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Abstract—In RTNS 2016, Rihani et al. [7] proposed an
algorithm to compute the impact of interference on memory
accesses on the timing of a task graph. It calculates a static,
time-triggered schedule, i.e. a release date and a worst-case
response time for each task. The task graph is a DAG, typically
obtained by compilation of a high-level dataflow language, and
the tool assumes a previously determined mapping and execution
order. The algorithm is precise, but suffers from a high O

(
n4

)
complexity, n being the number of input tasks. Since we target
many-core platforms with tens or hundreds of cores, applications
likely to exploit the parallelism of these platforms are too large
to be handled by this algorithm in reasonable time.

This paper proposes a new algorithm that solves the same
problem. Instead of performing global fixed-point iterations on
the task graph, we compute the static schedule incrementally,
reducing the complexity to O

(
n2

)
. Experimental results show a

reduction from 535 seconds to 0.90 seconds on a benchmark with
384 tasks, i.e. 593 times faster.

Index Terms—response time analysis, algorithm optimization,
many-core architectures, real-time systems

I. INTRODUCTION

Programs running in safety-critical real-time embedded
systems must remain predictable in terms of execution time to
meet the engineering constraints in their specification. Avionics
or autonomous vehicles applications, for example, have analysis
and decision making in code heavily coupled to time, so
each task in the system must be temporally tightly bounded.
Usually, these programs are made of periodic loops that activate
tasks and any timing deviation might be propagated causing
overlapping issues and even functional failure.

For many reasons (energy, performance, integrity, avail-
ability), embedded systems are shifting from single-core
to multi/many-cores platforms. A many-core is a type of
architecture that typically has hundreds of cores and whose
computational power mainly relies on the parallelism level of
the programs it runs, in contrast with multi-core processors,
where a unique core can be quite powerful on its own. In
this work we use the Kalray MPPA-256 [3] as the evaluation
many-core platform, but the algorithm can deal with other
arbitration policies.

We are interested in computing a program’s global Worst-
Case Execution Time (WCET) and analyzing how multiple
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cores may impact this duration: two tasks running simultane-
ously in distinct cores cannot be granted access to the memory
at the same time, and therefore they slow each other down.
Such a slowdown is called interference.

In [5] a framework to develop time-predictable real-time sys-
tems for many-core architectures is introduced. It is composed
of multiple stages, starting with a dataflow application, which
is divided into smaller computational blocks that are compiled
into C code, resulting in a DAG of tasks, partially ordered by
their dependencies. For each task, the WCET in isolation and
number of memory accesses are obtained through a tool such
as OTAWA [2]. Subsequently the tasks are mapped to cores
and ordered. In the final step the release dates and Worst-Case
Response Time (WCRT), i.e. WCETs taking interference into
account, are computed.

Contribution: This paper presents a new algorithm to
compute this last step of the framework in O

(
n2

)
time for a

program divided into n subtasks. Its implementation is done in
Python using the Kalray MPPA-256 as target platform, but
conceived with generalization in mind, so new architectures
can be integrated. The improvement from previous works [6]
and [7] is huge, where an algorithm to solve this problem
was showcased, but with a O

(
n4

)
time complexity making

it intractable for very large task graphs. A long version of
this paper with more details on the algorithms and results is
available in [4].

Organization: Section II presents the problem, elaborating
on the expected input, output and hypotheses assumed. In
Section III the original solution from [6] is briefly explored
before the Section IV where our solution is detailed. To
conclude, in Section V a complexity analysis and a performance
evaluation of the implementation are made.

II. CONTEXT

A. Interference due to arbitration

Hardware arbiters handle how accesses to a shared resource
from different initiators are ordered. Multiple types of ar-
bitration policies exist, serving different purposes, such as
timing predictability or throughput. The shift to many-core
architectures makes the memory bus arbiter a major influence
on the execution time of programs.



A simple, deterministic and starvation-free arbitration policy
is the Round-Robin (RR). It gives each initiator an equal grant
share in circular order, conditioned to the use of this share.
This means that cores access the memory one after another,
as long as all of them are requesting to read or write data,
otherwise they are skipped.

For instance, assuming a bus size of width 1 word with RR
arbitration policy, if three cores have to write 8 words to the
memory, the first one writes 1 word, then the second one 1
word, then the third one 1 word and this process is repeated
until no core needs to write anymore. In a concrete scenario,
the first core to get its access granted suffers no interference,
but a very detailed analysis would be needed to know which
core is delayed and which one is not. Instead, we consider the
worst case in the analysis, i.e. that all cores are delayed. With
this policy, all three cores are halted 8+8 times, and assuming
that each word access takes 1 cycle, they each receive a total
interference of 16 cycles.

B. General description of the problem

To precisely estimate the interference, we need to know the
time interval during which memory accesses are performed by
each core. For this, we use a time-triggered schedule, where
tasks, running on cores, are assigned a release date rel (i.e.
the task cannot start before this date even if all its inputs
are available earlier), and a WCRT R is computed. As a
consequence, we can guarantee the absence of interference
between two tasks when their execution interval [rel, rel+R]
has no overlap.

Given a Directed Acyclic Graph (DAG) of tasks with
dependencies, their mapping and schedule onto cores, their
WCETs in isolation, their memory accesses and the bus arbiter
description, we need to compute release dates for each of those
tasks and the total WCRT of the graph, which accounts for
the interference between tasks simultaneously accessing (either
reading from or writing to) the shared memory. Additionally,
some tasks may have a minimal release date, meaning that
they must not be scheduled before that date.

The difficulty in solving this problem is that the release
dates and interference values are dependent on each other. This
means modifying the release dates of tasks can change how
they interfere with each other and a new amount of interference
might change the release date of yet to be scheduled tasks.
However, once a solution is found, the computed release dates
allow to always maintain a precise execution: even if the
dependencies of a task are executed faster than their WCETs,
the task will not be released before, avoiding unexpected
interferences.

Figure 1 shows an example of a task set, its initial schedule
(top) and then its final schedule accounting for interference
(bottom). The mapping is the following: n0 7→ PE0; n1, n2 7→
PE1; n3 7→ PE2 and n4 7→ PE3. Their WCETs in isolation
are respectively 2, 2, 1, 3 and 2. Moreover, there are minimal
release dates defined: t = 0 for n0, n3; t = 2 for n1 and t = 4
for n2, n4. The amount of memory write accesses can be seen
in the DAG on the edges between the nodes. In the timing
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Figure 1. Minimalist program mapped to 4 cores and its timing schedules

diagram we can see the interference impact on the release
dates and WCRT of the tasks, resulting in a global WCRT of
t = 7, instead of t = 6 when the interferences ar ignored.

In the next section we discuss some non-trivial assumptions
that allow us to later develop the algorithm using the basic
concepts of the problems described here.

C. Approximations and hypotheses

We assume the following constraints: adding a new task to
the program can only increase the interference received by
other tasks; and for generality purposes, the interference might
be non additive, meaning that the interference between n tasks
is not necessarily the sum of the interferences between all pairs.
However, some bus arbiters have this additivity property, and
exploiting this could simplify and speed up the algorithm for
those cases.

Also, we add a conservative hypothesis: when multiple tasks
are mapped to the same core, they can be treated as a single
big task, summing their WCETs, and memory accesses. This
hypothesis empirically outputs less pessimistic release times
than a more complex approach consisting in computing all the
disjoint sets of tasks interfering with a given one.

III. ORIGINAL ALGORITHM

In [1], an algorithm is proposed to compute a bound on the
delay due to interference for a set of sporadic tasks. It served
as an inspiration for the algorithm introduced in [7], which
we improve in this paper. [7] uses two fixed-point iterations to
compute the global response time. The first iteration computes
the interference between all tasks with a given set of release
dates. The second one adjusts all release dates to respect the
dependencies. They are repeated until a stable value for the
release dates is found or the deadline is crossed, meaning that
the task set is unschedulable.

This algorithm was proved to have a O
(
n4

)
complexity [6]

where n is the number of tasks to schedule, which raises
scalability issues. The goal of this work is to reduce this
complexity allowing it to be applied to hundreds of tasks.
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Figure 2. Snapshot of the new algorithm cursor mechanism

IV. PROPOSED ALGORITHM

Given the task set and initial release dates, the proposed
algorithm works incrementally, by adding tasks one by one
to the schedule. The algorithm works with a time cursor t,
starting from t = 0 and progressing forward. The tasks are
divided into three groups:

• Closed (C): t is after their finish date. These tasks have
both their final release date and response times computed.

• Alive (A): t is between their release and finish date. These
tasks have their final release date, but their response time
may be influenced by tasks not yet added to the schedule.

• Future: t is before their release date, neither the release
date nor their response time is computed.

At each iteration, the cursor t jumps to the nearest end date
of the current alive tasks or the minimal release date of future
tasks, whichever is smaller. New available tasks, i.e. with all
dependencies satisfied, are then scheduled, and the interferences
that they add to and receive from the current alive tasks are
computed. They cannot interfere with dead tasks, because they
do not overlap, and their interferences with future tasks will
be computed later in the algorithm, when those are added.

With this approach, when a task is scheduled, its release
date is definitively set and, as previously discussed, will not be
changed with future tasks. The key idea behind the complexity
reduction is that only tasks in A need to be considered in the
interference analysis.

Figure 2 captures a snapshot of the algorithm being executed.
The vertical dashed red line represents the current time cursor
position. Only the solid boxes are considered alive tasks. The
dotted boxes on the left are the dead tasks, and the ones on
the right are the future tasks.

A. Detailed algorithm

The proposed algorithm is given in Algorithm 1 as pseudo
code, and detailed below. The inputs are a task set Γ, their
initial release dates Θ and response times R, the number of
cores c available in the platform, how the tasks are mapped onto
them and a shared memory, that may have distinct arbitrated
banks reserved for each core to minimize interference.

In the example from Figure 2, we have Γ = {n0, . . . , n10},
c = 4 and the mapping is as follows: n0, n1, n2 7→ PE0,
n3, n4 7→ PE1, n5, n6, n7 7→ PE2 and n8, n9, n10 7→ PE3.

The time cursor begins at t = 0, with A, the set of
current alive tasks, initially empty. The following steps are
then repeated until all the tasks are scheduled (at each step we
give the corresponding state in the example from Figure 2):

Algorithm 1: Proposed scheduling algorithm
Input: Set of release dates Θ = {rel1, . . . , reln}, set of

response times R = {R1, . . . , Rn} of tasks {τ1, . . . , τn}
Output: schedulable, Θ, R OR unschedulable

1 forall k, Sk ← stack of tasks scheduled on core k;
A ← ∅; t← 0;

2 while t < +∞ do
3 C ← {τ ∈ A | (τ .rel + τ .WCET + τ .inter) = t};
4 for τ ∈ C do

// τ.rev_deps→ tasks that depend on τ

5 for τ ′ in τ.rev_deps do
6 τ ′.deps.remove (τ);
7 A ← A− C;

8 O← ∅;
9 for k ∈ list of cores c = {0, . . . , c− 1} do

10 if Sk is not empty then
// get top of stack without removing

11 τ_next← Sk.peek();
12 if τ_next.deps is empty AND

min_rel of τ is ≤ t then
13 O← O∪ {τ};
14 τ .rel← t;
15 Sk.pop(); // removes top of stack

16 A ← A∪O;

17 for τ_dest ∈ A do // task target of mem access

18 for τ_src ∈ A do // task source of access

19 for bank b in banks B do
20 if τ_dest and τ_src both access b then
21 if τ_src not in

τ_dest.interfers_with[b] then
22 τ_dest.interfers_with[b].add(τ_src);
23 τ_dest.interferences[b]←

IBUS(τ_dest, τ_dest.interfers_with[b], b);

24 t_next← +∞;
25 for τ ∈ A do
26 t_next← min(t_next, τ .rel + τ .WCET + τ .inter);
27 for min_rel in minimal release of future tasks do
28 t_next← min (t_next,min_rel);
29 t← t_next;

1) C (closed) is the set of tasks ending at time t. It is
simply computed by scanning the current alive tasks,
and determining if the end of the task (rel + WCRT)
equals t. These tasks are then removed from their reverse
dependencies list, allowing tasks depending on these
closed ones to start. Example: C = n6

2) A (Alive) ← A − C Example: A = n0, n4, n9
3) O (Opening) is the set of tasks opening at time t.

It is computed by scanning the head of the stack of
scheduled tasks for each core, and determining whether
its dependencies are satisfied and if its minimal release
date is smaller than or equal to t. Example: O= n7

4) A ← A ∪ O Example: A = n0, n4, n7, n9
5) For any destination and source task in A that access the

same memory bank, we determine if the source task has



already been accounted for in the interferences received
by the destination. If not, that interference is recomputed
by the bus arbiter function, after adding the source to
the list of nodes that the destination interferes with. The
interferences are computed separately for each memory
bank access from the task τ . The total interference
received by the task τ is the sum of those values.

6) t is updated to the minimal value between the next
smallest release date of future tasks and the next finish
time of alive tasks.

B. Complexity
The size of the set of alive tasks A is bounded by the

number of cores. Therefore, we access the linear IBUS function
a bounded number of times for each progression of t, and the
possible values for t are tasks end dates and their minimal
release dates, making it at most 2n. The two nested loops then
give an overall complexity, with n tasks, b banks and c cores:
O (c2 · b · n2). For a given processor, b and c are constants, so
we may simplify this equation to O

(
n2

)
.

V. EXPERIMENTAL RESULTS

To compare the old and new algorithm on real world
scenarios, we generate random DAGs, using a method proposed
by Tobita and Kasahara in [8], explained and used in the
original work by Rihani [6].

This method is called layer-by-layer DAG generation. Tasks
on the same layer are assigned to cores in a cyclic way: the n-th
task of a layer is assigned to Core(n mod number of cores).
Tasks have randomly generated WCET, memory accesses and
write operations on tasks of the next layer, respectively between
[550, 650], [250, 550] and [0, 100]. Two approaches are used
to generate the inputs of the benchmark: fixed NL, in which
the number of layers is constant and the layer size increases,
and fixed LS, in which the layer size stays the same and it is
the number of layers that gets enlarged.

The implementation of the original algorithm is done in C++,
while the proposed algorithm is written in Python. This mean
that there is an interpreter overhead that negatively impact our
results mainly for a small number of tasks.

A linear regression computation on a log×log scale from the
benchmark values was done to see if the theoretical complexity
goes in hand with the practical outcome. Figure 3 shows the
results, where NL4 represents a fixed number of layers of
4, and LS4 a fixed layer size of 4. The bus arbiter function
used is the Kalray MPPA-256 RR from [6]. The complexity of
the proposed algorithm always stay under O

(
n2

)
, contrary to

Rihani’s which exceeds O
(
n4

)
and even seem to reach O

(
n5

)
in the NL64 and LS64 cases. The benchmark has a timeout
that the C++ version easily reaches for more than 256 tasks.

In particular, LS64 and NL64 are the random DAGs config-
uration values that showcase the biggest difference between
the two versions. For LS64 and 256 tasks, the C++ version
took 1121.79s and the Python one took mere 4.13s, or 270
times faster. For N64 and 384 tasks, the C++ implementation
executed for 535.24s and the Python for only 0.9s, or 593
times faster.
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Figure 3. Benchmark plotted results

VI. CONCLUSION

This paper introduces a new algorithm to obtain the release
dates and response times of applications in the context of real-
time systems implemented on many-core architectures. The
revisited version shows a significative complexity improvement
to O

(
n2

)
, which translates to 593 times faster runtime in our

benchmark, in comparison with the original version from [7].
This allows to accomplish the requirements of modern safety-
critical real-time systems, scaling to more than 8000 tasks
while maintaining a reasonable execution time.
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