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Abstract: Since its launch, Velib’ (the Bike Sharing System -BSS- in Paris) has emerged
in the Parisian landscape and has been a model for similar systems in many cities. A
major problem with BSS is the stations’ heterogeneity caused by the attractivity of some
stations located in particular areas. In this paper, we focus on spatial outliers defined as
stations having a behavior significantly different from their neighboring stations. First,
we propose an improved version of Moran scatterplot to exploit the similarity between
neighbors, and we test it on a real dataset issued from Velib’ system to identify outliers.
Then, we design a new method that globally improves the resources’ availability in bike
stations by adapting the users’ trips to the resources’ availability. Results show that with
a partial collaboration of the users or a limitation to the rush hours, the proposed method
enhances significantly the resources’ availability in Velib’ system.
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Université, Paris, France, in 2018. Her research interests include Data streams processing,
Data summarization, Data quality, and Cloud Computing.

Christine Fricker is a researcher at INRIA Paris. Her research interests concern both
theoretical aspects of large stochastic networks and algorithms to manage communication
networks. Methods are mainly probabilistic, based on renormalization techniques coming
from physical statistics as mean field and fluid limits. Her applications include computer
cache-memories, Internet traffic, optical networks, content-centric networks and data
center management. She is currently a member of DYOGENE team. After her scolarity at
the Ecole Normale Suprieure de Paris, she held her Ph.D. from UPMC (PSL University).
She has previously been in MEVAL then RAP team at INRIA. She has publications in
Applied Probability, Networking and Internet traffic literature.

1 Introduction

In order to reduce congestion and pollution in cities, Bike
Sharing Systems (BSS) have been widely adopted around
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the world. The use in these systems is quite simple: a user
takes a bike from a given station with a finite number of
docks (called capacity of the station) and returns it at
the arrival station, near his destination. BSS provides a
24/7 service, complementary to the other public means
of transport, with high flexibility and a relatively low
cost for the city. But the system is not so easy to manage.

Our work is motivated by the problem of lack of
resources, both bikes, and available slots, in bike sharing
systems. Indeed, some stations are often almost empty,
without enough available bikes or almost full causing
users dissatisfaction. In this context, we define outliers
as stations with one of the resources lacking while
the other stations in the neighborhood are globally
balanced. First, we use an adapted version of Moran
scatterplot to explore and characterize the neighborhood
of such stations. The results show a local heterogeneity
in the system: in a small area, bikes availability is
often very variable, depending on the station. This
local heterogeneity motivates us to propose a new
incentive method which encourages users to improve the
placement of bikes among the stations. This mechanism
is based on a local small change in users trips. In this
ecological regulation, users are redirected to another
station in the neighborhood of their source or destination
to locally reduce the heterogeneity of stations. Even if
this problem is addressed for Velib, the BSS of Paris
because we have access to data, we are convinced that
our study could apply to other BSSs or electric car
sharing systems [1] and also [2] for a survey on car
sharing systems.

The main tool in this paper is the detection of
anomalies in a spatial context, where an object is
considered as an outlier if the values of its non-spatial
attributes are significantly different from those of other
objects in its surrounding. Spatial outliers detection is
useful in many applications, such as the detection of
abnormal highway traffic patterns [3], the identification
of disease outbreaks [4], the detection of tornadoes
and hurricanes [5] and the identification of urban soils
pollution [6].

Outliers are defined as a set of observations that are
inconsistent with the remainder observations. Outliers
identification has practical applications in many areas,
such as intrusion detection, fraud detection, fault
detection and medical informatics [7]. Outliers detection
is also an important task in the data analysis process.
It aims to detect abnormal patterns and leads to the
identification of unusual phenomena, and new knowledge
about the monitored environment. To isolate outliers, it
is necessary to first characterize the normal observations,
which can be provided by the past values of the same
object or by the current values issued from other objects
in the neighborhood. In this latter case, the outlier is said
spatial. In a spatial context, each data is defined with
two categories of attributes: spatial attributes and non-
spatial attributes. Spatial attributes include the shape,

position, and other topological characteristics of the
sensor, and they are used to define the neighborhood
of the spatial object. Non-spatial attributes include
the ID, manufacturer, age, and sensor measure (called
behavioral attribute). A spatial outlier represents a local
instability and is only compared to the surrounding
dataset [8]. This is based on the rule: ”Everything is
related to everything else, but nearby things are more
related than distant things” [9].

This paper is organized as follows. We present in
Section 2 the existing related works. We describe in
Section 3 the dataset for Velib’ used in this work and
we discuss the problem of allocation of resources in bike
sharing systems. We describe in Section 4 the so-called
Moran scatterplot technique and propose an original
adaptation to Velib’ context. We also detail in this
section the experiments carried out on Velib’ to illustrate
the heterogeneity of the system. We present in Section
5 our new solutions to balance BSS and to improve
the resource balancing between the stations and validate
them on Velib’. Section 6 concludes the paper.

2 Related works

Several algorithms have been developed to detect
the outliers in a spatial context. These algorithms
can be classified into two categories: graphical-
based algorithms, and quantitative-based algorithms.
Graphical-based algorithms use visualization. They
present, for each spatial point, the distribution of its
neighbors and identify outliers as points in specific
regions. This category includes Variogram Cloud, Pocket
Plot, Scatterplot, and Moran scatterplot methods.
Quantitative-based algorithms perform statistical tests
to distinguish the outliers from the rest of the
data. These methods include Z-Algorithm, Iterative
r Algorithm, Iterative z Algorithm, and Median
Algorithm.

Scatterplot represents the data in a two-dimensional
space where the X-axis represents the values of the non-
spatial attribute (the observable) of each object and the
Y-axis represents the mean value of the observable of
the neighbors of this object. A regression line is used
to identify outliers points [10]. Variogram Cloud [11] is
a scatterplot between the spatial distance (X-axis) and
the difference of the observable values (Y-axis) for each
pair of points in the data. Outliers points are identified
as pairs of points having a small spatial distance and a
big difference for the observables measurements.

The Z statistic approach [12] is one of the most
known quantitative-based algorithms for spatial outliers
detection. For each spatial object x, Sx denotes the
difference between the attribute value of x and the
average attribute value of its spatial neighbors. Spatial
outliers are simply identified using a threshold based on
µs and σs which respectively represent the mean and the
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standard deviation of the attribute value of S over all
the spatial objects.

In [13], authors propose two iterative algorithms
(iterative r and iterative z) for the detection of spatial
outliers. These algorithms detect the outliers on several
iterations. Each iteration detects a single outlier and
modifies its value in order to reduce its negative impact
on its neighbors in the next iteration.

We apply in this paper the spatial outlier detection
approach to a particular case study: the performance
evaluation of a balancing mechanism in Bike Sharing
Systems (BSS). Nowadays, public authorities are
more and more encouraging this ecological mean of
transportation by expanding the BSS to the suburbs
and building new bike paths. Since its launch in 2007,
Velib’ (the BSS in Paris) has emerged in the Parisian
landscape and has been a model for similar systems in
many international cities. Velib’ provides a significant
proportion of people travels as it daily ensures about
110, 000 trips. It involves about 1800 stations with an
average distance of 216 meters.

Literature for BSS is now huge. BSS is widely
seen as a healthy sustainable urban mobility mode.
Indeed many papers present their positive impact on
energy consumption and emissions, safety and economy
and traffic conditions. See Zhang and Mi [14] and
reference therein. A major problem in BSS is the
problem of empty stations and full stations caused by
the asymmetric attendance to the stations. According
to the annual satisfaction survey of Velib’, only 50%
of users are satisfied with the availability of bikes and
docks in the stations [15], [16]. Despite the performed
redistribution (moving bikes using trucks), users often
find themselves in front of stations that are totally full or
empty. The main approach used to study redistribution
is optimization for the static one-vehicle problem in
Chemla et al. [17] (see also Cruz et al. [18] and references
therein) or multi-vehicle problem in Forma et al. [19] and
more recently the dynamical problem in Dell’Amico et
al. [20]. And very few have been done for designing user
incentives for rebalancing strategies. Fricker and Gast
[21] proposed explicit 2-choice algorithms, well-known
for balancing queueing networks and Haider et al. [22]
propose user incentives to decrease redistribution and
solve an optimization problem.

In most cities, operators provide open access to real-
time status reports on their bike stations. Several studies
show the interest of using these data (Froelich et al.
[23] and Borgnat et al. [24], Vogel and Mattfeld [25]).
The main objective in the first papers is to understand
and characterize the behavior of the users in order
to help in designing and planning policy in urban
transportation. See a comparative study of the trip data
in [26] and docking data [27] in different cities and [24] for
classification of the flows of trips in the Lyon bike sharing
system, using spatiotemporal characteristics to perform
clustering. See also Côme et al. [28] and Bouveyron et

al. [29]. But these data are now used for rebalancing
purposes. The first paper as far as we know is Gast et
al. [30].

The same trends are present for free-floating BSS
(FFBSS), recently deployed in many cities. They have
to face a more serious imbalance due to less restriction
on parking locations. Moreover, rebalancing is more
expensive as bikes may be recovered independently.
Furthermore, fleet dimensioning and location of the
bikes appear as main issues as they can be fixed by
optimization in Zhang et al. [31] or deep-learning using
data in Pan et al. [32]. And this issue is also studied for
docked BSS. See Park and Sohn [33].

3 Dataset description and problem
definition

In order to promote innovation and collaboration with
scientists, different kinds of data relative to the Velib’
system are ”Open Data” available for the research
community. We performed all the experiments presented
in this paper from these datasets.

First, we have static data describing the Velib’
stations. They consist of spatial attributes: the geo-
coordinates of the station (latitude and longitude), and
non-spatial attributes: Id of the station and its capacity
(total number of docks). Then, the dynamic data are of
two kinds: First, the number of bikes present in each
station for each timestamp t are provided in real time.
This parameter is varying during the day and is closely
dependent on the activity of users. Second, Velib’ users’
data trips are also available (one file for the trips during
a month). A trip is characterized by a departure and
arrival timestamp, and a departure and arrival station.
The analysis of several months of trips showed a very
strong periodicity: trips can be divided into two main
categories: the working days and the weekends. Two days
of the same category are very similar. We focus in this
paper on the working days and we choose to analyze
trips during one day: trips that took place on Thursday,
October, the 31th, 2013. This duration includes 121, 709
trips, involving 1226 Velib’ stations. 1.03% of the trips
are related to maintenance (bikes taken for repair) and
1.48% are trips of regulation (bikes moved by trucks).

According to many research studies ([34], [21] and
[28]), the Velib’ system has some weaknesses caused
by the strong attractivity of some stations that can be
explained by their location near a railway station or a
monument or a business area. Such stations are very
often almost empty (no available bike) or completely full
(no available dock to put a bike). Despite the performed
regulation (bikes moved by trucks), the system is
still unbalanced. This unbalanced distribution of bikes
among the different stations causes users dissatisfaction.
The unbalanced stations are referred to as problematic
stations. More precisely, we introduce the following
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definition: a station is said problematic at timestamp t
if its occupancy ratio is under 10% or more than 90%.

The occupancy ratio of the station, at a timestamp t,
is defined as follows:

occupancy rate t =
Number of bikes present at t

Capacity of the station

4 Spatial outliers detection with an
improved Moran scatterplot

The objective of this section is to estimate the number
of isolated problematic stations at a given timestamp
t, which motivates the incentive method detailed in
the next section. A good understanding of the current
use of the Velib’ system and the real needs of the
users is mandatory to improve the performance of this
system and to plan its future expansion and evolution.
An isolated problematic station satisfies both following
conditions: First, it is almost empty or almost full at
timestamp t. Second, its occupancy ratio is significantly
different from the average occupancy of the neighboring
stations at the same timestamp t. Thus the isolated
problematic stations are among the spatial outliers.
In this section, we consider the system at a fixed
timestamp t. In order to detect spatial outliers, we opted
to use Moran scatterplot [35] that we adapted to the
specificities of our context.

4.1 Moran scatterplot

Moran scatterplot [35] illustrates the similarity between
an observed value and its neighboring observations.
It measures the global spatial autocorrelation over a
geographical area, the well-known Moran’s I. Let us
denote by Z = {zi : 1 ≤ i ≤ n} the set of the different
values of the considered observable at a fixed given
time t, in n different locations. For each location,
the neighborhood is defined based on the geographical
distance. Moran scatterplot visualizes the relationship
between the values zi and their neighborhood average
Wi · Z, where W is a weight matrix that defines a local
neighborhood around each location. The observations
Z (x-axis) and W.Z (y-axis) are represented by their
standardized values.

Moran scatterplot contains four quadrants,
corresponding to four types of spatial correlation. The
upper-right and lower-left quadrants consist of the
locations with positive spatial correlation: association
between similar values. In the upper-right quadrant, the
high values are surrounded by high neighbors values,
while in the lower-left quadrant, the low values are
surrounded by low neighbors values. The upper-left
and lower-right quadrants incorporate the locations
with negative spatial correlation: association between

dissimilar values. The upper-left quadrant contains low
values surrounded by high neighbors values, while the
lower-right quadrant contains high values surrounded
by low neighbors values. The objects located in these
two quadrants are considered as spatial outliers and can
be identified by the statistical test function:

Zi ×
∑
j

wijZj < 0

W is the contiguity matrix of weights. It indicates the
spatial relationship between every couple of objects. W
is also called the row-normalized neighborhood matrix.
It is based on a threshold d of the geographical distance: i
and j are considered as neighbors if and only if 0 ≤ dij ≤
d, where dij is the distance between i and j. Moreover,
all the neighbors of i are equivalent and have the same
impact on the calculation of the neighborhood average
Wi · Z.

Thus, the contiguity matrix W is given by:

wij =

{ 1
Number of neighbors of i , if 0 ≤ dij ≤ d
0, otherwise.

(1)

To apply Moran scatterplot to the context of Velib’,
one has to estimate the crucial parameter d, which
represents the highest distance between two neighboring
Velib’ stations. The choice of d has to achieve the
following trade-off: On the one hand, this distance has
to be small enough to let the users slightly change their
trips at a local scale, and on the other hand, it has to be
high to make sure that most stations have a reasonable
number of neighboring stations. Velib’ stations are
generally close to each other and concentrated in the
center of Paris and near attractive locations whereas
they are distant in the suburbs.

To get in an idea about the geographical proximity
between the different stations we plotted, in Figure 1, the
distribution of the geographical distance to the nearest
station. In Figure 1, the mean distance to the nearest
station is of 216 meters. It leads us to propose that the
value of parameter d is larger than 300 meters.

To better estimate the choice of d, we plotted in
Figure 2 the distribution of the number of neighbors
for all the Velib’ stations. We tested different values for
the threshold distance d (300, 400 and 500 meters). We
conclude that a distance of 400 meters is reasonable as,
in this case, a given station has on average about 5
neighboring stations. Moreover, with d = 400, only 4.4%
of the stations do not have any neighboring station.

However, when detecting spatial outliers, the
assumption that all the neighbors have the same impact
on the neighborhood average may lead to missing
some true spatial outliers. In the dataset described in
Section 3, there are 1226 stations. As plotted in Figure 3,
the capacity of the stations is highly variable between
8 and 114 bikes, with an average of about 31 bikes.
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Figure 1: Distribution of the geographical distance to the nearest
station in bike sharing system Velib’, Paris, France (1226 stations,

average distance 215.848 meters).

Figure 2: Distribution of the number of neighbors, stations at
distance less than a threshold distance d, with different values of d:

300, 400 and 500 meters in BSS Velib’, Paris, France.

As Velib’ stations have different capacities, we defined
the occupancy ratio in order to compare normalized
bikes availability in these stations. The key idea is that
two neighboring stations should have almost the same
occupancy ratio if they have similar capacities. That is
why the capacity of the station has to be taken into
account when calculating the neighborhood occupancy
average.

4.2 Improvement of Moran scatterplot using
Gower’s coefficient

We will replace W with a new weight matrix W̃ also
based on the degree of similarity between the station i
and the corresponding neighboring stations. This new
matrix will take into account the distance and also

the difference of capacities between a station and its
neighbors. The set Ni of neighbors of station i is defined
as previously by the stations with a maximal distance d
from station i.

In order to measure the similarity degree between
two spatial objects, the Euclidean distance is most often
used. However, in our case, the use of this distance is
inappropriate since the location and capacity attributes
are measured on different scales. Hence, we propose
to use the Gower’s coefficient [36] to calculate the
similarity between two stations. Gower’s coefficient is a
similarity measure which computes the distance between
two instances on each attribute k, and then aggregates
all of them to finally calculate the similarity degree.
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Figure 3: Distribution of station capacity in BSS Velib’, Paris, France.

Gower’s similarity degree GOWERij between two
stations i and j is defined by:

GOWERij =

∑n
k=1Wijk × Sijk∑n

k=1Wijk
(2)

where

• Wijk is the weight associated to the attribute k,

• Sijk is the similarity between two stations i and j
for the kth attribute, given by

Sijk = 1− |xik − xjk|
rk

where xik is the observable attribute k in station
i and rk is a standardization for the attribute k
since each attribute is of different unit.

In the context of Velib’ stations, we calculate the
similarity Sij of the location SDij and capacity SCij

between two neighboring stations i and j by:

SDij = 1− dij
d

SCij = 1− |Capacityi − Capacityj |
Capacitymax − Capacitymin

where

• dij is the distance between the two stations and d
is the maximal distance.

• Capacitymax and Capacitymin are respectively the
maximal and minimal stations capacities in the
neighborhood of station i.

In this definition, Wijk = Wij , where Wij is previously
defined by equation (1).

We propose in the following to modify the
construction of the contiguity matrix of weights by
incorporating the spatial and non-spatial attributes and
in a weighted manner in the calculation of the weights
associated with neighbors. For each neighboring station
j, its new weight GOWERij regarding the station i is
given by equation (2).

The normalization of the contiguity matrix of weights
is done per line, so for each station i, the weight of each
neighboring station j is divided by the sum of the weights
of all the neighboring stations of i.

Thus, the new contiguity matrix W̃ is given by:

w̃ij =

{
GOWERij , if 0 ≤ dij ≤ d
0, otherwise.

We applied the improved version of Moran scatterplot
to detect the isolated problematic stations. Recall that
these stations are defined as spatial outliers with a
critical occupancy ratio. We used the same data set
described in Section 3.

Moran scatterplot representation for the occupancy
data of the stations at a fixed timestamp: 10 : 00 am is
given in Figure 4. At this time of day, we can expect
that the system is highly unbalanced, as in general in
a working day a lot of trips take place in the morning
around 8 : 00 am. The spatial outliers stations (almost
300 stations) are located in the upper-left and lower-right
quadrants. One can notice that there are fewer points in
these quadrants compared to the locations with positive
correlation.

The number of detected isolated problematic stations
at 10 : 00 am, depending on the allowed distance, is given
in Table 1. Recall that isolated problematic stations
are defined as spatial outliers with critical occupancy
ratio. According to this table, there are about 50 isolated
problematic stations at 10 : 00 am. The allowed distance
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Figure 4: Improved Moran scatterplot based on occupancy data for
Velib’ bike sharing system, Paris, France, on Thursday 10/31/2013

10 : 00 am.

does not have a considerable impact on the number of
outliers and the isolated problematic stations. Moreover,
with a local change of their trips, Velib’ users can
enhance the occupancy ratio of about 300 stations
(spatial outliers), which represents 24.48% of Velib’
stations.

5 Rebalancing the bikes in Velib’ system

Our objective is to improve resource availability in the
Velib’ system by reducing the number of problematic
stations. For this purpose, we propose and test in this
section a new incentive method, based on a natural
and ecological regulation performed by Velib’ users
themselves. The main idea behind the proposed method
is to balance the global system by performing small
changes in the trips in small local areas. The preliminary
study provided in the previous section proved the
presence of isolated problematic stations. Then the aim
of this part is to show that around a given problematic
station (in a distance smaller than 500 meters), there are
many balanced stations (with an occupancy ratio around
50%), which make it possible for Velib’ users to balance
this problematic station by slightly changing their trips
(in practice with an award, extra-time for example).

Using the dataset described in Section 3, we plot in
Figure 5 the evolution of the number of current trips
during the day (on Thursday 10/31/2013), in order to
understand the usage of the Velib’ system. One can easily
identify two peaks at about 8 : 00 am and 6 : 00 pm.
They clearly correspond to the trips to the offices and
the return home after work, as it is a working day.

Users trips unbalance the Velib’ system by making
some stations problematic (almost empty or almost
full). Based on the thresholds of station occupancy
introduced before (10% and 90%), the current number
of problematic stations is given in Figure 6. Despite

the performed bike regulation using tracks, the number
of problematic stations during the day remains high.
The problematic stations are mainly composed of almost
empty stations.

We propose in this section two incentive methods that
encourage Velib’ users to improve the homogeneity of the
stations in terms of occupancy ratio by slightly changing
their trips. In the trips dataset, let us denote by A the
station where the trip begins and by B where the trip
ends. The neighborhood of the station is defined by a
distance less than 400 meters.

5.1 First scenario

The key idea is to change the trips as follows: For each
trip, in terms of occupancy ratio,

• station A will be replaced by the busiest station in
the neighborhood of A,

• station B will be replaced by the emptiest station
in the neighborhood of B.

This idea can be easily implemented using a mobile
application: The user begins by giving his source and
destination stations, respectively A and B. Then the
application will propose an alternative itinerary that
enables him to save a given amount of time or money.
The departure station of this new route is the busiest
station in the neighborhood of A and the arrival station
is the emptiest station in the neighborhood of B. The
new route is of course calculated on-line as it depends on
the current state of the system. The new itinerary can
be accepted by the user or not. It can be improved with
other options for implementation. For example, the user
could begin giving his source and destination positions,
i.e. his departure and arrival locations, not Velib’
stations. Then the application can propose him the best
itinerary, choosing among the different stations around
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Table 1 Number of detected outliers stations with the improved Moran scatterplot based on occupancy data for Velib’ bike
sharing system, Paris, France, on Thursday 10/31/2013 10 : 00 am

Allowed distance Outliers Outliers with critical occupancy ratio

300 297 53

400 334 52

500 339 54

Figure 5: Number of current trips as a function of time during one
day time based on trip data for Velib’ bike sharing system, Paris,

France, on Thursday 10/31/2013.

Figure 6: Number of problematic (empty and full), empty and full
stations as a function of time during one day, based on occupancy data
for Velib’ bike sharing system, Paris, France on Thursday 10/31/2013.

these positions. This proposition could be followed or
not. The neighborhood is defined by a maximal distance
of 400 meters. We checked in section 4 that a value of
400 meters is a suitable distance to have a reasonable
number of neighboring stations. Changing the departure
station of a trip engenders an extra walk of at most 400
meters to let the user reach the new optimal departure
station. Notice that the actual distance is very likely
to be greater than the calculated distance because it
depends on the chosen path between the departure and

the arrival station, whereas the calculated distance only
uses the geographical positions of these stations. All the
geographical distances used in this paper are Euclidean
distances also called Line of Sight (LoS) distances.
Given the urban planning in Paris, the real walking or
riding distance is approximated by the LoS distance,
for small distances. Maybe l1-distance is more suitable,
and one could also derive exactly the stations at a fixed
walking distance from a given station. The proposed
methodology applies in both cases. To be realistic, the
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extra walk engendered by the proposed change has to be
compared to the distance of the trip. For this purpose,
we plotted in Figure 7 the distribution of trips lengths.
Moreover, the trips having the same departure and
arrival station are ignored (about 2.27% of the performed
trips). The so obtained mean trip length is of 1917
meters, therefore a maximal extra walk of 400 meters can
be reasonably proposed. The distribution of trips length
can be explained by the fact that the first 30 minutes
of the trip are free (45 minutes for the students). The
mean duration of the trips is of 14.5 minutes leading to
an average speed of 7.93 km/h.

The proposed method is inspired by Velib’ + which
consists of offering users of Velib’ an extra time (that
can be cumulated) when they park their bike in a station
having a high altitude. The main difference is that
Velib’+ regulation is static: Velib’+ stations are well
known and never change over time, whereas our preferred
busiest and emptiest stations dynamically change. They
vary during the time depending on their occupancy ratio
and the occupancy ratio of their neighboring stations.

5.2 Second scenario

The second scenario consists of performing the same
natural regulation proposed in the first scenario, only
during the rush hours. The rush hours correspond to the
trips to the offices in the morning and the return home
at the end of the day. According to Figure 5, these peaks
of activities are occurring in the following intervals: [7h,
10h], and [17h, 20h]. They represent 40% of the daily
trips. The key idea behind this scenario is to focus on
the demands of regular bikers: Changing only the trips
of the regular bikers may significantly improve resource
availability.

5.3 Experiments and results

Figure 8 presents the impact of the proposed incentive
method using the first and the second scenario) on the
number of problematic stations. Using the first scenario,
The results show a clear decrease in the number of
problematic stations throughout the day. The average
number of problematic stations drops from 164 in real
trips to only 27 by slightly modifying each trip. Starting
from a relatively high number of problematic stations
(almost 150), users are able to balance almost all these
stations within three hours. With the second scenario,
which limits the regulation to the rush hours, the number
of problematic stations also drops significantly and
reaches the performance of the first scenario (permanent
regulation) within one hour of the regulation (at 8h and
at 18h). Notice that for both scenarios, no new trips
are either added or lost. The modification is done with
exactly the same number of trips. The real trips are
only locally modified. The obtained results confirm our
intuition that the global availability of the resources in

the Velib’ system can be significantly improved by acting
locally. This improvement would allow accepting new
trips, where originally users are rejected due to a lack of
bikes.

The performance of the proposed incentive method
can also be measured by the number of spatial outliers
in the Velib’ system. They consist of stations with an
occupancy ratio significantly different from the average
occupancy ratio in their neighborhood. These outliers
are depicted in Section 4 using Moran scatterplot. The
comparison of the number of spatial outliers between
the original and modified behaviors (using the first and
the second scenario is given in Figure 9. With the
improved user behavior, the number of spatial outliers
drops significantly, which enhances the balance of the
Velib’ system.

In Figures 8 and 9, all trips are modified according
to the proposed method. It is not a realistic scenario as
in real life, many users will not accept to change their
departure or arrival station even if they are encouraged
by a financial motivation or an extra time offered. To
simulate a real-world situation, we plotted in Figure 10
the average number of problematic stations in the day
under a variable collaboration rate of the users. One can
see that, if only 20% of users accept to change their trips,
the number of problematic stations will decrease by half.
The decrease in the number of problematic stations is
fast (faster than a linear decrease) which is an excellent
result as we cannot expect that the majority of users will
collaborate.

The number of problematic stations during the day
is a good indicator to evaluate the quality of the service
offered to Velib’ users. However, it cannot entirely qualify
service availability. For a given station, the service is
considered as interrupted if there is no bike or no dock
in this station. In this case, the station is said invalid or
out of service. Note that this concerns just one resource:
bikes or free docks. To have complete information, we
plotted in Figure 11 the average duration of stations
invalidity during each one-hour interval of the day, before
and after the proposed improvement. One can notice
that the mean duration of station invalidity has largely
decreased, and likewise, the mean cumulative invalidity
duration during the day has been widely improved (cf.
Figure 12). According to Figure 12, at the end of the
day, the mean cumulative invalidity duration of a Velib’
station drops from 141 minutes to only 22 minutes
using our first scenario and 68 minutes using the second
scenario.

6 Conclusion

We studied in this paper the detection of anomalies in
a spatial context. Our use case was the bike sharing
system of Paris (Velib’). A Velib’ station is considered as
a spatial outlier if it is almost empty or almost full while
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Figure 7: Distribution of the trip length based on trip data for Velib’
bike sharing system, Paris, France, on Thursday 10/31/2013.

Figure 8: Number of problematic stations as a function of time
during one day, based on occupancy data for Velib’ bike sharing

system, Paris, France on Thursday 10/31/2013.

the surrounding stations are globally balanced. This is
due to the problem of heterogeneity in the Velib’ system
causing resources unavailability and user dissatisfaction.
To identify spatial outliers in this context, we used
Moran scatterplot. In order to calculate the occupancy
distance between two stations, we introduced a similarity
weight that takes into account the geographical distance
between the stations as well as the difference between
their capacities. This degree of similarity is calculated
using a robust distance metric called Gower’s coefficient.
Thereafter, we proposed and tested a new algorithm that
locally improves the distribution of resources (bikes and
docks) in the stations, and we experimentally validated
its efficiency. The results showed that even applied
only during the rush hours, the proposed algorithm
improves the homogeneity of the Velib’ system by

reducing the number of outlier stations and the duration
of unavailability of the stations during the day, which
ultimately leads to the improvement of the user level of
satisfaction.
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Figure 9: Detected spatial outliers as a function of time during one
day, based on occupancy data for Velib’ bike sharing system, Paris,

France on Thursday 10/31/2013.

Figure 10: Average number of problematic stations as a function of
the user collaboration during one day, based on occupancy data for
Velib’ bike sharing system, Paris, France on Thursday 10/31/2013.
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Figure 11: Mean duration of stations invalidity as a function of time
during one day, based on occupancy data for Velib’ bike sharing

system, Paris, France on Thursday 10/31/2013, for the same scenarios
as in Figure 10.

Figure 12: Mean cumulative duration of station invalidity as a
function of time during one day, based on both trip and occupancy

data for Velib’ bike sharing system, Paris, France on Thursday
10/31/2013, for the same scenarios as in Figure 10.
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[28] Côme Etienne and Oukhellou Latifa. Model-based
count series clustering for bike sharing system usage
mining: a case study with the vélib’system of
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