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1 Introduction

The existence of a competitive equilibrium is followed by questions regard-
ing the characterization of the equilibrium set in order to analyze efficiency,
uniqueness or regularity properties. For this purpose, it is required to analyze
how the set of equilibria responds to perturbations in exogenous parameters
that characterize agents and, therefore, economies. This relation between pa-
rameters and equilibrium sets has been captured in the literature through
equilibrium correspondences that associate economies with its equilibria.

Kannai (1970), Hildenbrand (1970) and Hildenbrand and Mertens (1972)
introduce the study on the continuity of the equilibrium correspondence for
pure exchange economies. All these studies, also including Balasko (1975),
understand parameters as exogenous characteristics that define the agents
(i.e. consumption sets, tastes or endowments). In particular, it turns to be a
crucial point the way in which a topology in the space of economies is defined.

Results regarding regularity, are closely related to the finiteness of the equi-
librium set. It is the finite property that allows to define a concept of locally
stable equilibria. The approach generally consists of proving conditions over
the equilibrium correspondence in order to conclude that it defines finite sets.
This is the aim of the pioneering work of Debreu (1970) assuming differentia-
bility conditions and using the Theorem of Sard (1942).

Mas-Colell (1977) raised the following question regarding the equilibrium
set:

Is there a dense set of economies having a finite set of equilibria? We
shall see the answer is yes, but this is not by itself a very interesting
property; what one wants (for, say, estimation or prediction purposes)
is that those equilibria be “essential”, i.e., that they do not disappear
by performing an arbitrarily small perturbation of the economy.

This quotation emphasizes that for our purposes the most accurate defi-
nition should be regarding essentiality instead of regularity. We remark that
every regular equilibrium is essential but the converse is not true. Furthermore,
in order to characterize this concept, we need to study the relation between
parameters and equilibria instead of the equilibrium set.

In the present work, we study the continuity of the equilibrium correspon-
dence for distributional economies with infinite dimensional commodity spaces.
Moreover, due to the continuity property, we characterize a concept of stabil-
ity named essential stability that was introduced in the fixed point theory by
Fort (1950) and, accordingly to game theory by Wen-Tsun and Jia-He (1962).
In particular, the translation from game theory to economies states that an
equilibrium is essentially stable if it is possible to approximate it by equilib-
ria of “similar” economies, i.e. economies that are close to the economy of
reference under a metric in the space of economies that has to be precised.
Generally speaking, defining the space of economies by a metric space requires
to parameterize the family of economies of interest with respect to the dimen-
sions of similarity. In our case, the dimensions are preference relations and
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endowments. It is possible to extend our analysis to other parameterizations
of economies, e.g. externalities, tax structures or information, by requiring
that the metric space of economies remains complete.

Recently, the continuity of the equilibrium correspondence in general equi-
librium theory was stated by Dubey and Ruscitti (2015) and He et al. (2017).
We extend their results taking into consideration infinite dimensional com-
modity spaces and by characterizing stability when the continuity property
in the equilibrium correspondence can not be obtained directly. In fact, our
results answer the question posited in Dubey and Ruscitti (2015) about the
possibility of getting stability results in infinite dimensional economies. In ad-
dition, we remark that we have no need to restrict the economies to have the
same space of agents as it has typically been done in the literature.

The following section establishes some mathematical preliminaries. Sec-
tion 3 define the economies and Section 4 studies the Walras correspondence.
Section 5 states the essential stability results and Section 6 discusses the rep-
resentation of economies through measurable functions. Section 7 concludes
with some remarks.

2 Preliminaries

We recall some properties of topological vector spaces. In order to accomplish
that, we define an ordered separable Banach space (L, ‖ · ‖) whose positive
cone has a non-empty interior. The positive cone and the topological dual of
L are denoted by, respectively, L+ and L∗.

Endowed with the weak topology w, (L,w) is a complete topological vector
space. By ‖ · ‖-topology we mean the topology induced by the norm ‖ · ‖. An
analogous notation is given to the w-topology.

For Q ⊂ L+, we define the norm ‖ · ‖Q as the one induced from ‖ · ‖. The
weak topology on Q, wQ, is the relativization to Q of w.

Proposition 1 (Fristedt and Gray (1996), Proposition 3, p. 350) If
Q is a closed subset of (L, ‖ · ‖) then (Q, ‖ · ‖Q) is Polish.

Even though (L,w) is not metrizable, we can ensure the following.

Proposition 2 If Q is a compact subset of (L,w) then (Q,wQ) is a locally
compact Polish space.

Proof (Q,wQ) is metrizable since Q is w-compact (Dunford and Schwartz
(1958), Theorem 3. p. 434). Furthermore, (Q,wQ) is separable (Aliprantis and Border
(2006), Lemma 3.26, p. 85) and obviously complete.

Remark 1 w-compactness of Q implies ‖ · ‖-closeness of Q and, since L is
separable, ‖ ·‖-boundedness (Diestel (1984), p. 17). If Q is convex, w-closeness
implies ‖ · ‖-closeness.

By the separability of L we can make use of the following result.
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Proposition 3 (Dunford and Schwartz (1958), Theorem 1, p. 426)
The topology induced on S ⊂ L∗ compact in the weak*-topology is metrizable
by a translation invariant metric on L∗.

Proposition 4 (Diestel and Uhl (1977), Theorem 2, p. 45) Given the
measurable space (A,A, ν), a strong measurable function f : A → L is Bochner
integrable if and only if

∫

A
‖f‖dν < ∞.

Let (M, ρ) be a metric space. For a given µ ∈ M we denote an open ball in
(M, ρ) with radius δ > 0 by V (µ, δ). Let DW : M1 ։ M1 a correspondence
between two metric spaces (M1, ρ1) and (M2, ρ2).

Definition 1 (Yu et al. (2005))

1. For each µ ∈ M1 and e(µ) ⊂ DW (µ) non-empty and closed, the set e(µ)
is called an essential set of DW (µ) if for any ǫ > 0 there is δ > 0 such that
for any µ′ ∈ V1(µ, δ) we have DW (µ′) ∩ [V2(e(µ), ǫ)] 6= ∅.

2. For each µ ∈ M1, a component of a point τ ∈ DW (µ) is the union of all
connected subsets of DW (µ) which contain the point τ .

Consequently, if for a given µ ∈ M1 a component of DW (µ) is an essential
set, then the component is called essential. Moreover, for µ ∈ M1, an essential
set m(µ) of DW (µ) is minimal if it is a minimal element of the family of
essential sets ordered by set inclusion. Regarding set stability we establish the
following definition:

Definition 2 (Correa and Torres-Mart́ınez (2014), Definition 8 (i))
For µ ∈ M1, a subset e ⊆ DW (µ) is stable if for every ǫ > 0, there is δ > 0,
such that given µ′ ∈ M1 with ρ1(µ, µ

′) < δ, there is a minimal essential set
e′ ⊂ DW (µ′) for which e′ ⊆ V2(e, ǫ).

Finally, we provide a result that was originally proved by Fort (1951) re-
garding the lower hemicontinuity of correspondences.

Proposition 5 (Carbonell-Nicolau (2010) Lemmata 5-6) Given a
nonempty, compact-valued and upper hemi-continuous correspondence from a
Baire space into a metric space, there exists a dense residual subset of the
domain such that the correspondence is lower hemicontinuous at every point.1

3 Model

The commodity space is defined by an ordered separable Banach space (L, ‖·‖)
whose positive cone has a non-empty interior. Consequently, the price space
is given by the positive cone of the topological dual of L, L∗

+. We endow this
space with the weak-star topology w∗.

1Lemma 5 in Carbonell-Nicolau (2010) is due to Theorem 2 Fort (1951). In addition,
the fact that there is a dense residual set is also noted by Yu (1999) Theorem 4.2.1.
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We consider a convex and w-compact subset Q of the space L+ which
includes the vectors 0 and u, where u ∈ intL+ and ‖u‖ = 1. Consider the
consumption set X ⊂ Q which is a norm-closed and convex set containing
both the vectors 0 and u. Consequently, X is a w-closed subset of Q whence,
a w-compact one.

Regarding the consideration of having w-compact subsets of the commodity
space L, we note that similar assumptions are made in large economies. Indeed,
the works of Khan and Yannelis (1991) and Noguchi (1997) assume that each
consumption set is weak-compact. Recently, Khan and Sagara (2016) assumes
the existence of a common weak-compact metrizable consumption set, as well
as Bewley (1991) or Suzuki (2013) that assume the existence of a common
consumption set.

Let (X,≻) be a preference relation where ≻⊂ X × X is a transitive and
irreflexive binary relation on X such that (X,≻) is weak-relatively open in
X ×X . We use x ≻ y to denote (x, y) ∈≻ and x 6≻ y to denote (x, y) /∈≻. Let
P be the set preference relations. For each (X,≻) ∈ P we associate the set
P := {(x, y) ∈ X ×X | x 6≻ y}. Because of the continuity of preferences, each
P is a w × w-closed subset of L+ × L+ and then, a wQ × wQ-closed subset
of Q × Q. We denote by Pmo the set of all monotonic preference relations in
P which is defined as Pmo := {(X,≻) ∈ P , such that for all x, y in X, if x ≥
y and x 6= y then x ≻ y}.

Let Cw(Q×Q) be the set of all wQ × wQ-closed subsets of Q × Q. We
denote by τC the topology of closed convergence on Cw(Q × Q). Since every
P belongs to Cw(Q × Q), we can define a mapping g : P → Cw(Q × Q) by
(X, ≻) 7→ P . It is easily verified that g is an injection. Indeed, let (X,≻
) 6= (X ′,≻′) in P and let us assume that P = P ′. If X = X ′, then we
have that (X × X)\ ≻= (X ′ × X ′)\ ≻′, whence ≻=≻′ which contradicts
(X,≻) 6= (X ′,≻′). If X 6= X ′ one can assume without loss of generality that
X \X ′ 6= ∅. It follows from (X×X)\ ≻= (X ′×X ′)\ ≻′ that for any y ∈ X \X ′

that (y, y) ∈≻ which contradicts irreflexivity. Consequently, we must have
P 6= P ′ whenever (X,≻) 6= (X ′,≻′).

We define the topology τCP on P by τCP := {g−1(U) : U ∈ τC}. Thus τ
C
P can

be seen as the topology τC induced on P .2 We characterize the preferences of
the space of characteristics in the following lemma which follows and adapts
the arguments of Theorem 1 in Hildenbrand (1974).

Lemma 1

1. (P , τCP ) is compact and metrizable (and hence, a Polish space)
2. A sequence of preferences {(Xn, ≻n)}n≥1 converges to (X, ≻) in (P , τPC )

if and only if Li(Pn) = P = Ls(Pn)
3. The set {((X, ≻), x, y) ∈ P × Q × Q : x, y ∈ Xand x 6≻ y} is closed

for the product topology τCP × wQ × wQ. Furthermore, τPC is the weakest
topology on P for which the above set is closed.

2See Hervés-Beloso et al. (1999) for another applications of the closed convergence topol-
ogy for infinite dimensional space of characteristic.
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The proof is given in A.1. The following corollary is useful to achieve op-
timality in the proof of Theorem 1.

Corollary 1 Let (X, ≻) ∈ P such that x, y ∈ X and x ≻ y. There exists
an τCP -open neighborhood U(X, ≻), a wQ-open neighborhood Vx and a wQ-open
neighborhood Vy, such that for all (X ′, ≻′) ∈ U(X, ≻) and for all (x′, y′) ∈
(X ′ ∩ Vx)× (X ′ ∩ Vy) we have x′ ≻′ y′.

Proof Since the set {((X, ≻), x, y) ∈ P × Q × Q : x, y ∈ Xand x 6≻ y} is
closed for the product topology τCP × wQ × wQ, then

P ×Q×Q\{(X, ≻), x, y) ∈ P ×Q×Q : x, y ∈ Xand x 6≻ y}

is τCP × wQ × wQ-open.

We denote by F a ‖ · ‖-closed subset of X . The space of characteristics
is defined by T = Pmo × F , i.e., we shall consider economies having charac-
teristics in T . In particular, it means that the economies under consideration
have endowments with values in F . Consequently, a typical element of T is
((X,≻), e). Naturally, T is endowed with the product topology τCT × ‖ · ‖F so
that we obtain the following lemma.

Lemma 2 T is a Polish space.

We differ the proof to A.2.

3.1 Space of Economies

We formally define an economy by means of a distribution on the space of
characteristics.

Definition 3 An economy is a Borel probability distribution µ on T .

Define, ι as the identity map, notice that
∫

F
ιdµF < ∞ since elements in

F are norm-bounded. We denote by M(T ) the set of all Borel probability
distributions on the support T . The price simplex is given by S = {p ∈ L∗

+ :
p.u = 1}. By Jameson (1970), Theorem 3.8.6, S is weak*-compact and, using
Proposition 3, metrizable.

From now on, let X be the common consumption set of every economy.
For p ∈ S let us consider the set

Ep = {(((X,≻), e), x) ∈ T ×X : p.x ≤ p.e and x′ ≻ x implies p.x′ > p.e}.

Definition 4 A probability measure τ ∈ M(T ×X) is an equilibrium for the
economy µ if there exists p ∈ S such that:

1. τT = µ,
2.

∫

X
ιdτX =

∫

F
ιdµF

3. τ(Ep) = 1,
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where τX is the distribution of allocations given by the marginal distribu-
tion of τ on X over T ×X and µF is the distribution of endowments given by
the marginal distribution of µ on F over the characteristics’ space.

When the distribution τ satisfies 1 and 2 of Definition 4 we say that τ is
attainable.

How different are two economies? or how different are two attainable distri-
butions?. The answer to these questions implies endowing the spacesM(T×X)
and M(T ) with a topology. Since F and T × X are separable and complete
metric spaces, we know that the set of probability measures on the Borel σ-
algebra is also complete and separable with respect to the Prohorov metric
denoted by ρ (Billingsley, 1999, (vi)-(vii) p. 73). In turn, the projection on T ,
denoted ρT , induces a separable and complete metric space (M(T ), ρT ) that
we define as the space of economies.

3.2 Examples

The examples presented below belong to the collection of exchange economies.
In addition to the examples presented in this section, a linear price may repre-
sent situations including uncertainty, information or public goods. Moreover,
if the linearity in prices, e.g. Aliprantis et al. (2001), is not required there
are more examples to be considered including incomplete markets, ambigu-
ity, among others. Here we concentrate in the classical examples of exchanges
economies when there are infinitely many agents and commodities.

1. Perfectly competitive economies (Rustichini and Yannelis (1991)). Let us
consider the space L = C([0, 1]) of continuous functions on [0, 1] be-
ing C+([0, 1]) its positive cone. Let Q be a weakly compact subset of
C+([0, 1]) containing both 0 and u. Q is the commodity space. Notice
that the existence of a weak compact set in C([0, 1]) is guaranteed since
[0, 1] is Eberlein compact3 (Fabian et al. (2001), Theorem 12.12, p. 392).
By Krein Theorem, Q is convex. Further, since C([0, 1]) is separable, Q
is metrizable for the weak topology (Dunford and Schwartz (1958), Theo-
rem V. 6.3, p. 434) and hence, w-Polish. Let F = Q ∩ V (0, α) for α >
0. Thus, P × F is a Polish space. Let (A,A, ν) be an atomless, com-
plete and finite measure space where A is a compact metric space. Let
g : A → C(Q) be a continuous mapping such that for every a ∈ A and
x ∈ Q, g(a)(x) = a

√

‖x‖. Notice that
⋃

a∈A g(a) is a compact subset
of C(Q) since A is compact. Let e : A → F be a continuous function.
Let β be a real number larger than α such that X(a) = Q ∩ [0, β] for
all a ∈ A. The restriction of every g on Q ∩ [0, β], gX , preserves conti-
nuity, irreflexivity, transitivity, monotonicity and strong convexity. Conse-
quently, the set {(Q ∩ [0, β],∪a∈Ae(a))} ⊂ P × F is a characteristic set.

3A set is Eberlein compact if it can be embedded as a compact subset of a Banach space
with the weak topology.
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Furthermore, if (A,A, ν) is seen as an agent space, then every measurable
function f : A → {(Q ∩ [0, β],∪a∈AgX(a)),∪a∈Ae(a))} such that f(a) =
{((X(a), gX(a)), e(a))} has a distribution ν ◦ f−1 which is an economy
with those characteristics. In addition, if (A,A, ν) satisfies the “many more
agents than commodities” condition of Rustichini and Yannelis (1991), the
distributional economy ν ◦ f−1 is perfectly competitive.

2. Neoclassical exchange economies. Let L+ = C(K)+ for some K compact
Hausdorff. Let Q ⊂ C(K)+ be a convex, bounded and quasi-equicontinuous
set4 which is weak-compact accordingly to Theorem 14.3 in Dunford and Schwartz
(1958), p. 269. Let α > 0 such that u ∈ V (0, α) and F = V (0, α) ∩Q. Let
us consider X = nV (0, α) ∩ Q for some n ∈ N. Let N be a set of con-
tinuous, strictly increasing and strictly quasi-concave functions, i.e., every
g ∈ N ⊂ C(Q) is a neoclassical preference on X . Let us consider a norm-
closed subset N̂ of N , i.e, a closed set neoclassical preferences. Hence,

T =
(

nV (0, α) ∩Q), N̂
)

is a compact metric subset of P and T × F is a

neoclassical space of characteristics. Every economy µ ∈ M(T × F ) is a
neoclassical exchange economy.

3. Let Q = co({fi ∈ C+([0, 1]) : i = 1, ..., n} ∪ {0} ∪ {u ∈ intC+([0, 1])}) with

u ∈ V (0, α). The set of preferences is A = co{u1(x) =
∫ 1

0
tx(t)dt, u2(x) =

∑∞
i=1 2

−j
√

x(rj) with (rj)
∞
j=1 ∈ Q∞ and u3(x) =

∫ 1

0

√

x(t)dt} for every
x ∈ Q}. Let us take F = X = Q. Consequently, T = (Q,A) × Q is a
characteristic space satisfying the conditions stated through the paper and
every measure concentrated on T will be an economy.

4 Walras correspondence

Let A be a compact subset ofM(T×X) containing all attainable distributions.

Definition 5 The Walras equilibrium correspondence DW : M(T ) ։ A as-
signs to every economy µ its corresponding walrasian equilibria DW (µ).

4.1 Upper hemi-continuity

Theorem 1 Let E ⊂ M(T ) such that DW (µ) 6= ∅ for all µ ∈ E. Under
Assumption E the correspondence DW : E ։ A is upper hemi-continuous and
closed-valued.

The proof is given in A.3.

Corollary 2 The set E is Baire.

4The set Q is quasi equicontinuous if for every sequence (tn) such that tn → t and for
every ε > 0 and n0, there exists a finite set of indices ni ≥ n0, i = 1, ...,m, such that for
each f ∈ Q, min

1≤i≤m
|f(tni

) − f(t0)| < ε.
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Proof Since M(T ) is a complete metric space it suffices to show that E is
closed. But if follows since DW is u.h.c.

4.2 Lower hemi-continuity

In order to ensure lower hemi-continuity of the Walras correspondence we
invoke Theorem 2 in Fort (1951). For being self-contained, we presented Fort’s
result as stated by Carbonell-Nicolau (2010) in Lemma 5.

A straightforward application of Lemma 5 given the upper hemicontinuity
ensured in Theorem 1 gives the following corollary.

Corollary 3 The correspondence DW is lower hemicontinuous at every point
of a dense residual subset E′ of E.

4.3 Continuity

Theorem 2 The correspondence DW : E′
։ A is continuous.

Proof It follows from Theorem 1 and Corollary 3

5 Stability results

We shall now study the stability of economies by analyzing how a Walras
equilibrium for an economy µ changes when their characteristics are perturbed.

Definition 6 Let E′ ⊆ E and µ ∈ E′. An equilibrium τ of µ is essential relative
to E′ if for every ε > 0 there exists δ > 0 such that for every µ′ ∈ VT (µ, δ)∩E′

it follows that DW (µ′) ∩ VT×X(τ, ε) 6= ∅.

An economy µ is essential with respect to E′ ⊆ E provided that all their
associated equilibria are essential with respect to E.

Thus, essential stability is equivalent to the lower hemi-continuity of the
Walras equilibrium correspondence. By Corollary 3 we already know that the
collection of essential economies E′ is a dense residual subset of E.

Additionally, for a given economy µ on E , we would like to ensure the
following:

(S1) If DW (µ) = τ , i.e., it is a singleton, then τ is essential.
(S2) There exists a minimal essential subset of DW (µ) and any of such sets is

connected.
(S3) Given a essential and connected set m(µ) ⊂ DW (µ), there exists an essen-

tial component of DW (µ) that contains m(µ).
(S4) Every essential subset of DW (µ) is stable.

Theorem 3 Properties (S1)-(S4) hold.
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Proof The properties follow from direct application of the results in the litera-
ture. More precisely: (S1): Theorem 4.3 in Yu (1999), (S2): Theorem 2.1(1) in
Yu et al. (2005), (S3): Theorem 3 (iii) in Correa and Torres-Mart́ınez (2014),
and (S4): Theorem 4 in Correa and Torres-Mart́ınez (2014).

6 Some results on the representation of economies through
measurable functions

6.1 Individualized economies and Walras allocations

It is well known that every distributional economy µ has a representation
through measurable functions. Indeed, by Skorokhod’s theorem, for µ ∈ M(T )
there exists a measurable function E and a measure space (A,A, ν), such that
E : (A,A) → (T,B(T )) and ν ◦E−1 = µ. Since T is complete, (A,A, ν) may be
chosen to be (I,BI , λ) for I = [0, 1], the unit interval with the Lebesgue mea-
sure (Hildenbrand (1974), pp. 50-51). Furthermore, Keisler and Sun (2009),
Lemma 2.1 (ii) states that for any atomless measure space (A,A, ν) and a
distribution µ in M(T ) there exists a measurable mapping E from (A,A, ν)
into T such that ν ◦ E−1 = µ. In any of these cases, E : A → T is said to be an
individualized representation of µ if

∫

A
eE(a)dν(a) < ∞ where eE = ProjFE is

the initial endowment. Notice that there may be more than one representation.
For a given individualized representation, E , let XE be a correspondence

from the agent space (A,A, ν) into Q. A measurable function f : A → Q
is an allocation for the economy E if it is Bochner integrable and f(a) ∈
XE(a) almost everywhere. We say that f is attainable if

∫

A
fdν =

∫

A
eEdν.

Furthermore, it is a Walrasian allocation if there exists p ∈ L∗
+ such that

p ·f(a) ≤ p · eE(e) and p ·f ′(a) > p · eE(a) whether f ′(a) ≻a f(a) for almost all
a ∈ A. It is straightforward to verify that if (p, x) is a Walrasian equilibrium
of E whose agent space is (A,A, ν), then ν ◦ (E , x)−1 in M(T ×X) is a Walras
equilibrium distribution for ν ◦ E−1.

Let E : A → T be an individualized economy with τ ∈ DW (ν ◦ E−1) as
distributional equilibrium. We cannot guarantee that there exists a measur-
able mapping x : A → X such that ν ◦ (E , x)−1 = τ unless the agent space
(A,A, ν) satisfies a property called saturation: for every τ ∈ M(T ×X) such
that for each measurable function g : A → T with τT = ν ◦ g−1 there exists a
measurable function h : A → X such that ν ◦ (g, h)−1 = τ . A probability space
is saturated if and only if it satisfies the saturation property for every Borel
probability measure on the product of any two Polish spaces (Keisler and Sun
(2009)). Alternatively one can also ask the σ-algebra A to be relatively satu-
rated with respect to a sub-σ-algebra G.5

The following result shows that large individualized economies have the
closed graph property when the agent space satisfies the saturation property.

5A is relatively saturated with respect to the sub-σ-algebra G if for every τ ∈ M(T ×X)
such that for each G-measurable function f : A → T with τT = ν ◦ f−1 there exists a
A-measurable function g : A → X such that ν ◦ (f, g)−1 = τ
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Theorem 4 Let {(An,An, νn)}n∈N be a sequence of probability spaces denot-
ing agent spaces. Let {En}n∈N be a sequence of economies such that for each
n ∈ N, En : An → T and let {xn}n∈N be a sequence of allocations such that for
each n ∈ N, xn is an equilibrium for En. Let (A,A, ν) be an atomless saturated
probability space and let E : A → T be a measurable function. If {νn ◦ E−1

n }
converges weakly to ν ◦ E−1 and {νn ◦ xn}n∈N converges in distribution to
some measure γ ∈ M(X), then there exists a mapping x : A → X which is an
equilibrium for E and ν ◦ x−1 = γ.

Proof Notice that νn ◦ (En, xn)
−1 belongs to DW

(

νn ◦ E−1
n

)

for each n ∈ N,
{νn ◦ E−1

n }n∈N converges to ν ◦ E−1 and {νn ◦ x−1
n }n∈N converges to a measure

γ ∈ M(X). By Theorem 2.1 (iii) in Keisler and Sun (2009) there exists a
subsequence of νn ◦ (En, xn)

−1 (say itself) which converges to τ ∈ M(T ×X)
such that the marginals τT and τX are ν ◦E−1 and γ respectively. By Theorem
1, τ belongs to DW

(

ν ◦ E−1
)

and since (A,A, ν) is saturated, there exists
x : A → X such that ν ◦ (E , x)−1 = τ and τX = ν ◦ x−1. Hence, x is an
equilibrium for E by Corollary 5 in the proof of Theorem 1.

As pointed out previously, the above Theorem holds true if instead of
requiring saturation we specify that A is relatively saturated with respect
to a sub-σ-algebra G. Of course, when the sequence {xn}n∈N converges in
distribution to the (Bochner integrable) function x, we do not require the
space (A,A, ν) to be saturated.

Recently, He et al. (2017) introduced the notion of nowhere equivalence to
model infinitely many agents. Let G be a countably generated sub-σ-algebra
of the σ-algebra A. For any A′ ∈ A, such that µ(A′) > 0, the restricted prob-
ability space (A′,AA′

, µA′

) is defined by: AA′

= {A′ ∩ A′′ : A′′ ∈ A} and µA′

is the probability measure rescaled from the restriction of µ to AA′

. We shall
say that A is nowhere equivalent to G if for every A′ ∈ A with µ(A′) > 0,
there exists a A-measurable subset A′

0 of A′ such that µ(A′
0 △ A′

1) > 0 for
any A′

1 ∈ GA′

, where A′
0 △ A′

1 is the symmetric difference (A′
0\A

′
1)∪ (A′

1\A
′
0).

He et al. (2017) state the conditions under which saturated spaces and rela-
tively saturated ones are equivalent with the nowhere equivalence condition
(Corollary 1, p. 787 and Corollary 3, p. 792). However, Lemma 5 and Theorem
1 in their work allow us to prove Theorem 4 even if the agent probability space
is non saturated.

6.2 Approximations through large but finitely many agents economies

The objective of several authors has been to prove that every sequence of
individualized economies with a nonempty set of Walrasian equilibria in each
of them has a limit individualized economy with at least one equilibrium.
Usually, the agent space of the limit economy is an atomless measure space
which is seen as an idealized limit of a large economy with finitely many agents.
The idea is that such idealized economy captures the limiting behavior of large
finite models. Our Theorem 1 allows us to go a step forward by considering
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an infinite dimensional commodity space. The following result is a Corollary
of the above Theorem when considering a sequence of finitely many agents
economies and their equilibrium allocations.

Corollary 4 Let {(An, 2
|An|, νn)}n∈N be a sequence of agent spaces with each

An finite and directed by set inclusion. Let {En}n∈N be a sequence of economies
such that for each n ∈ N, En : An → T and let {xn}n∈N be a sequence of al-
locations such that for each n ∈ N, xn is an equilibrium for En. Let (A,A, ν)
be an atomless and saturated probability space and let E : A → T be a mea-
surable function. If {νn ◦ E−1

n } converges weakly to ν ◦ E−1 and {νn ◦ xn}n∈N

converges in distribution to some measure γ ∈ M(X), then there exists a
mapping x : A → X which is an equilibrium for E and ν ◦ x−1 = γ.

Conversely, given an Walras equilibrium (x, p) for an individualized econ-
omy E whose agent space is an atomless probability space (A,A, ν), one can ask
when it is possible to approximate this equilibrium through large economies
with finitely many type of agents in order to ensure that the way the contin-
uum has been modeled is not a simply artifact. By Hildenbrand (1974) (29)
p. 49, µ ∈ M(T ) is the weak limit of a sequence of economies {µn}n∈N hav-
ing finite supports. Even more, Theorem 1 (i) of Hildenbrand (1970), p. 169,
says that the sequence {supp(µn)}n∈N is directed by set inclusion. If both the
economy µ and the sequence {µn}n∈N are concentrated on E′, then, because
of Corollary 3, for every τ ∈ DW (µ) there exists a sequence {τn}n∈N such that
τn ∈ DW (µn) for every n ∈ N and τn → τ . Since the support of a measure de-
fines the set of types of economic agents participating in the economic system
described by the measure, the above results mean that every economy can be
approximated by economies with increasing yet finitely many types of agents
with their equilibria. Hence, we have the following result

Proposition 6 Let (A,A, ν) be an atomless probability space and let E : A →
T and economy whose Walras allocation is the measurable function x : A → X.
Let MF(T ) be the set of economies with finite support. Assume that there ex-
ists a nonempty subset E′′ of MF(T ) ∩ E′ such that E′′ ⊂ E′. If the distribu-
tion of the economy E belongs to E′′, there exists a sequence of individualized
economies {En}n∈N converging in distribution to E and a sequence of Wal-
rasian allocations for these economies {xn}n∈N converging in distribution to x
such that every economy En has n types of agents

Proof By the remarks above, there exists a sequence {τn}n∈N such that τn ∈
DW (µn) for each n ∈ N and τn → ν ◦ (E , x)−1. For each n there exist mea-
surable mappings xn : A → X , En : A → T × X and pn ∈ L∗ such that
ν◦(En, xn)

−1 = τn, ν◦E−1
n = τn|T = µn, ν◦x−1

n = τn|X and (xn, pn) ∈ WE(En)
accordingly to Lemma 4. Clearly, {xn}n∈N and {En}n∈N converge in distribu-
tion to x and E respectively. Since for each n ∈ N, |supp(ν ◦ E−1

n )| = n, the
number of type of agents in En is n.
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7 Concluding remarks

The results of this paper could be improved and/or extended in a number of
ways; this seems like a good place to indicate some of these possible cases.

1. Several authors have proved the existence of an equilibrium when the com-
modity space is an ordered separable Banach space with a nonempty in-
terior. Hence, the set E of Theorem 1 is justified. The canonical space,
the one we used in the examples, is C(K) with K a Hausdorff compact
metric space. Furthermore, every weak compact subset of its dual space
is metrizable and thus price simplex is a compact metric space. However,
we point out that we can extract positive results even though from some
non-separable Banach spaces by considering as commodity spaces properly
subsets. Indeed, the spaces L∞ and l∞ of essentially bounded measurable
functions and of essentially bounded sequences respectively are not sep-
arable but their weak compact subsets are. On the one hand, we have
that weakly compact subsets of L∞ are norm separable (Diestel and Uhl
(1977), Theorem 13, p. 252) with nonempty norm interior and, on the other
hand, weak-compact subsets of l∞ are metrizable by Proposition 3.29 in
Fabian et al. (2001), p. 95. Hence, our main results can be seen as covering
these economies provided that prices belong to a compact metric space.

2. Related to previous item, every ‖·‖-bounded set in the non-separable spaces
L∞ and l∞ is w∗-compact by Alaoglu-Bourbaki Theorem. Furthermore,
since L1 and l1 are separable, those sets are metrizable. Hence, besides
the weak topology, we could also consider the weak∗ topology as a way
of getting a compact metric space Q. From an individualized representa-
tion of the economy, it implies that Gelfand integrals take place rather
than Bochner ones. We shall explore this idea in future studies even for
commodity spaces with an empty interior of the positive cone.

3. Througout the paper we have considered the set of irreflexive, continuous,
transitive, symmetric and strictly monotone preferences Pmo since this is
in line with previous works like Hildenbrand (1974), Hart et al. (1974) and
He et al. (2017) among many others. However, given a nonempty set E,
Theorem 1 works even if we consider preferences without a monotonicity
assumption, P . Thus, the space of characteristics is Polish and consequently
M(P × F ) and M(P × F ×X) are also Polish (Lemma 1). The subset of
P of all convex preferences, Pco, can be shown to be Polish too as well
as for strongly convex preferences, Psco. For definitions about these sets
we refer the reader to Hildenbrand (1974). In all these cases, the set of
characteristics will have the desired properties for proving closedness of
the Walrasian correspondence.

4. The restriction of having a common consumption set may be relaxed by
allowing different ones across economies. However, two new assumptions
are required:

– The set of preferences is a closed subset T of Psco ∩ Pmo.
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– There exists a norm-closed and convex subset X ′ of L+ such that F ⊂
X ′ and there exists α > 0 such that X ′ ⊂ V (0, α) ∩ L+ ⊂ X for all X .

We note that Theorem 1 works for a subset E of M(T ×F ) and a compact
subset A of M(T × F × X ′) from which we deduce that our previous
stability results work for a closed subset of Walrasian equilibria.

A Proofs

A.1 Proof of Lemma 1

We would like to use Theorem 1 p. 96 of Hildenbrand (1974) since it works for locally
compact spaces Q other than RL. For that, we have to ensure that (CwQ (Q × Q), τC) is
compact metrizable. This follows from the application of Theorem 2 p. 19 of Hildenbrand
(1974) to (Q×Q,wQ × wQ) that is a locally compact Polish space.

1. Let {(Xn,≻n)}n≥0 be a sequence in P such that it has a closed limit (X,≻). We shall
prove that it belongs to P. This is equivalent to g(P) being closed in CwQ(Q × Q).
Indeed, let us consider the sequence {g ((Xn,≻n))}n∈N = {Pn}n∈N in CwQ (Q × Q)
where Pn = {(x, y) ∈ Xn × Xn : x 6≻n y}. We already noted that (CwQ (Q × Q), τC)
is a compact metric space. Then, the sequence {Pn}n≥1 converges to P if and only
if P = Li(Pn) = Ls(Pn) (Hildenbrand (1974), B.II. Theorem 2, p. 19). Let us define
X = projQ P and ≻= X ×X \ P . We have to prove that g((X,≻)) = P .
Let us note that for x ∈ X it follows that (x, x) ∈ P . Indeed, for x ∈ X there exists
x′ ∈ Q such that (x, x′) ∈ P . Since P = Li(Pn) = Ls(Pn), there exists a sequence
{(xn, x

′
n)}n≥1 belonging to Pn for each n ≥ 1 and limn→∞(xn, x

′
n) = (x, x′) for the

topology wQ ×wQ (Hildenbrand (1974), p. 15). Since ≻n is irreflexive for each n ≥ 1 it
follows that (xn, xn) ∈ Pn and then (x, x) ∈ P .
The argument above implies that X is the closed limit of the sequence {Xn}n≥1 and it
is nonempty since 0 ∈ Xn for all n ≥ 1. Following the arguments of Hildenbrand (1974),
p. 97, we note that X is convex and ≻ is irreflexive and transitive.
Finally, we only need to show that g((X,≻)) = P which is direct since g((X,≻)) =
{(x, y) ∈ projQ P × projQ P : (x, y) ∈ P} = P .

2. and 3. follows from mimicking the proof of Theorem 1(b) of Hildenbrand (1974). ✷

A.2 Proof of Lemma 2

It suffices to show that Pmo with the metric of the closed convergence is a Gδ-set, i.e., a
countable intersection of open sets in P. We follow the approach given in Lemma of p. 98 by
Hildenbrand (1974). Let dwQ

be the metric for which (Q,wQ) is metrizable. For every m ∈ N

we define the set Pm =
{

(X,≻) ∈ P : ∃ x, y ∈ X, x ≥ y, x 6≻ y and dwQ
(x, y) ≥ 1

m

}

. Let
{(Xn,≻n)}n≥1 be a sequence in Pm, then there exists a sequence {(xn, yn)}n≥1 such that

xn ≥ yn, xn 6≻n yn and dwQ
(xn, yn) ≥

1

m
. Since both (xn) and (yn) belong to Q which is

w-compact, there are subsequences also denoted by (xn) and (yn) which w-converge to x

and y respectively. Let Pn = {(x′, y′) ∈ (Xn,Xn) : x′ 6≻n y′} from which we deduce that
(xn, yn) ∈ Pn for each n ≥ 1. By Lemma 1, (X,≻) ∈ P and Li(Pn) = Ls(Pn) = P . We want
to prove that the closed limit (X,≻) belongs to Pm. It is easily verified that both x and
y belong to Ls(Xn) = X. Notice that (x, y) ∈ Ls(Pn) so that x 6≻ y. Since Q is w-closed,
it follows that x ≥ y. We claim that dwQ

(x, y) ≥ 1

m
. Otherwise, we would have that there

exists n0 such that for all n > n0, dwQ
(xn, yn) <

1

m
which is a contradiction. Consequently,

(X,≻) ∈ Pm whence, Pm is τCP -closed.
Note that Pmo =

⋂

m∈N

(P \ Pm) and thus Pmo is a Gδ-set. By the classical Alexandroff

lemma (see Aliprantis and Border (2006), Lemma 3.34 p.88), we conclude that Pmo is com-
pletely metrizable. In addition, by Corollary 3.5 p. 73 in Aliprantis and Border (2006) we
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know that Pmo as subset of a separable metric space P is separable. Thus, Pmo is a Polish
space.

✷

A.3 Proof of Theorem 1

Since A is compact, it suffices to show that the correspondence DW has a closed graph
(Aliprantis and Border (2006), Theorem 17.11, p. 561). Let {µn}n∈N be a sequence of
economies in E converging weakly to µ ∈ E. Let us consider the sequence of distributions
{τn}n∈N such that τn ∈ DW (µn) for all n and limn→∞ τn = τ . We have to show that
τ ∈ DW (µ).

First of all, since the marginal of τn with respect to the space of characteristics, τn|T , is

equal to µn for all n by definition, we have that τT = µ. Second, we know that
∫

X
ιdτn|X =

∫

F
ιdµn|F for all n. Since both τn|X and µn|F converge weakly to τX and µF respectively,

one deduces that
∫

X
ιdτX =

∫

F
ιdµF .

Finally, for each n ∈ N, there exists pn ∈ S such that τn(Epn ) = 1. Since S is weak*-
compact, there exists a subnet also denoted {pn}n∈N which converges to p. We proceed to
show that τ(Ep) = 1. By Skorokhod’s Theorem (Billingsley (1999), Theorem 6.7, p. 70,
see also, Hildenbrand (1974), p. 50) on the sequence {τn}n∈N, we know there is a space
(I,BI , λ) and measurable mappings {(En, xn)}n∈N and (E, x) from I into T ×X such that
{(En(i), xn(i))}n∈N converges with respect to τP

C
× ‖ · ‖X × ‖ · ‖X a.e. to (E(i), x(i)), and

we have that for all n, λ ◦ (En, xn)−1 = τn and λ ◦ E−1
n = µn. Furthermore, λ ◦ (E, x)−1 = τ

and λ ◦ E−1 = µ. Note that λ ◦ (En, xn)−1 ∈ DW (λ ◦ E−1
n ).

Notice that {(En, xn)}n∈N and (E, x) represents a sequence and a limit point of indi-
vidualized economies whose characteristics’ and allocations distributions coincide with the
distributional economies in, respectively, {τn}n∈N and τ . Regarding individualized repre-
sentation of economies, we redirect the reader to section 6.

Claim 1. Let e be the projection of E on the space of endowments,
∫

X
ιd(λ ◦ x−1) =

∫

F
ιd(λ◦e−1) is equivalent to

∫

I
xdλ =

∫

I
edλ provided both x and e are Bochner integrable.

The following lemma provides the proof of the integrability required by the Claim 1
above.

Lemma 3 Let (A,A, ν) be a finite measure space, then every (A,B(X))-measurable func-

tion f : A → X ⊂ L is Bochner integrable.

Proof We start by claiming that f is (A,B(X))-measurable if and only if it is (A,B(L))-
measurable. Indeed, suppose that f is (A,B(F ))-measurable. Then, for any B ∈ B(L),
f−1(B) = f−1(B ∩ X) ∪ f−1(B ∩ (L \ X)). We know that f−1(B ∩ X) ∈ A since f is
(A,B(X))-measurable and f−1(B ∩ (L \ X)) = ∅ since f takes values only in X. The
converse is obvious.

Since X is separable, there exists a sequence of (A,B(X))-measurable simple func-
tions {fn}n∈N from A into X which converges in norm to f a.e. (see Aliprantis and Border
(2006) Theorem 4.38 1. p. 145). By the previous claim, the simple functions are (A,B(L))-
measurable and f is Bochner integrable by Proposition 4.

Claim 2. (xn, pn) is a Walrasian equilibrium of En for all n.

Recall that E ′ : A → T is said to be an individualized representation of µ′ if
∫

A
eE′ (a)dν(a) < ∞ where eE′ = ProjF E ′ is the initial endowment. The next two results

show that for any distributional equilibrium there is a individualized representation with
their corresponding equilibrium.

Lemma 4 Let τ ′ be an equilibrium of the economy µ′ and let (A,A, ν) be an atomless

finite measure space. There exist measurable mappings E ′ : A → T and x′ : A → X such

that E ′ represents µ′, x′ is an equilibrium for E ′ and ν ◦ (E ′, x′)−1 = τ ′
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Proof Since T × X is separable and τ ′ ∈ M(T × X) one has by Keisler and Sun (2009),
Lemma 2.1 (ii), that there exists a measurable mapping f : A → T×X such that τ ′ = ν◦f−1.
Let us denote by E ′ and x′ the respective projections of f on T and X. Hence, µ′ = ν ◦E ′−1

and τ ′ = ν ◦ (E ′, x′)−1. Notice that x′ as well as e′ = ProjF E ′ are measurable whence,
Bochner integrable by Proposition 3

Next, we prove that x′ is Walrasian equilibrium for E ′. Indeed, on the one hand, since
τ ′ is an equilibrium for µ′,

∫

X
ιdτ ′X =

∫

F
ιdµ′

F . Hence,
∫

X
ιd(ν ◦ x′−1) =

∫

F
ιd(ν ◦ e−1)

which implies
∫

A
x′dν =

∫

A
edν by Lemma 8 (f) in Dunford and Schwartz (1958). On the

other hand, there exists p ∈ L∗
+ such that τ(Ep) = 1. Then, ν ◦ (E ′, x′)−1(Ep) = 1. Thus

ν({a ∈ A : (E ′(a), x′(a)) ∈ Ep}) = 1 which implies that p.x′(a) ≤ p.e(a) and p.x′′(a) >

p.e(a) whether x′′(a) ≻a x′(a) a.e. Hence, x′ is a walrasian allocation for E ′.

Corollary 5 Let τ ′ ∈ M(T × X) be an equilibrium of the economy µ′. Let (A,A, ν) be

an atomless, finite measure space and let f : A → T × X be a measurable function such

that ν ◦ f−1 = τ ′ and ν ◦ (ProjT f)−1 = µ′. Then, ProjXf is an equilibrium allocation for

ProjT×F f .

Consequently by the Claim 2 above, (xn, pn) is a Walrasian equilibrium of En for all n
and since both {xn}n∈N and {en = ProjF En}n∈N converge in norm to x and e respectively,
we get limnpn.xn(i) = p.x(i), limnpn.en(i) = p.e(i) and p.x(i) = p.e(i) a.e. Suppose now
that there exists ξ ∈ L1(λ,X) such that ξ(i) ≻i x(i) and p.ξ(i) < p.e(i) a.e. By Corollary 1,
ξ(i) ≻n,i xn(i) for n large enough. Because of equilibrium conditions in En, it follows that
pn.ξ(i) > pn.en(i). Taking limits we get, p.ξ(i) ≥ p.e(i) a.e. which contradicts the above
converse inequality.
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