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We study the Casimir torque between two metallic one-dimensional gratings rotated by an angle θ with
respect to each other. We find that, for infinitely extended gratings, the Casimir energy is anomalously
discontinuous at θ ¼ 0, due to a critical zero-order geometric transition between a 2D- and a 1D-periodic
system. This transition is a peculiarity of the grating geometry and does not exist for intrinsically
anisotropic materials. As a remarkable practical consequence, for finite-size gratings, the torque per area
can reach extremely large values, increasing without bounds with the size of the system. We show that for
finite gratings with only ten period repetitions, the maximum torque is already 60 times larger than the one
predicted in the case of infinite gratings. These findings pave the way to the design of a contactless quantum
vacuum torsional spring, with possible relevance to micro- and nanomechanical devices.
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Quantum fluctuations of the electromagnetic field gen-
erate the Casimir-Lifshitz force [1,2] existing between any
pair of bodies separated by vacuum. This force [3–7] is
one of the few macroscopic effects predicted by quantum
physics. It dominates at submicron separations, with
practical implications in nano- and microelectromechanical
systems [8]. Recently, the modulation of this force by using
gratings has been suggested [9–18] and experimentally
realized [19–25].
Vacuum fluctuations are also expected to generate a

Casimir torque (CT) between closely spaced anisotropic
bodies. The grating geometry breaks the rotational sym-
metry, leading to a dependence of the Casimir energy
Eðz; θÞ on the angle θ between two gratings rotated with
respect to the common transversal z axis [see Fig. 1(b)], and
thus to a torque τ ¼ −∂θEðz; θÞ. The properties of the CT
have been theoretically discussed [26–43], for both gratings
and other symmetry-breaking systems, and recently a first
measurement of the CT has been realized [44]. In these
studies, one of the main motivations was the possibility to
manipulate micro- or nano-objects by exploiting rotations
induced by the quantum vacuum, in addition to Casimir
attraction and repulsion [45,46].
Here, we study the CT between two one-dimensional

metallic lamellar gratings, infinitely extended in the x�y
direction. We show that, differently from what is commonly

accepted [40], for infinite gratings the Casimir energy
manifests an anomalous discontinuity at θ ¼ 0 (aligned
gratings). We explain the origin of this anomaly and show
that for finite-size gratings the Casimir energy mimics the
θ ¼ 0 discontinuity, implying a giant torque, growing
without bounds when the size increases. To our knowledge,
no analogous transition mechanisms were known before.
We expect that the effect should be of strong interest due to
a novel mechanism of symmetry breaking in the Brillouin
zone which may be used to find analogous effects in various
physical systems with spatial periodicity.
Infinite gratings.—Let us first analyze infinitely extend-

ing gratings. We consider two identical gold gratings placed
at a distance d, having periodD, height h, and filling fraction
f [see Fig. 1(a)]. We take d ¼ 100 nm, D ¼ 400 nm,
h ¼ 200 nm, f ¼ 0.5, and for the gold permittivity the
model εðωÞ ¼ 1 − ω2

p=ωðωþ iγÞ, withωp ¼ 9 eV and γ ¼
35 meV [47]. Grating 2, on top of grating 1 in Fig. 1(b), is
rotated by an angle θ with respect to grating 1. The Casimir
energy is calculated by exploiting a general theoretical
framework for the calculation of the Casimir force and
radiative heat transfer between two arbitrary bodies based on
the knowledge of their individual scattering operators
[48,49]. At thermal equilibrium at a temperature T such
that the photon thermal wavelength λT ¼ℏc=ðkBTÞ≫d¼
100 nm (for T ¼ 300 K, λT ≈ 7.6 μm), the purely quantum
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vacuum fluctuations largely dominate over the thermal
fluctuations, and the Casimir energy per unit surface can
be calculated using the T ¼ 0 expression

E ¼ ℏ
8π3

Z
dξ

Z
d2k ln det½I −R1ðiξÞe−KdR2ðiξÞe−Kd�;

ð1Þ

requiring an integration over the imaginary frequencies ω ¼
iξ and the parallel wave vector k ¼ ðkx; kyÞ. The properties
of the two bodies are taken into account through their
reflection operators R1 and R2, the distance d appearing
only in the two exponential factors, where K is a diagonal
operator having elements κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2=c2 þ k2

p
. The choice of

a suitable basis with respect to which the integrals in Eq. (1)
are computed is discussed in detail in [50].
We calculated Eq. (1) using two independent codes

[the standard Fourier modal method (FMM) [51,52] and the
ASR FMM [53,54], recently employed in fluctuational
electrodynamics [55] ], obtaining identical results. These
are shown in Fig. 2, where the energy per unit surface (and
the associated torque, in the inset) is plotted as a function of
the angle θ between the gratings. We recognize immedi-
ately that the torque tends to zero for the two extreme
angles θ ¼ 0, 90 deg, as expected from symmetry argu-
ments. For intermediate angles, the energy and the torque
have a smooth behavior, as observed in [40]. For the

Casimir energy, it is natural to compare the limit for θ → 0
(obtained within the theoretical framework for rotated
gratings) to the result obtained for perfectly aligned
gratings. As shown in Fig. 2, the latter (the black point,
not in scale on the vertical axis) differs from the former (far
beyond the numerical error, around 1% for both). We will
call this jump of the Casimir energy the θ ¼ 0 anomaly.
Because of this discontinuity, the torque is strictly speaking
not defined at θ ¼ 0 for infinite gratings, while it is defined
for any θ ≠ 0 and tends to zero for θ → 0.
This intriguing feature has never been pointed out in

previous studies of the CT. In Fig. 5 of [40], assuming a
continuous behavior of the Casimir energy at θ ¼ 0, an
interpolation function has been used to join the energy at
finite θ with the energy at θ ¼ 0, resulting in a CT which is
completely different, both qualitatively and quantitatively,
from what we found. This has dramatic consequences on the
CT between finite-size systems. The reason for the appear-
ance of this anomaly is the breaking of conservation of the ky
component of the wave vector in reciprocal space due to
rotation of the system and, as a result, the fundamental
change of the structure of reciprocal lattice space.
To explain the θ ¼ 0 anomaly, we start observing that,

for two infinite gratings rotated by an arbitrary (even
extremely small) θ ≠ 0, a given grating line (the axis of
a raised part of the grating) of grating 2 makes an infinite
number of intersections with the grating lines of grating 1.
This means that, for infinite-size gratings, passing from a
finite θ to strictly θ ¼ 0 implies passing from an infinite
number of crossing points to zero crossing points. This
critical behavior is at the origin of the θ ¼ 0 anomaly, and
can be interpreted as a transition from a 2D-periodic system

FIG. 2. Angle-dependent Casimir energy per unit surface
between two infinite gold gratings (see text for grating
parameters) at distance d ¼ 100 nm. The black dot (not in
scale on the vertical axis) shows the energy between two
perfectly aligned gratings (θ ¼ 0). The inset shows the torque
as a function of θ for θ ≠ 0.

FIG. 1. Geometry of the system: two one-dimensional periodic
lamellar gratings having period D, filling fraction f and height h,
placed at distance d. The figure shows two samples with n ¼ 5
periods. (a) Side view of two aligned gratings. (b) Top view of
two gratings rotated by an angle θ.
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to a 1D-periodic system. It is absent in all intrinsically
anisotropic materials and is a peculiarity of the infinite 1D-
grating geometry.
Finite-size gratings.—The discontinuity of the energy at

θ ¼ 0 no longer occurs for two finite-size gratings. In
particular, for two finite identical square gratings, we can
define an angle θ0 [as in Fig. 1(b)] below which no
intersection takes place between different grating lines of
the two rotated gratings. We hence expect different behav-
iors around θ0.
(a) At θ ¼ 0, both infinite- and finite-size gratings have

no crossing points. Hence, if the finite-size gratings are
large enough, the Casimir energy will tend to the one for
infinite gratings.
(b) For θ⪆θ0, two sufficiently large finite gratings show a

large number of crossing points, hence we also expect that
the Casimir energy will tend to the one for infinite gratings.
(c) For 0 < θ ≪ θ0, finite gratings have no crossing

points between the two gratings, while for infinite gratings
still an infinite number of them exists. We hence expect
that the Casimir energy for finite-size gratings would tend
continuously to its value at θ ¼ 0, not showing any
discontinuity at θ ¼ 0, contrarily to what happens in the
infinite-grating scenario discussed above.
(d) The position of θ0 depends on the size of the gratings,

and decreases if the grating size increases.
These arguments suggest that, for finite-size systems, in

the region 0 ≤ θ ⪅ θ0 the Casimir energy is continuous and
the dependence on θ becomes steeper and steeper as the
system size increases, implying that the torque per area
will exhibit a peak, the height of which increases without
bounds when the system size tends to infinity.
To confirm these predictions we use SCUFF-EM [56,57] to

numerically study two different finite-size configurations,
having circular or square sections, and compute the energy
and torque for different values of the number n of
repetitions of the period D along the periodicity axis. In
the case of circular gratings, a given n is associated with a
radius R ¼ nD=2, while for square gratings it corresponds
to a lateral size L ¼ nD. The interest of considering the
circular geometry is that its cylindrical symmetry ensures
that, as in the case of infinite gratings, the absence of
nanostructuring makes the energy angle-independent and
thus gives a vanishing torque. It is thus more natural to
choose this geometry in order to study the limit of infinite
size. On the other hand, the corners of the square shape will
induce a nonvanishing torque even in the absence of a
nanostructuring. This geometry will then give us insight
into geometry-induced finite-size effects. In the square-
shaped configuration, the analytical expression of the angle
θ0 can be calculated by simple trigonometric arguments.
For small θ0, this can be approximated (in degrees) as
θ0ðnÞ ≃ ð180=πÞ arctanð1=nÞ, going to zero as expected for
increasing n.

As a consistency test, we calculate the Casimir energy
for the two extreme angles θ ¼ 0, 90 deg for two circular
gratings as a function of their radius R (see inset of Fig. 3).
In order to extrapolate the results for two infinite gratings,
we fit both sets of points with a curve Aþ B=R. This gives
a good description as a function of R, and the extrapolated
limit A is shown (with the associated error bar) in the
same curve. The two values of A (for θ ¼ 0, 90 deg) are
compared to the results obtained for infinite gratings, and
are in good agreement with the code for rotated infinite
gratings for θ ¼ 90 deg, and with the code for nonrotated
gratings for θ ¼ 0 deg. This comparison confirms the
existence of the discontinuity at θ ¼ 0 deg for the infinite
gratings system and clarifies the relevance of the θ ¼ 0 deg
result for the Casimir energy as an asymptotic result
when the size of the finite gratings system tends to infinity.
The main part of Fig. 3 shows the energy per unit surface as
a function of θ for two finite circular or square gratings,
having n ¼ 5 and n ¼ 10 repetitions, respectively: passing
from n ¼ 5 to n ¼ 10 modifies the curves; for θ ¼ 0,
90 deg they move towards the infinite-grating results,
and the θ ¼ 0 anomaly is absent. In the case of circular
gratings, the energy is increasingly flat for angles close
to θ ¼ 90 deg, starting to mimic the behavior of the

FIG. 3. Casimir energy per unit surface between two finite gold
gratings having n ¼ 5 (red dashed line for two circular gratings
having R ¼ 1 μm, blue dashed line for two square gratings
having L ¼ 2 μm) or n ¼ 10 (red solid line for two circular
gratings having R ¼ 2 μm, blue solid line for two square gratings
having L ¼ 4 μm) unit cells placed at a distance d ¼ 100 nm.
The black dot-dashed line corresponds to two infinite gratings.
We stress that here, unlike the result shown in Fig. 2, there is no
discontinuity in the limit of θ → 0. Inset: Casimir energy per unit
surface (in absolute value) for θ ¼ 0 deg (upper curve) and
θ ¼ 90 deg (lower curve) as a function of the radius R of the
finite circular grating. The red points obtained numerically are
fitted with a function Aþ B=R (red dotted lines). The asymptotic
values for R → ∞ (red dots, not in scale on the horizontal axis)
are compared with the ones obtained theoretically for an infinite
grating (black dots). All the points are represented with the error
bars coming from the respective numerical techniques.
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infinite-grating configuration (black dot-dashed line in
Fig. 3). On the contrary, even increasing n, for square
gratings the shape of the energy as a function of the rotation
angle is still significantly different from the one associated
with two infinite gratings. Concerning the difference
between the energy for circular gratings having n ¼ 10
repetitions and the infinite-grating case, we attribute this
disagreement to the relatively small size of the finite
systems considered here, limited by computation resources.
The associated CT are shown in Fig. 4. For square

gratings, we observe that the torque changes sign several
times between 0 and 90 deg. This oscillating feature
is drastically different from the behavior in Fig. 2, where
the torque is always negative, i.e., always tends to bring
the gratings toward the configuration θ ¼ 0 deg. On the
contrary, the behavior of the torque between circular
gratings is flatter around θ ¼ 90 deg, and shows a much
higher agreement with the torque between infinite gratings.
We now focus on the region close to θ ¼ 0 deg where,
according to our previous analysis, finite-size effects are
supposed to be more pronounced. Not only is this behavior
very different from the infinite-grating scenario, but the
position and the height of the negative peak in the torque
is reasonably independent of the geometry. We stress that
the first (negative) peak of the torque is also its global
maximum (absolute) value in the entire range (0,90)deg.
When the size of finite gratings increases, the maximum
absolute value of the torque also increases while its position
moves to smaller angles. Asymptotically, the maximum
absolute value of the torque tends to infinity when the size
of the finite gratings tends to infinity, coherently with
the discontinuity of the Casimir energy at θ ¼ 0 deg for
infinite gratings. It is remarkable that already with n¼10
period repetitions we observe a maximum torque which is

50 (circular grating) to 60 (square grating) times larger than
the one obtained for infinite gratings. The emergence of this
maximum of torque for finite-size systems, which we
predicted on the basis of the infinite-size calculations, is
hence confirmed, and is one of the main results of our work.
To corroborate the connection between torque enhance-

ment and finite-size effects we go back to our simple
geometrical interpretation presented above. We observe
that the critical angle θ0 equals θ0 ≃ 11.3 deg for n ¼ 5
and θ0 ≃ 5.7 deg for n ¼ 10. We now argue that this angle
represents a good estimate of the angle at which the large
negative peak of the torque occurs. To this aim, we
graphically estimate from Fig. 4 the width Δθ of first
angular region (x axis) of negative torque including the
largest negative peak. The width of this region is almost
independent of the grating section and is around Δθ ¼
21 deg for n ¼ 5 and Δθ ¼ 9.5 deg for n ¼ 10. If we
consider half of these values as a good estimate of the
angle associated with the largest negative torque, we
see that Δθ=2 ≃ θ0, confirming the validity of our geomet-
rical picture.
Remarkably, we can simply estimate the maximum

torque (occurring in the region ½0; 2θ0�) as a function of
the grating size. We introduce a fitting function fðθÞ for the
energy associated with a finite grating, having zero deriva-
tive at θ ¼ 0; 2θ0. Concerning fð0Þ, we impose the value
given by the function Aþ B=R shown in the inset of Fig. 3,
and we approximate fð2θ0Þwith the value of the energy for
an infinite grating at the same angle. We stress that this
value, as shown in Fig. 3, is lower than the one for a finite
grating for θ⪆10 deg. As a consequence, we will obtain a
conservative value for the maximum torque. The simplest
function able to satisfy these four conditions is a third-order
polynomial, from which we estimate the maximum torque
as the derivative −f0ðθ0Þ in the middle of the interval. This
procedure gives a maximum torque τmax ≃ −56R (R in μm,
τ in nN=m), linearly growing with the radius R, and more
and more accurate as the R → ∞. Already for small
systems with n ¼ 10 period repetitions, corresponding to
R ¼ 2 μm, we obtain τmax ≃ −112 nN=m, of the same
order of the value ≈ − 200 nN=m shown in Fig. 4. These
values are already much higher than the ones measured
in [44], thus within the present experimental sensitivity.
We have shown that the Casimir energy for infinite

gratings is discontinuous and displays an anomalous jump
at rotation angle θ ¼ 0. We explained this behavior in terms
of a critical zero-order transition between a 2D-periodic
system and a 1D-periodic system, and showed that this
gives rise to a CT which is both qualitatively and quanti-
tatively different from previous intuitive predictions. By
studying the Casimir energy and torque for finite-size
systems, we showed that they exhibit new and strikingly
different features: several sign changes and a giant torque
per unit area at small angles, whose amplitude increases
without bounds with the size R of the system, and in

FIG. 4. Casimir torque per unit surface between two finite gold
gratings having n ¼ 5 or n ¼ 10 unit cells placed at a distance
d ¼ 100 nm (same color scheme of Fig. 3). The black dot-dashed
line corresponds to two infinite gratings, multiplied by a factor of
10 in order to make it more visible.
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particular linearly with R for large system sizes. Our
findings could open a series of practical exploitations
of this effect, such as the giant CT paves the way to
experimentally measure the rotational effects induced by
quantum fluctuations across a vacuum gap and to new
opportunities to exploit the vacuum field to realize a
contactless quantum vacuum torsional spring, with prom-
ising applications in micro- and nanotechnological systems
and devices.
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