Weerapan Sae-Dan
email: weerapan.saedan@univ-lille.fr

Marie-Eléonore Kessaci
email: mkessaci@univ-lille.fr

Nadarajen Veerapen
email: nadarajen.veerapen@univ-lille.fr

Laetitia Jourdan
email: laetitia.jourdan@univ-lille.fr

Automatic Configuration of a Dynamic Hill Climbing Algorithm

Introduction

In this paper, we propose an automatic algorithm configuration (AAC). It can manage many parameters and an online method produces a deterministic algorithm which parameters modified during execution. We explore the benefits of both methods by proposing a dynamic framework that switches between different configurations during execution and adapted AAC protocol. We define a control mechanism for parameters as a combination of three questions [START_REF] Eiben | Parameter control in evolutionary algorithms[END_REF]: what is to be controlled, how the control is performed, and when the parameter is changed? Our method is tested on single-objective permutation scheduling flowshop problem with an automatic configuration of a dynamic hill-climbing.

Automatic Algorithm Configuration of Dynamic Framework

Our contribution is to propose a new method to parameterize a dynamic algorithm. To describe what is called a dynamic framework, C. Pageau et al. [START_REF] Pageau | Configuration of a Dynamic MOLS Algorithm for Bi-objective Flowshop Scheduling: 10[END_REF] propose using parameter configuration that changes at predetermined times, as show in figure 1. We will propose more flexibility on the execution times for each configuration. This concept enables the use of AAC instead of the parameter control mechanisms. Fig. 1: Example of two configuration schedules [START_REF] Pageau | Configuration of a Dynamic MOLS Algorithm for Bi-objective Flowshop Scheduling: 10[END_REF] In this paper, the automatic configuration can fix the duration of each time split (s i) in the list {10, 25, 50, 75, 90} and each time split is calculated as follows.

T 1 is equal to (T × s 1)/100, T 2 is equal to ((T -T 1) × s 2)/100, T i is equal to ((T -(T i -T i-1)) × s i)/100,
and T k is the remaining budget where T is the time budget.

Experiments and Conclusion

We investigated the proposed method to solve the single-objective permutation flowshop scheduling problem. We use Irace [START_REF] López-Ibáñez | The irace package: Iterated racing for automatic algorithm configuration[END_REF] to implement the AAC and to find the configuration of hill-climbing [START_REF] Cohen | Computational Learning Theory and Natural Learning Systems[END_REF] and its components (exploration neighborhood, operation neighborhood, neighborhood order, and perturbation) best adapted to the instances of the problem to solve. We use the Taillard instances [START_REF] Taillard | Benchmarks for basic scheduling problems[END_REF], we use different instance of N jobs, M machines: 20×5, 20×10, 20×20, 50×5, 50×10, 50×20, 100×5, 100×10, 100×20, 200×10, and 200×20. For each size, 10 instances are used.

In this paper, two dynamic framework parameters have been implemented: K as the number of time splits and {T 1 , T 2 , . . . , T K } the associated time budget. 3 time budget configurations are possible, corresponding to the different time splits {T }, {T 1 , T 2 } and {T 1 , T 2 , T 3 }. 24 configurations for our algorithm are present per time split. We test 3 scenarios in which K is equal to 1, 2 or 3. Since |s| = |{10,25,50,75,90}| = 5, the number of time configurations possible are 1, 5 and 25 for K = 1, 2 and 3 respectively. If K = 1, then there are 24 different configurations, K = 2 includes approximately 2.9 × 10 3 different configurations (24 + 5 × 24 2) and, K = 3 a total of approximately 3.5 × 10 5 different configurations (24 + 5 × 24 2 + 25 × 24 3). We set to N 2 ×M milliseconds, the stopping criterion of the algorithm. For the comparison between with control and without control, the experiments presented in figure 2 (a)(b) show that the value of control. Moreover, the experiments presented in (c)(d) show that it is more interesting without control to learn from all instances while with control performance is better with learning on instances of the same size. We hypothesize that parameter control makes the algorithm better adapted to the local properties of the instance.

Fig. 2 :

 2 Fig. 2: Instances 100 jobs and 20 machines. C-with control, WC-without control,S1 = all instances, S2-4subset of instances, A1-4-specific parameter configuration. Smaller values are better.