Khalid Belhajjame
email: khalid.belhajjame@dauphine.fr

On Anonymizing the Provenance of Collection-Based Workflows

We examine in this paper the problem of anonymizing the provenance of collection-oriented workflows, in which the constituent modules use and generate sets of data records. Despite their popularity, this kind of workflow has been overlooked in the literature w.r.t privacy. We, therefore, set out in this paper to examine the following questions: How the provenance of a collection-based module can be anonymized? Can lineage information be preserved? Beyond a single module, how can the provenance of a whole workflow be anonymized? As well as addressing the above questions, we report on evaluation exercises that assess the effectiveness and efficiency of our solution. In particular, we tease apart the parameters that impact the quality of the obtained anonymized provenance information.

INTRODUCTION

Automated workflows have been shown to facilitate and accelerate scientific data exploration and analysis in many areas of sciences [START_REF] Da Silva | Automating environmental computing applications with scientific workflows[END_REF]. Figure 1 illustrates a simple workflow that is used to establish correlations between smoking and health conditions. Workflow provenance information, recorded during workflow executions, facilitates the interpretation of the results delivered by workflow execution. It also helps better understand result validity and reliability. For example, workflow provenance information can be used to identify the input data records that contributed to the generation of a given result data record, and module invocations that took place in doing so. Beyond verification, workflow provenance information represents a useful dataset on its own right, that can be leveraged to answer queries that are relevant for an experiment that is (possibly related but) different from the original experiment, to learn new hypotheses, or to gain insight on the characteristics and quality of the data generated by given data modules. Collected workflow provenance information can also be used to respond to the requirements of funding agencies that are increasingly requesting the publication of the data generated in the context of research investigations.

In fields such as biomedicine and social sciences, workflow executions manipulate and generate sensitive information about individuals. To promote the publication and sharing of the provenance of workflow executions, we set out in this paper to examine the problem of anonymizing workflow provenance.

Related Work

Related work has focused on the problem of securing workflow provenance and policing their access. For example, Chebotko et al [START_REF] Chebotko | Scientific workflow provenance querying with security views[END_REF] and Biton et al [START_REF] Biton | Zoom*userviews: Querying relevant provenance in workflow systems[END_REF] proposed solutions that derive a partial view on a workflow provenance by hiding the data records of given modules Our objective is different from the above line of work in that we seek to provide the user with the provenance of all the modules of the workflow by leveraging anonymization. Gil et al. [START_REF] Cheung | Privacy enforcement through workflow systems in e-science and beyond[END_REF][START_REF] Gil | Reasoning about the appropriate use of private data through computational workflows[END_REF] and Alhaqbani et al. [START_REF] Alhaqbani | Privacy-Aware Workflow Management[END_REF] proposed policy languages allowing scientists to specify relationships between datasets and the workflow modules, and the properties of datasets. However, the policy language does not specify how the datasets are to be anonymized, and even less, how their lineage information, i.e., derivation relationships between data records of different input and/or output, is to be preserved.

Davidson et al. [START_REF] Davidson | Provenance views for module privacy[END_REF] investigated the problem of module privacy, whereby some of the parameters (attributes) characterizing the inputs and outputs of the modules are hidden to guarantee the privacy of modules. In our work, we seek, instead, to guarantee the privacy of the data records used and generated by the modules, instead of the behavior of the module.

We have examined in a previous workshop paper, the problem of identification of the k-anonymity degree that needs to be enforced when anonymizing the datasets used and generated by workflows [START_REF] Belhajjame | Privacy-preserving data analysis workflows for escience[END_REF]. In doing, we did not examine the problem of actually anonymizing workflow provenance. More importantly, we assumed that the modules that compose the workflow are 1-to-1 in that they produce a single data record, given a single data record, and we did not give much thought to the problem of lineage preservation. In this paper, we are interested in what we refer to as collection-based workflows [START_REF] Filgueira | dispel4py: An agile framework for data-intensive escience[END_REF][START_REF] Griffis | Semantics and provenance for processing element composition in dispel workflows[END_REF][START_REF] Hidders | DFL: A dataflow language based on petri nets and nested relational calculus[END_REF][START_REF] Sroka | A formal semantics for the taverna 2 workflow model[END_REF]. The modules that compose such workflows can take as input a collection of data records and deliver a collection of data records. Such workflows have been advocated as a way to better meet the needs of non-expert users to model scientific data [START_REF] Mcphillips | Scientific workflow design for mere mortals[END_REF], and to structure complex relationships among related pieces of information that are processed together by the workflow [START_REF] Missier | Fine-grained and efficient lineage querying of collection-based workflow provenance[END_REF]. This class of workflows has been overlooked in the literature w.r.t. privacy.

Different techniques have been proposed in the literature for protecting the privacy of individuals, notably, k-anonymity [START_REF] Samarati | Generalizing data to provide anonymity when disclosing information[END_REF] and differential privacy [START_REF] Dwork | Differential privacy[END_REF]. In particular, differential privacy [START_REF] Dwork | Differential privacy[END_REF] has recently gained momentum as the method of choice in statistical databases. It involves adding random noise to the data so that the distribution of the resulting dataset is almost invariant to the inclusion of any data record. While powerful, differential privacy is not suitable for our purposes. It assumes that the user knows up-front the queries s/he wants to issue prior to the anonymization. This is not the case in our setting, where the scientist issues exploratory queries for understanding and eventually interpreting the results of the workflows. Furthermore, for it to be useful, the scientist should be able to inspect individual data records and their relationships (lineage), both of which are not possible using differential privacy. Indeed, differential privacy is more suited for statistical (i.e., aggregation-based) queries.

For our work, we chose to use k-anonymity [START_REF] Samarati | Generalizing data to provide anonymity when disclosing information[END_REF]. This method is not as powerful as differential privacy when it comes to privacy guarantees. Yet, it is better suited for our purposes since it can be instrumented, as we will show, to allow users to query and examine individual data records and their lineage within workflow provenance. k-anonymity is also still perceived by practitioners as sufficient for mitigating risk while maximizing utility, and real-world applications still utilize it for data sanitization (see e.g., [START_REF] Ayala-Rivera | A systematic comparison and evaluation of k-anonymization algorithms for practitioners[END_REF][START_REF] Clifton | On syntactic anonymity and differential privacy[END_REF]). It is also widely popular and is used, e.g., in the healthcare world [START_REF] Abouelmehdi | Big healthcare data: preserving security and privacy[END_REF][START_REF] Park | Data synthesis based on generative adversarial networks[END_REF], and is still recommended by data protection agencies (see e.g., [START_REF]k-anonymity as a privacy measure[END_REF]). This technique has been extensively investigated in the database and data mining communities [START_REF] Terrovitis | Privacy-preserving anonymization of set-valued data[END_REF]. Most of the proposals have focused on anonymizing a single relational table. In workflow provenance, however, we need to anonymize different datasets considering and preserving lineage relationships between them. One solution that can be used to anonymize workflow using k-anonymity would be to create a global relational table that is obtained by joining relations representing the input and output data records of the modules that compose the workflows. However, this solution suffers from the following issues. First, information about the same individual can be found in different records. This is because we consider collection based modules, e.g., a patient can be associated with multiple practitioners. Second, the same tuple in the global table may contain information about multiple individuals, e.g., a patient, one of its practitioners, etc. Moreover, as we will see later, different kinds of individuals may be associations with different k-anonymity degrees. For example, the k-anonymity degree associated with patients may be higher than that associated with practitioners. Traditional k-anonymity is not equipped to deal with the above issues. In this respect, the proposal by Nergiz et al. [START_REF] Nergiz | Multirelational k-anonymity[END_REF] is related to ours. They elaborated a technique that anonymizes multiple relations of a given database schema. While useful, this proposal makes a number of limiting assumptions. In particular, they consider snowflake schemas, in which there is a single relational table that represents individuals with the remaining relations containing quasi-attributes and having a single foreign key. In our work, we drop these assumptions and show that the anonymization of workflow provenance can be achieved in the presence of multiple datasets representing individuals with multiple relationships (foreign keys constraints) between them.

Contributions

Our first contribution is the formulation of the problem of kanonymization of the provenance of collection-based workflows. This is, to our knowledge, the first paper that extends the notion of k-anonymization from a single relation to the provenance of workflows. Our second contribution is a technique for kanonymizing the provenance of a single module, i.e., input and output records together with their lineage information. Indeed, lineage information tracing the dependencies between the output and input of a module (and more generally a workflow) is key for third-party scientists to understand and examine the validity of workflow results. We examine this problem for modules that use and generate collections of data records. Our third contribution extends the technique proposed to cater for the anonymization of the provenance of a workflow as a whole. Central to the solution we present is the notion of k-group anonymity, which we define based on the k-anonymity degree and the magnitude of the smallest input (or output) set of data records used and generated by a module. This concept allows us to gracefully reason over the different k-anonymity degrees that may be associated with the inputs and outputs of the workflow's modules. We also show how the NP-hard problem of identifying the sets of data records to be grouped together into equivalence classes that meet k-anonymity requirements can be cast as a scheduling problem that we solve using integer programming.

The paper is organized as follows. We start by laying the foundations of our work and stating the problem in Section 2. We then focus on the problem of anonymizing the provenance of a module in Section 3, and the provenance workflow in Section 4. In Section 5, we address an issue that is inherent to our anonymization technique, namely grouping sets of data records, and cast it as a scheduling problem. We report on evaluation exercises that we empirically conducted to assess the effectiveness and efficiency of our solution in Section 6, and conclude the paper in Section 7.

FOUNDATIONS

We present a data model for collection-based workflows (in Section 2.1). The data model largely captures the properties and execution model adopted by collection-based workflow systems in particular Taverna [START_REF] Wolstencroft | The taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud[END_REF]. We go on to present the model we use for capturing the provenance of workflow execution (in Section 2.2), and state the problem we address in this paper (in Section 2.3).

Collection-Based Module and Workflow

Definition 2.1 (module). A module m is defined by the tuple (I m , O m , card), where I m (resp. O m) is a set of ordered input (resp. output) ports, and card specifies the cardinality of m. A port p = ⟨a 1 , . . . , a n ⟩ is a list of attributes, each characterized with a basic type, e.g., String, Integer.

Assigning a data value to each attribute in a port gives rise to a data item, and assigning a data item to each input (output) port of a module gives rise to a data record.

card ∈ {1-to-1,1-to-n,n-to-1,n-to-n}: 1-to-1 specifies that the invocation of m takes as input a single data record and produces a single data record; n-to-1 (resp. 1-to-n) specifies that the invocation of m takes as input a list (ordered set) of data records (resp. single data record) and produces a single data record (resp. a list of data records); n-to-n specifies that the invocation of the module takes as input a list of data records and produces a list of data records. We illustrate below an example of a binding that captures the invocation of a module m that takes as input a list composed of two data records (see the second element in the binding tuple), each with two data records with two attribute values each, and output one data record (the third element in the binding tuple) with a single data item with two attribute values.

(m, [⟨⟨1, 0⟩, ⟨2, 1⟩⟩, ⟨⟨2, 10⟩, ⟨3, 1⟩⟩], ⟨⟨0, 10⟩⟩)
We use in what follows the term input of module (resp. output of a module) to denote the input ports (resp. output ports) of a module.

Definition 2.2 (data link). A data link dl is defined by the pair dl = (m i : o m i , m j : i m j), where m i : o m i designates an output port o m i of the module m i , and m j : i m j designates an input port i m j of the module m j .

Definition 2.3 (workflow).

A workflow specification is defined by a pair w = (M, E), where M is a set of modules1 and E is a set of data links. w has one initial module with no incoming data links, and one final module with no outgoing data links.

We consider acyclic workflows that have a single initial module and a single final module, and where each module in the workflow, other than the initial module, is reachable from the initial module. This is not a limitation. Most real scientific workflows have a single initial module and final module (see [START_REF] Bao | Differencing provenance in scientific workflows[END_REF]). Moreover, there exist solutions for converting workflows that do not satisfy this requirement into workflows with one initial module and final module (see e.g., [8]).

Every module in a workflow w is reachable from the workflow initial module m init . In other words, for each module m in w that is different from m init , there is a dataflow path connecting m 1 to m that is composed of a sequence of modules (m init , ..., m), such that any two successive modules in the sequence (m init , ..., m) are connected with data links.

Workflow execution follows a pure dataflow model: a module m is invoked (is fireable) as soon as all of its input ports are bound to data items. During the workflow execution, data items are transferred between connected output and input ports. For example, the following data link binding ((m 1 : o m 1 , m 2 : i m 2), di) specifies that the data item di was transferred using the data link connecting the output port o m 1 of m 1 to the input port i m 2 of m 2 .

Definition 2.4 (Workflow Execution

). An execution w exec of a workflow w is triggered by feeding the initial module m init of w using d init , a data record or set of data records depending on whether the initial module expects a single data record or a list of data records. A workflow execution w exec is a set containing all the module bindings and data link bindings that took place as a result of invoking m init using d init .

Constructing Input Data Records for Module Invocation.

In what follows, we specify how input data records for a given module in a workflow are constructed.

Constructing input data records for the initial module. The data records used for feeding the invocation2 of the initial module m in a workflow w are provided by the workflow user. Consider that m has the input ports ⟨p 1 , . . . , p n ⟩. If the invocation of m expects a single data record, i.e., m.card ∈ {1to -1, 1to -n}, then the user provides a data record ⟨d 1 , . . . , d n ⟩, where d j is a data item instance of p j , 1 ≤ j ≤ n. If, on the other hand, m expects a list of data records, i.e., m.card ∈ {nto -1, nto -n}, then the user provides a list data record of the form: [⟨d 1 1 , . . . , d 1 n ⟩, . . . , ⟨d l 1 , . . . , d l n ⟩], where d i j is a data item instance of the port p i j with 1 ≤ i ≤ l and 1 ≤ j ≤ n. i is connected to the input port p m 2 i , with 1 ≤ i ≤ n. In other words, m 1 is the only preceding module of m 2 . We distinguish the following cases:

• The invocation of m 1 produces a single data record ⟨d 1 , . . . ,

d l ⟩, that is m 1 .card ∈ {1 -to -1, n -to -1}.
If m 2 expects a single data record, i.e., m 2 .card ∈ {1to -1, 1to -n}, then the data record ⟨d 1 , . . . , d n ⟩ is used for its invocation. If, on the other hand, m 2 expects a list of data records, then its invocation is fed using the singleton list [⟨d 1 , . . . ,

d n ⟩]. • The invocation of m 1 produces a list of data record [⟨d 1 1 , . . . , d 1 l ⟩, . . . , ⟨d r 1 , . . . , d r l ⟩], that is m 1 .card ∈ {1 -to -n, n -to -n}. If m 2 expects a single data record, i.e., m 2 .card ∈ {1 -to -1, 1 -to -n},
then m 2 will be invoked r times using the data records ⟨d n 1 , . . . , d 1 n ⟩, . . . , ⟨d r 1 , . . . , d r n ⟩, respectively. Notice that, in this case, that an invocation (i.e., module binding) of m 1 yields multiple invocations of m 2 . If, on the other hand, m 2 expects a list of data records, then its invocation is fed using the list [⟨d n 1 , . . . , d 1 n ⟩, . . . , ⟨d r 1 , . . . , d r n ⟩]. Constructing input data records for a module with multiple preceding modules. Consider a module m 1 with the output ports ⟨p 1 , p 2 , p 3 ⟩, the module m2 with the output ports ⟨p 4 , p 5 ⟩, and the module m3 with the input ports ⟨p 6 , p 7 , p 8 ⟩. Consider now that m 3 has two preceding modules m 1 and m2 using the following data links: (m 1 : p 1 , m 3 : p 6), (m 1 : p 2 , m 3 : p 7) and (m 2 : p 4 , m 3 : p 8) (see Figure 2). We distinguish the following cases:

(

[⟨d 1 1 , d 1 2 , d 1 4 ⟩, . . . , ⟨d 1 1 , d 1 2 , d r 2 4 ⟩, . . . ⟨d r 1 1 , d r 1 2 , d 1 4 ⟩, . . . , ⟨d r 1 1 , d r 1 2 , d r 2
4 ⟩] If m 3 expects a list of data record, i.e., m 3 .card ∈ {nto -1, nto -n}, then m 3 will be invoked using the above list of data records. If, on the other hand, m 3 expects a single data record, then it will be invoked r 1 • r 2 times using the data records members of the above list.

(3) An invocation of m 1 produces a list of data records and an invocation of m 2 produces a single data record. We treat this case in a similar manner to (2) by considering that m 2 output a singleton list.

We considered above the case where a module is preceded by two modules. Cases, where a module is preceded by three or more modules, are treated similarly.

Implication of Cardinality Mismatch

On Workflow Execution. We have seen in the previous section that mismatch in cardinalities between connected modules in a workflow may yield multiple invocations of the same module that take place within the same workflow execution. This is specifically the case when the invocation of a module expects a single data record, whereas its preceding module(s) produces a list of data records. This raises the question as to how multiple invocations are handled. We distingsuih two cases.

(1) We consider the case of a module m 2 that is preceded by a module m 1 in the workflow w, such that m 1 has been invoked multiple times within the same workflow execution we. If there is no mismatch in cardinalities between the output of m 1 and the input of m 2 , then each invocation of m 1 gives rise to an invocation of m 2 . If there is a mismatch in cardinalities between what m 1 produces and what m 2 expects, then each invocation of m 1 may give rise to an invocation of m 2 . (2) We consider the case of a module m 3 that is preceded by the modules m 1 and m 2 in the workflow w, such that m 1 and/or m 2 has been invoked multiple times within the same workflow execution we. Consider, for example, that m 1 has been invoked twice giving rise to two module bindings bind m 1 1 and bind m 1 2 within the workflow execution we. And consider that m 2 has been invoked three times giving rise to three module bindings bind m 2 1 , bind m 2 2 and bind m 2 3 within the workflow execution we. The invocations (bindings) of m 1 and m 2 are paired:

(bind m 1 1 , bind m 2 1) (bind m 1 1 , bind m 2 2) (bind m 1 1 , bind m 2 3) (bind m 1 2 , bind m 2 1) (bind m 1 2 , bind m 2 2) (bind m 1 2 , bind m 2
3) The output data records of each pair (bind m 1 i , bind m 2 j) are used to construct input data records for the module m 3 as explained in the previous section. A pair (bind m 1 i , bind m 2 j) yield a single or multiple invocations of m 3 depending on whether there is a mismatch in the data links connecting m 1 and m 2 to m 3 . Cases, where a module is preceded by more than two modules, are handled in a similar manner.

Workflow Provenance as Relations

Definition 2.5. Given a workflow w, its provenance, denoted by prov(w), is the collection of modules and data link bindings that take place as a result of the executions of w.

For ease of exposition of our anonymization solution, we encode the provenance of a module m using two relational tables denoted by prov(m, w).in and prov(m, w).out. They contain the data records that were used and generated, respectively, by the invocations of m within the executions of a workflow w. we call prov(m, w).in (resp. prov(m, w).out) the input (resp. output) provenance of m. When the referred workflow w is clear from the context, we abuse the notation and simply use prov(m).in and prov(m).out to refer to such relations. The schema of such relations contains the attributes of the input ports (resp. output ports) of m. We assume that the attribute names are unique within the input (resp. output) ports of a module. From a provenance point of view, we do not keep information about the order of the data records in an input or output list, which is, therefore, viewed as a set. This is the case, for example, in the Taverna workflow system [START_REF] Wolstencroft | The taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud[END_REF]. Because of this, we use in what follows the terms input/output set of data records, as opposed to list of data records. W.l.o.g, we assume that the attributes of two succeeding modules that have the same name are connected (via their ports) by data links. In other words, we can deduce data link bindings from module bindings, which allows us to write:

prov(w) = m ∈ w.M (prov(m).in ∪ prov(m).out)
Consider a module admittedTo that given a set of patients returns a set of hospitals that those patients were admitted to 3 . Table 1 illustrates an example of two relations representing input provenance and output provenance of the admittedTo module. The names of identifying attributes are written in bold, and the names of quasi-identifying attributes are underlined. Notice that the relations contain also two additional attributes: ID and Lin. The first is an ID that is generated internally by the workflow systems to identify data records, and the second is used to encode lineage information. In the case of the input provenance, Lin specifies the data records produced by the preceding modules in the workflow and that were used in the construction of the data record in question. For example, the data record p 1 was constructed using two data records r 1 and r 2 that were produced by some preceding modules. The Lin column is empty for the relational table used to store the data records used as input to the initial module in the workflow. Regarding the output provenance of admittedTo, the Lin column identifies the data records that were used as input to obtain the output data record in question. For example, it specifies that h 1 and h 2 were generated given the inputs p 1 and p 3 . The lineage information we consider here is in line with the why provenance semantics introduced by Buneman et al. [START_REF] Buneman | Why and where: A characterization of data provenance[END_REF].

Problem Statement

Adversary Model. The data records used and generated by a workflow module are characterized by three kinds of attributes: (i) Identifying attributes allow identifying individuals, e.g., the attribute name is an identifying attribute. (ii) Sensitive attributes are attributes that carry sensitive information, e.g., health condition. (iii) Quasi-identifying attributes are non-identifying attributes, but their combination can be used to identify an individual, e.g., address, phone number, etc. Notice that the ID attribute is not considered as an identifying attribute because it is generated by the workflow system and does not carry information that allows identifying individuals such as name for example.

We assume that an adversary may know identifying and quasiidentifying attribute values about individuals, e.g., name, address, date of birth. However, we assume that s/he does not know sensitive attribute values, e.g., health-condition, income tax.

In relational databases, a relation r is k-anonymized, where k is an integer greater than 2, if any data record d in r is not distinguishable from (at least) k -1 other records in r. This condition is met by masking the values of identifying attributes, and generalizing the values of quasi-identifying attributes (e.g., address, visited hospital, etc.). Sensitive attributes, such as health condition, salary, are not masked: adversaries are assumed not to be knowledgeable of the values of sensitive attributes. In what follows, we use the term identifier record to refer to a data record that has an identifying attribute value, and the term quasi-identifier record to refer to a data record that has no identifying attribute value but has a quasi-identifying attributes value. A module input (resp. output) that is bound to identifier records following module invocation is called identifier input (resp. output). It is called quasi-identifier input (resp. output) if it is bound to quasiidentifier records.

Anonymity degree of Identifier Inputs and Outputs. We assume that every identifier input (resp. identifier output) of a module m is associated with an anonymity degree, which we denote by k i m (resp. k o m) to be enforced. Note that non-identifier module inputs and output are not associated with an anonymity degree because they are not bound at execution time to records that represent individuals. We do not make the assumption that the anonymity degrees associated with the identifier inputs and outputs of the modules that compose the workflow are the same. This is because the modules that compose a workflow are likely to use different underlying data sources that are supplied by different providers who may impose different requirements when it comes to the anonymity degree to be enforced on their data. Moreover, the same data provider may impose different anonymity degrees depending on the data that is retrieved from its source. For example, an input that provides information about patients and their health condition is likely to be associated with an anonymity degree that is higher than an output that informs on the trips of practitioners. In this paper, we apply k-anonymization to the provenance prov(w) of a workflow prov(w) by creating equivalence classes for the relations prov(m).in and prov(m).out for each identifier input and output of the modules in w.M. A set of output equivalence classes are defined in a similar manner: prov a (m).out = {E1 m out , . . . , E1 m out }. Note that the ID and Lin attribute values of the data records are not generalized. This is because the values of the ID attribute are generated internally by the workflow system. In other words, they are not meaningful for human users. More importantly, they are used within the Lin attribute to encode lineage information that we seek to preserve.

Lineage information needs to be considered when kanonymizing the input provenance (resp. output provenance) of an identifier module input (resp. output). To illustrate this, let us consider the admittedTo module. It has an identifier input and a quasi-identifier output. Consider that the anonymity degree associated with its input is k admittedTo i = 2. Notice that its output is not associated with an anonymity degree because it is not an identifier output. Table 2 illustrates the input and output provenance of admittedTo, where the input provenance is 2-anonymized. The anonymization consisted in partitioning the set of input data records into input equivalence classes of size ≥ 2. Notice that this anonymization operation does not guarantee k-anonymization, however. To illustrate this, consider that an adversary knows that Garnick was born in 1990 and that he visited the StLouis hospital. By examining the output data records together with lineage information in prov(admittedTo).out (see Table 2), an adversary will be able to infer that the data record p 1 refers to Garnick. This can be more of an issue when the data record contains sensitive information such as health condition.

Table 2: Input and Output Provenance of admittedTo where the Input Provenance is 2-anonymized.

Problem 1 (K-anonymization of the input and output provenance of a module). Consider a module m with an identifier input (resp. output). k-anonymizing the input provenance prov(m).in (resp. prov(m).out) of m using an anonymity degree k m i (resp. k m o) gives rise to anonymized input provenance prov a (m).in (resp. anonymized output provenance prov a (m).out) where:

1)- prov a (m).in = {E1 m in , . . . , En m in } (resp. prov a (m).out = {E1 m out , . . . , En m out }), is a set of input (resp. output) equivalence classes for the input (resp. output) provenance of m, with n ≥ 1. 2)-An input equivalence class Ei m in (resp. output equivalence class Ei m out) contains at least k m i (resp. k m o) data records.
3)-The data records in an input equivalence class Ei m in (resp. output equivalence class Ei m out) cannot be distinguished by examining their lineage, i.e., by examining the data records that (transitively) contributed to the data records in Ei m in (resp. Ei m out) or by examining the data records that the records in Ei m in (resp. Ei m out) contributed to through workflow executions.

To formally define condition (3), we introduce here the notions of backward-and forward-lineage of a data record. Consider that a module m 1 in a workflow w, and consider that the data record d m 1 o is bound to the output of m 1 in prov(w). We use blin * (wf, m, i, d m 1 o) to denote the set of data records that are bound to the input of m 1 and belong to the lineage of d m 1 o . Consider now another module m n in w. There exists a sequence of modules that connects m 1 to m n using data links, or vice versa. This is because the workflow forms an acyclic connected graph. Consider the case where m and m n is connected with the sequence of modules (m 1 , . . . , m n) such that m i and m i+1 are connected with data links for i ∈ [1, n -1] and n >= 2.

Consider that d m n is a data record that is bound to the input or output of m n in prov(w), we use blin * (wf, m 1 , in, d m n) (resp. blin * (wf, m 1 , out, d m n)) to denote the set of data records that are bound to the input (resp. output) of m 1 and (transitively) belong to the lineage of d m n . We call blin * (wf, m 1 , in, d m n) (resp. blin * (wf, m 1 , out, d m n)) the backward lineage of d m n w.r.t. the input (resp. output) of m 1 . Notice that we do not need to specify that d m o was generated by the output of m's invocation. This is because data records are identified by unique surrogate keys that are generated by the workflow system, which allows to pinpoint the input or output module to which they are bound.

We define forward lineage, flin * , as the inverse of backward lineage. Consider that d m 1 i and d m n o are two data records bound to the input of m 1 and output of m n , respectively. We have:

d m 1 i ∈ blin * (wf, m 1 , i, d m n o) iff d m n o ∈ blin * (wf, m n , o, d m 1 i)
We are now in a position to formally define condition 2 of problem 1. Consider two data records d 1 and d 2 of an identifying input or output module m of a workflow w that belong to the same equivalence class as a result of the k-anonymization. And consider that m ′ and m ′′ are modules that are respectively located upward and downward w.r.t. m in the workflow w. Regarding m ′ , the following sets blin * (wf, m ′ , i, d 1) and blin * (wf, m ′ , i, d 2) should be generalized in order to be indistinguishable when considering the quasi-attributes of the input of m ′ . Similarly, the following sets blin * (wf, m ′ , o, d 1) and blin * (wf, m ′ , o, d 2) should be generalized in order to be indistinguishable when considering the quasi-attributes of the output of m ′ . Regarding m ′′ , the following sets flin * (wf, m ′′ , i, d 1) and flin * (wf, m ′′ , i, d 2) should be generalized in order to be indistinguishable when considering the quasi-attributes of the input of m ′′ . Similarly, the following sets flin * (wf, m ′′ , o, d 1) and flin * (wf, m ′′ , o, d 2) should be generalized in order to be indistinguishable when considering the quasi-attributes of the output of m ′′ . Problem 2 (K-anonymization of the provenance of a workflow). The provenance of a workflow w is said to be kanonymized iff the input provenance of every identifier module input and the output provenance of every identifier module output in w.M are k-anonymized.

The above problem is NP-Hard: Meyerson and Williams [START_REF] Meyerson | On the complexity of optimal k-anonymity[END_REF] demonstrated that optimal k-anonymity for a single relational table without considering lineage is an NP-hard problem. We present in this paper a heuristic that seeks to satisfy k-anonymity, to reduce the generalization (information-loss) incurred as a result, and to preserve lineage information in doing so.

ANONYMIZATION OF MODULE PROVENANCE

We show, in this section, how the input provenance and output provenance of a module are anonymized. The solution we present is applicable to many-to-many modules but also to modules with other cardinalities. We distinguish the case where the module input is an identifier input and its output is a quasi-identifier output, and the case where the module input and output are identifier input and identifier output. In the first case, the attribute values of the output data records are treated as quasi-identifying attribute values for their counterpart input data records. The second case is slightly more complex in the sense that the attribute values of the output data records are treated as quasi-identifying attribute values for their counterpart input data records, and viceversa. We will not examine the case where both the module input and output carry quasi-identifier records. Indeed, it only makes sense to perform the anonymization when the input and/or the output carry identifier records, and as such associated with an anonymity degree to be enforced. That said, we will show in Section 4 how modules that carry quasi-identifier input and output records are dealt with in situations where they are used in workflows containing other modules with identifier records.

Module with Identifier Input and Quasi-Identifier Output

Consider the admittedTo module, presented earlier, that given a set of individuals returns a set of hospitals that those patients visited (see Table 1). And consider that the input dataset has been 2-anonymized as illustrated in Table 2. As discussed earlier, the lineage associating the output dataset to the input dataset may allow an adversary to pinpoint patients in the input dataset, even if this is anonymized. To avoid this, the hospital dataset needs to be anonymized in a way not to be able to distinguish between the hospitals visited by the patients that belong to the same equivalence class as a result of the anonymization of the patient dataset. For example, p 1 and p 2 must be associated with the same set of hospitals, and so do p 3 and p 4 . Given lineage information, one way to do so consists in generalizing the hospitals in a way not to be able to distinguish between the hospitals corresponding to {p 1 , p 3 } and those corresponding to {p 2 , p 4 }. An example of generalization of the hospital dataset that achieves this is illustrated in Table 3. Notice that similar generalization is applied to the hospitals corresponding to the groups of patients {p 5 , p 7 } and {p 6 , p 8 }.

While acceptable, there is a more effective manner in this case to anonymize the patient and hospital datasets that yields less generalization of the quasi-attributes, thereby reducing the information loss incurred by the anonymization. Indeed, we can exploit the fact that patients are grouped into input sets to guide the anonymization process. In particular, we put sets of data records that are used as input to a module invocation within the same equivalence class. For example, the patients p 1 and p 3 are put within the same equivalence class. Using this approach, we obtain the 2-anonymized patient dataset illustrated in Table 4. Notice that by doing so, we actually do not need to anonymize the hospital dataset. Indeed, starting from the hospital dataset, we cannot single out any patient: the same set of hospitals are visited by 2 patients. The approach we have just described is more effective as far as information loss is concerned. For example, one would know that p 1 and p 3 visited St Louis and St Antonio. Using the previous approach (described in Table 3), we would infer less specific information: that p 1 and p 3 visited St Louis or St Anne, and St Antonio or St Augustine.

With the above consideration in mind, we revisit the definition of equivalence classes introduced in Section 2 by requiring equivalence classes to contain sets of data records that are used as input or generated as output of module invocations. We will also introduce the notion of kgroup anonymity degree, which allows us That is, two data records that belong to the same input set (resp. output set) that was used (resp. generated) by the invocation of m in prov(m).in (resp. prov(m).out) cannot belong to different input (resp. output) equivalence classes. Definition 3.2 (k-group anonymity (kg)). We say that the input provenance prov a (m).in (resp. output provenance prov a (m).out) of a module m is k-group anonymized using the k-group anonymity degree kg m i (resp. kg m o) iff each equivalence class in prov a (m).in (resp. prov a (m).out) contains at least kg m i input sets of data records (resp. kg m o output sets of data records) Property 1. Consider a module m with an identifier input associated with an anonymity degree k m i (resp. identifier output with an anonymity degree k m o). And, let l m i (resp. l m o) be the magnitude of the smallest input (resp. output) set of data records in prov(m).in (resp. prov(m).out). k-group anonymyzing prov(m).in (resp. prov(m).out) using the k-group anonymity

degree kg m i = k m i l m i (resp. kg m o = k m o l m o
) yields input provenance prov a (m).in (resp. output provenance prov a (m).in) that is kanonymized using the anonymity degree k m i (resp. k m o).

Proof. An input equivalence class in prov a (m).in contains at least

k m i l m i
input sets of data records. Given that l m i is the magnitude of the smallest input set in prov(m).in, we conclude that an input equivalence class in prov a (m).in contains at least kg m i • l m i data records, which is equal to or greater than k m i . In other words, prov a (m).in is k-anonymized using the k-anonymity degree of k m i . The same reasoning can be applied to show that the output provenance is k-anonymized using the degree of k m o . □

We are now ready to discuss the general case. To anonymize the input provenance and output provenance of a module m with an identifier input and quasi-identifier output, we start by k-group anonymizing its input provenance using the k-group anonymity degree of kg m i =

k m i l m i
. This yields input provenance prov a (m).out that is k-anonymized using the degree of k m i (see Property 1). Because the data records in the output provenance act as quasi-identifying records for the data records in the input provenance, we also need to anonymize the output provenance. To do so, we partition prov(m).out into a set of output equivalence classes prov a (m).out. This is done by putting the output sets of data records, that correspond to input sets pertaining to the same input equivalence class in prov a (m).in, within the same output equivalence class in prov a (m).out. This way, an adversary cannot distinguish the data records in an input equivalence class by examining their corresponding output data records, since these belong to the same output equivalence class and as such have the same quasi-identifying attribute values.

The above solution is applicable to modules with quasiidentifier input and identifier output, by inverting the roles of the input and output used above. Note that the lineage of the input data records (column lin in Table ??) needs to also be considered when performing the anonymization. We are focusing right now on the anonymization of the input and output dataset of a single module. We will see later in Section 4, how the anonymization is performed when the module is within a workflow.

Modules with Identifier Input and Identifier Output

Consider a module m with an identifier input and an identifier output. To anonymize the input provenance and output provenance of m, we reason using the k-group anonymity degrees associated with the input and output of m. Specifically, we distinguish the following cases: Case 1: kg m i ≥ kg m o . We k-group the input provenance using the k-group degree kg m i . This yields k-anonymized input provenance with an anonymity degree of k m i (according to Property 1). The output provenance is anonymized by partitioning it into a set of output equivalence classes prov a (m).out: output sets of data records, that correspond to input sets pertaining to the same input equivalence class in prov a (m).in, are put within the same output equivalence class in prov a (m).out.

An output equivalence contains the sets of data records that correspond to input sets of data records in the same input equivalence class. Given that an input equivalence class contains at least kg m i input sets of data records, it follows that an output equivalence class in prov a (m).out contains at least kg m i output sets of data records. Given that kg m i ≥ kg m o , it follows that prov a (m).out is k-group anonymized using the k-group anonymity degree of kg m o , which implies that prov a (m).out is k-anonymized using the anonymity degree of k m o (see Property 1). Note also that data records in the same input (resp. output) equivalence class cannot be distinguished by examining their corresponding output (resp. input) data records. This is because the data records in a given input equivalence class will have their corresponding output data records in the same output equivalence class, and, therefore, cannot be distinguished by examining their quasi-identifying attribute values, and vice-versa.

As an example, consider a module, getPractitioners, that takes a set of patients and returns the set of practitioners that have examined those patients 4 . Table 5 illustrates the input provenance and the output provenance of getPractitioners. We omit the lineage information (Lin column) in the input provenance because it is not useful in the example. Consider that the input of getPractitioners is associated with The k-group anonymity degree for both input and output in this case is 1. Tables 6 shows the anonymized input and output provenance obtained using the solution we have just described. Notice that the resulting patient dataset is 2-anonymized and that the resulting practitioner dataset is 3-anonymized. Moreover, we cannot distinguish between the practitioners of the patients in the same input equivalence class, and, similarly, we cannot distinguish between the patients of the practitioners that belong to the same output equivalence class.

k getPractitioners i = 2,
Case 2: kg m i < kg m o . We perform the same processing as in (case 1) by inverting the roles of the input and output.

DATA PRIVACY OF WORKFLOW PROVENANCE

Given a workflow w, we seek to anonymize its provenance prov(w) by anonymizing the input provenance and output provenance of its constituent modules. In doing so, we can use the method presented in the previous section as is to anonymize the data used and generated by each module, in an independent fashion. Unfortunately, this solution may lead to a breach of privacy. Indeed, equivalence classes will be formed without consideration to lineage between data records output by given modules and the data records used to feed the succeeding modules within the workflow, which may lead to a privacy breach.

To illustrate this, consider a simple workflow composed of two modules (see Figure 3). And consider that the workflow has been executed four times. Table 7 illustrates the data records used and generated by the first module, and Table 9 illustrates the data records used and generated by the second module in the workflow. Notice that the output of the first module (in Table 7) is identical to the input of the second module (in Table 9). This is because the data records produced by the executions of the first module are used to feed the executions of the second. Consider that the input and output of the first module are associated with the anonymity degree 2, and so is the input of the second module. The output of the second module is not associated with an anonymity degree because it does not produce identifier records. Consider now that the input and output data records of each module were anonymized independently, i.e., without consideration of the data dependency between the first and second modules. Table 8 illustrates the anonymized data records for the input and output of the first module, whereas Table 10 illustrates the anonymized data records for the input and output of the second module. Notice that the data records representing the surgeons, which are generated by the first module and used as input by the second module, were grouped differently in Tables 8 and 10 to meet the anonymity degree 2. In particular, the surgeon Parsons was grouped with surgeon Fox in Table 8, and with surgeon Mason in Table 10. Suppose now that a user of the anonymized provenance knew that Parsons was born in 1979. Because of the difference of the grouping in Tables 8 and10, s/he will be able to deduce that the data record s 4 refers to surgeon Parson, and that this one has a low success rate of 30%. We, therefore, designed an algorithm that ensures that lineage information cannot be used by an adversary to uncover private information about individuals. For the purpose of the anonymization algorithm, we will be shortly presenting, we group the workflow modules into levels as illustrated in Figure 4. A module belongs to level O if it does not have a previous module. A module belongs to a level i where i > 0, if it has at least an incoming data link connected to a module in level i -1, and it does not have any incoming data link connected to a module in level ≥ i.

Algorithm 1 Anonymize Workflow Provenance

Input: w, the workflow specification. Input: Modules = {L 0 , . . . , L k } //workflow modules grouped into levels (breadth) from the sink to the source. prov(w), the provenance of the workflow w. kg, group anonymity degree. Output: Prov a (w) // anonymized provenance 1: for Level in Modules do 2:

for m in Level do 3:

if (m is the initial module) then 4:

prov a (m).in ← anonymizeInitialInput(m, prov(m).in, kg) 5:

prov a (m).out ← anonymizeOutput(m, prov(m).out, prov a (m).in) 6: else 7:

prov a (m).in ← constructInputRecords(m, prec(m)) 8:

prov a (m).out ← anonymizeOutput(m, prov(m).out, prov a (m).in) 9:

end if 10:

end for 11: end for 12: prov a (w) ← m∈w.M prof a (m)

13: return prov a (w)

To anonymize the provenance of a workflow w, Algorithm 1 takes as input the modules that compose the workflow organized into levels from the source to the sink, the provenance of the workflow prov(w), as well as a group anonymity degree kg to be applied to the input provenance of the initial module of the workflow. (We will see later which k-group anonymity degree is used.) The algorithm examines the modules by level. For the first level composed of the initial module m init , the function anonymizeInitialinput() (line 4) anonymizes the input data of such module using the k-group degree kg and produces the set of equivalence classes prov a (m init).in. The output data records of the initial module are used to feed the operation anonymizeOutput(), which produces prov a (m init).out (line 5). For a module m that belongs to a level other than the initial one, the algorithm starts by constructing the anonymized input data records by using the anonymized data records of the preceding output in the previous level using the constructInputRecords() operation (lines 7). The output data records of m are, then, anonymized by using the same grouping applied to its inputs to produce prov a (m).out using the anonymizeOuput() operation (line 8). The algorithm terminates when the provenance of the module that belongs to the sink level is anonymized.

To illustrate this, consider again the simple workflow in Figure 3, and consider now that the anonymity degree associated with the output of GetSurgeon is lower than that is required for the input of GetSuccessRate, i.e., k GetSurgeon o < k GetSuccessRate i . Anonymizing the output data records of getSurgeon using the degree k getSurgeon o will breach the anonymity degree k GetSuccessRate i imposed on the input of GetSuccessRate. On the other hand, if we chose k GetSuccessRate i when anonymizing the input data records of getSurgeon (and hence the input data records of getSurgeon), then the anonymity degrees of the two will be respected in the obtained anonymized provenance). The modules in the above example are 1-to-1. In the general case where the workflow contains modules with other cardinalities, we reason in terms of k-group anonymity. Specifically, the theorem that follows specifies the k-group anonymity degree to be used for any workflow.

Having described how Algorithm 1 operates, we will describe in detail the operations used in the algorithm. We will also list the guarantees respected by each operation. Before proceeding to the presentation of the operations used in our algorithm, we start by defining the notion of lineage-related equivalence classes. Guarantees:

• G 1 : prov(m init) a .in is k g group anonymized.
Indeed, every equivalence class in prov(m init) a .in is guaranteed to have at least k g input sets.

anonymizeOutput(m, prov(m).out, prov a (m).in). Given anonymized input provenance prov a (m).in = {E1 m in , . . . , En m in } of a module m, this operation generates anonymized output provenance of that module: prov a (m).out = {E1 m out , . . . , En m out }. To do so, for every input equivalence class Ei m in , a group Gi m out containing the output sets of data records in prov(m).out that are lineage dependent on input sets of data records in Ei m in , is constructed. Each group Gi m out gives rise to an output equivalence class Ei m out by masking the identifying attribute values of the data records in Gi m out and by generalizing their quasi-identifying attribute values such that the data records in the group are indistinguishable w.r.t. their quasi-identifying attribute values. Guarantees:

• G 2 : for every equivalence class E m in in prov a (m).in, anonymizeOutput() generates one lineage-related equivalence E m out in prov a (m).out. Indeed, for every equivalence class E m in in prov a (m).in, anonymizeOutput() generates one equivalence class in E m out in prov a (m).out. E m in and E m out are lineage-related. This follows from the fact that the sets of data records in E m out represent output sets of data records that are obtained as a result of the invocation of the module m using the input sets of data records in E m in . • G 3 : anonymizeOutput() preserves k-group anonymity degree. That is, the number of output sets of data records in an output equivalence class E m out , generated by anonymizeOutput(), is equal to the number of input sets of data records in the input equivalence class E m in that is used as input to that operation. This follows from the fact that the number of output sets of data records in the equivalence class E m out , that is generated using anonymizeOutput(), is equal to the number of invocations of the module m, which is equal to the number of input sets of data records in the input equivalence class E m in .

ConstructInputRecords(m, prec(m)). construct input equivalence classes for m given the output equivalence classes of its preceding modules prec(m). We distinguish two cases:

Case 1: m is preceded by one module: prec(m) = {m ′ } There are data links connecting the output ports of m ′ to the input ports of m. Given the anonymized output provenance prov a (m ′).out = {E1 m ′ out , . . . , En m ′ out } of m ′ , this operation generates the anonymized input provenance of m, prov a (m).in = {E1 m in , . . . , En m in }, as follows: For every output equivalence class Ei m ′ out , a group Gi m in is constructed containing the input sets of data records in prov(m).in that are lineage dependent on output sets of data records in Ei m ′ out . Each data record in Gi m in has one lineage-dependent data record in Ei m ′ out (this is an implication of the data-driven workflow execution model). The data records in Gi m in are, therefore, anonymized by masking their identifying attribute values, and by replacing their quasi-identifying attribute values, with the values used in their lineage-dependent data records in Ei m ′ out . Thereby, each group Gi m in gives rise to an input equivalence class Ei m in . Case 2: m is preceded by multiple modules. Suppose that prec(m) = {m 1 , m 2 }. Cases, where a module has more than two preceding modules, are handled in the same manner. Given the anonymized output provenance prov a (m 1).out of m 1 and the anonymized output provenance prov a (m 2).out of m 2 , the anonymized input provenance prov a (m).in of m is obtained using the following process:

For pair (Ei m 1 out , Ej m 2 out) in (prov a (m 1).out, prov a (m 1).out), if there exists a data record d in prov(m).in that is lineage dependent on a data record in Ei m 1 out and a data record in Ej m 2 out , a group Gij m in containing the data records in prov a (m).in that are lineage-dependent on data records from both equivalence classes Ei m 1 out and Ej m 2 out , is constructed. The data records in Gij m in are anonymized, thereby giving rise to Eij m in , as follows. The identifying attribute values of the data records in Gij m in are masked, and their quasi-identifying value attributes are replaced by the attribute values of their lineage-wise corresponding data records in Ei m 1 out and Ej m 2 out . Guarantees:

• G 4 : Using the operation ConstructInputRecords(), an output equivalence class of a module in prec(m) contributes to one lineage-related input equivalence class of m.

Case 1: m is preceded by one module: prec(m) = {m ′ } Every equivalence class E m ′ out in prov a (m ′).out gives rise to one equivalence class in E m in in prov a (m).in using the ConstructInputRecords(m, prec(m)) using ConstructInputRecords(). The two equivalence classes are lineage-related. This follows from the fact that the sets of data records in E m in are constructed by ConstructInputRecords() using the sets of data records in E m ′ out . Case 2: m is preceded by multiple modules: prec(m) = {m 1 , m 2 }. To prove this, we start by proving that every equivalence class of m 1 (resp. m 2) contributes to at least one equivalence class of the input of m. To show this property, we examine the different cases depending on the cardinalities of the output of m 1 and m 1 , and the cardinality of the input of m. i)-Consider the case where m 1 and m 2 are *-to-n modules, and m is an n-to-* module. Given that we assume a data-driven workflow execution model, for each output set s 1 in an equivalence class E m 1 out in prov(m 1) a .out, there is an output set s 2 in an equivalence class E m 2 out in prov(m 2) a .out such that s 1 and s 2 are used to create an input set s 12 that is used to feed the execution of m. This can be proven by contradiction. Suppose, for example, that s 1 has no corresponding output set of m 2 , with which it can be combined. This means that the module m 2 has not been invoked within the workflow execution that led to the generation of s 1 . This is a contradiction. Indeed, given that every module in a workflow is reachable from the initial module, it follows that every module is invoked at least once within a workflow execution 5 . Therefore, there is an output set s 2 that can be combined with s 1 to construct an input set for m. Given the description of the ConstructInputRecords() operation, there is necessarily an input equivalence class E m in in prov(m) a .in that contains at least s 12 . ii)-Consider the case where m 1 and m 2 are *-to-1 modules, and m is a 1-to-* module. Given the workflow execution model, for each singleton output set s 1 in an equivalence class E m 1 out in prov(m 1) a .out, there is a singleton output set s 2 in an equivalence class E m 2 out in prov(m 2) a .out such that s 1 and s 2 are used to create a singleton input set s 12 that is used to feed the execution of m. Given the description of the ConstructInputRecords() operation, there is an input equivalence class E m in in prov(m) a .in that contains s 12 . iii)-Consider the case where m 1 and m 2 are *-to-n modules, and m is a 1-to-* module. Given the workflow execution model, for each output set s 1 in an equivalence class E m 1 out in prov(m 1) a .out there is an output set s 2 in an equivalence class E m 2 out in prov(m 2) a .out such that s 1 and s 2 are used to create (possibly multiple) singleton sets {s 1 12 , . . . , s n 12 } that are used to feed the execution of m. Given the description of the ConstructInputRecords() operation, there is an input equivalence class E m in in prov(m) a .in that contains the singleton sets s 1 12 , . . . , s n 12 . Given (i), (ii) and (iii), we can conclude that every output equivalence class of a preceding module of a module m contributes to at least one input equivalence class of the input of m. We will now prove that an output every equivalence class of the preceding modules of m, e.g., m 1 and m 2 , contributes to at most one input equivalence class for m. This can be proven by induction. Base case: We start by considering the case where there is no merge that that appears before m w.r.t. the dataflow. That is, every path (m init , . . . , m) from the initial module m init to m does not contain a module with multiple preceding modules with the exception of m. Among the candidate paths from m init to m, we find at least two paths: one that goes by m 1 , i.e., (m init , . . . , m 1 , m), and another one by m 2 , i.e., (m init , . . . , m 2 , m). This is because m has multiple preceding modules. Note that there may be more than two paths that lead to m3, but these two are sufficient for our proof. Consider now that an equivalence classes E m 1 out contributes to two input equivalence classes E1 m in in E2 m in of the input of m. This means that there are two (different) equivalence classes E1 m 2 out and E2 m 2 out that pair with E m 1 out to yield E1 m in and E2 m in respectively. The dataflow path (m init , . . . , m 1) contains only modules with a single preceding module, with the exception of m init , which has no preceding module. The same applies to the dataflow path (m init , . . . , m 2). Given that an input equivalence class of a module with a single preceding module has one corresponding output equivalence class of that module (shown above in the case of prec(m) = {m ′ }) and given the guarantee G 2 , we can conclude that the equivalence class E m 1 out has (transitively) a single lineage-related input equivalence class E m init in of the initial module. We can also conclude that E1 m 2 in has (transitively) a single lineage-related input equivalence class E1 m init in of the initial module, and that E2 m 2 in has (transitively) a single lineage-related input equivalence class E2 m init in of the initial module, such that E1 m init in and E2 m init in are different. Indeed, E1 m init in and E2 m init in cannot refer to the same equivalence class otherwise by using G 2 and the fact that an output equivalence class of a module with a single succeeding module contributes to a single input equivalence class of the succeeding module, we will reach the conclusion that E1 m 2 in and E2 m 2 in refer to the same equivalence class. The above yields a contradiction according to lemma 2. Indeed, E m 1 out and E1 m 2 out depend on the same input of the initial class, and so does the equivalence classes E m 1 out and E2 m 2 out , according to Lemma 2. In other words, E1 m 2 out and E2 m 2 out originate from the same input equivalence class of the initial module (always according to Lemma 2). Hence the contradiction, because they should originate from different input equivalence classes of the initial module. Induction hypothesis and step: Assume that there are there are merge modules (i.e., modules with multiple preceding modules) from the dataflow path leading from the initial module m init to m. Moreover, assumes that the output equivalence classes of the modules that precede the merge modules in the dataflow path, with the exception of m, contributes to a single input equivalence class of the merge module in question. We will now prove that the output equivalence classes of the modules that precede m contribute to a single input equivalence class of m. Given that m is a merge module, then there is at least two dataflow path one originating from the initial module and leading to m through a module, say m 1 , that is (m init , . . . , m 1 , m), and a second dataflow path that originate from the initial module and leading to m through a different module, say m 2 , that is (m init , . . . , m 2 , m). Consider now that an equivalence classes E m 1 out contributes to two input equivalence classes E1 m in in E2 m in of the input of m. This means that there two (different) equivalence classes E1 m 2 out and E2 m 2 out that pair with E m 1 out to yield E1 m in and E2 m in respectively. Given that an input equivalence class of a module with a single preceding module has one corresponding output equivalence class of that module (shown above in the case of prec(m) = {m ′ }), given the guarantee G 2 , and given the induction hypothesis, we can conclude that the equivalence class E m 1 out has (transitively) a single lineage-related input equivalence class E m init in of the initial module, and that E1 m 2 in and E2 m 2 in have (transitively) two different lineage-related input equivalence class E1 m init in and E2 m init in of the initial module. This lead to a contradiction. Indeed, according to Lemma 2, E m 1 out and E1 m 2 out depend on the same input of the initial class, and so does the equivalence classes E m 1 out and E2 m 2 out , which means that E1 m 2 out and E2 m 2 out originate from the same input equivalence class of the initial module. The above analysis allows us to conclude that every output equivalence class of preceding modules of m contributes to one input equivalence class of m using the constructInputRecords() operation. Moreover, the input equivalence and its associated output equivalence classes are lineage-related. This follows from the fact that the sets of data records in an input equivalence class are constructed by ConstructInputRecords() using the sets of data records of its associated output equivalence classes.

• G 5 : The operation constructInputRecord() preserves kgroup anonymity. In other words, the number of input sets of data records in an input equivalence class E m in is equal to or greater than the number of output sets of data records in the corresponding output equivalence classes of the preceding modules. Case 1: m is preceded by one module: prec(m) = {m ′ } To show this, we distinguish two cases.

-An invocation of m ′ yields one invocation of m. This is the case, where m ′ is *-to-1 module, or where m ′ is *-to-n module and m is an n-to-* module. 6 In this case, every output set in an equivalence class E m ′ out with a given number of output sets of data records gives rise to an equivalence class E m in with the same number of input sets of data records.

-An invocation of m ′ may yield multiple invocations of m. This is the case, where m ′ is *-to-n module and m is a 1-to-* module (see the workflow execution model in Section 2). In this case, the number of singleton input sets of data records in E m in is greater than the number of (not necessarily singleton) sets of output data records in the corresponding equivalence class E m in . Case 2: m is preceded by multiple modules: prec(m) = {m 1 , m 2 }. To show this, we distinguish two cases.

-An invocation of m corresponds to one invocation of m 1 and one invocation of m 2 . This is the case, where m 1 and m 2 are *-to-1 modules, or where m 1 and m 2 are *-to-n modules and m is an n-to-* module. In this case, every output set in an equivalence class E m 1 out (resp. E m 2 out) has a corresponding input set in E m in . In other words, the number of output sets in E m 1 out (resp. E m 2 out) is equal to the number of input sets in E m 2 out . This allows us to conclude that the k-group anonymity degree of prov a (m).in is equal to that of prov a (m 1).out and prov a (m 2).out.

-An invocation of m 1 (resp. m 2) may yield multiple invocations of m. This is the case, where m 1 and m 2 are *-to-n modules and m is an 1-to-* module. In this case, every output set in an equivalence class E m 1 out (resp. E m 2 out) may have multiple singleton input sets in E m in . In other words, the number of output sets in E m 1 out (resp. E m 2 out) is equal to or lower than the number of input sets in E m 2 out . This allows us to conclude that the k-group anonymity degree of prov a (m).in is equal to or greater than that of prov a (m 1).out and prov a (m 2).out.

Privacy Analysis

We will show, in this section, that an adversary cannot break k-anonymized workflow provenance that is obtained using Algorithm 1. In doing so, we need to show that: i)-The data records in the anonymized input provenance prov a (m).in (resp. anonymized output provenance prov a (m).out) of every identifier input (resp. identifier output) of a module m in w, belong to equivalence classes of size ≥ k m i (resp. ≥ k m o). ii)-The data records in an equivalence class in prov a (m).in (resp. prov a (m).out) cannot be distinguished by examining their lineage (i.e., by examining the data records they have been (transitively) generated from or the data records that they have (transitively) contributed to within workflow executions). To do so, we present in what follows a lemma and a theorem, each of which is accompanied by proof.

Lemma 1. An input equivalence class (resp. output equivalence class) of a given module:

(1) is lineage-related with at most one input equivalence class and one output equivalence class of a different module in the same workflow, and (2) is lineage-related with one output equivalence class (resp.

input equivalence class) of the same module, and (3) is not lineage-related with any input equivalence class (resp. output equivalence class) of the same module.

Proof. We start by showing [START_REF] Abouelmehdi | Big healthcare data: preserving security and privacy[END_REF]. Let m and m ′ be two modules in a workflow w, and let E m in and E m out be an input and output equivalence classes of m. There are three possible cases: a)-There is exist a dataflow path connecting m to m ′ in w. For ease of exposition, we denote m by m 1 , and m ′ by m n , and, therefore, the data flow path connecting m to m ′ , can be represented by the sequence (m 1 , . . . , m n), with n ≥ 2. The sequence (m 1 , . . . , m n) denotes a dataflow, i.e. there are data links connecting the output Given that we consider acyclic workflow, a module cannot appear twice in the dataflow path (m 1 , . . . , m n), which allows us to conclude that every input or output equivalence class of m 1 gives rise to one lineage-related input equivalence class for m n and one lineage-related output equivalence class for the output of m n . Given that we use m 1 to denote m 1 and m n to denote m ′ , we can conclude that m ′ has one input equivalence class and one output equivalence class that are lineage-related with E m in (resp. E m out). b)-There is exist a dataflow path connecting m ′ to m in the workflow. The same analysis in (a) allows to conclude that m ′ has one input equivalence class and one output equivalence class that are lineage-related with E m in (resp. E m out). c)-There does not exist a data flow path connecting m to m ′ , or vice-versa. Given that we consider a data-driven workflow execution module, the data records used and generated by m cannot possibly contribute to the data records used and generated by m ′ , and vice-versa. It follows from Definition 4.1 that the equivalence classes associated with the input or output of m cannot be lineage-related to the equivalence classes associated with the input or output of m.

(a), (b) and (c) allows us to conclude (1). We now show [START_REF]k-anonymity as a privacy measure[END_REF]. According to G 2 , given a module m in a workflow w, the operation anonymizeOutput() generates one lineagerelated output equivalence class E m out of m, for every input equivalence class E m in of m. Given that w is acyclic, it follows that E m in contains all the data records bound to the input of m that contributed to E m out , and the data records in E m in contribute to no data records bound to the output of m, other than those in E m out . In other words, E m out is the only output equivalence class of m that is lineage-related with E m in , and E m in is the only input equivalence class of m that is lineage-related with E m out . We now show [START_REF] Alhaqbani | Privacy-Aware Workflow Management[END_REF]. Given that we consider acyclic workflows, input data records (resp. output data records) of a given module cannot possibly contribute data records bound to the same input module (resp. module output). It follows then that an input equivalence class (resp. output equivalence class) of a given module is not lineage-related with any input equivalence class (resp. output equivalence class) of the same module. □ Lemma 2. Consider a workflow w with the initial module m init , and consider that an equivalence class E m init in of the input of m init . The equivalence classes derived for the output of m init and the equivalence classes derived for the input and output of the other modules in w given the input data records in E m init in cannot be lineage-related to an input equivalence class of m init other than E m init in .

Proof. The proof of the above lemma follows from the workflow execution module. The execution of a workflow w starts by feeding its initial module m init with a set of input data records, say s init . The output set of data records of the initial module as well as the input and output sets of data records that are used and generated by other modules as a result of the workflow execution cannot possibly depend lineage-wise on an input of the initial module, other than s init . It follows, then, that the input and output sets of data records that are used and generated by the workflow execution using input sets of data records in an input equivalence class E m init in cannot depends lineage-wise on sets of data records that are in an input equivalence class other than E m init in . Given that Algorithm 1 generates the output equivalence class of the initial module in the workflow and the input and output equivalences classes of other modules in a workflow using data records that depend lineage-wise on a given input equivalence class of the initial module (generated using the operation anonymizeInitialInput(), see lines 3-4), it follows that the equivalence classes generated by the algorithm depend on one input equivalence class of the initial module. □ Theorem 4.2 (Soundness). The workflow provenance generated for the provenance prov(w) of a workflow w by Algorithm 1 using as input the k-group anonymity degree:

kg max = max(m j ∈WF.modules {kg m j i , kg m j o }) (1)
is k-annoymized.

Proof. To prove this theorem, we need to show: i) that every equivalence class in prov a (m).in of an identifier input of (resp. prov a (m).out of an identifier output) of every module m in the workflow w, contains at least k m i (resp. k m o) data records, and ii) that data records in an equivalence class of the input or output of m cannot be distinguished by examining their lineage within the executions of w (see the problem statements in Section 2).

The input equivalence classes of the initial module in the workflow are generated using anonymizeInitialInput. According to G 1 , the input equivalence classes generated by anonymizeInitialInput are k-grouped using the k-group anonymity degree kg max . Such equivalence classes give rise to other equivalence classes by repeatedly applying the the operations anonymizeOutput() and ConstructInputRecords(). According to the guarantees G 3 and G 5 , such operations preserve k-group anonymity. It follows, then, that every equivalence class of an input (or output) of a module m that is generated by the algorithm contains a number of input (or output) sets that is equal to or greater than kg max . In other words, the equivalence classes in prov a (m).in (resp. prov a (m).out) contain at least kg max • l m in data records (resp. kg max • l m out data records). Given that, kg max • l m in is equal to or greater than kg m i • l m i , which by definition is equal to or greater than k m i . It follows that the equivalences classes in prov a (m).in contain at least k m i data records. Similarly, given that, kg max • l m o is equal to or greater than kg m o • l m o , which by definition is equal to or greater than k m o . It follows that the equivalences classes in prov a (m).out contain at least k m o data records. Thereby, we have just shown (i).

We will now show (ii). Every input equivalence class E m in in prov a (m).in is, according to lemma 1, not lineage-related to any equivalence class of the same input, and it is lineage-related with at most one input equivalence class E m ′ in of any other module input in the workflow, and is lineage-related with at most one output equivalence class E m ′ in of any module in the workflow (including m). The data records in any lineage-related input equivalence class E m ′ in or output equivalence class E m ′ out) do not carry identifying attribute values and are indistinguishable w.r.t. their quasi-identifying attribute values. Therefore, an adversary is unable to distinguish between the data records in E m in of an input equivalence class of a module m by examining the data records of its lineage-related equivalence classes. The same reasoning can be applied to the output equivalences classes in prov a (m).out. This implies that data records in an equivalence class E cannot be distinguished by examining the records any of its lineage-related equivalence class E ′ . And, by recursion, the data records in E ′ cannot be distinguished by examining the data records in the equivalence classes that are lineage-related with E ′ ., etc. That is, the data records in an equivalence class cannot be distinguished by examining their lineage, thereby showing (ii). □

GROUPING OF DATA RECORD SETS

Consider that the initial module of a workflow took as input the following sets of records

D = D 1 ∪ • • • ∪ D n , with l = min i∈[1•••n] |D i |.
Consider now that the target k-group anonymity degree is kg, i.e., the target anonymity degree k = kg * l. If k > l, i.e. kg > 1, then the method for anonymization that we have described so far states that the inputs sets in

D = D 1 ∪ • • • ∪ D n need
to be grouped (unionied) into equivalence sets of a magnitude at least equal to k. In doing so, the method we presented does not specify which inputs sets in D to group together to form equivalence classes. A naïve solution to this problem would be to union all the datasets in D into a single group, i.e. a single equivalence class, and anonymize the quasiidentifying attributes of the data records accordingly. However, the records obtained using this approach are likely to be useless since the scientists will not be able to distinguish between any of the data records used as input to the module in question. A more desirable solution would, therefore, generate groups that have a small magnitude of at least k, and yet try to keep the magnitude of such groups as close as possible to k. We can formally define the above problem as follows 7 .

Given sets of data records D = D 1 ∪ • • • ∪ D n , and an anonymity degree k, group the sets D i , i = 1 . . . n, into groups

G = G 1 ∪ • • • ∪ G m , m ≤ n, such that: (1) |G i | ≥ k, and (2) max i=1...m (|G i |) is minimal.
The above problem can be viewed as a variant of the scheduling problem [START_REF] Werner | Algorithms for Scheduling Problems[END_REF], in which the datasets D i represent independent and non-preemptive jobs, and the cardinalities of such datasets represent jobs' lengths. There is a maximum of n machines. If a machine is used then its load must be greater or equal to k. The objective of such a scheduling problem is to minimize the makespan. To our knowledge, there does not exist any variant of the scheduling problem in the literature that meets the above criteria.

Note to our knowledge, there does not exist any variant of the scheduling problem in the literature that meets the above criteria. In particular, we did not find a scheduling problem that imposes a lower bound on the machine load, and in which certain machines may be not used. In what follows, we prove the NP-hardness of our problem, and show the integer program that we used for its resolution.

Theorem 5.1. The operation of grouping the sets of input (output) data records

D i , i = 1 . . . n into groups G = G 1 ∪ • • • ∪ G m , m ≤ n with
minimal magnitude all be it greater or equal to the anonymity degree k is strongly NP-hard. , and therefore therefore not even Pseudopolynomial.

Proof. We prove the strong hardness by reducing the 3partition problem to our problem. Given an instance L of the 3-partition problem, consisting of a positive integer B and a set N = {1, 2, ..., n} of n = 3m elements, each having a positive integer of size a j such that n j=1 a j = mb, we create an instance J of our problem as follows. The set N = {1, 2, ..., n} represents the set of input (or output) data records, each with a magnitude of a j , j = 1 . . . n. Consider that the partition S= {S 1 , . . . , S n } of {a 1 , . . . , a n } is a solution in instance L given an integer B. In other words, a j ∈S i a j = B with B 4 < a j < B 2 and |S i | = 3, for i = 1 . . . n. The partition S is also a solution in the instance J, where the elements S i ∈S represent the groups formed by unioning the input (or output) data records, and the integer B represents the anonymity degree imposed as well as the magnitude of the maximum group in S. Therefore, S is also a solution instance J . The reduction that we have applied can clearly be carried out in polynomial time.

Conversely, if S is a solution in the instance I then it is a solution in the instance L. Indeed, the elements in S have a magnitude of exactly 3 elements. This follows from the condition B 4 < a j < B 2 . Indeed, adding up the values of the elements of any group with two elements of A results in an integer that is strictly smaller than B. Similarly, adding up the values of any group with 4 or more elements in A yield an integer that is strictly greater than B.

Therefore, if a partition S= {S 1 , . . . , S n } is a solution in instance L of 3-partition iff it is solution in instance J of our problem. □

Given that our problem is strongly NP-hard, we turn our attention to approximation algorithms. In particular, we devised the minimizeG integer problem (see below) to produce a good quality solution. x ij is an integer that can takes the value 1 if the set D i participates in the union that forms the group G j , and 0, otherwise (Constraint C 4). y j is an integer that can takes the value 1 if the group G i contains at least one set in D, and 0, otherwise (Constraint C 5). card i represents the cardinality of the set D i . Constraints (C 1) states that a set D i must participate in the union of exactly one group. Constraint (C 2) specifies that a group G j can have a cardinality of 0 (when y j equals to 0), or a cardinality greater or equal to k (when y j equals to 1). Constraint (C 3) specifies that the cardinalities of the groups G 1 , . . . , G n is smaller than a variable Z, which represents the makespan. The objective of the integer program is, therefore, to minimize the value of Z. Constraints (C 6) states that y j is definitely equal to 1 if x ij is equal to 1. More specifically, if the set D i has been affected to the group G j (i.e., x ij = 1), then the group G j contains at least one set (i.e.y j = 1).

minimizeG Z subject to j ∈{1, ••• ,n} x i j = 1, i = 1, ..., n (C 1) i ∈{1, ••• ,n} car d i • x i j ≥ k .y j , j = 1, ..., n (C 2) i ∈{1, ••• ,n} car d i • x i j ≤ Z, j = 1, ..., n (C 3) x i j ∈ {0, 1}, i, j = 1, ..., n (C 4) y j ∈ {0, 1}, j = 1, ..., n (C 5) y j ≥ x i j , i, j = 1, ..., n (C 6)
Notice that we need to invoke the minimiseG program only once per workflow to identify the way the input sets of the initial module are to be grouped. The output of the initial module, as well as the input and output of the remaining modules in the workflow, use groupings that are derived based on lineage information (see Algorithm 1, lines 4 -8).

VALIDATION

We implemented the solution that we have described in this paper using Python 2.7. We used the COIN Branch and Cut solver (CBC) provided by the LP Modeler Pulp 8 for solving the integer program MinimizeG presented in Section 5.

Regarding quasi-identifying attribute value generalization, we proceed as follows. Given a set of data records G i that are grouped together using the method presented in Section 5, we construct for each quasi-attribute A j a set V G i A j containing the values that such attribute takes within the data records in G i . We then substitute the value of A j in each data records in

G i with V G i A j
. This is the same method that we used in the examples throughout this paper.

It is possible to envisage the use of more sophisticated methods that adapt state of the art techniques, e.g., DataFly, Mondrian and Incognito algorithms [START_REF] Ayala-Rivera | A systematic comparison and evaluation of k-anonymization algorithms for practitioners[END_REF], for attribute value generalization using hierarchies of attribute values (e.g., ontologies or controlled vocabularies). This is an interesting research problem that we leave for future work. We focus, in this paper on assessing the quality of the grouping that we obtain for anonymization guided by workflow lineage.

Experimental Setup

There is no existing solution that we can utilize as a base solution for comparison. Nonetheless, the approach that we have described raises the question as to which parameters impact the quality of the provenance anonymized using our solution. The analysis of the k-group anonymity degree computed for a workflow (see Equation 1), which dictates the degree of generalization, i.e., information loss, to be applied to the provenance of a workflow, reveals that the quality of the provenance (level of generalization) can be influenced by the anonymity degrees and magnitudes of the sets of data records used and generated by the parameters (inputs or outputs) of the workflow's modules. Note that on the other hand, the same equation allows us to rule out the topology (structure) of the workflow as a possible influencing factor. Because of this, we focus in our experiment on assessing the impact that the difference in the anonymity degrees and the magnitudes of the sets associated with two module parameters, which we take w.l.o.g to be the input and output of a module, has on the quality of anonymized provenance.

To be able to control the parameters of our experiment, we implemented a python program that given l m in , l m out and a number of module invocations, automatically generates module provenance. The provenance identifies the data records that are automatically generated by our tool. Regarding the content of data records, we use the Adult dataset [START_REF] Dua | UCI machine learning repository[END_REF], a de facto benchmark for anonymization solutions.

To assess the quality of anonymized data, we used the average equivalence class size [START_REF] Lefevre | Mondrian multidimensional k-anonymity[END_REF] and the discernability metric [START_REF] Lefevre | Mondrian multidimensional k-anonymity[END_REF].

The average equivalence class measures how well equivalence classes created by the anonymization do not exceed what is required by the anonymization degree k. It can be defined as follows:

AEC(DS *) = |DS| |EQ(DS *)|•k
where EQ(DS *) represents the set of equivalence classes created as a result of anonymizing DS, i.e., |EQ(DS *)| is the number of equivalence classes created. k represents the k-anonymity degree required. The best value of AEC is 1. It means that none of the equivalence classes created as a result of anonymization exceeds the required anonymity degree when performing the generalization. We chose AEC as a measure because it is a good indicator for the quality of the anonymized data, with respect to a minimum requirement that is set by the anonymity degree.

As well as examining the impact of the anonymity degree and magnitude of sets of data records on the quality of anonymized provenance (in Sections 6.2, 6.3 and 6.4), we assess the utility of anonymized workflow provenance by examining the degree to which they can be used for answering workflow provenance challenge queries using real-world workflows [START_REF] Moreau | Special issue: The first provenance challenge[END_REF] (in Section 6.5), and assess the efficiency of our solution (in Section 6.6).

We also use the discernability metric, which penalizes each record based on how many records it is indistinguishable from in the anonymized dataset. The anonymization cost over a dataset D is the sum of the anonymization cost of all records. That is:

DM(D *) = EC∈EQ(DS *) |EC| 2
Where D * denotes the dataset obtained by anonymizing the dataset D, and EC denotes an equivalence class in D * , that size of which is guaranteed to be greater or equal to the anonymity degree k.

Impact of the Disparity of k m

in , k m out on the Quality of Anonymization Given the provenance of the module m, one would expect that disparity between k m in and k m out , or more specifically between the ratios kg m in and kg m out have an impact on the quality of the obtained anonymized input and output datasets of m. Specifically, if kg m out is larger than kg m in then the inputs records of m will be grouped into equivalence classes that are beyond what is required by k m in to meet k m output . Thereby, the average equivalence class of the obtained anonymized input datasets is likely to suffer as a results. On the contrary, if kg m in and kg m out are close then one would expect that the average equivalence class and discernability for both the input and output anonymized datasets to be of good quality. To assess this intuition, we ran an experiment in which: 1) We generated the provenance of a module m that associates sets of input data records with sets of output data records. (Note that we ran our experiments using different numbers of module invocations, namely 50, 100, 200, 300, 400 and 500 module invocation. The results we obtained presented similar trends. We, therefore, focus on reporting on the results obtained for 100 module invocations.) We set l m in and l m out to the same value, viz. 1. Specifically, an input (resp. output) set of data records that are used or generated by m has a magnitude between 1 and 3 (resp. 1 and 4). (We did so to examine the interplay between k m in and k m out . Later on, we report on an experiment that we ran to assess the impact of the magnitudes of the sets of data records and their variability.) 2) We then set the value of k m in to 2, and anonymized the input and output datasets using our method by varying the value of k m in between 2 and 20. We ran this experiment three times. Figures 5 and6 illustrates the average of the AEC and discernability obtained. Notice that the AEC of the output dataset is close (if not equal) to 1, indicating that the quality of the anonymized dataset is optimal as far as The discernability analysis, on the other hand, shows that the discernability of both the input and output increases as the k m out increases. This can be explained by the fact that, unlike the AEC, discernability does not factor in the anonymity degree required by the parameter in question, and instead, focuses on the size of the equivalence classes constructed. The larger such equivalence classes are, the larger is the discernability. What Figure 6 shows is that the discernability of the input and output parameters of a module is influenced by the largest anonymity degree associated with the module parameters (in the case of the above experiment, it is k m out). The larger the value of such an anonymity degree, the larger is the discernability associated with the input and output of the module. Notice that the discernability of the output is larger than the discernability of the input. This can be explained by the fact that the size of the dataset representing the records fed to the module, viz. average over the three runs is 192 data record, is smaller compared to the size of the dataset representing the data records output by the module, viz. average over the three runs is 238 data records.

Impact of the Disparity of k m

in , l m in on the Quality of Anonymization Another aspect that can impact the quality of the anonymized datasets is the difference between the anonymity degree and the magnitude of the smallest input (resp. output) set of data records. Without loss of generality, let us consider the input of a module m. If l m in is greater than the anonymity degree k m in , then the magnitude equivalence classes obtained as a result of anonymization will be greater than what is required by k m in , thereby impacting negatively the AEC. To empirically examine this aspect, we set the anonymity degree k m in to 20. We then varied the parameter l m in between 1 and 99, with a unit of 2, i.e., [1, 3, . . . , 97, 99]. In particular, for a given value of l m in , the input sets generated for a module have a magnitude between l m in and l m in + 3. In other words, the input sets have a magnitude that is close to the value of l m in . We did so to factor out the impact that the variability in the magnitude of the input sets, which we will examine later on.

For each value of l m in , we generated the provenance for the module m (100 module invocation) and anonymized the obtained input dataset. We ran this experiment three times, and averaged the results, which are depicted in Figure 7 for the average equivalence class. Figure 8 illustrates the results regarding the discernability. The chart can be partitioned into two parts. The first part where l m in ranges from 1 to 20, and in the second part where it ranges from 20 to 100. In the first part, we notice that the AEC remains relatively close to 1 until it reaches the value of 15 and 17 where we notice an increase of the AEC 1.5. The AEC then decreases to values that are close to 1 for l m in values of 19 and 21. To explain this increase in the AEC, consider the case where l m in = 15. The magnitude of the input sets ranges between 15 and 18 according to the above experiment setting. Consequently, the magnitude of the sets obtained using the grouping ranges between 30 and 36. Indeed, an input set on its own has a magnitude lower than the required anonymity degree of 20, and two unionied input sets will definitely have a magnitude between 30 and 36, which is larger than the required anonymity degree. This explains the fact that the AEC value is close to 1.5. In the second phase, we observe that the value of the AEC grows linearly as the magnitude of the smallest set grows. This can be explained by the following. For values of l m in greater than 20, no set grouping is actually performed: the magnitude of the input set is greater than the required anonymity degree. The larger is the magnitude of l m in , the larger the disparity between l m in and k m in = 20, and subsequently, the larger is the AEC.

Regarding the discernability, we observe that the discernability increases as the l m in does. Still, We notice that there is a slight increase for the value of l m in = 15 and l m in = 17, compared with the value of 19 and 20. This increase has the same rationale as for the AEC, all be it less noticeable. This can be explained by the fact that, unlike the AEC, the discernability does not consider the closeness of the magnitude of the obtained input sets to the required anonymity degree.

Impact of the Disparity of the Size of Input (resp. Output) Sets

In the experiment that we ran this far, we assumed that the size of the input (resp. output) set of data records are close to l m in (resp. l m out). We have examined the provenance of the workflows available in ProvBench 9 , namely the workflow provenance collected the workflow systems Taverna and Wings (120 workflows). For each workflow and each of its modules, we computed l m in and l m out . We then examined the variability of the magnitude of the input and output sets. This analysis revealed that in the majority of the cases the magnitude of the sets used and output by the modules that compose the workflow follows a uniform distribution. However, for an important proportion of the modules (≈ 15%), we observed that the distribution is instead geometric in the sense that the input (resp. output) sets have a magnitude that is close to l m in (resp. l m out). Given the above results, we decided to empirically examine the variability of the magnitude of the parameter sets on the quality of the anonymization considering the two distributions. For the 9 https://github.com/provbench random uniform distribution, we used three distributions where the maximum magnitude of a set is 20, 50 and 100, respectively. Regarding the geometric distribution, we used three distributions with the probabilities of 30, 50 and 80, respectively.

We then ran an experiment in which we computed the AEC by varying the anonymity degree k in between 2 and 20. The results of the experiment for geometric distributions are illustrated in Figure 9, and those obtained for uniform distribution are illustrated in Figure 10. For geometric distribution, we observe that the higher the success probability, the better the AEC obtained. For example, the AEC quickly converges to the value of 1 when the success probability is equal to 0.8. On the other hand, the AEC converge to 1 only when the anonymity degree reaches 11 when the success probability is set to 0.3. That said, overall, geometric distribution delivers better results compared with uniform distribution: the AEC is much smaller. This can be explained by the fact that the variability in the magnitudes of the sets of data records is smaller in the case of the geometric distribution. And, the lower the variability of the magnitude of the data record sets, the better is the grouping of sets in the sense that it yields groups (i.e. equivalence classes) with magnitudes close to k, and therefore the better the AEC obtained (close to 1).

Assessing Utility Using Real Workflows

We assessed the degree to which anonymized provenance can be used to answer the following 3 queries that are representative of the queries defined by the workflow provenance challenge community [START_REF] Moreau | Special issue: The first provenance challenge[END_REF]. 10 . q 1 Find the workflow executions that led to a given record in the workflow results. q 2 Find the input data records that contributed to a given data Output AEC (uniform 20) Output AEC (uniform 50) Output AEC (uniform 100) Fig. 10: AEC obtained using a uniform distribution for the magnitude of l record in the workflow result. q 3 Find the difference between two workflow execution.

For this experiment, we used 14 real-world Taverna workflows. The size of the workflows ranges from 3 modules to 24 modules, and have different structures patterns. We ran each workflow 30 times, and captured the provenance obtained using the Taverna workflow systems. We then anonymized the provenance by varying the group anonymity degree kg max from 1 to 10, and examined whether queries of the form listed above can be answered using the anonymized provenance.

Regarding q 1 and q 2 , a user is presented with anonymized workflow provenance, and as such cannot pinpoint a single data record in the results that can be used as input to q 1 and q 2 . Instead, s/he chooses a (set) of data records that belong to the same equivalence class. As expected, the larger is the anonymity degree, the larger is the set of data records to be considered (see Table 12). Note that on the other hand, the query results obtained had 100% precision and recall, regardless of the value of groupanonymity degree used. This was possible thanks to the fact that our anonymization method preserves lineage across data records.

Table 12: Size of the data record sets used as input to q 1 and q 2 given kg max , averaged over the 14 workflows. Regarding q 3 , the provenance challenge does not formally specify what it is meant by the difference of workflow executions [START_REF] Moreau | Special issue: The first provenance challenge[END_REF]. That said, this question has later been thoroughly examined by Bao et al. [START_REF] Bao | Differencing provenance in scientific workflows[END_REF]. They defined the difference between workflow executions of the same workflow specification using the edit distance which is the minimum number of edit operations that transform one provenance graph structure to the other. Using this definition, the edit distance between every pair of anonymized provenance graphs (of the 14 workflow specifications that we used) was the same as the edit distance computed using their counterpart original provenance graphs. This can be explained by the fact that our anonymization solution preserves the structure of the provenance graph as-is (since one of the requirements that we set is to preserve lineage information). Therefore, the original provenance graph of a given workflow specification is homomorphic to its anonymized counterpart.

This experiment has shown the utility of the workflow provenance anonymized using our solution since we were able to answer the three classes of queries. This evaluation exercise has also shown that for q 1 and q 2 , the input of the query size (number of records) depends on the anonymity degree. Smaller anonymity degrees allow having smaller sets of data records that can be used for the queries, and vice-versa.

Efficiency

The only operation that is costly in the anonymization solution presented is the grouping of sets of data records, which we implemented using the integer program minimizeG (Section 5). Note, however, that such an operation is performed only once for the input of the initial module of the workflow. Indeed, the remaining parameters of the modules that compose the workflow apply the same grouping as the one applied to the input of the initial module.

That said, we investigated the cost of such an operation to group n data sets, where n = 50, 100, 100, • • • , 500. As expected, this experiment showed that time required increased as does the number of module invocations. Interestingly, the experiment also showed that the time required for performing the grouping of the sets of data records is primarily impacted by the distribution of the magnitude of the sets of data records to be grouped. To illustrate this, Table 13 shows the time required for grouping 100 sets of data records where the magnitude of the sets follows different distributions. This experiment showed that using a uniform distribution, the range has little impact on the time required for grouping. On the other hand, it showed that sets that follow a geometric distribution with high success probability (50% and higher) require a considerable time compared to sets that follow a uniform distribution. This can be explained by the fact that for a geometric distribution with high success probability, the majority of the sets have the same (or close) magnitudes. Therefore, many of the groupings that are explored by the integer program yield similar values for the objective function. As a result, the integer program records little progress (convergence towards the optimal solution) and ends up exploring a large space of solutions, which impacts negatively the efficiency. The above results prompted us to develop an alternative solution when the magnitudes of the sets follow a geometric distribution with high success probability. In such situations, most of the record sets have the same magnitude l. We randomly form groups containing the records of ⌈ k l ⌉ sets. The magnitudes of most of the groups obtained by unioning the sets in each group are larger or equal to k. The groups that fail to meet the target magnitude of k (and there are only a few of them given the distribution), are unionied pairwise until meeting the target of k data records per group. This simple method allowed us to group sets of data records in the orders of microseconds with a small impact on the AEC, which was higher by a margin of 0.03 in average compared with the situation in which we used our integer program minimizeG.

CONCLUSIONS

We presented, in this paper, a solution for systematically anonymizing the provenance of collection-oriented workflows. Evaluation exercises allowed us to tease apart the aspects that impact the quality of the anonymization, namely the disparity between the anonymity degrees of the input and output sets of a module (or more generally the inputs and outputs of the modules that compose the workflow), the disparity between the anonymity degree and the magnitude of the sets of data records, and the distribution of the magnitudes of the record sets. We also examined the utility of the anonymized provenance using real-world workflows, and assessed the efficiency of our solution. In our ongoing work, we are investigating the applicability of our solution to anonymization techniques, other than k-anonymity, e.g., l-diversity and t-closeness [START_REF] Domingo-Ferrer | A critique of k-anonymity and some of its enhancements[END_REF]. We are also investigating the incorporation of vocabularies (hierarchies of concepts) to our solution. In the solution we presented, we substitute each quasi-identifier attribute value with a set containing the values that that attribute takes given a group (i.e. equivalence class) of data records. We will investigate how the use of vocabularies can be incorporated in our solution for generalizing the values of quasi-identifier attributes.

Fig. 1 :

 1 Fig. 1: Example workflow.

Fig. 2 :

 2 Fig. 2: Example of a module with multiple preceding modules in a workflow. Constructing input data records for a module with a single preceding module. Consider two modules m 1 and m 2 in the workflow w, such that the invocation of m 1 has l output records ⟨p m 1 1 , . . . , p m 1 l ⟩, and the invocation of m 2 has n input records ⟨p m 2 1 , . . . , p m 2 n ⟩, such that n ≤ l. Consider also that each output port p m 1i is connected to the input port p m 2 i , with 1 ≤ i ≤ n. In other words, m 1 is the only preceding module of m 2 . We distinguish the following cases:• The invocation of m 1 produces a single data record ⟨d 1 , . . . ,d l ⟩, that is m 1 .card ∈ {1to -1, nto -1}.If m 2 expects a single data record, i.e., m 2 .card ∈ {1to -1, 1to -n}, then the data record ⟨d 1 , . . . , d n ⟩ is used for its invocation. If, on the other hand, m 2 expects a list of data records, then its invocation is fed using the singleton list [⟨d 1 , . . . ,d n ⟩]. • The invocation of m 1 produces a list of data record [⟨d 1 1 , . . . , d 1 l ⟩, . . . , ⟨d r 1 , . . . , d r l ⟩], that is m 1 .card ∈ {1ton, nto -n}. If m 2 expects a single data record, i.e., m 2 .card ∈ {1to -1, 1to -n},then m 2 will be invoked r times using the data records ⟨d n 1 , . . . , d 1 n ⟩, . . . , ⟨d r 1 , . . . , d r n ⟩, respectively. Notice that, in this case, that an invocation (i.e., module binding) of m 1 yields multiple invocations of m 2 . If, on the other hand, m 2 expects a list of data records, then its invocation is fed using the list [⟨d n 1 , . . . , d 1 n ⟩, . . . , ⟨d r 1 , . . . , d r n ⟩]. Constructing input data records for a module with multiple preceding modules. Consider a module m 1 with the output ports ⟨p 1 , p 2 , p 3 ⟩, the module m2 with the output ports ⟨p 4 , p 5 ⟩, and the module m3 with the input ports ⟨p 6 , p 7 , p 8 ⟩. Consider now that m 3 has two preceding modules m 1 and m2 using the following data links: (m 1 : p 1 , m 3 : p 6), (m 1 : p 2 , m 3 : p 7) and (m 2 : p 4 , m 3 : p 8) (see Figure2). We distinguish the following cases:(1) An invocation of m 1 produces the data records ⟨d 1 , d 2 , d 3 ⟩ and an invocation of m 2 produces the data records ⟨d 4 , d 5 ⟩, respectively. If m 3 expects a single data record, i.e., m 2 .card ∈ {1to -1, 1to -n}, then the data record ⟨d 1 , d 2 , d 4 ⟩ is used for its invocation. If, on the other hand, m 3 expects a list of data records, then its invocation is fed using the singleton list [⟨d 1 , d 2 , d 4 ⟩]. (2) An invocation of m 1 produces a list of data record [⟨d 1 1 , d 1 2 , d 1 3 ⟩, . . . , ⟨d r 1 1 , d r 1 2 , d r 1 3 ⟩], and an invocation of m 2 produces the list of data records [⟨d 1 4 , d 1 5 ⟩, . . . , ⟨d r 2 4 , d r 2 5 ⟩]. The data records used to feed the invocation of m 3 are obtained by performing the cross products of the output lists of m 1 and m 2 , and retaining only the data values of the ports connected to m1. This results in the following list of data records: [⟨d 1 1 , d 1 2 , d 1 4 ⟩, . . . , ⟨d 1 1 , d 1 2 , d r 2 4 ⟩, . . . ⟨d r 1 1 , d r 1 2 , d 1 4 ⟩, . . . , ⟨d r 1 1 , d r 1 2 , d r 2 4 ⟩] If m 3 expects a list of data record, i.e.,

1)

 1 An invocation of m 1 produces the data records ⟨d 1 , d 2 , d 3 ⟩ and an invocation of m 2 produces the data records ⟨d 4 , d 5 ⟩, respectively. If m 3 expects a single data record, i.e., m 2 .card ∈ {1to -1, 1to -n}, then the data record ⟨d 1 , d 2 , d 4 ⟩ is used for its invocation. If, on the other hand, m 3 expects a list of data records, then its invocation is fed using the singleton list [⟨d 1 , d 2 , d 4 ⟩]. (2) An invocation of m 1 produces a list of data record [⟨d 1 1 , d 1 2 , d 1 3 ⟩, . . . , ⟨d r 1 1 , d r 1 2 , d r 1 3 ⟩], and an invocation of m 2 produces the list of data records [⟨d 1 4 , d 1 5 ⟩, . . . , ⟨d r 2 4 , d r 2 5 ⟩]. The data records used to feed the invocation of m 3 are obtained by performing the cross products of the output lists of m 1 and m 2 , and retaining only the data values of the ports connected to m1. This results in the following list of data records:

 and its output with k getPractitioners o

Fig. 3 :

 3 Fig. 3: Simple workflow example.

Fig. 4 :

 4 Fig. 4: Workflow levels.

Definition 4 . 1 (

 41 Lineage-Related Equivalence Classes). Let E1 and E2 be two different equivalence classes. We say that E1 and E2 are lineage-related iff there are data records in E1 that (transitively) contributed through workflow executions to data records in E2, or vice-versa. anonymizeInitialInput(m, prov(m).in, k g). This operation generates input equivalence classes for the initial module m: prov a (m).in = {E1 m in , . . . , En m in }, n ≥ 1. Such equivalences classes are obtained by partitioning the input sets of data records in prov(m).in into groups, each containing at least k g input sets. Each group gives rise to an equivalence class by masking the identifying attribute values of its data records and generalizing their quasi-identifying attribute values such that the data records in the group are indistinguishable w.r.t. their quasi-identifying attribute values. Details about the partitioning operation are presented later in Section 5.

 ports of m i to the input ports of m i+1 for i ∈ [1, n -1]. Given the guarantees G 2 and G 4 , it follows that • Every input equivalence class in m i gives rise to one lineage-related output equivalence class of m i for i ∈ [1, n]. • Every output equivalence class in m i gives rise to one lineage-related input equivalence class of m i+1 for i ∈ [1, n -1].

Fig. 5 :Fig. 6 :

 56 Fig. 5: AEC of the input and output.

Fig. 7 :Fig. 8 :

 78 Fig. 7: AEC obtained by sweeping the value of l for k = 20.

Fig. 9 :

 9 Fig.9: AEC obtained using a geometric distribution for the magnitude of l

 the set of data records 3 6 11 2025 33

Table 1 :

 1 Input and Output Provenance of admittedTo.

		Input Patient DataSet	Output Hospital DataSet
	ID	name	birth	lin	ID	hospital	Lin
	p 1 p 2	Garnick Hiyoshi	1990 1987	{r 1 , r 2 } {r 3 , r 4 }	h 1 h 2	St Louis St Anton	{p 1 , p 3 }
	p 3 p 4	Suessmith Solares	1989 1985	{r 5 , r 6 } {r 7 , r 8 }	h 3 h 4	St Anne St August	{p 2 , p 4 }
	p 5 p 6	Kading Pero	1992 1988	{r 9 , r 10 } {r 11 , r 12 }	h 5 h 6	Holby Larib.	{p 5 , p 7 }
	p 7 p 8	Pehl Barriga	1986 1995	{r 13 , r 14 } {r 15 , r 16 }	h 7 h 8	St James St Mary	{p 6 , p 8 }

 The identifying attribute values of the data records in every equivalence class Ei m in are masked, and their quasi-identifying attribute values are generalized such that the data records in an equivalence class Ei m in are indistinguishable w.r.t. their quasiidentifying attribute values.

	Definition 2.6 (Equivalence Classes). Consider the input
	provenance prov(m).in of a module m. We say that the set
	{E1 m in , . . . , E1 m in }, n ≥ 1, is a set of input equivalence classes for m and write prov a (m).in = {E1 m in , . . . , E1 m in } iff: 1)-The set {E1 m in , . . . , E1 m in } forms a partitioning for prov(m).in. That is prov(m).in = ∪ i∈[1,n] Ei m in , and Ei m in ∩ Ej m in = ∅ for
	i, j ∈ [1, n] s.t. i j.
	2)-

Table 3 :

 3 Input and Output Provenance of admittedTo where the Input and Output are 2-anonymized.

		2-anonymized Patient DataSet		2-anonymized Hospital DataSet
	ID	name	birth	Lin	ID	hospital	Lin
	p 1 p 2	⋆ ⋆	{1987,1990} {1987,1990}	{r 1 , r 2 } {r 3 , r 4 }	h 1 h 2	{St Louis, St Anne} {St Anton, St August}	{p 1 , p 3 }
	p 3 p 4	⋆ ⋆	{1985,1989} {1985,1989}	{r 5 , r 6 } {r 7 , r 8 }	h 3 h 4	{St Louis, St Anne} {St Anton, St August}	{p 2 , p 4 }
	p 5 p 6	⋆ ⋆	{1988,1992} {1988,1992}	{r 9 , r 10 } {r 11 , r 12 }	h 5 h 6	{Holby, St James} {Larib., St Mary}	{p 5 , p 7 }
	p 7 p 8	⋆ ⋆	{1986,1995} {1986,1995}	{r 13 , r 14 } {r 15 , r 16 }	h 7 h 8	{Holby, St James} {Larib., St Mary}	{p 6 , p 8 }

Table 4 :

 4 Input and Output Provenance of admittedTo where the Input is 2-anonymized and the output does not need to be. The conditions in Definition 2.6 are satisfied.2)-An input (resp. output) equivalence class Ei m in (resp. Ei m out) contains entire sets of input sets (resp. output sets) of data records.

		Input Patient DataSet	Output Hospital DataSet
	ID	name	birth	Lin	ID	hospital	Lin
	p 1 p 2	⋆ ⋆	{1989,1990} {1985,1987}	{r 1 , r 2 } {r 3 , r 4 }	h 1 h 2	St Louis St Anton	{p 1 , p 3 }
	p 3 p 4	⋆ ⋆	{1989,1990} {1985,1987}	{r 5 , r 6 } {r 7 , r 8 }	h 3 h 4	St Anne St August	{p 2 , p 4 }
	p 5 p 6	⋆ ⋆	{1986,1992} {1988,1995}	{r 9 , r 10 } {r 11 , r 12 }	h 5 h 6	Holby Larib.	{p 5 , p 7 }
	p 7 p 8	⋆ ⋆	{1986,1992} {1988,1995}	{r 13 , r 14 } {r 15 , r 16 }	h 7 h 8	St James St Mary	{p 6 , p 8 }
	to gracefully reason about k-anonymity for collection-oriented
	modules.					

Definition 3.1 (Equivalence Classes -Revisited). Given a module m, we say that the set {E1 m in , . . . , En m in } (resp {E1 m out , . . . , En m out }) is a set of input (resp. output) equivalence classes for m, and write: prov a (m).in = {E1 m in , . . . , E1 m in } (resp. prov a (m).out = {E1 m out , . . . , E1 m out }) iff: 1)-

Table 5

 5

		:	Input	and	Output	Provenance	of
	getPractitioners.				
	Input Patient DataSet		Output Practitioner DataSet
	ID	name	birth	ID	name	birth	Lin
	p 1	Facello	1953	pr 1	Rosch	1996	
	p 2	Simmel	1964	pr 2	Bellone	1987	{p 1 , p 2 }
	p 3	Bamford	1959	pr 3	Gargeya	1993	
	p 4	Koblick	1954	pr 4	Gubsky	1988	
	p 5	Maliniak	1955	pr 5	Heyers	1985	{p 3 , p 4 }
	p 6	Preusig	1953	pr 6	Tokunaga	1991	
	p 7	Zielinski	1957	pr 7	Camarinopoulos	1995	
	p 8	Kalloufi	1958	pr 8	Miculan	1986	{p 5 , p 6 }
				pr 9	Birrer	1992	
				pr 10	Keustermans	1999	
				pr 11	Mancunian	2001	{p 7 , p 8 }
				pr 12	Bond	1982	

Table 6 :

 6 2-anonymized Input and 3-anonymized Output Provenance of getPractitioners.

	Input Patient DataSet		Output Practitioner DataSet	
	ID	name	birth	ID	name	birth	Lin
	p 1	⋆	{53, 64}				

Table 7 :

 7 Input and output data records of Getsurдeon.

	ID	name	YoB	Lin	ID	name	YoB	Lin
	p 1	Facello	1995	-	s 1	Moore	1970	p 1
	p 2	Bond	1992	-	s 2	Manson	1972	p 2
	p 3	Oliver	1982	-	s 3	Fox	1969	p 3
	p 4	Habbard	1981	-	s 4	Parsons	1979	p 4

Table 8 :

 8 Anonymized input and output data records of Getsurдeon.

	ID	name	YoB	Lin	ID	name	DoB	Lin
	p 1	⋆	{92,95}	-	s 1	⋆	{70,72}	p 1
	p 2	⋆	{92,95}	-	s 2	⋆	{70,72}	p 2
	p 3	⋆	{81,82}	-	s 3	⋆	{69,79}	p 3
	p 4	⋆	{81,82}	-	s 4	⋆	{69,79}	p 4

Table 9 :

 9 Input and output data records of GetSuccessRate.

	ID	name	YoB	Lin	ID	hospital	rate	Lin
	s 1	Moore	1970	p 1	r 1	St Louis	70%	s 1
	s 2	Manson	1972	p 2	r 2	St Antonio	75%	s 2
	s 3	Fox	1969	p 3	r 3	St Anne	60%	s 3
	s 4	Parsons	1979	p 4	r 4	st Augustine	30%	s 4

Table 10 :

 10 Input and output data records of GetSuccessRate.

					ID	hospital	rate	Lin
	ID	name	YoB	Lin	r 1	{St Louis, St Antonio }	70%	s 1
	s 1 s 2	⋆ ⋆	{69,70} {72,79}	p 1 p 2	r 2	{St Louis, St Antonio }	75%	s 2
	s 3 s 4	⋆ ⋆	{69,70} {72,79}	p 3 p 4	r 3	{St Anne, St Augustine}	60%	s 3
					r 4	{St Anne, St Augustine}	30%	s 4

Table 11 :

 11 Correctly anonymized output data records of GetSuccessRate.

	record_ID	hospital	rate	Lin
	r 1	{St Louis, St Antonio }	70%	s 1
	r 2	{St Louis, St Antonio }	75%	s 1
	r 3	{St Anne, St Augustine}	60%	s 1
	r 4	{St Anne, St Augustine}	30%	s 1

Table 13 :

 13 Time for grouping 100 sets of data records.

A module can appear more than once in a workflow, that is M can be viewed as a multiset. However, for exposition sake and w.l.o.g, we assume that it is a set.

We use in what follows the terms module invocation and module binding interchangeably.

A hospital appears in the result only if it was visited by each of the patients in the input set.

2-anonymized Patient DataSet Hospital DataSet ID name birth lin ID hospital Lin p 1 ⋆ {1987,1990} {r 1 , r 2 } h 1 St Louis {p 1 , p 3 } p 2 ⋆ {1987,1990} {r 3 , r 4 } h 2 St Anton p 3 ⋆ {1985,1989} {r 5 , r 6 } h 3 St Anne {p 2 , p 4 } p 4 ⋆ {1985,1989} {r 7 , r 8 } h 4 St August p 5 ⋆ {1988,1992} {r 9 , r 10 } h 5 Holby {p 5 , p 7 } p 6 ⋆ {1988,1992} {r 11 , r 12 } h 6 Larib. p 7 ⋆ {1986,1995} {r 13 , r 14 } h 7 St James {p 6 , p 8 } p 8 ⋆ {1986,1995} {r 15 , r 16 } h 8 St Mary

pr 1 ⋆ {87, 93, 96} {p 1 , p 2 } p 2 ⋆ {53, 64} pr 2 ⋆ {87, 93, 96} p 3 ⋆ {54, 59} pr 3 ⋆ {87, 93, 96} p 4 ⋆ {54, 59} pr 4 ⋆ {85, 88, 91} {p 3 , p 4 } p 5 ⋆ {53, 55} pr 5 ⋆ {85, 88, 91} p 6 ⋆ {53, 55} pr 6 ⋆ {85, 88, 91} p 7 ⋆ {57, 58} pr 7 ⋆ {86, 92, 95} {p 5 , p 6 } p 8 ⋆ {57, 58} pr 8 ⋆ {86, 92, 95} pr 9 ⋆ {86, 92, 95} pr 10 ⋆ {82, 99, 01} {p 7 , p 8 } pr 11 ⋆ {82, 99, 01} pr 12 ⋆ {82, 99, 01}

A practitioner appears in the output set only if it has examined every patient in the input set.

Note that there is a situation in which the module m 2 is not invoked as part of the workflow execution. This is, specifically, the case when the execution of the workflow raises an error, e.g, if the invocation of the module m 2 or the invocation of one of its (transitively) preceding modules raises an error. However, in our case, we consider that the user wishes to publish the provenance of workflow executions that have been terminated normally.

We use * to denote 1 or n.

The problem statement formulated in Section 2.3 contains this condition.

We could not use the provenance challenge queries as they are since they were specified for a single specific workflow on image processing.