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Figure 1: Gestures hidden in long 3D trajectories. From left: cross, V-mark, caret, square, circle.

Abstract
This paper presents the results of the Eurographics 2019 SHape Retrieval Contest track on online gesture recognition. The goal
of this contest was to test state-of-the-art methods that can be used to online detect command gestures from hands’ movements
tracking on a basic benchmark where simple gestures are performed interleaving them with other actions. The results can be
extremely useful in order to design effective gesture-based interfaces that can be used in different contexts, from Virtual and
Mixed reality applications to remote control of devices. (see http://www.acm.org/about/class/class/2012)

CCS Concepts
• Human-centered computing → Gestural input;

1. Introduction

Interaction in Virtual and Mixed reality as well as in smart environ-
ments can be based on different input channels. When audio chan-
nels are not usable, and when handheld devices cannot be easily
applied (that is the case of several potential applications of Mixed
and Virtual Reality), gestural interfaces can be a good solution. Ge-
stural interaction is quite popular in touch-based interfaces, where
simple geometry processing solutions proved to be quite effecti-
ve to design and implement user interfaces [VAW18] even in the
case of low computational resources. Similar approaches can be
applied also for mid-air gesture recognition, as there are consolida-
ted technologies able to track hand gestures without the necessity
of using handheld controllers or wearables [GCC∗16], but using
simple depth sensors like the Leap Motion controller to capture
the finger trajectories. Several methods have been proposed in re-

cent years to recognize gestures from 3D trajectories, both using
simple heuristics [CPC∗18] and advanced pattern recognition tools
like recurrent networks [MLJ18, DMXY18, CWG∗19]. In order to
evaluate the feasibility of a simple design of gestural interfaces with
this kind of algorithm, it is, however, necessary to test them in sim-
ple, but realistic use case, starting from very simple ones. This fact
motivated us to create a very simple dataset with classic command
gestures similar to those that can be employed in touch interfaces,
proposing a quite simple online gesture recognition task from 3D
hand trajectories and to set up this gesture recognition contest.

2. Task and motivation

The task proposed is intended as a first step in evaluating the abi-
lity of different algorithms to detect and classify online command
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Figure 2: Top, middle: two frames of the VR interaction applica-
tion used for the dataset capture. Subjects had to perform a set of
interactive tasks with their hands in an immersive VR visualization,
and the command gestures to be detected are interleaved within the
other actions. Bottom: the infrared camera view of the Leap Motion
acquisition. We also recorded image sequences that could be used
as well for recognition tests.

gestures usable in immersive or domotic interfaces. For this rea-
son, we considered only very simple gestures without the need for
articulating fingers, that should be recognized by simply analyzing
single trajectories. The participants were asked to classify gestures
from a set of 3D trajectories. Each trajectory is composed of a se-
quence of 3D points and quaternions for all the hand joints plus the
palm and contains a segment that represents a gesture to recognize.
In order to partially simulate real-time problem conditions we in-
troduced an additional rule: to submit a method that would process
the sequence progressively and give a classification answer without
examining the entire trajectory first. Furthermore, we also asked to
provide an estimation of the time (i.e. entry in the sequence) at
which the gesture had supposedly started. With this additional rule
and task requirement we aimed to also introduce the non-gesture
problem as since the trajectory is to be processed step-by-step, at
any given time ti there would be no guarantee of the presence of a
gesture in the segment t0 - ti.

3. Data creation

In order to build the dataset, we created a virtual environment where
a set of subjects had to perform some actions on a 3D virtual inter-
face wearing a Head Mounted Display (Oculus Rift). The actions
consisted of selecting objects, clicking on virtual buttons, moving
a slider and spinning a globe with a swipe.

During this sequence of actions, subjects were also asked to per-
form the gestures to be recognized, which are: cross, V-mark, caret,
square, circle. These gestures are simple 2D patterns, that should
be executed by users. Users had precise instructions to draw them
before (and during) the task (see Figure 2). Hand trajectories have
been captured with a Leap Motion sensor. Thanks to the sensor API
we recorded the full position and orientation of the hands’ joints,
even if the information should be redundant for the contest task,
as the gestures did not involve fingers’ articulation. We provided,
however, the full data to the participants.

The final dataset created with this procedure consists of 195 re-
cordings performed by 13 different subjects, each one including
a gesture in a different position, with known begin and end fra-
mes. The dataset has been split in a training set of 60 recordings
collected from 4 subjects, given to the participants with annotated
start and end of the gestures and gesture label, and a test set, with
the remaining 135 recordings, provided to the participants without
annotations.

4. Evaluation

Each trajectory in the provided dataset contained one gesture in a
precise trajectory interval. Participants were required to send a list
of annotations marking estimated frames, for the gesture beginning
and end, and labels for the guessed class.

A gesture is considered correctly detected and labelled if the me-
thod provided the correct label locating the gesture within 2.5s.
from the actual gesture time window.

For the given task we evaluated the following scores: percentage
of correct detections and labelling of the gesture, and the percenta-
ges of errors divided in gestures with correct time location of the
detection, but the wrong label, gestures detected before the correct
time location, gestures detected after the correct time window or
not detected. We also analyzed the results obtained separately for
each gesture label looking at the ability of the different methods to
detect and discriminate specific trajectories of the dictionary and
the confusion matrices related to wrong labelling of gestures when
detected in the approximately correct time frame.

Finally, we estimated the time difference between the decision
time of the online algorithm and the actual start and end timesteps
of the gestures.

5. Participants and methods

Four groups from different countries registered for the contest and
sent results: one team from IMT Lille, one from NVIDIA, Univer-
sity of Central Florida and University of California, San Francisco,
one from the University of Modena and Reggio Emilia, and one
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from Ho Chi Minh City University of Science. All the groups pro-
pose methods based on Neural Networks. As a baseline method, we
tested a simple geometry based method (sliding window 3 Cent),
developed at the University of Verona [CPC∗18]. All the methods
proposed are described in the following subsections.

5.1. Baseline: sliding window 3 cent (SW 3-Cent) by Fabio
Marco Caputo and Andrea Giachetti

The sliding window 3-cent is the online version of its previous of-
fline version [CPC∗18]. The idea in both versions is to guess the
class of a new trajectory by computing distances from the labeled
trajectories in the training set with a certain metric and then sim-
ply using a KNN to chose the candidate class. The core steps to
compare and calculate the distance between two trajectories are:

• A resampling of both the trajectories in order to obtain the same
number of points, using spline interpolation.
• A centering operation to move the reference frame origin on the

centroid for each trajectory.
• A scaling operation to fit a fixed-size bounding-box.
• Finally, the distance is calculated as the sum of squared distances

between pairs of points at the same index.

For the online version, there are some prior steps necessary to deal
with for the localization of the correct segment to compare and clas-
sify. Hence the introduction of a sliding-window with the idea of
monitoring a certain number of past frames and continuously com-
pare the trajectory in the window with the steps previously descri-
bed. The size of the window is pre-calculated as the average length
of all the trajectories in the training set. Once the algorithm runs on-
line, with each new frame of data available, the trajectory contained
in the last segment of the pre-calculated size is used for a tentative
classification. The decision on whether the segment in a window is
to be considered belonging to any of the classes or none relies on
a fixed distance threshold. This threshold is learned from training
data as follows: a histogram of inter-class distances is created as
well as a histogram of the inter-class distances, using also samples
of a non-gesture class for this training procedure. The threshold is
then set corresponding to the bin minimizing the sum of extra-class
distances below it and the intra-class distances higher than it.

To add more flexibility to the size of the window, four other si-
zes extending and cropping the original window by 1/6 and 2/6 the
original one, are also used simultaneously. If any of the compari-
sons return a distance below the threshold the classification of a
trajectory inside the window takes place. If at the same time (in
terms of frames of data), more distances are returned below the
threshold, the one with the lowest distance is used for the classifi-
cation step. This method has an average time-per-frame processing
time of 0.0017s running on MATLAB and a Xeon E3-1231 v3 CPU
and maximum that never exceeds the sampling rate of the dataset
of 0.05s.

5.2. Palm-Index recurrent network (PI-RN), all joints
recurrent network (AJ-RN) by Théo Voillemin, Hazem
Wannous, Jean-Philippe Vandeborre.

Authors used a simple recurrent network model to real-time classi-
fy the gesture contained in a trajectory. Two methods were tested,

one with two streams on the palm and the index joints data, in-
spired by [DS17], the other with only one stream but on all joints
data available. A stream is an alternation of two LSTM layers with
one fully connected layer, the end of the network is another ful-
ly connected layer with an output on the number of gesture plus
a no_gesture label. In case of two streams, output of each stream
are concatenate together then pass to the end of the network. The
network is then trained with a RMSprop optimizer.

For the online detection, with the precise annotation of the start
and the end of a gesture in the training data set, authors added a
no_gesture label to train their recurrent network model to recognize
each gesture but also when its start and end. With the small amount
of training data available, they decided to use a 10-fold cross va-
lidation to find the best hyper-parameters to avoid over and under
fitting. It was necessary to ensure that every different gesture is pre-
sent in each fold. Authors found that a 256 and a 128 numbers of
LSTM cells and 100 epochs to train on all the training data set is
adequate.

The recurrent architecture then permits to process the test data
set in an online way by providing the data frame by frame to the
network. The states of the LSTM cells gates are saved and resto-
red between each frame processed and re-initiate to zero at each
beginning of a new sequence.

5.3. uDeepGRU: Unsegmented Deep Gesture Recognition
Utility by Mehran Maghoumi, Eugene M. Taranta II,
Alaleh Razmjoo, Joseph J. LaViola Jr.

uDeepGRU is an end-to-end deep learning-based unsegmented ge-
sture recognizer designed for SHREC 2019 track on online de-
tection of simple gestures from hand trajectories. It is based on
DeepGRU [MLJ18], a deep learning-based recognizer for action
and gesture recognition of samples collected form commodity in-
put devices. Authors extended DeepGRU and applied it to the task
of recognizing unsegmented hand gestures in an online application
scenario.

5.3.1. Data Preparation

Each frame of the data is treated as one 48-dimensional vector ft ,
containing the concatenated 3D position of all joints, exactly as ap-
pears in data files, for time step t. Authors z-score normalize every
data using the mean and standard deviation of the training set. Af-
terwards they extract a direction vector xt = ft − ft−1 for every
time step and x0 = [0]. This data is then fed to the network.

Deep learning techniques require large quantities of data in order
to learn the underlying neural network weights. However, in many
practical applications, such as with the SHREC’19 training dataset,
quantities are limited. This limitation has been solved by employ-
ing synthetic data generation techniques to augment and expand the
dataset. Namely, four complementary techniques have been used:
gesture path stochastic resampling (GPSR) [TIMPLJ16], Fourier
coefficient perturbations, time-series inversion, and rotations. Fir-
st, GPSR uses a two-step approach to generate synthetic variations
of a given trajectory, where one samples random points along the
trajectory and then normalizes the distance between each pair of
consecutive points. This process changes the velocity profile of a
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Figure 3: uDeepGRU architecture which consists of an encoder
network and a classification subnetwork.

sample such that changes in curvature are temporally unique relati-
ve to the original input, thereby resulting in a unique shape. Second,
since GPSR does not significantly warp low frequency information
(straight edges will remain straight), the trajectory’s Fourier coeffi-
cients have been further modified. Authors perform a discrete Fou-
rier transform (DFT) on a given trajectory, randomly adjust the am-
plitude of each coefficient by ±20%, and then perform an inverse
DFT to synthesize a variant of the original trajectory. The effect of
this transformation is that a given sample will have “wobbles" not
previously embedded within the trajectory (e.g., previously straight
edges may now have some bend). Note that results will also have
additional high frequency noise that one can remove with a low
pass filter; however in their testing, authors found this noise was
unharmful. Third, in order to increase the amount of non-gesture
training data available to the system, they reversed each training
sample’s trajectory. Finally, authors also added random rotations
to each trajectory in order to increase orientation variance. Speci-
fically, they randomly rotated trajectories ±10 degrees around the
x-axis. Using these techniques, 5 new synthetic samples per each
real sample have been generated and authors trained uDeepGRU
using all available data.

5.3.2. Architecture

Figure 3 depicts the network’s architecture, which is very similar in
spirit to DeepGRU [MLJ18]. At each time step, the network takes
as input the feature vector xt and produces the output label ŷt ∈
{None,X ,O,V, ˆ,[ ]}. Note that no-gestures are treated as their own
classes.

The model consists of an encoder and a classification subnet-
work. Authors use unidirectional gated recurrent units (GRUs)
[CvMG∗14] as the recurrent layers of the encoder network with
the following transition functions:
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where σ is the sigmoid function, ◦ denotes the Hadamard product,
rt , ut and ct are reset, update and candidate gates respectively and
W q

p and bq
p are the trainable weights and biases. In the encoder

network, h0 of all the GRUs are initialized to zero. The output
of every GRU unit depends on all previously observed time steps
only, making the network suitable for use in online recognition
applications.

The classification subnetwork consists of a fully connected layer,
preceded by batch normalization [IS15] and dropout [HSK∗12].
Contrary to DeepGRU, uDeepGRU is a shallower network and
does not include an attention [BCB15] subnetwork. These omis-
sions were necessary to reduce overfitting due to the small training
set of this track.

The network is trained end-to-end on the training set, with 10%
of the data withheld for validation. Given a feature vector xt at each
time step, the network outputs a set of class-conditional probabi-
lities P(ŷt |xt) where ŷt is the predicted label of the input frame at
time step t. To reduce the difference between predicted class la-
bels ŷ and the ground truth labels y during training, the algorithm
minimizes the unweighted sum of two losses, namely the cross-
entropy loss and the negative Sorensen-Dice coefficients, which in
turn maximize the F1 score computed between per-frame predicted
and ground truth labels.

The implementation of uDeepGRU is done with the PyTorch
[PGC∗17] framework. Authors use the Adam solver [KB14] (β1 =
0.9,β2 = 0.999) and the initial learning rate of 10−3 to train their
model. The mini-batch size for the experiments is 128. Training is
done on a machine equipped with one NVIDIA GeForce GTX 1080
GPUs, Intel Core-i7 6850K processor and 32 GB RAM. Authors
save the model that produces the best F1 score on the validation
set.

5.3.3. Results

At test time, authors run each test sample through the network and
obtain per-frame class labels ŷt . The outputs may optionally be
post-processed by 1) thresholding the class-conditional probabili-
ties based on a predefined threshold T , and 2) ensuring that at least
C frames before the current frame are assigned the same output
label.

Authors obtained 3 sets of results. The first set of result is the
unprocessed output of the network obtained after applying the best-
performing model on the supplied test data. The second set consists
of the results of an ensemble of six networks, each trained on a
different portion of the training set. The output of the models are
averaged and post-processed with T =0.5, C=5 before the final la-
bels are generated. The last set of experiments contain the results
of the first set, plus post processing applied to the raw outputs with
T =0.5, C=1.

5.4. DeA: Divide et Agnosce by Fabio Manganaro, Stefano
Pini, Guido Borghi, Roberto Vezzani, Rita Cucchiara

This is a deep learning method to automatically detect and reco-
gnize simple gestures from hand trajectories acquired through the
Leap Motion device.
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The proposed approach consists of two different neural networks:
the first one performs the on-line temporal segmentation (divide)
task, i.e. the detection of the beginning and end of a gesture, while
the second one is specifically designed for the classification (agno-
sce) task, i.e. the generation of the gesture label.
These modules cooperate with each other in a cascade-based man-
ner: the segmentation block continuously processes the sequence of
input data and identify gesture boundaries, estimating if the current
frame contains a gesture or not. Then, the following data are stored
until the detection of the end of the gesture. In the meantime, the
buffer is classified by the on-line classification module.

5.4.1. Feature Extraction and Data Normalization

For each frame, 112 values are acquired through the sensor and
the low level SDK representing the x, y, z coordinates of the palm
center and of 15 joints of the fingers. In addition, joint orientations
expressed as quaternions, are provided.
Authors expand this feature vector adding measures of the
speed and the acceleration of each joint, obtaining a final
feature vector of size 208. Given the sequence of the 3D
position of the i-th joint Jt

i = (xt
i , yt

i , zt
i) at time t, speed s

and acceleration a are computed following these formulas:
st
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i

]
A normalization step is then applied: the mean and the standard
deviation values for each feature across the training dataset are
computed and used to obtain data with 0 mean and unit variance.
The final values are provided as input to both the segmentation and
the classification modules.

5.4.2. Model Architecture

Each module architecture is based on a Long Short-term Memory
(LSTM) [HS97] block. LSTMs are a class of recurrent neural net-
works that have achieved good performance on many tasks based
on the processing of temporal-coherent data sequences, like visual
recognition [DAHG∗15] and image captioning [KFF15].
The proposed LSTM models can be expressed with the following
equations: It = σ(Wixt +UiHt−1 +bi)
Ft = σ(W f xt +U f Ht−1 +b f )
Ot = σ(Woxt +UoHt−1 +bo)
Gt = tanh(Wcxt +UcHt−1 +bc)
Ct = Ft �Ct−1 + It �Gt
Ht = Ot � tanh(Ct) where Ft , It ,Ot are the gates, Ct is the memo-
ry cell, Gt is the candidate memory, and Ht is the hidden state. W ,
U , and b are learned weights and biases, while xt corresponds to
the input at time t as defined in the previous section. Finally, the �
operator is the element-wise product.

5.4.3. Divide: the Segmentation Module

The segmentation module is trained to detect the beginning and the
end of a single hand gesture. Authors exploit the LSTM model de-
scribed in Sec. 5.4.2, with a hidden size of 128 units and 2 layers,
adding a fully connected layer of 2 classes and a softmax activation
function to obtain the final output. Authors apply dropout regulari-
sation (p = 0.2) [SHK∗14] on the model and its output.

During the training phase, the network is fed with a complete se-
quence in which each frame is labelled either as gesture, if it lies
between the start and the end of the gesture, or as no-gesture, based
on dataset annotations. The binary categorical cross-entropy is ex-
ploited as loss function. Authors adopt a learning rate of 10−3 and
the Adam [KB14] optimizer.

5.4.4. Agnosce: the Classification Module

Given an input sequence containing a gesture, the classification
module is trained to output the corresponding gesture label. The
LSTM described in Sec. 5.4.2 is used with a hidden size of 256
units and 2 layers, followed by a fully connected layer with
size 5. Authors apply the softmax activation and the categorical
cross-entropy loss function.
This network is trained using fixed-length sequences as input, a
batch size 2 and a learning rate of 10−2 dynamically decreased
every 30 epochs by a factor of 10.
Each sequence is cropped on the beginning and the end of the
gesture according to the dataset annotations. If the obtained
sequence is shorter than the longest cropped sequence of the train
split of the dataset, the first frame is repeated until reaching the
fixed length.

5.4.5. Running Procedure

The proposed method processes the input data frame by frame, i.e.
row by row. After the feature extraction and the normalization pro-
cedures, data is fed into the segmentation module. The beginning
and the end of a gesture is identified in presence of n consecutive
frames with the same segmentation label. In the experiments the
value of n = 5 was used.
A temporary buffer is maintained, accumulating data from the de-
tection of the gesture start until the n-th consecutive detection, but
freed if a non-gesture is detected. As soon as n consecutive rows
are detected as a gesture, the classification module is initialized
with the last n rows (temporarily saved in the buffer) and it is con-
tinuously updated until the end of the gesture is detected.
The final gesture classification corresponds to the last prediction
before the gesture end.

5.5. Segment LSTM by Hung Nguyen and Minh-Triet Tran
(Faculty of Information Technology, University of
Science, VNU-HCM)

5.5.1. Data preprocessing

Authors performed data augmentation by cropping each trajectory
into sub-trajectories with the window size of 20. Since the sampling
rate is 0.05s, 20 frames contain information of trajectory in 1 se-
cond period. Next, the sub-trajectories (from now on will be called
segments) are divided into two groups: - The first group contains
segments that start from (i +- 0.1n) and end at (j +- 0.1n) with i, j,
n is the beginning, ending and length of the gesture in each trajec-
tory, 10 random segments in each trajectory are put into this group,
so it has 600 segments in total, each of them is labelled from 1 to
5 according to the gesture they have. - Other segments are put into
the second group and labelled 0 as non-gesture segments. To keep
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the training data distribution even, authors random picked 600 from
the second group, combined with 600 from the first group gave a
training dataset with 1200 segments.

5.5.2. Training

Authors adopt an LSTM network with input size is 112 (all of the
position and rotation values of hand palm and finger joints), hid-
den dimension is 32. The outputs of network are fed into a linear
layer to get the scores for 6 classes (5 gestures and 1 class for non-
gesture). The parameters are optimized using negative log likeli-
hood loss and the training process took 5000 epochs to complete.
Since splitting data for training and validating may make the data
insufficient and could break its distribution, authors decided to train
on all 1200 segments in the training dataset.

5.5.3. Prediction and Classification

Although this is an online method, authors considered the data in
less than 20 frames (1 second) not sufficient for classifying and
predicting the gesture. Therefore, the test data is cropped into 20-
frame-length segments up to the latest frame. All of them are fed
into the network and the output scores are collected, the segment
that contains highest score and is predicted as a gesture (labelled
from 1 to 5) will be chosen as the gesture label and decision time
of the gesture is the first frame of the segment. The prediction time
is the first frame of nearest segment that is labelled as non-gesture
(0) before the decision time.

Authors performed 2 runs, Run 1 with the highest accuracy
weight and Run 2 with the weight estimated at epoch 5000.

6. Results

Table 1 shows the outcomes of the first detection task, with the
percentage of gestures correctly detected and classified an the per-
centages of false positives detected before the gesture, misclassified
gestures within the correct time window and missed gestures. The
error in the gesture start location is also reported.

The method providing the best results is the uDeepGRU techni-
que, based unidirectional gated recurrent units, trained using smart
data augmentation methods, showing that Neural Networks can be
trained with a limited number of examples of gestures. The run
using an ensemble of networks gave the best scores.

Other network-based methods, on the other hands, provided re-
sults that are poorer with respect to uDeepGRU and SW-3cent, pro-
bably due to the fact that these methods require a relevant effort for
optimizing training strategies working with a limited number of
examples and participants had a limited time to prepare the sub-
mission. Table 1 shows that the other methods (DeA, AJ-RN, PI-
RN, Seg LSTM) are detecting a lot of false positives, and typically
provide a false detection as the first result. A proper tuning of the
method could avoid this effect.

A relevant issue in the design of simple gesture based interface
based on hand trajectory only is the choice of an optimal gesture
dictionary. Considering the five gestures of our dataset, it is possi-
ble to see that the recognition rate is not the same for the different
classes.

Single Detection Results
Method Corr. Class. Mislab. False P. Missed Avg.T1 Err.

uDeepGRU2 85.2% 7.4% 3% 4.4% 0.54s
uDeepGRU1 79.3% 8,1% 3% 9.6% 0.55s
uDeepGRU3 79.3% 8,1% 2.2% 10.4% 0.58s
SW 3-cent 75.6% 16.3% 2.2% 5.9% 0.48s

DeA 51.9% 18.5% 25.2% 4.4% 0.83s
AJ-RN 28.1% 43% 23% 5.9% 0.49s
PI-RN 11.1% 39.3% 48.9% 0.7% 0.56s

Seg. LSTM1 11.1% 28.9% 60% 0% 2.1s
Seg. LSTM2 6.7% 25.2% 68.1% 0% 2.61s

Table 1: The table shows, for each method, the percentage of ge-
stures detected in the correct time window and correctly classified,
the percentage of gestures detected in the correct time window and
mislabeled, the percentage of false positives encountered before the
true gesture, the percentage of missed detections and the average
error in estimating the initial mark T1. uDeepGRU1, 2 and 3 refer
to the results provided by the relative authors and described in sub-
section 5.3.3. Seg. LSTM1 and 2 refer to the results provided by the
relative authors described in subsection 5.5.3.

If we look at the number of correctly detected and classified ge-
stures per class, it is possible to see that the best run provided per-
fect results for caret and square gestures, so that an interface using
these gestures could be quite effective. SW 3-cent despite its sim-
plicity also obtained sufficiently good results and is best one in the
detection and classification of V-gestures. The other methods based
on recurrent networks did not perform well. The reason may consist
in the limited number of examples for training or in noise when the
methods consider all the joints. It should be noted, however, that
for AJ-RN and PI-RN the use of all the joints relevantly improves
the classification accuracy.

In our case the recognition task was hard due to the fact that
gestures chosen were quite simple and that makes difficult to
distinguish them from other hand actions classified as non-gesture.

Looking at the confusion matrices related to the classification of
gestures detected in the correct time frames, it is possible to see
that there are some ambiguities related to similar gestures (square
and circle, cross and V). uDeepGRU is quite accurate, but labelled
as cross a V gesture a couple of time, sliding window 3-cent often
labelled as cross a V gesture and as circle a square gesture.

If we consider the difference between the decision time of the
algorithms for the correct detections and the real start or end of the
gestures, it is possible to see that uDeepGRU runs are also quite
efficient in determining the correct gesture before the actual end
of the gesture. Run 2 is the most accurate and also the one provi-
ding the earliest detection, predicting the correct gesture 2 seconds
before the actual end on average. Almost all the methods perform
the gesture detection early, and this fact is certainly quite positive
for the practical use of the methods, allowing a smooth interac-
tion and potentially allowing a time filtering of the decision output
potentially increasing the detection/classification accuracy.
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Method Avg. T2-End Avg. T2-Start
uDeepGRU2 -1.66s 0.66s
uDeepGRU1 -2.11s 0.21s
uDeepGRU3 -1.87s 0.46s
SW 3-cent -0.7s 1.61s

DeA -1.31s 1.01s
AJ-RN -1.65s 0.67s
PI-RN -2.99s -0.67s

Seg. LSTM1 3.23s 5.56s
Seg. LSTM2 -0.41s 1.91s

Table 2: The table shows, for each method, the distance, in time,
of the detection frame (i.e. T2) from the average end mark and the
average start mark frame of a gesture.

7. Conclusions

In this paper, we presented the results of the SHREC 2019 track
on online gesture recognition. State of the art methods for trajec-
tory based gesture recognition have been tested for online gesture
recognition in a simple but realistic use case.

The potential use of simple hand gestures to control user interfa-
ce can be quite useful to design interaction frameworks in VR/AR
and remote control of smart devices.

We focused on the online recognition of very simple gestures,
that can be characterized by single trajectories and should in prin-
ciple distinguished by other movements that may occur during the
interaction. Results show that recognition is feasible, even if the ge-
sture dictionary proposed is quite simple causing a relevant number
of false detection. Both network-based methods and simple geome-
trical methods provided good detection and recognition performan-
ces and could be effective for building gestural interfaces. While
geometrical methods could be attractive for the simplicity and for
the fact that can be easily used to design interfaces with novel sets
of gestures, methods based on recurrent networks are clearly more
scalable for the recognition of gestures based on hand articulation.
However, the training procedures should be carefully designed to
obtain optimal performances.

We plan to test the methods on more complex datasets both
to find optimal techniques and optimal gestures’ dictionaries for
user interfaces and to exploit them within immersive VR and AR
applications.
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