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Abstract 

Considerable attention has been paid to the vulnerability of critical infrastructures, 

because of the increasing occurrence of disruptive events, such as man-made or natural 

disasters. Even small disruptions could eventually affect the normal function of infrastructure 

systems. Enhancing the reliability of these systems and their robustness to disruptions is 

necessary and urgent. High-speed rail is a critical infrastructure that is subject to various 

disruptions, including component aging, malicious attacks, natural disasters, demand surges. 

In this study, we analyze the topological centrality indicators of China Railway High-speed 

(CRH) network using network theory, and take real train flow information for assessing the 

importance of network components in terms of vulnerability to disruption. By Monte Carlo 

simulation, we analyze the risk of the CRH network under random attacks and spatially 

localized failures. The significance of taking pre-actions for protecting critical infrastructures 

by mitigating its vulnerability to disruptions is emphasized.  

 

Keywords: vulnerability analysis; disruption; critical infrastructures; Monte Carlo simulation; 

spatially localized failures 

 

1. Introduction 

Critical infrastructures are large dynamic systems made of interconnected components 

and sub-systems. They provide products and services, such as transportation, energy, 

communication, water supply, finance, and public health. Such critical infrastructures are vital 

to the normal functioning of society, and their failure can seriously affect public safety, 

economic development and social stability 1. In recent years, critical infrastructures are facing 

increasing risks and security threats, e.g., operation failures, natural disaster, and terrorist 

attacks. Examples include the Deepwater Horizon oil spill, the accident at Fukushima nuclear 

power plant, the Haiti earthquake, and the Puerto Rico hurricane 2. The vulnerability analysis 

of critical infrastructures has recently become of particular interest and many studies have 

been conducted on this subject. For example, some researchers 3-6 discussed the protection of 

critical infrastructures and related challenges, of which Marrone et al. 5 introduced a systemic 

view for the practical protection of critical infrastructures and demonstrated its effectiveness 

with an application to industrial settings. From the perspective of methodologies and 

applications, Zio 7 presented a vulnerability framework and indicated the importance of 

integrating different modeling approaches facing the dynamic complexities of critical 

infrastructure. Johansson et al. 8 and Ouyang 9 offered technical reviews of approaches for the 

reliability and vulnerability analysis of critical infrastructures. 
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Transport infrastructures, usually distributed on geographical extensions, are collections 

of many interacting man-made components assembled by design, for moving goods and 

people from one place to another. It can be termed critical infrastructure if its incapacity has a 

significant impact on health, safety, security, economics and social well-being 7. The growing 

vulnerabilities of transportation systems force decision makers to prioritize their protection. In 

this respect, some studies 10-12 discussed the vulnerability analysis of road transportation 

systems with indicators used in the modeling that can be roughly divided into demand and 

supply. By using exhaustive search optimization and fuzzy logic, El-Rashidy and 

Grant-Muller 13 presented a model that estimated the vulnerability changes of the highway 

network under different situations. Li and Cai 14 focused on the Chinese railway weighted 

network and found that the network has small-world and scale-free characteristics. Johansson 

and Hassel 15 modeled an electrified railway network, explored its five subsystems and 

analyzed the interdependencies among them for vulnerability assessment. Ouyang et al. 16 

systematically analyzed the positive effect of interdependencies in complementary systems 

and proposed a network-based approach to model the vulnerability of transportation systems. 

Bocchini et al. 17 proposed a comprehensive method for assessing the vulnerability of a 

railway system under floods, and compared four vulnerability mitigation and maintenance 

strategies. 

In general, a large number of the existing studies on vulnerability and reliability analysis 

of railway transportation systems have focused on rescheduling or reassignment of train 

services, following disruptions 18-22. In terms of economic efficiency and social function, 

preparedness to and mitigation of the disruption risks to decrease vulnerability is also 

considerably important. Furthermore, the performance metrics used in existing research are 

often topological, with only few exceptions considering railway flow 23-26. However, these 

studies usually refer to the number of train service lines affected as system performance 

indicator, which is insufficient because the importance of each service line is not the same, 

especially for passenger trains. 

High-speed rail is an important part of a rail transportation system, the development of 

which has become a global trend since 1964 when the world’s first high-speed railway, 

Japan’s Shinkansen, opened to traffic. Regional integration, urban and regional agglomeration, 

and increasing labor productivity are key factors that push the emergence of high-speed rail 

worldwide 27. Given its characteristics of punctuality, comfort, energy efficiency and reduced 

pollution, high-speed rail has obtained wide support, leading to “the second railway age” 28. 

With the importance and influence of high-speed rail worldwide, the ability to predict, 

withstand, and mitigate disruptions has raised considerable attention from managers and 

researchers. Given that high-speed rail provides services for mass passengers, the loss caused 

by a disruption is considerably more serious than that of freight trains. High-speed rail is also 
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more sensitive to time, given the competition from civil aviation. The high-speed rail system 

is a crucial yet sensitive infrastructure of a nation’s transportation systems and even a small 

disruption may lead to significant adverse effects not only on the economy but also on public 

safety. 

Official data indicates that the railway mileage of China reached 124,000 km by 2017, of 

which high-speed rail operating mileage exceeded 22,000 km, accounting for more than 60% 

of the world’s high-speed rail 29. From a practical perspective, some researchers 28, 30-32 

considered the characteristics and future development of the China Railway High-speed 

(officially named CRH). However, the analysis of CRH’s vulnerability with quantitative 

metrics has yet to be conducted. In the present study, vulnerability is considered as decline in 

system performance. We analyze not only the system vulnerability of CRH using topological 

centrality indicators, but also consider the train flow information in operation to assess the 

importance of network components in terms of vulnerability to disruption. To indicate the 

difference in the importance of different trips, the mileage of train service line in operation is 

used in our flow-based vulnerability analysis. The application to the CRH network shows how 

these analyses can provide complementary information and knowledge of the vulnerability 

caused by disruptions and dynamic flows in railway systems. We use the Monte Carlo method 

and spatially localized failures (SLFs) 33, 34 to simulate disruptions, like random attacks and 

natural disasters. The insights from this study can assist local and central government 

agencies in making decisions to enhance and protect CRH networks with respect to 

vulnerability mitigation. 

The remainder of this paper is organized as follows. In Section 2, we introduce a 

network modeling of CRH, in which its topological characteristics are analyzed to gain a 

general structural understanding with regard to vulnerability. Section 3 presents a 

vulnerability analysis considering dynamic flows in the network. In Section 4, we simulate 

spatially localized failures using the Monte Carlo method and illustrate the vulnerability 

intensity chart of the CRH. Further managerial discussion is given in Section 5 and 

conclusions are drawn in Section 6. 

Notations 

N:     set of nodes (railway stations), 𝑛𝑖 ∈ 𝑁 

L:     set of links (railway links connecting stations), l𝑖 ∈ 𝐿 

G (N, L):  railway network comprising a set of nodes N connected by a set of links L 

𝑔𝑖𝑗:   actual geodesic distance between 𝑛𝑖 and 𝑛𝑗 

𝑙𝑖𝑗:    link connecting two adjacent nodes i and j 

𝑛𝑢𝑣:   number of shortest paths that connect 𝑛𝑢 and 𝑛𝑣 

𝑛𝑢𝑣(𝑖): number of shortest paths connecting 𝑛𝑢 and 𝑛𝑣, as well as passing through 𝑛𝑖 
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𝑛𝑢𝑣(𝑖𝑗): number of shortest paths connecting 𝑛𝑢 and 𝑛𝑣, as well as passing through 𝑙𝑖𝑗 

T:     total number of all train services, 𝑡 ∈ 𝑇 

TTM:    total travel mileage of all train services within the network 

𝐶𝑇𝑀𝑖:   cumulative travel mileage affected by failure of 𝑛𝑖 

𝐶𝑇𝑀𝑖𝑗:  cumulative travel mileage affected by failure of 𝑙𝑖𝑗 

𝐴𝑇𝑀𝑖
𝑡:  adjacent travel mileage of the train that passes 𝑛𝑖 

𝑇𝑀𝑖
𝑡:   travel mileage of the train that starts/ends from 𝑛𝑖 

𝑇𝑀𝑖𝑗
𝑡 :  travel mileage of the train that includes 𝑙𝑖𝑗 

2. Network modeling and topological analysis of CRH 

2.1 Network modeling 

From the perspective of complex network theory, an infrastructure can be described as a 

network graph G (N, L), where N represents the set of components (nodes) of the system and 

L the set of connections (lines) between the components. Given the topology of the 

infrastructure system, represented by a graph-based model, we can analyze its structural 

properties with respect to suffered disruptions. 

On August 1, 2008, CRH began its debut operation. As of January 2017, the main 

skeleton of CRH’s “four vertical and four horizontal” structure has been completed. This 

structure plays an important role in interregional passengers’ transport in China. The 

infrastructure has been significantly developed and nowadays CRH is leading the 

development of high-speed railways worldwide. At present, CRH is operational in 296 cities, 

including 137 prefecture-level cities (municipalities, provincial cities and prefecture-level 

cities) and 159 county-level cities (in addition to counties outside the municipal districts). The 

CRH can be represented by a network G (N, L), where N is the set of stations and L is the set 

of rail links connecting the stations. In this study, we assume that multiple stations in the same 

city are combined into one site. For example, the city of Wuhan houses three railway stations, 

namely, Wuhan, Wuchang, and Hankou Stations, and we abstract them into one site called 

Wuhan Station. Although numerous small sites are not included in the nodes set, their 

properties are accounted for in the links in the network. Finally, based on the CRH operation 

map 35, we abstract it into a relatively simplified network diagram (see Figure 1), which 

contains 28 nodes (stations) and 42 links (railway tracks). The text in the Figure represents the 

city name, such as BJ for Beijing and SH for Shanghai. 
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Figure 1.  Simplified network representation of CRH 

2.2 Topological analysis 

Numerous studies have been conducted on the complexity characteristics and 

vulnerability of railway transport systems. These studies found that the vulnerability with 

regard to many types of disruptions in the system are closely related to the structural properties 

of the networks 17, 36, 37. In this regard, we tailor some network indicators of betweenness 

centrality to characterize the topological properties of the CRH network with respect to 

vulnerability. 

Betweenness includes node and link betweenness. It reflects the global connection 

importance of the components in the entire network. Here we consider the betweenness 

centrality based on shortest paths because in practice, the network design and route planning 

usually consider the shortest path as an important reference. The value of node betweenness is 

determined by the proportion of the number of paths that pass through this node in all the 

shortest paths. By defining 𝑛𝑢𝑣 as the number of shortest paths that connect 𝑛𝑢 and 𝑛𝑣, 

𝑛𝑢𝑣(𝑖) as the number of shortest paths connecting 𝑛𝑢 and 𝑛𝑣 as well as passing through 𝑛𝑖, 

the betweenness of 𝑛𝑖 is calculated by: 

𝐵𝑖  = ∑
𝑛𝑢𝑣(𝑖)

𝑛𝑢𝑣
 𝑢,𝑣∈𝑁,𝑢≠𝑣                           (1) 

The calculation of a link betweenness is similar, where 𝑛𝑢𝑣(𝑖𝑗) represents the number 

of shortest paths connecting 𝑛𝑢 and 𝑛𝑣, as well as passing through 𝑙𝑖𝑗: 

𝐵𝑖𝑗  = ∑
𝑛𝑢𝑣(𝑖𝑗)

𝑛𝑢𝑣
 𝑢,𝑣∈𝑁,𝑢≠𝑣                         (2) 

Table 1 shows the ranking of the top-ten nodes and links based on betweenness centrality. 

The first three columns indicate that Zhengzhou, Wuhan, and Changsha Stations are the top 

three nodes that possess the highest betweenness. These nodes have important topological 

positions and include many paths passing by. Figure 1 shows that these stations are central 

hubs in the network running north and south. For example, although the degree of Wuhan 
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Station node is 3, it remains necessary for the connection of the north and south, due to its 

location in the central area of the network. Accordingly, the hub stations with high 

betweenness centrality are usually more sensitive to disruptions and once breakdown occurs, 

the entire network can be greatly affected. Table 1 shows also the top ten links with highest 

betweenness. The railway track from Wuhan to Changsha ranks premier. This is consistent 

with the results of node’s betweenness, because these two nodes are in the central area of the 

network and each node has considerable betweenness value. These nodes and links are 

important in terms of topology and vulnerability, and hence mitigation and preparedness 

strategies should be considered in strengthening the components to resist potential 

disruptions. 

TABLE 1. TOP 10 IMPORTANT NODES AND LINKS IN TERMS OF BETWEENNESS CENTRALITY 

Ranking Nodes 𝐁𝒊 Links 𝐁𝒊𝒋 

1 Zhengzhou (ZZ) 0.37681  Wuhan-Changsha(WH-CS) 0.28157 

2 Wuhan (WH) 0.36025  Wuhan-Zhengzhou(WH-ZZ) 0.26501 

3 Changsha(CS) 0.36025  Shijiazhuang-Zhengzhou(SJZ-ZZ) 0.25879 

4 Shijiazhuang (SJZ) 0.29193  Hangzhou-Nanjing(HZ-NJ) 0.14492 

5 Guangzhou(GZ) 0.21946  Tianjin-Jinan(TJ-JN) 0.12836 

6 Nanjing(NJ) 0.21532  Jinan-Nanjing(JN-NJ) 0.12629 

7 Hangzhou (HZ) 0.21118  Changsha-Guangzhou(CS-GZ) 0.11801 

8 

9 

10 

Jinan(JN) 

Shenyang(SY) 

Hefei (HF) 

0.20911 

0.20704 

0.20083 

Xuzhou-Hefei (XZ-HF) 

Wuhan-Hefei(WH-HF) 

Zhengzhou-Xuzhou(ZZ-XZ) 

0.10766 

0.09937 

0.09109 

3. Flow-based vulnerability analysis under disruptions 

The impact caused by a disruption is mainly in the failure of services provided by the 

infrastructure, thereby causing inconvenience to people’s lives and losses of finance. Different 

critical infrastructure systems have different physical flow characteristics of operation, such as 

electric flow in power systems38, 39, train services in railway transportation systems, and 

information flow in telecommunication systems. With regard to CRH, this study considers the 

flow of trains. Several train service lines are run back and forth to ensure people’s travel, with 

duration of round-trips often less than 24 hours thanks to the high-speed. We have obtained the 

information of all train services from the website of China Railway Customer Service Center 

(“12306.cn”). We have selected all the high-speed trains that contain the prefix “G” for 

“GaoTie” (high-speed rail) and obtain 2,324 CRH train service lines in operation in a normal 

weekday. Given that the operating mileage of each train service line is not the same, its 

importance cannot be generalized when analyzing network vulnerability. Therefore, the train 
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flow in this study takes into account the mileage of each train services, rather than simply the 

number of train service lines in operation. 

By removing components in sequence from the network, we study the importance of each 

component separately. The vulnerability is defined here as the drop in system performance: 

thus, the importance of a component is measured by the effect on the proportion of the 

mileages of train service affected by the component’s failure (removal). Most often, the current 

duration of a disruption in CRH is no more than one day. Thus, we assume that the failure of 

the components can be recovered within 24 hours and network congestion is not taken into 

account here. Furthermore, some other assumptions simplify the calculation, such as the 

facility failures being binary (completely operational or completely failed). 

From the topological analysis of Section 2.2, we gain an interpretation of the components’ 

importance in CRH. To learn more about the vulnerability of the infrastructure network, we 

introduce performance metrics related to the flow of train services. Here we use the 

performance metric of the network connectivity efficiency. Connectivity efficiency is 

calculated by the average geodesic distance  (𝑔𝑖𝑗)  between two nodes belonging to the 

network. The distance is geodesic, which we consider equal to the railway track length 

determined by the train services between two components. Thus, this metric can reflect the 

connectivity efficiency of the network from a realistic point of view. The equation to calculate 

connectivity efficiency is: 

𝐸 =  
1

𝑁(𝑁−1)
∑

1

𝑔𝑖𝑗
𝑖≠𝑗 .                          (3) 

We indicate the connectivity efficiency of the network in the normal state as E. If a 

disruption on 𝑛𝑖 occurs, which invalidates 𝑛𝑖, then 𝐸𝑖
′ should be defined by the network 

efficiency excluding 𝑛𝑖 . Therefore, the efficiency-based vulnerability under the event is 

calculated as follows: 

  𝑉 𝑖
𝐸 =  

𝐸 − 𝐸𝑖
′ 

𝐸
.                              (4) 

On the basis of the values of 𝑉 𝑖
𝐸, the ten most important railway stations of CRH are 

listed in Table 2. From the Table, Nanjing is the most important station in terms of 

connectivity efficiency. If a disruption occurs and shuts down Nanjing Station, then the 

connectivity efficiency of the network is reduced by 12.4%. The next important two stations 

after Nanjing are Tianjin (𝑉 TJ
𝐸 = 0.116) and Hangzhou (𝑉 𝐻𝑍

𝐸 = 0.110) stations. In CRH map 

we found that several nodes are connected to them and the geodesic distance is relatively 

small. For example, the geodesic distance between Nanjing and Hefei is only 175 km and that 

between Nanjing and Hangzhou is 276 km, whereas the geodesic distances between other 

nodes are often more than 300 km. The efficiency of the network is mainly determined by the 

geodesic distance. Moreover, if one of two close nodes fail, then the other one can only be 
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reached through other remote nodes in the network, which may lead to a notable reduction in 

network efficiency. Therefore, these nodes are rather important in terms of network efficiency 

and should be given sufficient attention and protection. 

TABLE 2. TOP 10 IMPORTANT NODES IN TERMS OF NETWORK EFFICIENCY VULNERABILITY 

Ranking Nodes 𝑽 𝒊
𝑬 

1 Nanjing(NJ) 0.12366  

2 Tianjin(TJ) 0.11568  

3 Hangzhou(HZ) 0.11028  

4 Shijiazhuang(SJZ) 0.10681  

5 Hefei(HF) 0.10463  

6 Guangzhou(GZ) 0.10429  

7 Changsha(CS) 0.09611  

8 

9 

10 

Xuzhou(XZ) 

Beijing(BJ) 

Shangrao(SR) 

0.09415  

0.09288  

0.08947  

 

We also model the vulnerability regarding individual components from the perspective 

of affected operating mileage. If we assume a disruption on one node i, then the effect caused 

by the failure of this node should be quantified by the affected trains, as well as the affected 

cumulative travel mileages, denoted by 𝐶𝑇𝑀𝑖. TTM indicates the total travel mileage of all 

train services within network. Accordingly, the vulnerability of node i considering train flow 

can be expressed as follows: 

𝑉 𝑖
𝐹  =  

𝐶𝑇𝑀𝑖

𝑇𝑇𝑀
.                             (5) 

From the practical point of view, we assume that if the start/end station of a train service 

line is interrupted, then the entire line is affected. That is the common situation because the 

train cannot be prepared to depart normally or reach its destination for replenishment and 

maintenance for the return trip. Meanwhile, by field investigation and interviewing experts in 

CRH, we acknowledge that the interruption of intermediate stations along the line can 

possibly not affect the operation of the whole train service. That is because the train can 

choose not to stop at the disrupted station while moving on to the nearby dockable yard, or 

running across station in emergencies (especially for large stations having many linking 

routes). The train also has the option of returning in the network to ensure only a part of the 

original travel service.  

Based on these assumptions, in this study, train services affected by the failures of 

stations can be divided into two types. When the start/end station 𝑛𝑖 of the service line is 

disrupted, the impact caused by this failure of 𝑛𝑖 should include the total travel mileages of 

these trains, as denoted by 𝑇𝑀𝑖
𝑡. The other situation is that the failure node is neither the 

starting point nor the terminal station of the train, where the impact is defined in our study by 

the travel mileages between this node and the adjacent stations of the affected trains, denoted 
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by 𝐴𝑇𝑀𝑖
𝑡. Denote T as the total number of all trains, then we can calculate 𝐶𝑇𝑀𝑖 by: 

         𝐶𝑇𝑀𝑖 =  ∑ 𝑇𝑀𝑖
𝑡

𝑇

𝑡=1

(where 𝑛𝑖 is start/end node for train 𝑡) + ∑ 𝐴𝑇𝑀𝑖
𝑡  (otherwise )   

𝑇

𝑡=1

            (6) 

For the case of link failure, as a link has absorbed a number of small yards not shown in 

the network structure, we assume that if the link between two adjacent stations is disrupted, 

then any train passing through it will be affected. Thus, the vulnerability of 𝑙𝑖𝑗 should be 

quantified by the affected travel mileages for the proportion of the total travel mileages. 

𝑉 𝑖𝑗
𝐹 =

𝐶𝑇𝑀𝑖𝑗

𝑇𝑇𝑀
   (7) 

As illustrated in Table 3, the top-ten vulnerable stations are different from the previous 

topological rankings in Tables 1 and 2. The first three columns of Table 3 indicate that 

Shanghai, Beijing, and Guangzhou Stations are the three most important stations. This can be 

easily explained by the fact that Beijing is the junction of the Beijing–Shanghai, Kazakhstan–

Beijing, Beijing–Hong Kong, and the Jingkun channels. Meanwhile, Shanghai is the junction 

of Beijing–Shanghai channel, the coastal channel, and the channel along the Yangtze River. 

Guangzhou has become a three main line intersection hub of the Kazakhstan–Beijing, Lan–

Guang, and Guang–Kun channels. Once a disruption occurs in any of these three busiest 

stations, a greater effect will be incurred on the entire CRH system. The link failure analysis 

results reveal that the links connecting adjacent important nodes are also highly important in 

terms of vulnerability taking into account train flow, such as Shanghai--Nanjing track. In 

addition, some hub links with high topological betweenness centrality are also vulnerable, 

such as Wuhan—Changsha, Wuhan—Zhengzhou, that bear a lot of traffic flow in CRH. 

Figure 2 is a visual representation of the results with the geographical location. We 

highlighted in the map the top-five nodes and top-ten links, whose failure can seriously affect 

the CRH operation flow. We can see that most top vulnerable nodes are connected by the top 

important links. Beijing, the capital, is ranked No.2 vulnerable station because of its 

numerous departure/terminal train services; however, the nodes and links connecting to 

Beijing are not ranked as high as expected because of its Siphon Effect: that is to say, the 

neighbor city stations around Beijing have been weakened in terms of their capacity of train 

flow in practice. 

 

 

 

TABLE 3. IMPORTANCE RANKING OF TOP 10 COMPONENTS IN TERMS OF VULNERABILITY CONSIDERING TRAIN FLOW 
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Ranking Nodes 𝑽 𝒊
𝑭 Links 𝑽 𝒊𝒋

𝑭  

1 Shanghai(SS) 0.28073 Shanghai-Nanjing(SS-NJ) 0.23488 

2 Beijing(BJ) 0.23519 Wuhan-Changsha(WH-CS) 0.18932 

3 Guangzhou(GZ) 0.13641 Jinan-Xuzhou(JN-XZ) 0.17250 

4 Nanjing (NJ) 0.13358 Wuhan-Zhengzhou(WH-ZZ) 0.16931 

5 Wuhan(WH) 0.13232 Changsha-Hengyang(CS-HY) 0.14632 

6 Changsha(CS) 0.11551 Shijiazhuang-Zhengzhou(SJZ-ZZ) 0.14437 

7 Xian(XA) 0.11196 Nanjing-Hangzhou(NJ-HZ) 0.13359 

8 

9 

10 

Zhengzhou(ZZ) 

Hangzhou(HZ) 

Shenzhen(SZ) 

0.09776 

0.07678 

0.07214 

Guangzhou-Hengyang(GZ-HY) 

Xian-Zhengzhou(XA-ZZ) 

Tianjin-Jinan(TJ-JN) 

0.11809 

0.11575 

0.11132 

 

 

Figure 2.  Simplified CRH network map with critical 5 nodes and 10 links highlighted 

4. Simulation analysis of SLFs using Monte Carlo 

As one of the most rapidly growing critical infrastructures in China, the CRH system 

plays an important role in ensuring economic development and social stability. However, at 

present, the system faces various types of disruption, including natural disasters, malicious 

attacks, and random disruptions. Such disruptions are generally highly uncertain events that 

are difficult to predict, estimate and model, thereby posing significant threats to the continuity 

of the system’s operation. In Section 3, we conducted a train flow-based vulnerability analysis 

with respect to each individual component in the CRH network. Although the assumption of 

disruption on a specific component can simplify the calculations, it might not be sufficiently 

representative when considering certain types of disruptions that affect a whole area of the 

system. In these cases, the analysis of SLFs is necessary to fully understand the risk and 

vulnerability of the CRH network. 

In reality, geological and hydrological disasters are two serious natural disasters that 
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frequently disturb the CRH network. These two disasters are mainly considered here as 

disruption scenarios and the localized area is determined in terms of provinces. We consider 

21 provinces including all the chosen stations in this study. Based on the data obtained from 

China Statistical Yearbook 29, we consider the geological and hydrological disasters occurred 

in these provinces during the period from 2005 to 2015. We obtain the natural disaster 

probability 𝑛𝑑𝑝 ∈ [0, 1] based on the statistical mean value for each province per year. As 

shown in Figure 3, a darker area implies more frequent geological and hydrological disasters 

occurred. The most serious area for disasters is Hunan Province (including Changsha and 

Hengyang Stations), which is subject to frequent hydrological and geological disasters. 

Statistics29 indicate that 2,140 geological disasters occurred in Hunan Province in 2015, which 

caused direct economic losses as much as 878 million RMB. The areas suffering less serious 

natural disasters are those around Hunan Province, as shown in bright color. Some areas with 

lighter color are located in the plains or have small precipitation. 

  

Figure 3.  Area distribution of geological and hydrological disasters in China 

Most of the disruptions are region-based. For example, typhoon usually rages through 

the south and southeast, whereas earthquakes often occur in the southwest and floods mostly 

sweep the central regions along Yangtze River, respectively. We conduct an analysis of SLFs 

using Monte Carlo simulation, which is a practical tool for studying initiating events in the 

CRH network, because the components failures are often distributed in a spatially localized 

area 40. A set of scenarios S is generated as of the disruptions in the network. Each scenario in 

S represents a “disruption plan”, which can be due to random failures, malicious attacks, 

natural disasters, or other disruptions. The scenarios set S comprises binary-valued variables 
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𝑥𝑠 equal to 0 or 1, where 𝑥𝑖𝑠 = 0 indicates that component i is failed in scenario s and 𝑥𝑖𝑠 = 

1 indicates otherwise.  

𝑥𝑠 = {𝑥1𝑠, 𝑥2𝑠, … , 𝑥𝑛𝑠, 𝑥(𝑛+1)𝑠, … , 𝑥(𝑛+𝑚)𝑠 }                  (8) 

More than one disruption can simultaneously occur in the CRH network during 

operation. Therefore, some scenarios can actually be superposed. Here, we consider a 

common disruption scenario that involves the superposition of attacks and natural disasters. 

Components in the network face a series of initiating events, including various incidents. The 

specific calculation process is as shown in the flowchart of Figure 4: 

Step 1: Define the number of iterations to be simulated; introduce a counter s and set 

𝑠 = 1. 

Step 2: Determine the provinces based on the 28 stations. From the China Statistical 

Yearbook from 2005 to 2015, determine the natural disaster probabilities for the 21 provinces 

and define its corresponding stations’ natural disaster probability denoted by 𝑛𝑑𝑝𝑖. 

Step 3: In the studied component set, randomly select 0%--10% of them and assume that 

as a consequence of the disruption they cannot function. Correspondingly, 𝑝 𝑖
𝑠 = 1. 

Step 4: For each 𝑛𝑑𝑝𝑖, generate a uniformly distributed random number ε𝑖 within [0, 1], 

and compare 𝑛𝑑𝑝𝑖 and ε𝑖: when ε𝑖 is no larger than 𝑛𝑑𝑝𝑖, the province is considered to 

suffer a natural disaster and the stations inside the provinces fail, 𝑝 𝑖
𝑠 = 1; otherwise, 𝑝 𝑖

𝑠 = 0. 

Step 5: Update iteration counter s. If 𝑠 < 10000, then 𝑠 = 𝑠 + 1. Return to Step 3; 

otherwise, the calculation is finished. Output the mean value of 𝑝 𝑖
𝑠 (each node’s disruption 

probability). 

    

Figure 4.  Flowchart of the Monte Carlo simulation under SLF 
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After the 10,000-scenarios simulation, we can obtain the mean value of 𝑝 𝑖
𝑠 for each 

node i, which gives the failure frequency of each station node. Taking risk as the product of 

probability and severity of adverse effects41-44, we can calculate the risk of each component. 

The risk consequence/severity is calculated by the sum of the affected train mileages as 

discussed in Section 3. The results are shown in Figure 5, in which the areas are filled with 

varying degrees of color: a darker shade implies greater vulnerability to the high-speed rail 

operations in that area. The scale value indicates the mileage sum of the CRH affected in that 

region, in units of 100 km. Given the larger disaster probability, the Hunan Province remains 

most vulnerable. Another area of equal degree of vulnerability is Guangdong Province, which 

is also one of the most prosperous areas. As shown in Table 3, within Guangdong Province, 

Guangzhou and Shenzhen Stations rank both high in terms of flow-based vulnerability. 

Besides, the province itself suffers a relatively high frequency of natural disasters. 

 

Figure 5.  Vulnerability of districts by simulation of SLFs in 100 km units 

5. Discussions 

The calculation results of the topological and flow-based vulnerability analyses shown 

some differences. For example, nodes that are critical for the flow-based vulnerability 

analysis may not be important in the topological analysis. We take Beijing for a 

comprehensive example. From Section 2.2, the betweenness of Beijing is only 0.07047, 

ranking 25th among the 28 stations, which can be explained by the city’s geographic position. 

However, in reality, Beijing is an important hub, because of the population, economy and also 

political positions. With the consideration of train mileage, the importance of this station 
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increases greatly and ranks 2nd among the 28 stations. Given that many trains start or end at 

Beijing Station, if a disruption occurs, these service lines would be affected considerably. 

With the consideration of train mileage, Shanghai is the most vulnerable station. However, 

similar to Beijing Station, this node does not stand out when analyzed from a topological or 

network efficiency perspective. The same difference can also be found in the importance 

comparison of links in terms of vulnerability. The most vulnerable link in terms of train flow 

is Shanghai—Nanjing. However, this link is not important in the topological analysis (only 

ranks 35th among all 42 links). This phenomenon can be explained by the different meaning 

of the three metrics: the betweenness centrality emphasizes the components’ position and role 

as a hub in the network topology; the connectivity efficiency looks at the entire network for 

efficiently transmitting among the nodes and re-routing; the flow-based vulnerability analysis 

investigates the effect of each component’s failure on the operating travel mileages. 

With the consideration of spatially localized failures, and corresponding consequences, 

we analyze the vulnerability distribution on the CRH map, which considers the importance of 

each district from a comprehensive perspective. The areas with high vulnerability should be 

prepared and emergency responses are required to recover from the impact. The results of the 

analysis also provide insights for the investments of planning and maintenance of the CRH 

system. For example, in the southeast provinces, train stations must be designed to withstand 

the impact of typhoons; railroad tracks in flood-prone areas may need to be laid on higher 

terrains or viaducts; railroad tracks in the frozen areas need to be designed for frost protection. 

Moreover, decision-makers can rely on the flow-based vulnerability analysis to plan 

contingency management, such as temporary scheduling and evacuation of passengers. 

For the failure consequences shown in Section 3, nodes such as Shanghai and Beijing, 

indicate a high flow-based vulnerability because many train service lines start or end there. In 

the event of an interruption, these service lines are disrupted and, thus, seriously affect public 

safety, economic development and social stability. Managers often consider investment to 

reinforce the stations and increase train services in these important but already overburdened 

stations, while not realizing that it may result in high vulnerability. In terms of diversion, 

constructing two or more stations in prosperous and vulnerable cities is becoming common 

and convenient to reduce the risk of the entire CRH network. The failure probability of a train 

service line will disperse, that is, even when one of the stations breakdowns, the others can 

continue to operate as a substitute. Although many cities now have multiple stations, most of 

them are not adequate for the operation of high-speed trains. As shown in Figure 6, we select 

five nodes with multiple stations and calculate their train flow-based vulnerability separately. 

The comparison indicates that the vulnerability of different stations in one city varies 

significantly. This is mainly due to the uneven distribution of high-speed train services for 

various reasons. For example, in Section 3 we found that Shanghai is an important site whose 
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failure can seriously affect the operation of CRH. Calculating the vulnerability of each station 

in Shanghai separately, Shanghai Hongqiao Station accounts for a large proportion of more 

than 87% in terms of disturbed cumulative train mileage. Other than scattering the high-speed 

passenger train services and balancing the vulnerability, a solution of constructing a 

comprehensive hub is adopted in Shanghai, called Hongqiao Transportation Hub. Hongqiao 

integrated transport hub is an innovation in urban transport construction, which includes a 

variety of modes of transport such as aviation, high-speed railway, maglev, freeway and 

subway combined together. In this manner, passengers can be quickly evacuated to another 

system both for transit service, and for facing disruptions or emergencies. For example, 

travelers can decide to take airplanes when the high-speed rail services are unavailable in the 

same hub. Furthermore, the vulnerability of interdependent transportation networks will be 

more complicated and involve more factors. 

 

Figure 6.  Comparison of the flow-based vulnerability in separated stations 

Combined disruptions sometimes occur in the high-speed rail, which cause more than 

one component failed in the network simultaneously. Table 4 shows the calculation results 

under pair-disturbance scenarios. The first three vulnerable combinations in Situation 1 are 

Beijing with Shanghai, Guangzhou with Shanghai, and Wuhan with Shanghai. All these 

nodes are also most vulnerable separately, as shown in Table 3 and Figure 2. As Shanghai is 

the most flow-based vulnerable site, 9 out of top-ten pairs include Shanghai. The 

combinations in Situations 2 and 3 indicate consistent results, showing that components alone 

are also important when combined with others, such as in Shanghai Station and links of 

Wuhan--Changsha and Shanghai--Nanjing. It is noted that once these vulnerable components 

fail simultaneously, the entire network functioning may fall into chaos, and require significant 

resources and time to recover.  

TABLE 4. TRAIN FLOW-BASED VULNERABILITY OF CRH UNDER PAIR-DISTURBANCE SCENARIOS 
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Ranki

ng 

Nodes  

+ Nodes 
𝐕𝑭 

Nodes  

+ Links 
𝐕𝑭 

Links  

+ Links 
𝐕𝑭 

1 BJ + SH 0.46489 SH+ WH-CS 0.46768 SH-NJ + WH-CS 0.42184 

2 GZ + SH 0.41064 SH + WH-ZZ 0.45004 SH-NJ + WH-ZZ 0.40419 

3 WH + SH 0.40519 SH + CS-HY 0.42101 SH-NJ + CS-HY 0.38121 

4 CS + SH 0.37887 SH + SJZ-ZZ 0.41766 SH-NJ + SJZ-ZZ 0.37182 

5 XA + SH 0.36669 BJ + SH-NJ 0.41642 BJ-NJ + GZ-HY 0.35298 

6 BJ + GZ 0.36381 SH + BJ-HZ 0.40845 WH-CS + JN-XZ 0.34416 

7 ZZ + SH 0.36365 SH + GZ-HY 0.39511 SH-NJ + SJZ-BJ 0.34001 

8 

9 

10 

HZ + SH 

NJ + SH 

SZ + SH 

0.36128 

0.35725 

0.35287 

SH + SJZ-BJ 

BJ + WH-CS 

SH + JN-XZ 

0.38585 

0.38449 

0.37897 

SH-NJ + NJ-HZ 

SH-NJ + SR-NC 

SH-NJ + JN-XZ 

0.33335 

0.33204 

0.32651 

6. Conclusion 

In this study, we propose a comprehensive vulnerability analysis of CRH, which 

includes topological and train flow-based vulnerability analysis. Given the different 

importance of each train service line, the vulnerability defined here is the sum of affected 

train mileage, rather than the number of affected trains as done in traditional research. An 

SLF-induced vulnerability simulation is conducted using the Monte Carlo method. First-tier 

cities, such as Beijing, Shanghai, and Guangzhou, are vulnerable under disruptions due to 

their prosperous population and large number of high-speed passenger trains that depart 

from/arrive at the stations. Once they are interrupted, the service lines that include these 

stations will be affected considerably, thereby causing unexpected losses. Therefore, 

strengthening of these vital stations should be given attention. Moreover, dividing these 

start/end sites is feasible, such that the probability of failure in this line can decrease 

considerably. That is, if we construct two or more high-speed rail stations in these important 

cities, even if one of the stations breaks down, the others can continue to operate as a 

substitute. Another emerging solution of constructing transportation hubs integrating 

high-speed rail, aviation and other transportation systems is currently developed in various 

cities, after the success of Shanghai Hongqiao hub. From a managerial perspective regarding 

vulnerability, the traffic flow of nodes in the middle of service lines can be increased by 

enabling some trains to start from or end at these second- or third-tier cities. The current trend 

tends to increase the number of vehicles on stations that are already highly important and busy. 

However, an optimal balance should be reached between the operational gains and 

vulnerability mitigation. As CRH has an obvious regional disaster characteristic according to 

the risk distribution map, specific defensive efforts and contingency response should be 

designed against disruptions.  



18 

 

In the future work, uncertainty propagation and control regarding vulnerability will be 

studied taking into account restoration and timetable rescheduling of trains under disruptions. 

The proposed approach can also be extended to other critical transport infrastructures. 

Furthermore, the cascading and complementary effects of interdependent transportation 

networks under disruptions will be considered. 
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