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Abstract

We consider the problem of variable selection in high-dimensional settings with
missing observations among the covariates. To address this relatively understud-
ied problem, we propose a new synergistic procedure – adaptive Bayesian SLOPE
– which effectively combines the SLOPE method (sorted l1 regularization) together
with the Spike-and-Slab LASSO method. We position our approach within a Bayesian
framework which allows for simultaneous variable selection and parameter estimation,
despite the missing values. As with the Spike-and-Slab LASSO, the coefficients are
regarded as arising from a hierarchical model consisting of two groups: (1) the spike
for the inactive and (2) the slab for the active. However, instead of assigning inde-
pendent spike priors for each covariate, here we deploy a joint “SLOPE” spike prior
which takes into account the ordering of coefficient magnitudes in order to control for
false discoveries. Through extensive simulations, we demonstrate satisfactory perfor-
mance in terms of power, FDR and estimation bias under a wide range of scenarios.
Finally, we analyze a real dataset consisting of patients from Paris hospitals who un-
derwent severe trauma, where we show excellent performance in predicting platelet
levels. Our methodology has been implemented in C++ and wrapped into an R
package ABSLOPE for public use.
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1 Introduction

The selection of variables from high-dimensional data is an ubiquitous problem in many

contemporary data applications. In molecular genetics, for example, a vast number of pre-

dictors is available but only a few are deemed relevant for explaining biological phenomena.

The LASSO (Tibshirani, 1996), now a default penalized likelihood method, has proved it-

self to be successful at simultaneously estimating parameters and covariate sets. While

LASSO possesses nice theoretical guarantees, it may lead to false discoveries (Su et al.,

2017) and it allows to identify the true model only under rather strict “irrepresentability”

conditions (Wainwright, 2009; Tardivel and Bogdan, 2018). The adaptive LASSO variant

(Zou, 2006), which instead uses a weighted `1 penalty (adjusting regularization based on

some initial estimates of regression coefficients), reduces bias in estimation and can be con-

sistent for variable selection even when the irrepresentability condition is not satisfied (see

e.g. Fan et al. (2014); Tardivel and Bogdan (2018); Rejchel and Bogdan (2019)). However,

performance properties of adaptive LASSO still rely heavily on the weight function and

tuning parameters, whose optimal choices depend on unknown aspects of the estimation

problem such as signal magnitude or sparsity.

More recently, Ročková and George (2018) developed the Spike-and-Slab LASSO (SSL)

procedure which bridges the default penalized likelihood approach (the LASSO) and the

default Bayesian variable selection approach (spike-and-slab). In SSL, the penalty function

arises from a fully Bayes spike-and-slab formulation and, as such, exerts self-adaptation

properties with less hyper-parameter tuning required. In addition, SSL alleviates over-

shrinkage of important signals by providing enough prior support for large effects. Theo-

retical results and simulations reported in Ročková and George (2018) and Ročková (2018)

show that SSL attains near rate-minimax convergence (for the posterior mode as well as

the entire posterior) and performs very well even when the columns in the design matrix

are strongly correlated.

In this article we build on the Spike-and-Slab LASSO framework by incorporating as-

pects of the Sorted L-One Penalized Estimator (SLOPE) method of Bogdan et al. (2015).

The main motivation behind SLOPE was the control of the False Discovery Rate (FDR).

Controlling FDR is one of the central goals of many methodological developments in mul-
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tiple regression (see e.g. Barber et al. (2015); Candès et al. (2018)). Compared to methods

aiming at perfect signal recovery, controlling for FDR is more liberal as it allows for some

small number of mistakes. As a result, this leads to substantial gains in power and in pre-

diction improvements when the signal is weak. As shown in Bogdan et al. (2015), SLOPE

controls for FDR when the design matrix is orthogonal. Moreover, Su and Candès (2016)

and Bellec et al. (2018) showed that, contrary to the LASSO, SLOPE allows one to achieve

the exact minimax convergence rate for regression coefficients in sparse high dimensional

regression. However, similarly as with the LASSO, it is challenging to attain good predic-

tion and, at the same time, good variable selection with SLOPE in finite samples. Large

amounts of shrinkage, needed to keep FDR small, result in large estimation bias of impor-

tant regression coefficients and thereby poor estimation. One practical remedy, suggested

by Bogdan et al. (2015); Brzyski et al. (2019), is proceeding in two steps: i) using SLOPE

to detect relevant predictors; ii) applying standard least-squares with selected predictors

for estimation. This two-step approach allows one to diminish the bias of SLOPE. However,

there still remains the problem of the loss of FDR control, which typically occurs when

the columns of the design matrix are correlated. This loss of FDR control results from

over-shrinkage of large regression coefficients, whose unexplained effect is often compen-

sated by even slightly correlated “false” explanatory variables (see Su et al. (2017) for the

theoretical analysis of the similar phenomenon for the LASSO).

1.1 Our Contribution

The adaptive Bayesian version of SLOPE (ABSLOPE) we propose here addresses these is-

sues by incorporating aspects of the Spike-and-Slab LASSO. By embedding SLOPE within

a Bayesian spike-and-slab framework, our prior is constructed so that the “spike” compo-

nent effectively reduces to regular SLOPE for very small regression coefficients. Together

with a bias-reducing slab for large signals, this allows for FDR control under a wide range

of possible scenarios, as will be seen from our extensive simulation study. In addition,

the “slab” component of our mixture prior preserves the averaging property of SLOPE

for similar regression coefficients (see Figueiredo and Nowak (2016) for discussion of the

SLOPE averaging effect). This leads to very good prediction properties when regressors
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are substantially correlated. The hyper-parameters of our mixture SLOPE prior are itera-

tively updated using the full Bayesian model in the spirit of stochastic approximation EM

(Lavielle, 2014), which can also handle missing data.

Our aim is to develop a complete and efficient methodology for selection of variables

with high dimensional data and missing values. The methodology has been implemented

in an R (R Core Team, 2017) package ABSLOPE (Jiang et al., 2019b). The code that

reproduces all our experiments is available from GitHub (Jiang, 2019).

1.2 Previous work on selecting variables with missing data

Handling missing data within the context of high-dimensional variable selection is a very

important problem. Indeed, missing data are omnipresent. For example, genetic data

obtained from microarray experiments often contain missing values for several reasons:

insufficient resolution, image corruption, manufacturing errors, etc. The most common

practice of dealing with missing data, i.e. listwise deletion, leads to estimation bias, unless

the missing data are generated completely randomly, and information loss. There is no

shortage of literature on missing values management, e.g. see Little and Rubin (2002)

and the platform R-miss-tastic1 (Mayer et al., 2019) for an overview of the state of the

art. However, there are only a few methods for selecting an actual model when covariate

values are missing. For example, in generalized linear models, Claeskens and Consentino

(2008); Ibrahim et al. (2008); Jiang et al. (2018) adapted likelihood-based information

criteria designed for complete data such as AIC. However, their methods cannot process

large data where the dimension p is larger than (or comparable to) the sample size n. In

linear models, Loh and Wainwright (2012) formulated a LASSO variant by modifying the

covariance matrix estimation for the case of missing values, and solved the resulting non-

convex problem with an algorithm based on the projected gradient descent. However, this

method assumes that the l1 norm is bounded by a constant which depends on the sparsity

level rarely known in practice. In other related work, Zhao et al. (2017) suggested a pseudo-

likelihood method with a LASSO penalty, which can be used to select variables, but does

not estimate the parameters. Finally, Liu et al. (2016) combined penalized regression

1https://rmisstastic.netlify.com
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techniques with multiple imputation and stability selection.

This manuscript is organized as follows: Section 2 introduces notation and assump-

tions about our ABSLOPE model. Section 3 describes the stochastic approximation EM

algorithm (and its simplified variant) for processing missing data. Section 4 evaluates the

methodology with a comprehensive simulation study focusing on power, FDR and estima-

tion bias. In Section 5, we apply our approach to a medical dataset of trauma patients to

develop a model that predicts the rate of platelets using (incomplete) medical information

collected by the ambulance. Finally, Section 6 concludes our work with a discussion.

2 Statistical model and assumptions

Let y = (yi,1 ≤ i ≤ n) be a vector of n responses, centered such that ȳ = 1
n ∑

n
i=1 yi = 0; and

let X = (Xij,1 ≤ i ≤ n,1 ≤ j ≤ p) be a design matrix of dimension n×p standardized so that

each column has mean 0 and a unit l2 norm, i.e. ∑
n
i=1Xij = 0 and ∑

n
i=1X

2
ij = 1 for 1 ≤ j ≤ p.

We consider the problem of estimating β based on realizations y from the linear regression

model:

y =Xβ + ε,

where β = (βj,1 ≤ j ≤ p) is the vector of regression coefficients of length p, for which we

assume a sparse structure, and ε is a vector of length n of independent Gaussian errors

with mean 0 and variance σ2, i.e. ε ∼ N (0, σ2In).

2.1 SLOPE

SLOPE (Bogdan et al., 2015) estimates coefficients by minimizing a regularized residual

sum of squares using a sorted l1 norm penalty which generalizes the LASSO by penalizing

larger coefficients more stringently:

β̂SLOPE = arg min
β∈Rp

{
1

2
∥y −Xβ∥2 + σ

p

∑
j=1

λj ∣β∣(j)} , (1)

where the penalty coefficients λ1 ≥ λ2 ≥ ⋯ ≥ λp ≥ 0 and the absolute values of elements in

β are sorted in a decreasing order ∣β∣(1) ≥ ∣β∣(2) ≥ ⋯ ≥ ∣β∣(p). The sorted l1 penalty can also
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be written as:

pen(λ) = σ
p

∑
j=1

λj ∣β∣(j) = σ
p

∑
j=1

λr(β,j)∣βj ∣ ,

where r(β, j) ∈ {1,2,⋯, p} is the rank of βj among elements in β in a descending order. To

solve the convex but non-smooth optimization problem (1), a proximal gradient algorithm

can be used as detailed in Bogdan et al. (2015). Unlike in SSL, the SLOPE formulation

operates under the following premise: the higher the rank (i.e. the stronger the signal),

the larger the penalty. This behavior is quite similar to the Benjamini-Hochberg procedure

(BH) (Benjamini and Hochberg, 1995), which compares more significant p-values with more

stringent thresholds. In this way, SLOPE can be seen as building a bridge between the

LASSO and the False Discovery Rate (FDR) control for multiple testing. In the context

of multiple regression we define FDR of an estimator β̂ = (β̂1, . . . , β̂p) as

FDR = E(
V

max(1,R)
) ,

where

R = #{j ∶ β̂j ≠ 0} and V = #{j ∶ β̂j ≠ 0 ∧ βj = 0} .

SLOPE (Bogdan et al., 2015) uses the sequence of parameters λBH = (λBH,1, . . . , λBH,p) with

λBH,j = Φ−1 (1 − j ×
q

2p
) ,

where Φ(⋅) denotes the cdf of N (0,1) and q is the target FDR level.

2.2 Adaptive Bayesian SLOPE

As with any other penalized likelihood estimator, SLOPE can be seen as a posterior mode

under the following prior (Sepehri, 2016):

p(β ∣ σ2;λ) = C(λ,σ2)

p

∏
j=1

exp(−
1

σ
λr(β,j)∣βj ∣) ,

where C(λ,σ2) is a normalizing constant.

This prior depends on just one sequence of tuning parameters λ, which regulates both

model selection and shrinkage. Simulation results reported in Bogdan et al. (2015) show

that the selection of λ leading to FDR control also leads to over-excessive shrinkage and
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large estimation bias. To solve this problem we follow the idea of the Spike-and-Slab

LASSO (SSL) (Ročková and George, 2018). SSL avoids over-shrinkage of large effects

with a two-point Laplace mixture prior, where large coefficients can escape shrinkage

by migrating towards the slab portion of the prior. The spike component is assigned a

large penalty λ0 (small variance) to weed out noise, while the slab component has a small

penalty λ1 (large variance) to provide enough support for large signals. The Spike-and-

Slab LASSO procedure is based on maximum a posteriori estimation (MAP) which relies

on fast weighted LASSO calculations with weights automatically adjusted throughout the

algorithm. Namely, separately for each variable we have a penalty which depends on the

(conditional) posterior probability that this variable is an important predictor. The SSL

prior also automatically learns the level of sparsity through an empirical-Bayes plug-in in-

side the algorithm. The optimal choice of the spike penalty λ0 relates to the prior mixing

weight θ and should reflect the inherent sparsity of the signal (Ročková, 2018). The SSL

procedure does not choose a single value λ0 but, similarly as the LASSO, creates a solution

path indexed by increasing values of λ0. Since the SLOPE procedure was shown to be

adaptive to the level of sparsity, we will replace the spike portion of the SSL prior with the

Bayesian SLOPE prior to achieve more automatic sparsity adaptation.

In our adaptive Bayesian SLOPE (ABSLOPE), we thereby consider a different hier-

archical Bayesian model with the spike prior based on the sequence of SLOPE decaying

parameters to provide FDR control and with the SLOPE slab prior to stabilize estimation

of large signals by additional shrinkage of regression parameters towards one another (see

Brzyski et al. (2019) for some discussion of the SLOPE shrinkage). ABSLOPE borrows

strength across covariates (by tying them together through the spike distribution) and, sim-

ilarly as SSL, allows for estimation of latent inclusion parameters and the level of sparsity

(i.e. number of nonzero β coefficients). The procedure requires only three interpretable

input parameters: FDR level q and the hyperparameters a and b of the Beta prior for the

sparsity level θ ∼ Beta(a, b).

The ABSLOPE prior on the regression vector β is formally defined as:

p(β ∣ γ, c, σ2;λ)∝ c∑
p
j=1 1(γj=1)

p

∏
j=1

exp{−wj ∣βj ∣
1

σ
λr(Wβ,j)} . (2)

This formulation may seem a bit complicated at first sight and so we carefully explain its
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components below:

1. Each βj ≠ 0 is regarded as signal and noise otherwise.

2. As is customary with spike-and-slab priors, each covariate xj is equipped with a

binary inclusion indicator γj ∈ {0,1} which indicates whether βj is is substantially

different from the noise level. The vector γ = (γ1,⋯, γp) then indexes 2p possible

model configurations. Conditionally on a mixing (prior inclusion) weight θ ∈ (0,1),

we define the model distribution as an independent Bernoulli product:

p(γ ∣ θ) =
p

∏
j=1

θγj(1 − θ)1−γj ,

where θ = P(γj = 1; θ) is formally defined as the expected fraction of large βj, i.e.,

θ indicates the level of sparsity. We assume that θ arose from a beta distribution

Beta(a, b), where the values of a and b can be selected by the user, according to an

initial guess of the signal sparsity.

3. The parameter c ∈ (0,1) is the ratio of average signal magnitudes between the null

components and the non-null components. We assume a non-informative prior c ∼

U[0,1].

4. We define a diagonal weighting matrix W = diag(w1,w2,⋯,wp) consisting of elements

wj = cγj + (1 − γj) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

c, γj = 1

1, γj = 0
.

5. For the case when the noise variance σ is unknown, we assume an uninformative prior

p(σ2)∝ 1
σ2 .

2.3 Motivation

In Appendix A.1 it is proved that the prior (2) leads to the regular SLOPE prior on the

transformed parameter vector z =Wβ, i.e.

p(z ∣ σ2;λ)∝
p

∏
j=1

exp{−
1

σ
λr(z,j)∣zj ∣} , (3)
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As a result, when W is known (i.e. we know the signal and noise variables from γj ∈

{0,1}) and when the data are fully observed, the MAP for β under the ABSLOPE prior

(2) can be obtained as a solution to SLOPE (1) with a weighted design matrix X̃ =XW −1.

Let us now clarify the value of introducing the weighting matrix W . It turns out that when

γj = 0 we have wj = 1, i.e., noise variables are treated with the regular SLOPE penalty

which will assign substantially larger shrinkage to smaller effects. This is different from

the SSL prior, which would shrink all the noise coefficients equally by λ0. On the other

hand, when γj = 1 we have wj = c < 1 and the variables are treated as true signals and

thereby not shrunk as much. This is achieved by multiplying the respective elements of the

vector of tuning parameters by c and, additionally, by moving these variables towards the

end of sequence. This implies that, under ABSLOPE, the large effects βj will be assigned

a penalty cλr(Wβ,j) that is smaller than λr(β,j) obtained under the regular SLOPE. As a

result, this adaptive version is poised to yield more accurate estimation since the l1 penalty

on true signals will be much smaller.

(a) Non-null β (b) Null β

Figure 1: Prior distribution of SLOPE and ABSLOPE, on β whose true value is non-null

(a) or null (b).

Figure 1 shows the difference between the SLOPE prior and the ABLSOPE prior on a

single coefficient βj. On the left, we have a slab prior distribution on an active coefficient

βj which shows that ABSLOPE promotes larger estimates: the mass is greater in the tails

compared to SLOPE. On the other hand, for the irrelevant βj (spike prior depicted on the
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right), ABSLOPE reduces to the double exponential SLOPE peak to threshold out small

effects.

The ABSLOPE prior can be seen as a spike-and-slab prior, where the spike component

models regression coefficients close to the noise level and the slab component models large

regression coefficients. In fact, the spike-and-slab LASSO prior can be regarded as a special

case when one considers the constant sequence of tuning parameters λ1 = . . . = λp = λ0 for

the spike SLOPE component and c as the ratio between spike and slab penalties. The

algorithm described in Section 3.4 shows that the slab component is destined to de-bias

the large regression coefficients while the spike component is aimed at FDR control.

2.4 Assumptions for missing values

We suppose that the missingness occurs only in the covariates X, not in the responses y.

For each individual i, we denote with Xi,obs the observed elements of Xi = (Xi1,Xi2,⋯,Xip)

and with Xi,mis the missing ones. We also decompose the matrix of covariates as X =

(Xobs,Xmis), keeping in mind that the missing elements may differ from one individual to

another. For each individual i, we define the missing data indicator vector mi = (mij,1 ≤

j ≤ p), with mij = 1 if Xij is missing and mij = 0 otherwise. The matrix m = (mi,1 ≤ i ≤ n)

then defines the missing data pattern. The missing data mechanism is characterized by the

conditional distribution of m given X and y, with a parameter φ, i.e., p(mi ∣ Xi, yi, φ). In

the literature on missing data (Little and Rubin, 2002), three mechanisms (Rubin, 1976)

are recognized to describe the distribution/sources of missingness: i) Missing completely

at random (MCAR): the absence is not related to any variable in the study; ii) Missing

at random (MAR): the missing data depends only on the observed variables; iii) Missing

not at random (MNAR): the absence depends on the value itself. Throughout this paper,

we assume the MAR mechanism which implies that the missing values mechanism can

therefore be ignored when maximizing the likelihood (Little and Rubin, 2002). A reminder

of these concepts is given in the Appendix A.2.

We adopt a probabilistic framework by assuming that Xi = (Xi1, . . . ,Xip) is normally

distributed:

Xi ∼
i.i.d.
Np(µ,Σ), i = 1,⋯, n .
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Since the covariates should be standardized (as we assumed at the beginning of Section

2), we have to reconsider our scaling of X in the light of missing data. When the missing

values are MCAR, scaling can be performed as a pre-processing step before performing the

analysis. Since observed values represent a random sample from the population, standard

deviations estimated using observed data are unbiased estimates of the population standard

deviation even if their variance is larger. When the missing data are MAR, standard

deviations estimated using observed data can be severely biased. Indeed, consider the case

when two variables are highly correlated and missing values occur in one variable when

the values of the other variable are larger than a constant, then the estimated standard

deviation will be biased downwards. Consequently, its estimation needs to be included in

the analysis. In the Appendix A.3, we detail how we update mean and standard deviation

at each iteration of the algorithm presented in Section 3.

2.5 Overview of modeling

Figure 2 shows our ABSLOPE graphical model with variables, parameters and their rela-

tions. We aim at estimating β and σ2, treating parameters µ and Σ as nuisance.

y

Xobs Xmisμ, Σ

θ γ

c

β

σ2

X

Figure 2: ABSLOPE graphical model. Arrows indicate dependencies. White circles are for

latent variables, gray ones for observed variables and squares for parameters.
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3 Parameter estimation and model selection

In this section, we develop an ABSLOPE method based on the stochastic approximation

EM algorithm. As this algorithm entails proper sampling which can be quite time consum-

ing, we also provide a simplified heuristic version called SLOBE, where the stochastic step

is replaced with deterministic approximations of parameter expected values. This faster

variant allows us to consider models of larger dimensions and, according to our simulation

study, performs very similarly to the stochastic version.

3.1 Maximizing the observed penalized likelihood

According to the model defined in Section 2 and presented in Figure 2, the penalized

complete-data log-likelihood can be written as:

`comp = log p(y,X, γ, c; β, θ, σ2) + pen(β)

= log {p(X ∣ µ,Σ)p(y ∣X; β,σ2)p(γ ∣ θ)p(c)} + pen(β)

= −
1

2
log(2π∣Σ∣) −

1

2
(X − µ)TΣ−1(X − µ) − n log(σ) −

1

2σ2
∥y −Xβ∥2

+

p

∑
j=1

1(γj = 1) log θ +
p

∑
j=1

1(γj = 0) log(1 − θ) −
1

σ

p

∑
j=1

wj ∣βj ∣λr(Wβ,j).

(4)

Similarly as the EMVS variable selection procedure of Ročková and George (2014), we

focus on obtaining the MAP point estimates and do not aspire at fully Bayesian inference

which would entail calculating the entire posterior distribution. Due to the presence of

latent variables Xmis, γ and c, we estimate β by maximizing the observed log-likelihood

which integrates over the latent variables: `obs =
t

`comp dXmis dcdγ. We use the EM

algorithm (Dempster et al., 1977) to estimate β, and in the meantime, obtain simulated γ to

distinguish the true signals from the noise, i.e. to select variables. Given the initialization,

each iteration t updates βt to βt+1 with the following two steps:

• E step: The expectation of the complete-data log likelihood with respect to the

conditional distribution of latent variables is computed, i.e.,

Qt = E(`comp) wrt p(Xmis, γ, c, θ ∣ y,Xobs, β
t, σt, µt,Σt) .
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Since this is not tractable, we derive a stochastic approximation EM (SAEM) algo-

rithm (Lavielle, 2014) by replacing the E step by a simulation step and a stochastic

approximation step.

– Simulation: draw one sample (X t
mis, γ

t, ct, θt) from

p(Xmis, γ, c, θ ∣ y,Xobs, β
t−1, σt−1, µt−1,Σt−1) ; (5)

– Stochastic approximation: update function Q with

Qt = Qt−1 + ηt (`comp∣
Xt

mis,γ
t,ct,θt

−Qt−1) , (6)

where ηt is the step-size.

The step-size (ηt) is chosen as a decreasing sequence as described in Delyon et al.

(1999) which ensures almost sure convergence of SAEM to a maximum of the observed

likelihood in their continuously differentiable case.

• M step: (βt+1, σt+1, µt+1,Σt+1) = arg maxQt+1.

Note that Σt+1 is estimated as above only when p << n. Otherwise we consider a

shrinkage estimation as discussed in Remark 1. Indeed, we regard (µ,Σ) as auxiliary

parameters, which are needed only to update the missing values.

Despite the apparent complexity of the algorithm, it turns out that the likelihood (4) can

be decomposed into several terms: one term for the linear regression part, one term for the

covariates distribution and terms for the latent variables γ and c, as illustrated in Figure

2. Consequently, one iteration can be divided into tractable sub-problems, as detailed in

the following subsections.

3.2 Simulation step: sampling the latent variables

To perform the simulation step (5), we use the Gibbs sampler. To simplify notation, we

hide the superscript and note that all conditional distributions are computed given the
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quantities from the previous iteration. We perform the following sampling procedure:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ ∼ Bin(
θc exp(−c 1

σ
∣βj ∣λr(Wβ,j))

(1−θ) exp(− 1
σ
∣βj ∣λr(Wβ,j))+θc exp(−c 1

σ
∣βj ∣λr(Wβ,j))

) ;

θ ∼ Beta (a +∑
p
j=1 1(γj = 1), b +∑

p
j=1 1(γj = 0)) , with Beta(a, b) a prior for θ ;

c ∼ Gamma (1 +∑
p
j=1 1(γj = 1), 1

σ ∑
p
j=1∣βj ∣λr(Wβ,j)1(γj = 1)) truncated to [0,1].

(7)

The detailed calculation and interpretation can be found in Appendix A.4. In addition, to

simulate the missing values Xmis, we perform a decomposition:

Xmis ∼ p(Xmis ∣ γ, c, y,Xobs, β, σ, θ, µ,Σ)

= p(Xmis ∣ y,Xobs, β, σ, µ,Σ)

∝ p(y ∣Xobs,Xmis, β, σ)p(Xmis ∣Xobs, µ,Σ) .

(8)

Here, we observe that the target distribution (8) is a normal distribution since the two

terms after factorization are both normal. In the following proposition, we give the explicit

form of the target distribution as a solution to a system of linear equations.

Proposition 1. For a single observation x = (xmis, xobs) we denote with xobs and xmis

observed and missing covariates, respectively. Let M be the set containing indexes for

missing covariates and O for the observed ones. Assume that p(xobs, xmis; Σ, µ) ∼ N (µ,Σ)

and let y = xβ + ε where ε ∼ N(0, σ2). For all the indexes of the missing covariates i ∈M,

we denote:

mi =

p

∑
q=1

µjsiq, ui = ∑
k∈O

xkobssik, r = y − xobsβobs, τi =
√
sii + β2

i /σ
2 ,

with sij elements of Σ−1 and βobs the observed elements of β.

Let µ̃ = (µ̃i)i∈M be the solution of the following system of linear equations:

rβi/σ2 +mi − ui
τi

− ∑
j∈M,j≠i

βiβj/σ2 + sij
τiτj

µ̃j = µ̃i , for all i ∈M , (9)

and let B be a matrix with elements:

Bij =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

βiβj/σ2+sij
τiτj

, if i ≠ j

1, if i = j
,
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then for z = (zi)i∈M where zi = τiximis we have:

z ∣ xobs, y; Σ, µ, β, σ2 ∼ N(µ̃,B−1) .

As a result, we can simulate missing covariates from:

xmis ∣ xobs, y; Σ, µ, β, σ2 ∼ N(µ̃⊘ τ,B−1 ⊘ (ττT )) ,

where τ = (τi)i∈M ⊘ is used for Hadamard division. The proof is provided in Appendix A.5.

3.3 Stochastic approximation and maximization steps

After the simulation step, we obtain one sample for each latent variable: X t
mis, γ

t, ct, and

thus W t with diagonal elements wtj = 1 − (1 − ct)γtj. Now we have several parameters

to estimate, but each parameter only concerns some of the terms in the complete-data

likelihood. This helps us simplify calculations. The maximization step is nevertheless

quite difficult because the complete model does not belong to a regular exponential family

(if so we could update the sufficient statistics and maximize more easily).

As the implementation of SAEM is quite challenging in the general step-size case, we

start with the simpler case of fixed step-size ηt = 1. It is important to note that this causes

larger variance compared to setting the step-size as a decreasing sequence (Delyon et al.,

1999) and there is no guarantee of convergence to the actual mode, only to its neighborhood.

3.3.1 Step-size ηt = 1

When ηt = 1, estimation boils down to maximizing the complete-data likelihood completed

by sampling the latent variables from their conditional distribution given the observed

values .

1. Update β.

βt = arg max
β

Qt
1(β) ∶= −

1

2(σt−1)
2 ∥y −X

tβ∥2 −
1

σt−1

p

∑
j=1

wtj ∣βj ∣λr(W tβ,j) ,

where X t = (Xobs,X t
mis). This estimate corresponds to the solution of SLOPE, given

the value of W , Xmis and σ. In our implementation of ABSLOPE we solve the SLOPE
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optimization problem using the Alternative Direction Method of Multipliers of (Boyd

et al., 2011), which turns out to be much quicker then the proximal gradient algorithm

of (Bogdan et al., 2015) when the regressors are strongly correlated or when they are

on different scales, as in our reweighting scheme.

2. Update σ.

σt = arg max
σ

Qt
2(σ) ∶= −n log(σ) −

1

2σ2
∥y −X tβt∥2 −

1

σ

p

∑
j=1

wtj ∣β
t
j ∣λr(W tβt,j) .

Given by the derivative, the solution to estimate σ is:

σt =
1

2n

⎡
⎢
⎢
⎢
⎢
⎢
⎣

p

∑
j=1

λr(W tβt,j)w
t
j ∣β

t
j ∣ +

¿
Á
Á
ÁÀ(

p

∑
j=1

λr(W tβt,j)w
t
j ∣β

t
j ∣)

2

+ 4nRSS

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (10)

where the RSS (residual sum of squares) is ∥y −X tβt∥2.

If we omit the penalization term, (10) amounts to σt =
√

RSS
n , which is the classical

formula for MLE of σ when β is also estimated by MLE. In this case this estimator

would be biased downwards. Interestingly, our posterior mode estimator of
√
nσ

is larger than the corresponding RSS, which, according to the simulation results in

Subsection 4.2, often leads to a less biased estimator when most of the true effects

are detected by ABSLOPE.

3. Update µ,Σ:

µt,Σt = arg max
µ,Σ

−
1

2
log(2π∣Σ∣) −

1

2
(X t − µ)⊺Σ−1(X t − µ) .

When p << n, the solution is given by the empirical mean and the empirical covariance

matrix:

µt = X̄ t =
1

n

n

∑
i=1

X t
i and Σt =

1

n

n

∑
i=1

(X t
i − X̄

t)(X t
i − X̄

t)⊺ .

In high dimensional setting, estimation of Σt by the empirical covariance matrix is

replaced by shrinkage estimation, as discussed in Remark 1.

Remark 1. To tackle the problem of estimation and inversion of the covariance matrix

in high dimensions, one can resort to shrinkage estimation as detailed in Ledoit and Wolf
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(2004). With the assumption that the ratio n
p is bounded, they propose an optimal lin-

ear shrinkage estimator as a linear combination of identity matrix Ip and the empirical

covariance matrix S, i.e.:

Σ̂ = ρ1Ip + ρ2S, where ρ1, ρ2 = arg min
ρ1,ρ2

E∥Σ̂ −Σ∥2 .

The method boils down to shrinking empirical eigenvalues towards their mean. The pa-

rameters ρ1 and ρ2 are chosen with asymptotically (as n and p go to infinity) uniformly

minimum quadratic risk in its class.

3.3.2 General step-size

With a general step-size (say ηt =
1
t ), for a model parameter ψ we set

ψt+1 = ψt + ηt [ψ̂
t
MLE − ψ

t] , (11)

where ψ̂tMLE is the MLE estimator of the complete-data likelihood completed by drawing

the latent variables from their conditional distributions given the observed information.

This exactly corresponds to the estimate in Subsection 3.3.1 when ηt = 1. In other words,

we apply stochastic approximations on the model parameters, instead of directly operating

on the likelihood in (6). When the likelihood (4) is a linear function of the parameters, the

stochastic approximation step in equation (6) corresponds exactly to our proposal (11). In

other situations, it gives good results from an empirical point of view.

3.4 SLOBE: Quick version of ABSLOPE

The implementation of SAEM, as described in Subsection 3.2 and 3.3, can still be costly

in terms of computation time, even if the terms of the likelihood decompose well and we

use the approximation (11). We therefore propose a simplified version of the algorithm,

called SLOBE, which instead of drawing samples (X t
mis, γ

t, ct, θt) from their conditional

distribution (5) in the simulation step, approximates them by their conditional expectation,

i.e.,

(X t
mis, γ

t, ct, θt)← E(Xmis, γ, c ∣ y,Xobs, β
t−1, σt−1, µt−1,Σt−1) ;

To simplify notation, we hide the superscript, but note that all the conditional expectations

are computed given the quantities from the previous iteration.
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1. Approximate γj by:

π ∶= E(γj = 1 ∣ γ−j, c, β, σ, θ,W ) = p(γj = 1 ∣ γ−j, c, β, σ, θ,W )

(7)
=

θc exp (−c 1
σ ∣βj ∣λr(Wβ,j))

(1 − θ) exp (− 1
σ ∣βj ∣λr(Wβ,j)) + θc exp (−c 1

σ ∣βj ∣λr(Wβ,j))
.

(12)

2. Approximate θ by:

E(θ ∣ γ, y,Xobs,Xmis, β, σ, c, µ,Σ,W ) = E(θ ∣ γ, β, σ,W )
(7)
=
a +∑

p
j=1 1(γj = 1)

a + b + p
, (13)

where a and b are fixed parameters in the prior of θ.

3. Approximate c by:

E(c ∣ γ, y,Xobs,Xmis, β, σ, θ, µ,Σ,W )
(19)
=
∫

1

0 x
a′ exp(−b′x)dx

∫
1

0 x
a′−1 exp(−b′x)dx

, (14)

where a′ = 1 +∑
p
j=1 1(γj = 1), b′ = 1

σ ∑
p
j=1∣βj ∣λr(Wβ,j)1(γj = 1).

4. In the case with missing values, for the ith observation Xi, approximate Xi,mis by:

E(Xi,mis ∣ γ, c, y,Xi,obs, β, σ, θ, µ,Σ) = E(Xi,mis ∣ y,Xi,obs, β, σ, µ,Σ) ,

which is provided by Proposition 1.

Then, in step M, we maximize the likelihood of the complete data, as in Subsection 3.3.1.

The impact of replacing the simulation step with a conditional expectation is that we ignore

the variability of latent variable sampling, which in high dimensional settings helps reduce

noise of the algorithm, and which also leads to accelerations as shown in our simulation

study in Subsection 4.5. We provide a summary of ABSLOPE and SLOBE methods in

Appendix A.6.

4 Simulation study

4.1 Simulation setting

To illustrate the performance of our methodology, we perform simulations by first generat-

ing data sets as follows:

19



1. A design matrix Xn×p is generated from a multivariate normal distribution N (µ,Σ) .

The matrix is standardized, s.t., the mean of each column is 0 and its `2-norm is 1.

2. The signal magnitude is c0

√
2 log p2 when c0 is large the signal strength is stronger.

Only k on the p predictors are non-zero and all equal to c0

√
2 log p.

3. The response vector is generated from y = Xβ + ε with ε ∼ N(0, σ2In) and σ = 1 to

start.

4. Missing values are entered into the design matrix using a MCAR or MAR mechanism.

For the former, we randomly generate 10% of missing cells; for the later, we follow

the multivariate imputation procedure proposed by Schouten et al. (2018).

We set the initialization and the hyperparameters as follows.

Initialization Appendix A.7 provides the default values we have taken for the following

simulation studies. The algorithm is not sensitive to the choice of values a and b (12), but

initial values for β may have a stronger impact. In practice, we use the LASSO estimates

based on preliminary mean imputation (missing values replaced by the average of the

observed values for each variable) to initialize the coefficients.

Step-size We set ηt = 1 for the first t0 = 20 iterations to approach the neighborhood of

the MLE, then, choose a positive decreasing sequence ηt =
1

t−t0 to approximate the MLE,

with the stochastic approach formula (11).

λ sequence A sequence of penalty coefficients λ must be chosen before implementing

the algorithm. As introduced in the Subsection 2.1, we use a BH sequence inspired by

orthogonal designs:

λBH(j) = φ−1(1 − qj), qj =
jq

2p
, j = 1,2,⋯, p.

2This signal strength is inspired by the penalty coefficient of the Bonferroni method to control the

family wise error rate (FWER) : λBonf = σφ
−1

(1 − α
2p

) ≈

√

2 log p, for p large and α fixed, say α = 0.05.
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4.2 Convergence of SAEM

We first illustrate the convergence of SAEM. We set the size of design matrix as n = p =

100 while the number of true predictors is k = 10, the signal strength 3
√

2 log p and the

percentage of missingness 10%. The covariance Σ is an identity matrix to start.

Figure 3: Convergence plots for three coefficients with ABSLOPE (colored solid curves).

Black dash lines represent the true value for each β. Estimates obtained with three different

sets of simulated data are represented by three different colors.

Figure 3 shows the convergence of some coefficients with SAEM for three simulated data

sets. These graphs are representative of all the observed results. There are large fluctuations

during the first t0 =20 iterations, then after introducing the stochastic approximation at

the 20th iteration, convergence is achieved gradually. Due to the existence of a sorted l1

penalty, the estimates are still slightly biased.

In addition, we also represent the convergence curves for σ with ABSLOPE in supple-

mentary materials (Jiang et al., 2019a) in order to compare the estimate of σ by ABSLOPE

to the biased MLE estimator without prior knowledge, i.e., σ̂MLE =

√
RSS
n . We can see that

the estimates of σ with both methods are biased downward, but since ABSLOPE has an

additional correction term (10), it leads to a less biased estimator.
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4.3 Behavior of ABSLOPE - SLOBE

We then evaluate ABSLOPE and SLOBE in a different parametrization setting to see how

the signal strength, sparsity and other parameters influence their performance.

Criterion We apply ABSLOPE or SLOBE on a synthetic dataset and get estimates for

β̂ and the sampled γ̂ indicating the model selection results. We compare the selected model

to the true one. The total number of true discoveries is TP = #{j ∶ ∣βj ∣ > 0 and ∣β̂j ∣ > 0}

and the total number of false discoveries is FN = #{j ∶ ∣βj ∣ > 0 and β̂j = 0}.

To evaluate the performance, we consider the following quantities:

• Power = TP
TP+FN ;

• FDR = FP
FP+TP ;

• MSE of β (Relative l2 norm error) = ∥β̂−β∥
2

∥β∥2 ;

• Relative prediction error = ∥Xβ̂−Xβ∥
2

∥Xβ∥2 .

For each set of parameters, we repeat the procedure 200 times: i) data generation ii)

estimation and model selection with ABSLOPE/SLOBE iii) evaluation with the criteria

presented above and we compute the means over the 200 simulations. The simulations were

implemented with parallel computing.

4.3.1 Scenario 1

We first consider n = p = 100 and vary:

• sparsity: number of true signal k = 5, 10, 15, 20;

• signal strength
√

2 log p ,2
√

2 log p ,3
√

2 log p ,4
√

2 log p;

• percentage of missingness 0.1, 0.2, 0.3, generated randomly, i.e., MCAR;

• correlation between covariates Σ = toeplitz(ρ)3 where ρ = 0, 0.5, 0.9.

Then we applied the Algorithm 1 on each synthetic dataset.

3The Toeplitz structure (or auto-regressive structure) for correlation has been introduced for microarry
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Results 1: no correlation, 10% missingness - vary signal strength According to

Figure 4:
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(d) Prediction error

Figure 4: Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction error

(d), as function of length of true signal, over the 200 simulations. Results for n = p = 100,

percentage of missingness 10% and Σ orthogonal (no correlation).

• We observe that FDR is always controlled at the expected level 0.1.

• Power increases and estimation bias decreases with larger sparsity or stronger signal.

study (Guo et al., 2006), with the form: Σ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1 ρ ⋯ ρp−2 ρp−1

ρ 1 ⋱ ⋯ ρp−2

⋮ ⋱ ⋱ ⋱ ⋮

ρp−2 ⋯ ⋱ ⋱ ρ

ρp−1 ρp−2 ⋯ ρ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

p×p

, where ρ ∈ [0,1] is a

constant. For the Toeplitz structure, adjacent pairs of covariates are highly correlated and those further

away are less correlated, as in microarry study, genes are correlated due to their distance in the regularity

pathway.
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• When the signal is too weak (signal strength =
√

2 log p), the power is near 0, which

is due to the identifiablility issue that ABSLOPE cannot distinguish the signal from

the noise. Indeed, the value c = λ1
σ
√

2 log p
is greater than one where λ1 is the largest

penalization coefficient. In addition, the bias is significant. This behaviour can be

explained by the fact that we choose the penalty λ to reduce the noise σ; but when

the signal is as weak as σ, this choice of λ also ”kills” the real signal.

Results 2: with correlation, strong signal - vary percentage of missingness Now

we add the correlation as Σ = toeplitz(ρ) where ρ = 0.5, and also fix a strong signal strength

as 3
√

2 log p. We then vary the sparsity and percentage of missingness. The results in Figure

5 show that:
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Figure 5: Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction error

(d), as function of length of true signal over the 200 simulations. Results for n = p = 100,

with correlation and strong signal.
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• The power increases and the estimation bias decreases when the percentage of missing

data decreases.

• In the presence of correlation, the FDR control is slightly lost when the number of

non-zero coefficients is greater than 10 and the percentage of missing values exceeds

0.2, but is still near the nominal level.

4.3.2 Scenario 2

Now we consider a larger dataset n = p = 500 and vary the same parametrization as in

Subsection 4.3.1, except the sparsity, for which we take wider range of choices among

k = 10, 20, 30, ⋯, 60. In this scenario of larger dimension, we have applied the simplified

SLOBE algorithm as described in Subsection 3.4 to avoid intensive computation.
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Figure 6: Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction error

(d), as function of length of true signal, over the 200 simulations. Results for n = p = 500,

percentage of missingness 10% and Σ orthogonal (no correlation).
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Results 1: no correlation, 10% missingness - vary signal strength According to

Figure 6:

• FDR is always controlled at expected level 0.1.

• Similar to Figure 4, power increases and estimation error decreases with larger spar-

sity and stronger signal. However in this larger dimension case, we can handle with

larger number of relevant features until 30 or 40, at which we observe a phase tran-

sition due to the identifiability issue.

Results 2: with correlation, strong signal - vary percentage of missingness Now

we add the correlation as Σ = toeplitz(ρ) where ρ = 0.5, and also fix a strong signal strength

as 3
√

2 log p. We then vary the sparsity and percentage of missingness. The results in Figure

7 show that:
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Figure 7: Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction error

(d), as function of length of true signal over the 200 simulations. Results for n = p = 500,

with correlation and strong signal.
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• Similar to Figure 5, the power increases and the estimation error decreases when the

percentage of missing data decreases.

• Due to the existence of correlation, the FDR control is slight lost, especially in the

less sparse and more missing case.

• With 10% missing values, if the number of relevant features is below 40, then we can

always achieve an efficient power and perfect FDR control. With larger percentage

of missing values, the sparsity of this changing point will be more conservative.

In addition, we present the results varying the correlations in the supplementary mate-

rials (Jiang et al., 2019a).

4.4 Comparison with competitors

We use the same simulation scenario and criteria as those used in Subsection 4.3 to compare

ABSLOPE and SLOBE to other approaches that can be considered to select variables in

the presence of missing data.

• ncLASSO: Non-convex LASSO (Loh and Wainwright, 2012)

• Methods based on preliminary mean imputation (MeanImp): missing values are re-

placed by the average of the observed values for each variable, then on the completed

data set is applied:

– SLOPE: Applying two steps i) SLOPE (Bogdan et al., 2015) ii) OLS on the

selected predictors to estimate the parameters;

– LASSO: LASSO with λ selected by cross validation;

– adaLASSO: adaptive LASSO (Zou, 2006);

For SLOPE, ABSLOPE and SLOBE, we set the penalization coefficient λ as the BH se-

quence which controls the FDR at level 0.1. The values of the tuning parameters for the

different methods can be found in the available code on GitHub (Jiang, 2019). We try to

make the comparisons as fair as possible and also favor the competitors: we give the true σ
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to SLOPE whereas we estimate it with ABSLOPE. ncLASSO requires to specify a bound

on the l1 norm of the coefficients, i.e., β < R = b0#{βj ∶ βj ≠ 0}, for which we take the real

value of sparsity and signal strength.

Note that we do not make comparisons with the widely used multiple imputation (van

Buuren and Groothuis-Oudshoorn, 2011), where several imputed values are made for each

missing value to reflect the uncertainty in the missingness. There are several reasons, in-

cluding the inability to perform model selection with multiple imputation and the difficulty

to aggregate the estimates from the imputed datasets.

We present the results for the case n = p = 100 in the supplementary materials (Jiang

et al., 2019a) while Figure 8 summarizes the result for the case n = p = 500, 10% missingness

and with correlation toeplitz(0.5). Lighter colors indicate smaller values.

• ABSLOPE and SLOBE both have strong power and accurate prediction, where FDR

is always controlled.

• The power and FDR control achieved by ABSLOPE and SLOBE are better than the

case n = p = 100. On one hand, correlation helps the generation of missing values.

On the other hand, sparsity considered here is less complicated.

• Other methods pay the price of FDR control to achieve good power.

4.5 Comparison of computation time

Table 1 presents the execution time of the different methods considered in the simulation. In

addition, we have implemented our proposed algorithm in C and we use Rcpp (Eddelbuettel

and Balamuta, 2017) to integrate these functions within R. In the case n = p = 100, we

observe that the most time consuming method is ncLASSO, which spent on average 20

seconds on one simulation. While ABSLOPE also took on average 14 seconds for one

run, its simplified version SLOBE reduced this cost to 0.6 seconds, which is comparable to

MeanImp + adaLASSO. While when n = p = 500, the convergence of ABSLOPE requires

much more time but SLOBE helps to simplify the complexity. In addition, the version of C

for SLOBE is more accelerated, saving half of the computation time, which makes SLOBE

capable of handling larger datasets.
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Figure 8: Comparison of power (a), FDR (b), bias of β (c) and prediction error (d) with

varying sparsity and signal strength, with 10% missingness over 200 simulations in the case

with correlation.
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Table 1: Comparison of average execution time (in seconds) for one simulation, in the

case without correlation and with 10% MCAR, for n = p = 100 and n = p = 500 calculated

over 200 simulations. (MacBook Pro, 2.5 GHz, processor Intel Core i7)

Execution time (seconds) n = p = 100 n = p = 500

for one simulation min mean max min mean max

ABSLOPE 12.83 14.33 20.98 646.53 696.09 975.73

SLOBE 0.53 0.60 0.98 35.82 39.18 57.66

SLOBE (with Rcpp) 0.31 0.34 0.66 14.23 15.07 29.52

MeanImp + SLOPE 0.01 0.02 0.09 0.24 0.28 0.53

ncLASSO 16.38 20.89 51.35 91.90 100.71 171.00

MeanImp + LASSO 0.10 0.14 0.32 1.75 1.85 3.06

MeanImp + adaLASSO 0.45 0.58 1.12 45.06 47.20 71.24

5 Application to Traumabase dataset

5.1 Details on the dataset and preprocessing

Our work is motivated by an ongoing collaboration with the TraumaBase group4 at APHP

(Public Assistance - Hospitals of Paris), which is dedicated to the management of severely

traumatized patients. Major trauma is defined as any injury that endangers life or func-

tional integrity of a person. The WHO has recently shown that major trauma in its various

forms, including traffic accidents, interpersonal violence, self-harm, and falls, remains a

public health challenge and a major source of mortality and handicap around the world

(Hay et al., 2017). Effective and timely management of trauma is critical to improving

outcomes. Delays and/or errors in treatment have a direct impact on survival, especially

for the two main causes of death in major trauma: hemorrhage and traumatic brain injury.

Using patients’ records measured in the prehospital stage or on arrival to the hospital, we

aim to establish prediction models in order to prepare an appropriate response upon arrival

at the trauma center, e.g., massive transfusion protocol and/or immediate haemostatic pro-

cedures. Such models intend to give support to clinicians and professionals. Due to the

4http://www.traumabase.eu/
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highly stressful multi-player environment, evidence suggests that patient management –

even in mature trauma systems – often exceeds acceptable time frames (Hamada et al.,

2014). In addition, discrepancies may be observed between diagnoses made by emergency

doctors in the ambulance and those made when the patient arrives at the trauma center

(Hamada et al., 2015). These discrepancies can result in poor outcomes such as inadequate

hemorrhage control or delayed transfusion.

To improve decision-making and patient care, six trauma centers within the Ile de

France region (Paris area) in France have collaborated to collect detailed high-quality clin-

ical data from accident scenes to the hospital. These centers have joined TraumaBase

progressively between January 2011 and June 2015. The database integrates algorithms

for consistency and coherence and data monitoring is performed by a central administrator.

Sociodemographic, clinical, biological and therapeutic data (from the prehospital phase to

the discharge) are systematically recorded for all trauma patients, and all patients trans-

ported in the trauma rooms of the participating centers are included in the registry. The

resulting database now has data from 7495 trauma cases with more than 250 variables, col-

lected from January 2011 to March 2016, with age ranged from 12 to 96, and is continually

updated. The granularity of collected data makes this dataset unique in Europe. However,

the data is highly heterogeneous, as it comes from multiple sources and, furthermore, is

plagued with missing values, which makes modeling challenging.

In our analysis, we have focused on one specific challenge: developing a statistical model

with missing covariates in order to predict the level of platelet upon arrival at the hospital.

This model can aid creating an innovative response to the public health challenge of major

trauma. The platelet is a cellular agent responsible for clot formation. It is essential

to control its levels to prevent blood loss as quickly as possible in order to reduce early

mortality in severely traumatized patients. It is difficult to obtain the level of platelet in real

time on arrival at hospital and, if available, its levels would determine how the patients

are treated. Accurate prediction of this metric is thereby crucial for making important

treatment decisions in real time.

We focus on patients after an accident who were sent directly to the hospital (not sent

to Emergency Care Unit). After this pre-selection, 6384 patients remained in the data
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set. Based on clinical experience, in order to predict the level of platelet on arrival at the

hospital, 15 influential quantitative measurements were included as pre-selected variables.

Detailed descriptions of these measurements are shown in the supplementary materials

(Jiang et al., 2019a). These variables were included here because they were all available to

the pre-hospital team, and therefore could be used in real situations.

Figure 9 shows the percentage of missingness per variable, varying from 0 to 60%. If we

were to perform the complete case analysis (i.e., ignoring all the observations with missing

values) only less than one third of the observations (1648 patients) would still remain in

the dataset. This loss of data demonstrates the importance of appropriately handling the

missing values.
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Figure 9: Percentage of missing values in each pre-selected variable from TraumaBase.

5.2 Model selection results

As is customary in supervised learning, we divide the dataset into training and test sets.

The training set contains a random selection of 80% of observations whereas the test set

contains the remaining 20%. In the training set, we select a model and estimate the

parameters. We apply ABSLOPE and compare it with the same methods than those

described in Section 4, namely MeanImp + SLOPE, MeanImp + LASSO, MeanImp +
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adaLASSO, MeanImp + SSL except ncLASSO since we do not known the sparsity and the

l1 bound of coefficients. Moreover, we also include:

• BIC: Mean imputation followed by a stepwise method based on BIC;

• RF: Mean imputation followed by a random forest (Liaw and Wiener, 2002). This

approach is assessed only for its prediction properties as it does not explicitly select

variables.

In the SLOPE type methods, we set the penalization coefficient λ as BH sequence which

controls the FDR at level 0.1. Since we consider our design matrix being centered and

without an intercept, we also center the vector of responses and apply the procedure on

ỹ = y− ȳ, where ȳ is the mean of y. We repeat the procedure of data splitting (into training

and test sets) 10 times and Table 2 shows that, over 10 replications, how many times

each variable is selected. In addition, Table 3 reports whether the selected variables by

ABSLOPE have on average a positive or negative effect on the platelet.

The TraumaBase medical team indicated that the signs of the coefficients were partially

in agreement with their a-priori expectations. Large values of shock index, vascular filling,

blood transfusion and lactate give signs of severe bleeding for patients and, thereby, lower

levels of platelets. However, the effects of delta Hemocue and the heart rate on the platelet

were not entirely in agreement with their opinion.

5.3 Prediction performance

In supervised learning, after a model has been fitted on a training set, a natural step

is to evaluate the prediction performance on a test set. Assuming an observation X =

(Xobs,Xmis) in the test set, we want to predict the binary response y. One added difficulty is

that the test set also contains missing values, since the training set and the test set have the

same distribution (i.e., the distribution of covariates and the distribution of missingness).

Therefore, we cannot directly apply the fitted model to predict y from an incomplete

observation of the test X.

Our framework offers a natural remedy by marginalizing over the distribution of missing

data, given the observed ones. More precisely, with S Monte Carlo samples (X
(s)
mis,1 ≤ s ≤
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Table 2: Number of times that each variable is selected over 10

replications. Bold numbers indicate which variables are included

in the model selected by ABSLOPE.

Variable ABSLOPE SLOPE LASSO adaLASSO BIC

Age 10 10 4 10 10

SI 10 2 0 0 9

MBP 1 10 1 10 1

Delta.hemo 10 10 8 10 10

Time.amb 2 6 0 4 0

Lactate 10 10 10 10 10

Temp 2 10 0 0 0

HR 10 10 1 10 10

VE 10 10 2 10 10

RBC 10 10 10 10 10

SI.amb 0 0 0 0 0

MBP.amb 0 0 0 0 0

HR.max 3 9 0 1 0

SBP.min 5 10 10 10 8

DBP.min 2 10 2 1 0

Table 3: The effect of

the selected variables by AB-

SLOPE on the platelet. “+”

indicates positive effect while

“−” negative; 0 indicates in-

significant variables.

Variable Effect

Age −

SI −

MBP 0

Delta.Hemo +

Time.amb 0

Lactate −

Temp 0

HR +

VE −

RBC −

SI.amb 0

MBP.amb 0

HR.max 0

SBP.min 0

DBP.min 0

S) ∼ p(Xmis∣Xobs), we estimate directly the response by maximum a posteriori value:

ŷ = arg max
y

p(y∣Xobs) = arg max
y

∫ p(y∣X)p(Xmis∣Xobs)dXmis

= arg max
y

EpXmis ∣Xobs
p(y∣X)

= arg max
y

S

∑
s=1

p (y∣Xobs,X
(s)
mis) .

Note that in the literature there are not many solutions to deal with the missing values in

the test set (Josse et al., 2019). For those imputation based methods, we imputed the test

set with mean imputation and predicted the platelet by ŷ = X impβ̂. Finally we evaluate

the relative l2 prediction error: err = ∥ŷ−y∥
2

∥y∥2 . Prediction results obtained are presented in

Figure 10.
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Figure 10: Empirical distribution of prediction errors of different methods over 10 replica-

tions for the TraumaBase data. Results for SLOPE are not presented due to its large gap

compared to others, with a mean of prediction error equals to 0.27.

ABSLOPE’s performance is comparable to the one of Random Forest and adaptive

LASSO, and is slightly better than traditional stepwise regression and LASSO. There is a

significant gap between the results of ABSLOPE and those of SLOPE. One of the possible

reasons is that the classic version of SLOPE may encounter difficulties in the presence of

correlation, while ABSLOPE works well even with correlations (an aspect adopted from

the Spike-and-Slab LASSO). Random forests have excellent predictive capabilities which is

consistent with the results of Josse et al. (2019) who show good performance of supervised

machine learning even in the case of the simple mean imputation. However, it is difficult

to interpret results in terms of selected variables, which is often crucial for physicians.

Figure 10 and Table 2 show that ABSLOPE and adaLASSO methods, which have the

best predictive capabilities, select almost the same variables with adaLASSO selecting MBP

(mean blood pressure) and ABSLOPE selecting SI (shock index). These two variables are

highly correlated since both are measurements based on the systolic blood pressure.

Finally, we also performed ABSLOPE on the whole standardized dataset without cross-

validation, and the formula of regression with model selection was reported as: Platelet =

35



−6.92Age−7.28SI+6.53Delta.hemo−8.87Lactate+10.05HR−3.96VE−8.91RBC+3.25SBP.min.

This selection largely agrees with the results from cross-validation presented in Table 2.

The coefficient values demonstrate the importance of corresponding variables and provide

a medical tool to predict the platelet value for a new patient.

5.4 Results with Interactions

We also consider a more complete model by adding second order interactions between the

covariates, which increases the dimensionality at p = 55. We apply the same procedure as

before and report the predictive results in Figure 11.

Table 4 shows which variables are selected more than 5 times out of the 10 replications.

Results for SSL and SLOPE are not presented due to their large gap compared to others,

with a mean of prediction error equals to 0.35 and 0.40 respectively; BIC is not shown

for this case with interactions, because it’s computational heavy for this step-wise method

with many variables. The average sizes of the variables set selected by ABSLOPE, LASSO

and adaLASSO are respectively 6, 7 and 12.

RF ABSLOPE adaLASSO LASSO

0.
23
0

0.
23
2

0.
23
4

0.
23
6

0.
23
8

0.
24
0

0.
24
2

Figure 11: Empirical distribution of predic-

tion errors of different methods over 10 repli-

cations for the TraumaBase data, with inter-

actions between each pair of variables.

Method Variables selected

ABSLOPE Age ∗ MBP.amb, Delta.hemo ∗ Lactate
Lactate ∗ RBC, HR ∗ SBP.min

RBC, SBP.min, Age ∗ Lactate
LASSO Age ∗ VE, Delta.hemo ∗ Lactate

Delta.hemo ∗ VE , Lactate ∗ RBC

Age ∗ Time.amb, Age ∗ HR
Age ∗ MBP.amb, Age ∗ SBP.min

adaLASSO MBP ∗ HR, Delta.hemo ∗ VE
Lactate ∗ VE, HR ∗ HR.max
HR ∗ SBP.min, VE ∗ RBC

Table 4: The variables selected more than

5 times out of the 10 replications, by each

method. “∗” indicates the interaction be-

tween two variables.

Again, ABSLOPE provides good results in terms of prediction while being sparse. We

observe that when interactions are added, age often appears in combination with other

variables. LASSO methods tend to include a larger number of variables with a potentially
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increased false discovery rate. Note that the prediction properties with interactions are

slightly worse than those without interactions, which happened due to the existence of

missing values (e.g. the interaction term between Age and Lactate will be missing if either

of these two variables is unobserved). In conclusion, other methods, apart from ABSLOPE,

have a tendency to overfit when interactions are present.

6 Discussion

ABSLOPE penalizes noise coefficients more stringently to control for FDR while leaving

larger effects relatively unbiased through an adaptive weighting matrix. In addition, casting

our method within a Bayesian framework allows one to assign a probabilistic structure

over models and estimate the pattern of sparsity. We develop an SAEM algorithm which

handles missing values and which treats model indicators as missing data. According to

the simulation study, ABSLOPE is competitive with other methods in terms of power,

FDR and prediction error. For future research, we will consider the problem of high-

dimensional model selection with missing values for categorical or mixed data and other

missing mechanisms such as MNAR.

A Appendix

A.1 Deviation of prior (2) started from SLOPE prior

We assume a random variable z = (z1, z2,⋯, zp) has a SLOPE prior:

p(z ∣ σ2;λ)∝
p

∏
j=1

exp{−
1

σ
λr(z,j)∣zj ∣} ,

and then define β =W −1z = ( z1w1
,⋯,

zp
wp

), or equally, zj = βjwj where the diagonal elements

in the weight matrix are wj = cγj + (1 − γj) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

c, γj = 1

1, γj = 0
, j = 1,2,⋯, p. Then according
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to the transformation of variables, we have the prior distribution for β:

p(β ∣W,σ2;λ)∝ ∣det(
dz

dβ
)∣pz(Wβ ∣W,σ2;λ)

=

p

∏
j=1

wj
p

∏
j=1

exp{−
1

σ
λr(Wβ,j)∣wjβj ∣}

= c∑
p
j=1 1(γj=1)

p

∏
j=1

exp{−wj ∣βj ∣
1

σ
λr(Wβ,j)} ,

which corresponds to our proposed prior (2).

A.2 Missing mechanism

Missing completely at random (MCAR) means that there is no relationship between the

missingness of the data and any values, observed or missing. In other words, for a single

observation Xi, we have:

p(ri ∣ y,Xi, φ) = p(ri ∣ φ)

Missing at Random (MAR), means that the probability to have missing values may depend

on the observed data, but not on the missing data. We must carefully define what this

means in our case by decomposing the data Xi into a subset X
(mis)
i of data that “can

be missing”, and a subset X
(obs)
i of data that “cannot be missing”, i.e. that are always

observed. Then, the observed data Xi,obs necessarily includes the data that can be observed

X
(obs)
i , while the data that can be missing X

(mis)
i includes the missing data Xi,mis. Thus,

MAR assumption implies that, for all individual i,

p(ri ∣ yi,Xi;φ) = p(ri ∣ yi,X
(obs)
i ;φ)

= p(ri ∣ yi,Xi,obs;φ)
(15)

MAR assumption implies that, the observed likelihood can be maximize and the dis-

tribution of r can be ignored (Little and Rubin, 2002). Assume that θ is the parameter to

estimate. Indeed:

L(θ, φ; y,Xobs, r) = p(y,Xobs, r; θ, φ) =
n

∏
i=1

p(yi,Xi,obs, ri; θ, φ)

=
n

∏
i=1
∫ p(yi,Xi, ri; θ, φ)dXi,mis

=
n

∏
i=1
∫ p(yi,Xi; θ)p(ri ∣ yi,Xi;φ)dXi,mis,
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then according to the assumption MAR (15), we have:

L(θ, φ; y,Xobs, r) =
n

∏
i=1
∫ p(yi,Xi; θ)p(ri ∣ yi,Xi,obs;φ)dXi,mis

=
n

∏
i=1

p(ri ∣ yi,Xi,obs;φ) ×
n

∏
i=1
∫ p(yi,Xi; θ)dXi,mis

= p(r ∣ y,Xobs;φ) × p(y,Xobs; θ)

Therefore, to estimate θ, we aim at maximizing L(θ; y,Xobs) = p(y,Xobs; θ). So the missing

mechanism can be ignored in the case of MAR.

A.3 Standardization for MAR

We update mean and standard deviation at each iteration of algorithm.

1. Initialization: In the initialization step, we first substitute missing values Xmis with

the mean of non-missing entries in each column, and obtain a imputed matrix X̃0 =

(Xobs,X0
mis), where X0

mis contains imputed values. We denote the mean and standard

deviation of each column of X0, by the vectors m0 and s0 respectively. Then we

centered and scaled the imputed X0, s.t., for each observation i:

X̂0
i = (X0

i −m
0)⊘ (

√
ns0),

where the ⊘ is used for Hadamard division.

2. During tth iteration of the algorithm, we obtain a new imputed datasetX t = (Xobs,X t
mis),

where X t
mis contains imputed values in tth iteration. Then we first reverse scaling us-

ing:

X̃ t = (
√
nst−1) ○X t +mt−1,

where the ○ is used for Hadamard product. The vectors mt and st are then updated

as the means and standard deviations of X̃ t. Finally we perform scaling on X̃ t to

obtain a scaled matrix:

X̂ t
i = (X̃ t −mt)⊘ (

√
nst).
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A.4 Details of the simulation step: sampling the latent variables

To perform the simulation step (5), we use a Gibbs sampler. To simplify notation, we

hide the superscript, and note that all conditional distributions are computed given the

quantities from the previous iteration.

1. Simulate γ. According to the dependency between variables presented in Figure 2,

simulating the element γj boils down to:

γj ∼ p(γj ∣ γ−j, c, y,Xobs,Xmis, β, σ, θ, µ,Σ)

= p(γj ∣ γ−j, c, β, σ, θ) ,

where γ−j = (γ1,⋯, γj−1, γj+1,⋯, γp); i.e., sampling from a Binomial distribution with

probability:

P(γj = 1 ∣ γ−j, c, β, σ, θ) =
P(γj = 1 ∣ θ)p(β ∣ γj = 1, γ−j, c, σ)

∑γj∈{0,1}P(γj ∣ θ)p(β ∣ γj, γ−j, c, σ)

=

⎡
⎢
⎢
⎢
⎢
⎣

1 +
(1 − θ) exp (− 1

σ ∣βj ∣λr(W 0β,j)) × (c)∑−j 1(γ−j=1)
∏−j exp (−w0

−j ∣β−j ∣
1
σλr(W 0β,−j))

θc exp (−c 1
σ ∣βj ∣λr(W 1β,j)) × (c)∑−j 1(γ−j=1)

∏−j exp (−w1
−j ∣β−j ∣

1
σtλr(W 1β,−j))

⎤
⎥
⎥
⎥
⎥
⎦

−1

=

⎡
⎢
⎢
⎢
⎢
⎣

1 +
(1 − θ) exp (− 1

σ ∣βj ∣λr(W 0β,j))

θc exp (−c 1
σ ∣βj ∣λr(W 1β,j))

×
∏−j exp (−w0

−j ∣β−j ∣
1
σλr(W 0β,−j))

∏−j exp (−w1
−j ∣β−j ∣

1
σλr(W 1β,−j))

⎤
⎥
⎥
⎥
⎥
⎦

−1

,

(16)

where the weighting matrix W 1 and W 0 have the same diagonal elements w1
−j =

w0
−j = 1 − (1 − c)γ−j, except for the position j: w1

j = c while w0
j = 1. Sampling

from (16) requires to store in memory ordered list which needs to be updated for

every index j, such an approach could be computationally exhaustive. So we use

an approximation, which does not perturb solution significantly, by replacing both

W 1 and W 0 by the estimate of weighting matrix from previous iteration, noted by

W . With the approximation, we partially retrieve the information of γj from the last

iteration, so the difference between the estimates from last and the current iteration
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will be reduced. Consequently, (16) is drawn from:

P(γj = 1 ∣ γ−j, c, β, σ, θ,W ) =

⎡
⎢
⎢
⎢
⎢
⎣

1 +
(1 − θ) exp (− 1

σ ∣βj ∣λr(Wβ,j))

θc exp (−c 1
σ ∣βj ∣λr(Wβ,j))

⎤
⎥
⎥
⎥
⎥
⎦

−1

=
θc exp (−c 1

σ ∣βj ∣λr(Wβ,j))

(1 − θ) exp (− 1
σ ∣βj ∣λr(Wβ,j)) + θc exp (−c 1

σ ∣βj ∣λr(Wβ,j))
,

(17)

which can be interpreted as the posterior probability of binary signal indicator for

jth variable, given the prior guess P(γj = 1 ∣ θ) = θ and the conditional likelihood of

the vector β given γj = 1 and γj = 0, see (2).

2. Simulate θ. The update of θ boils down to generate from:

θ ∼ p(θ ∣ γ, c, y,Xobs,Xmis, β, σ, µ,Σ,W )

= p(θ ∣ γ, β, σ,W )∝ p(θ)p(γ ∣ θ) ,

where p(γ ∣ θ) is a Bernoulli distribution. In addition, if we also assume a prior for

θ as a Beta distribution Beta(a, b) with a and b known, to offer additional initial

information for the sparsity of signal, then the posterior is:

Beta(a +
p

∑
j=1

1(γj = 1), b +
p

∑
j=1

1(γj = 0)) , (18)

from which we can generate the latent variable θ. The target distribution (18) also

takes the prior knowledge of the sparsity into consideration, for example:

• If a = n
100 and b = n

10 , the prior mean on sparsity is 0.091, which has the same

effect as a single observation;

• If a = 2
p and b = 1 − 2

p , the prior mean on sparsity is 2
p , which assumes a sparse

structure a priori.

3. Simulate c. We also consider the weighting matrix W from the previous iteration.

c ∼ p(c ∣ γ, y,Xobs,Xmis, β, σ, θ, µ,Σ,W )

= p(c ∣ γ, β, σ,W )∝ p(c)p(β ∣ c, γ, σ,W )

= p(c) c∑
p
j=1 1(γj=1) exp(−

c

σ

p

∑
j=1

∣βj ∣λr(Wβ,j)1(γj = 1)) ,
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where p(c) is the prior distribution of c. If the prior is chosen as c ∼ U[0,1] then we

just need to sample from a Gamma distribution truncated to [0,1]:

Gamma(1 +
p

∑
j=1

1(γj = 1),
1

σ

p

∑
j=1

∣βj ∣λr(Wβ,j)1(γj = 1)) . (19)

If the signal is strong enough, i.e., βj is relative large compared to level of noise σ

when γj = 1, we will observe that the most typical values from the above Gamma

distribution fall in the interval [0, 1]. As a result, the simulation will be closer to the

original Gamma distribution without truncation. However, if the signal strength go

down, then the distribution will be more truncated and skewed towards 1, where c

exactly corresponds the inverse of average signal magnitude.

A.5 Proof of conditional distribution of missing data

Proof of Proposition 1 is provided as follows.

Proof. For a single observation x = (xmis, xobs) where xobs, and xmis denotes observed and

missing covariates respectively. Assume that p(xobs, xmis; Σ, µ) ∼ N (µ,Σ) and let y = xβ +ε

where ε ∼ N(0, σ2). Then we have the following conditional distribution of the missing

covariate with index i:

p(ximis ∣ xobs, y, σ, β,Σ, µ, x
−i
mis)∝ p(xiobs, x

i
mis ∣ Σ, µ)p(y ∣ xiobs, x

i
mis, β, σ) ,

where x−imis = (xjmis, j ≠ i) . Denote M the set containing indexes for the missing covariates

and O for the observed ones. We then explicitly give the formula, with sij elements of Σ−1:

p(ximis ∣ xobs, y, σ, β,Σ, µ, x
−i
mis)∝ exp [−

1

2σ2
(y − xβ)2 −

1

2
(x − µ)⊺Σ−1(x − µ)]

∝ exp[−
1

2σ2
(y − xobsβobs − x

i
misβi − ∑

j∈M,j≠i
xjmisβj)

2

−
1

2
(sii(x

i
mis − µi)

2 + 2ximis ∑
j∈M,j≠i

(xjmis − µj)sij + 2ximis ∑
k∈O

(xkobs − µk)sik)] .

After rearranging terms, with notations:

mi ∶=

p

∑
q=1

µqsiq, ui ∶= ∑
k∈O

xkobssik, r ∶= y − xobsβobs, τi ∶=

√

sii +
β2
i

σ2
,
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we get:

p(ximis ∣ xobs, y, σ, β,Σ, µ, x
−i
mis)

∝ exp{−
1

2
[(ximis)

2
(sii +

β2
i

σ2
) − 2ximis (

rβi
σ2

+mi − ui) + 2ximis ∑
j∈M,j≠i

(
βiβj
σ2

+ sij)x
j
mis]}

∝ exp{−
1

2
[ximisτi −

rβi/σ2 +mi − ui
τi

+ ∑
j∈M,j≠i

βiβj/σ2 + sij
τiτj

xjmisτj]

2

} .

(20)

By the other hand, we can conclude from equations (4.9) (4.10) in Besag (1974), that,

for z = (zi)i∈M where zi = τiximis we have:

p(zi ∣ xobs, y, σ, β,Σ, µ, x
−i
mis)∝ exp

⎡
⎢
⎢
⎢
⎢
⎣

−
1

2
(zi − µ̃i + ∑

j∈M,j≠i
Bij (zj − µ̃j))

2⎤
⎥
⎥
⎥
⎥
⎦

, (21)

and

z ∣ xobs, y; Σ, µ, β, σ2 ∼ N(µ̃,B−1) .

Combine equations (20) and (21), we obtain the solution:

rβi/σ2 +mi − ui
τi

− ∑
j∈M,j≠i

βiβj/σ2 + sij
τiτj

µ̃j = µ̃i , for all i ∈M ,

and

Bij =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

βiβj/σ2+sij
τiτj

, if i ≠ j

1, if i = j
, for all i, j ∈M .

A.6 Summary of algorithms

We propose the ABSLOPE model and solve the problem of the maximization of the

penalized likelihood using the SAEM algorithm, described in Algorithm 1. We also give

the SLOBE algorithm in Algorithm 2 which is an approximated and accelerated version.

A.7 Initialization of ABSLOPE

Here we suggest the following starting values:

• β0 is obtained from elastic net LASSO (Simon et al., 2011), or Spike and Slab LASSO

(Ročková and George, 2018);
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Algorithm 1 Solving ABSLOPE with SAEM.

Input: Initialization β0, σ0, c0, θ0, X0
mis, µ

0, Σ0;

for t = 1,2,⋯,Maxit do

(Simulation step)

1. Generate γt from (17);

2. Generate θt from Beta distribution (18);

3. Generate ct from truncated Gamma distribution (19);

4. Generate X t
mis from Gaussian distribution (9);

(Stochastic Approximation step)

1. Calculate (βtMLE, σtMLE, µtMLE, Σt
MLE), which are the MLE for complete-data

likelihood integrating sampled missing values, as detailed in Subsection 3.3.1;

2. With step-size ηt =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, if t ≤ 20

1
t−20 , if t > 20

, update

βt+1 ← βt + ηt [β
t
MLE − β

t] .

Update σ, µ and Σ similarly;

if ∥βt+1 − βt∥2 < tol then

Stop;

end if

end for

Output: Estimates β̂ ← βt and indexes for model selection γ̂ ← γt
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Algorithm 2 SLOBE: a quick version of ABSLOPE.

Input: Initialization β0, σ0, c0, θ0, X0
mis, µ

0, Σ0;

for t = 1,2,⋯,Maxit do

(Imputation by expectation)

1. for j = 1,2,⋯, p do γtj ← E(γj = 1 ∣ γ−j, c, β, σ, θ,W ), according to (12);

2. θt ← E(θ ∣ γ, β, σ,W ), according to (13);

3. ct ← E(c ∣ γ, y,Xobs,Xmis, β, σ, θ, µ,Σ,W ), according to (14);

4. for i = 1,2,⋯, n do X t
i,mis ← E(Xi,mis ∣ y,Xi,obs, β, σ, µ,Σ), according to Propo-

sition 1;

(Maximization of integrated likelihood)

• (βt+1, σt+1, µt+1, Σt+1) ← (βtMLE, σtMLE, µtMLE, Σt
MLE), which are the MLE for

complete-data likelihood integrating the imputed missing values by expectation.

if ∥βt+1 − βt∥2 < tol then

Stop;

end if

end for

Output: Estimates β̂ ← βt and indexes for model selection γ̂ ← γt
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• X0
mis are imputed by PCA (imputePCA) (Josse and Husson, 2016), or imputed by

the mean of column (imputeMean);

• µ0 and Σ0 are estimated with the empirical estimators obtained from the imputed

initial data;

• σ0 is given by the standard deviation:
∥y−X0

misβ
0∥√

n−1
;

• c0 = min{(
∑pj=1 β

0
j

#{j∶ ∣β0
j ∣>0}+1

)
−1

σ0λr(β0,1),1}, where the sign # means the cardinality of a

set. c0 can be interpreted as the inverse of average magnitude for the true signal, i.e,

β0
j ≠ 0;

• θ0 =
#{j∶ ∣β0

j ∣>0}+a
p+b where a and b are known parameters of the prior Beta distribution

on θ. Here we choose i) a = 2
p and b = 1 − 2

p , such that the prior mean on sparsity is

2
p ; ii) a = 0.01n and b = 0.01n; iii) a = 1 and b = p. Our estimation results are not

sensible to the choice of hyperparameters a and b.

Supplementary Material

package: R-package ABSLOPE containing the implementation of the proposed method-

ology, available in Jiang et al. (2019b).

Codes: Code to reproduce the experiments are provided in Jiang (2019).

Additional supplementary materials: Some supplementary simulation results are

presented in Jiang et al. (2019a).
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Additional supplementary materials for ”Adaptive Bayesian SLOPE – high-dimensional

model selection with missing values”. https://github.com/wjiang94/ABSLOPE/tree/

master/ABSLOPE/OnlineSupp.

Jiang, W., Josse, J., Lavielle, M., and TraumaBase Group (2018). Logistic regression with

missing covariates – parameter estimation, model selection and prediction within a a

joint-modeling framework. arXiv e-prints. arXiv:1805.04602.

Jiang, W., Miasojedow, B., and Majewski, S. (2019b). ABSLOPE: a package for high-

dimensional model selection with missing values. https://github.com/wjiang94/

ABSLOPE.

Josse, J. and Husson, F. (2016). missMDA: a package for handling missing values in

multivariate data analysis. Journal of Statistical Software, 70(1):1–31.

Josse, J., Prost, N., Scornet, E., and Varoquaux, G. (2019). On the consistency of super-

vised learning with missing values. arXiv e-prints. arXiv:1902.06931.

Lavielle, M. (2014). Mixed Effects Models for the Population Approach: Models, Tasks,

Methods and Tools. Chapman and Hall/CRC.

Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-dimensional covari-

ance matrices. Journal of Multivariate Analysis, 88(2):365 – 411.

Liaw, A. and Wiener, M. (2002). Classification and regression by randomForest. R News,

2(3):18–22.

49

https://github.com/wjiang94/ABSLOPE/tree/master/ABSLOPE
https://github.com/wjiang94/ABSLOPE/tree/master/ABSLOPE
https://github.com/wjiang94/ABSLOPE/tree/master/ABSLOPE/OnlineSupp
https://github.com/wjiang94/ABSLOPE/tree/master/ABSLOPE/OnlineSupp
https://github.com/wjiang94/ABSLOPE
https://github.com/wjiang94/ABSLOPE


Little, R. J. and Rubin, D. B. (2002). Statistical Analysis with Missing Data. John Wiley

& Sons, Inc.

Liu, Y., Wang, Y., Feng, Y., and Wall, M. M. (2016). Variable selection and prediction

with incomplete high-dimensional data. Ann. Appl. Stat., 10(1):418–450.

Loh, P.-L. and Wainwright, M. J. (2012). High-dimensional regression with noisy and

missing data: Provable guarantees with nonconvexity. Ann. Statist., 40(3):1637–1664.

Mayer, I., Josse, J., Tierney, N., and Vialaneix, N. (2019). R-miss-tastic: a unified platform

for missing values methods and workflows. arXiv e-prints. arXiv:1902.06931.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Rejchel, W. and Bogdan, M. (2019). Fast and robust model selection based on ranks. arXiv

preprint 1905.05876.
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