on the WIMP 
pair annihilation cross section from a campaign of observation of 
dwarf spheroidal Galaxies [29,30], not having the possibility to 
look directly into the Galactic Centre, if not with special settings 
for large zenith angle observations (e.g. [31]) with reduced sen-
sitivity. Halo modeling in dwarf spheroidal Galaxies is subject to 
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large uncertainties, and comparison with the Galactic Centre re-
sults is therefore not direct. The results shown for IceCube [27] are 
obtained with Deep Core data, a configuration where the whole 
IceCube detector acts as a veto for atmospheric muons. Because 
of the Galactic Centre visibility, this analysis is limited to WIMP 
masses up to 1 TeV/c2. All results shown in Fig. 3 are obtained 
with the NFW profile, with the exception of the HESS result which 
refers to the Einasto DM halo model [32].

The current searches for dark matter performed with ANTARES 
will be continued with KM3NeT, which will instrument a total of 
about 1 km3 of deep-sea water [33]. KM3NeT has a modular layout 
consisting of blocks of 115 detection lines each. Two modules are 
being deployed in a large volume (36 m inter-optical-modules and 
90 m inter-line spacing) to form the ARCA high-energy detector, 
and one in a denser geometry instrumenting a smaller volume (9 
m between optical modules and 20 m inter-line spacing) to form 
the ORCA low-energy detector. As the prescriptions for the WIMP 
candidate mass vary over a broad range of values, both ARCA and 
ORCA will contribute to DM searches.
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