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Abstract

Let G be a quasi-split reductive group and K be a Henselian field equipped with
a valuation w : K* — A, where A is a totally ordered abelian group. In 1972, Bruhat
and Tits constructed a building on which the group G(K) acts provided that A is
a subgroup of R. In this paper, we deal with the general case where there are no
assumptions on A and we construct a set on which G(K) acts. We then prove that
it is a A-building, in the sense of Bennett.
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Reductive groups over non-Archimedean local fields have been extensively studied for
the past sixty years. To study such a group G and the group of its rational points G,



Bruhat and Tits associated in [BT72] and [BT84] a space Z - called a Bruhat-Tits
building - on which G acts. The space Z encapsulates significant information about the
group G.

In the 1970’s, Kato ([Kat78|) and Parshin ([Par75|) introduced higher-dimensional
local fields, a natural generalization of the usual local fields. A 0-local field is by defi-
nition a finite field, and for d > 1, a d-dimensional field is a complete discrete valuation
field whose residue field is a (d — 1)-local field. For instance, 1-local fields coincide with
usual non-Archimedean local fields. The equicharacteristic 2-local fields are the fields of
the form k((¢)) with k£ a 1-local field, but there are other 2-local fields that have mixed
characteristic.

Higher-dimensional local fields play an important role both in algebraic geometry and
in number theory. On the one hand, just as p-adic fields encode local information on
arithmetic schemes with relative dimension 0 such as Spec(Z), 2-local fields encode local
information on arithmetic curves such as Al, and d-local fields encode local information
on arithmetic schemes with relative dimension d—1 over Z. On the other hand, by Kato’s
work, higher-dimensional local fields also provide the good framework to generalize local
class field theory, which is a crucial step in the understanding of p-adic fields. Taking into
account that class field theory is the most basic example of Langlands correspondence,
one may ask whether Langlands’ ideas can be studied in a higher-dimensional setting,
and then it seems natural to study reductive groups over higher-dimensional local fields.

In this article, we will work over a field K that is endowed with a valuation w : K* — A
where A is any non-zero totally ordered abelian group. This covers the case of d-local
fields for d > 0 since they are endowed with a Z?-valuation, where Z¢ is equipped with
the lexicographical order. It also allows us to work with a field of the form C((t1)) - - - ((ta)),
which is the geometric counterpart of higher-dimensional local fields, since it encodes local
information in higher-dimensional complex varieties. Note that A does not need to be
discrete and could for instance be the group R x R with the lexicographical order. It
could also have infinite rank.

In the case where K is a higher-dimensional local field, Parshin constructed in [Par94],
[Par00b] a “higher Bruhat-Tits building” on which PGL, (K) acts, for n € N*. Indepen-
dently of this work, Bennett defined in [Ben94| a notion of A-building for A a totally
ordered abelian group and, for any field K equipped with a valuation w : K — AU{+o0},
he constructed such a A-building on which SL,(K) acts. As sets (when we forget the
topological structures), the buildings of Bennett and Parshin are very close.

Given any totally ordered abelian group A, any A-valued field K and any quasi-split
reductive group G over K, the goal of this article is to construct a A-building Z(G, K, w)
endowed with a suitable G(K)-action. This partially answers [Par94, Problem 2 p 187].

1.1 Bennett’s A-buildings

When K is a field equipped with a nontrivial valuation w : K — R and G is a reductive
K-group, Bruhat and Tits associated to G(K) its Bruhat-Tits building Z(G, K, w) on
which G(K) acts. When G = SL, and w is discrete for example, this space is a simplicial
tree.

The Bruhat-Tits building Z(G, K, w) is covered by subsets called apartments, which
are Euclidean spaces equipped with an arrangement of hyperplanes called walls. These
apartments are all obtained by translation by an element of G(K) from a standard apart-
ment A(G, K, w). The hyperplane arrangement of A(G, K, w) depends on the root system
of G and on the set of values of w. It naturally defines the notion of a face on A(G, K, w)
and by translation, on Z(G, K,w). Then we have the following important properties:

e (I1) for every two faces, there exists an apartment containing them;



e (I2) for every two apartments A and B, there exists an isomorphism of affine spaces
from A to B fixing AN B and preserving the hyperplane arrangement.

These properties motivate the definition of an abstract building: as a first approx-
imation (see Definition 2.22 for a precise definition), it is a set covered with subspaces
called apartments, which satisfy (I1) and (I2) and which are isomorphic to a standard
apartment A depending on a root system.

Let now A be any totally ordered abelian group. Since every totally ordered abelian
group can be embedded in an ordered real vector space, let’s assume for simplicity that A
itself is a real vector space. Bennett then defined in [Ben94| the notion of a A-building:
it is a set covered by subsets called apartments, all isomorphic to a standard apartment
A ®g A, and satisfying axioms similar to those of a Bruhat-Tits building.

Examples of A-buldings When A C R and K is a field equipped with a valuation
w: K — AU {oo}, the Bruhat-Tits building of (G, K, w) is a A-building. In the case that
A cannot be embedded as an ordered abelian group in R, there are three main previously
known classes of examples of A-buildings:

1. Let K be a field that is equipped with a valuation w : K — A. In [MS84], inspired by
Serre’s construction of the tree of SLy(K) when A = Z, Morgan and Shalen define
the notion of a A-tree and construct a A-tree on which SLy(K) acts. Generalizing
these works, Bennett define in [Ben94, Example 3.2] a A-building on which SL,, (K)
acts, for n € Zxo.

2. Let A, A’ be totally ordered abelian groups and e : A — A’ be a morphism of
ordered groups. Then Schwer and Struyve construct a functor from the category of
A-buildings to the category of A’-buildings, compatible with e (see [SS12]). Using
this and using ultraproducts, they construct nontrivial examples of A-buildings, for
A ¢ R. They in particular construct ultracones and asymptotic cones of buildings
(see [SS12, Section 6]).

3. Let G be a semi-simple Lie group. Let K., be a real closed nonarchimedean field
and O,y C K.y be an o-convex valuation ring. Then Kramer and Tent equip
G(Kyear)/G(Orear) with the structure of a A,eq-building, where Ayea = K2, /O%,, see
[KT04, Theorem 4.3] and [KT09]. They deduce that the asymptotic cone of G(K,ea1)
and the ultracone of G(K,ea) are A-buildings, for some A (see [KT04, Corollary 4.4]).
Using these results, they give a new proof of Margulis’s conjecture (see [KT04, §

5]).

Our result yields a new class of examples of A-buildings.

1.2 The building Z(G, K, w)

In differential geometry, when one works with some real Lie group G, it is often useful
to study the action of G on a symmetric space. For instance, if G = SL,(R), then one
may consider the action of SL,,(R) on X = SL,,(R)/SO,(R). The manifold X is then the
quotient of a real Lie group by a maximal compact subgroup. According to Goldman-
Iwahori (|GI63]), the space X can be identified with the space of norms on R™ up to
homothety.

Now, when one works over the p-adic field Q, instead of R, by analogy with Goldman-
Iwahori’s result, one can associate to the group SL,(Q,) the space Z(SL,,Q,) of ultra-
metric norms over Q) up to homothety. This is a particular case of a more general
construction given by Bruhat-Tits in [BT72, 10.2]. In order to generalize the previous



constructions and study in this context other classical groups of Lie type over Henselian
valued fields, Tits introduced the definition of buildings in the 1960’s.

When K is a field endowed with a valuation w : K* — Z, several approaches have
been developed to construct a Bruhat-Tits building Z(G, K, w) associated to a reductive
K-group G. The most elementary construction relies on lattices. For instance, when G
is split and has type A, (e.g. G = GL,, SL, or PGL,), one may define Z(G,K,w) as
the set of O-lattices contained in K" up to homothety, where O stands for the ring of
integers of K. The action of G(K) on Z(G, K, w) is then induced by the action of G(K)
on the Q-lattices of K™ (see [Ser77, Chapter II] for the case where n = 2). Note that this
construction depends substantially on the Lie type of the group G and a case by case
definition has to be settled.! Parshin [Par94| and Bennett [Ben94] both use this approach
with lattices to construct a space analogous to Z(SL,,K,w) when the valuation w takes
values in a totally ordered abelian group that might be different from Z.

A more general approach due to Bruhat and Tits ([BT72|, [BT84]) mainly consists
in generalizing the construction as a quotient of G(K) by a maximal compact subgroup.
Unfortunately, maximal compact subgroups need not be pairwise conjugate in general.
That is why, for an arbitrary reductive group G over a A-valued field with A C R, Bruhat
and Tits” construction relies on the use of parahoric subgroups. More precisely, they start
by defining the standard apartment A of their building as an affine space endowed with
an action by affine transformations of the group N of rational points of the normalizer
N of a maximal K-split torus of G. The root system ® of G can be regarded as a set
of affine maps on A. Then, for each element x of A, Bruhat and Tits define a parahoric
subgroup P, C G, which depends on the values a(x), for « € ®. They finally define
7 =7I(G,K,w) as the set G(K) x A/ ~, where ~ is an equivalence relation on G(K) x A
whose definition involves the parahoric subgroups P, for z € A. The group G(K) acts on
Zbyg-[d,x] =[g¢,x], for g,¢ € G(K) and = € A, so that P, is the stabilizer of z in G
for each x. This is the approach we follow in this paper to deal with the case when A is
not necessarily contained in R.

For that purpose, we start from a Chevalley-Steinberg system of the quasi-split group
G (i.e. a parametrization of the root groups U, of G taking into account the Galois
extension K /K that splits G). To such a pining, we associate a space Z. We then need to
prove that it is a A-building. A part of the proof consists in proving that G satisfies certain
decompositions, namely the Iwasawa decomposition and the Bruhat decomposition. To
prove them, we generalize the proof by Bruhat and Tits to our framework. After proving
these decompositions, the main issue is to prove that certain retractions are 1-Lipschitz
continuous. When A C R, a standard proof of this property uses the fact that the
segments of R are compacts. This is no longer true in our framework and we thus need
some additional work to prove this property.

1.3 Affine structure of the standard apartment

An important step in our construction consists in understanding the geometry of the
apartments of our building. Roughly speaking, the apartment will be a tensor product
Y ®z R where Y is the finitely generated free Z-module of cocharacters of G and R is
some ordered ring that contains A as a linearly ordered subgroup.

Consider, for instance, a Henselian valued field K with a discrete valuation w : K* —
A = 7Z. There is a natural structure of ring on Z but, since we have to consider field
extensions /K, the group A’ = w(IL*) is not anymore naturally equipped with a ring
structure extending that of A. Bruhat-Tits’s idea consists in seeing both A and A’ in the
ring R = R.

I Note that in the remarkable case of type A,, there are other similar approaches such as using
maximal orders (see [Vig80] and [Ser77] for n = 2).



Now, assume for instance that A = Z¢ equipped with the lexicographical order and let
Y =7" = ], Ze;. A natural way to generalize the previous construction is to consider
the ring R = R[t]/(t?) equipped with the lexicographical order induced by the degree
of monomials. On this example, the apartment A = Y ®; R will be a dn-dimensional
R-vector space and a free R-module of rank n. Thus, there are two viewpoints for an
element x € A: one can write either z = Y | \;e; with \; € R (structure of R-module)
or r = E;l;(l] x,t® with z, € Y ® R. The first viewpoint allows to endow the apartment
A with a geometric and combinatorial structure (it is an R-affine space together with
combinatorial data such as chambers, faces, sectors...). The second viewpoint allows to
endow the apartment with a fibration A — Y ®g R[t]/(t¥) that we will extend to the
whole building for each d’ < d.

In the situation of a general totally ordered abelian group A, we will define the apart-

ment A by introducing a totally ordered (non-unital) ring R together with an increasing
embedding A — RS,

1.4 Main results

We now briefly describe the main results of this paper, see Theorem 2.25 for a more
precise statement.

Let A be a totally ordered abelian group. Define the rank S := rk(A) of A as the
(totally ordered) set of Archimedean equivalence classes of A. For instance, if A = Z"
for some n > 1, then S = {1,2,...,n}. By Hahn’s embedding theorem, A can then be
regarded as a subgroup of:

R = {(24)ses € R | the support of (z)ses is a well-ordered subset of S}.

Let now K be a field with a valuation w : K — A U {oc}, fix a quasi-split (connected)
reductive K-group G and let S be a maximal split torus in G with cocharacter module
X,(S). If G is not split, assume that K is Henselian. Our results can then be summarized
as follows:

(i) We construct a set Z = Z(K,w, G), a A-distance d : T X Z — Aso :={A € A|]A > 0}
and we equip (Z,d) with the structure of an SR°-building whose apartments are
modelled on some quotient of X, (S)® M. The group G = G(K) acts isometrically
on Z and the induced action on the set of apartments is transitive.

(ii) Let s € S, let S<s = {t € S|t < s} and let mys <, : R® — M5<s be the natural
projection. Consider the valuation w<; = myxs <, 0 w. We construct an (explicit)
surjective map:

<s : (K w, G) = (K, w<s, G)
compatible with the G(K)-action such that, for each X € Z(K, w<, G), the fiber
721 (X) is a product:
Tx X f/,

where V is an ker(7gs <5)-module and Zx is a ker(mys <,)-building.

1.5 Structure of the paper

In section 2, we provide all useful definitions concerning the construction of A-buildings.
In subsection 2.1, we introduce all preliminary definitions that are necessary to define A-
buildings. These definitions are used all along the article. In subsection 2.2, we provide
the definition of A-buildings themselves. This allows us to state the main Theorem in
subsection 2.3.



In sections 3 and 4, we follow the strategy of Bruhat and Tits in order to provide
a generalization of the Iwasawa decomposition and the Bruhat decomposition. Doing
this, we introduce some abstract subgroups that generalize parahoric subgroups and get
a better understanding of the action of G on the A-building.

In section 5, we glue up the apartments via an equivalence relation similar to the one
introduced by Bruhat and Tits in order to provide a space Z(G, K, w) which will be the
A-building associated to G. We then prove that it satisfies all the A-building axioms
except the axiom (CO).

In section 6, we use the classical reductive group theory over a field (Chevalley-
Steinberg systems, Borel-Tits theory) in order to construct data that satisfy the axioms
of sections 3 and 4.

In section 7, inspired by work of Parshin ([Par94], [Par00b]), we prove that a surjective
morphism of totally ordered abelian groups f : A — A’ induces a projection map from
I(K,w,G) = Z(K, f ow, G) which is surjective and compatible with the action of G. We
then give a detailed description of the fibers of this projection.

Section 8 is dedicated to the proof of axiom (CO) and completes the proof of the main
Theorem.
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2 Abstract definition of S3°-buildings and statement of
the main theorem

In this section we recall the definition of A-buildings, as defined by Bennett in [Ben94].

2.1 Definition of the standard apartment
2.1.1 Root system, vectorial apartment over R and Weyl group

Let Vg be a finite dimensional vector space over R. Let ® C (Vg)* be a root system in
the definition of [Bou81, 6.1.1]. Let ®¥ C Vi be the dual root system of ®. In particular,
® (resp. ®Y) is a finite subset of (VZ) \ {0} (resp Vi \ {0}) and there is a bijection
Vi ® — &V such that for all & € @, a(aV) = 2.

Because we have to deal with non-reduced root systems, we recall the following defini-
tions and facts [Bou81, VI §1.3 & §1.4]. A root a € ® is said to be multipliable if 2a € ®;
otherwise, it is said to be non-multipliable. A root a € ® is said to be divisible if %a € d;
otherwise, it is said to be non-divisible. The set of non-divisible roots, denoted by ®,4, is
a root system.

2.1 Notation. For o, € ® and oV, 3" € ®V the coroots of o and 3 respectively, we
denote by:

o O(a,B) ={ra+spe®, (rs)eZ;
o (o,f)={ra+spc® (r,5) € (Z0)};
o 7o(B) =B — Bla)q;



 7(8) = A"~ a(3)a",

Note that ®(«, §) is a root system of rank 1 or 2 depending on the fact that o and
f are, or not, collinear. The subset (a, 3) is a positively closed subset of ®(«, ) when
B & =R

The map rq : ® — @ (resp. 74 : PV — ®V) extends linearly onto a map r, € GL(V§)
(resp. 14 € GL(VR)). The reflection r, satisfies r> = id and 79, = r, when 2a € .
We denote by W(®) the subgroup of GL(Vg) (resp. W(®")) generated by the r,, it is
a finite subgroup called the Weyl group associated to ® (resp. ®"). Moreover, for any
basis A of ®, the Weyl group W (®) of ® is generated by the r, for & € A. In particular,
there is a natural isomorphism of finite groups W(®) — W(®") sending r, € W(®) onto
ro € W(®Y) for any a € ®. By abuse of notations, for any w € W(®) we still denote
by w™! its image in W (®V) by this isomorphism and we denote W¥ = W (®) = W (®V).
Note that for any o € ® and any w € W(®), one has w(a) = aow™?.

A vector chamber C} is a connected component of Vg \ U,ce @ '({0}). The as-
sociated basis Agy of ® is the set of roots a € @ such that a(Cg) > 0 and such that
a~1({0}) N C spans a hyperplane of Vg (where Cg denotes the closure of Cg for the
topology of finite dimensional vector space on Vg). Let ®cv = {a € ®|a(Cg) > 0} be the
set of positive roots for Cy. Then ® = &gy LI =P and Py C GBO‘GAC]E Zsoo.

Let W* = W(®V) be the vectorial Weyl group. Then W7 is finite and for every
vector chamber Cg of Vg, (W?, {ra|a € Agy}) is a Coxeter system.

We now fix a vector chamber C}p of Vg, that we call the fundamental chamber
and we set Ay = Agy . We denote by £ the length on W associated to {ra|a € AC?,R}'

2.1.2 Topology over a totally ordered commutative pseudo-ring

We call pseudo-ring an algebraic structure satisfying the same axioms as a ring,
without assuming the existence of a multiplicative identity. For instance, an ideal of a
commutative ring is a commutative pseudo-ring. If A is an abelian group (e.g. a vector
space), it can be equipped with the trivial pseudo-ring structure given by Ay = 0 for
A e A

A commutative pseudo-ring R is said to be totally ordered if it is equipped with a
total order < such that:

Va,b,ce R, a<b=—=a+c<b+c

and
Va,be R,a>0and b> 0= ab > 0.

Note that we do not assume that R is an integral domain but the first condition implies
that R is a torsion-free Z-module. Thus, if we denote by Rgp = R ®z Q, there is a natural
embedding of R in Ry and the total order on R extends naturally to a total order on
Rg. Useful examples of such a totally ordered commutative pseudo-ring R are Z, R or
the non-unital rings R° defined in 2.18.

We introduce a symbol co and we extend the total ordering over R to a total ordering
of the set RU {00} by setting A < oo for any A € R. For any A € R, we will denote by:

e Vool = {se R, A< i} U{oo} and ]\ 00] = { € R, A < i} U{oo);
e Roy={peR, A<pu}=|\oo[and Rs) = {u € R, A< u} = [\ 00f;
e Roy={peR A>put=]—o0,\[and Re) = {pn € R, A > pu} =] — o0, A].

We equip R with the order topology for which a base is given by the sets R~ and R.)
for A € R . Thus, R is a completely normal Hausdorff space.

8



At some point, we will need that the order topology is dense at 0, so that it is sufficient,
for instance, to ask that R is equipped with a Q-module structure, i.e. R = Rg. For
instance, the totally ordered pseudo-ring &° defined in 2.18 satisfy these properties and,
moreover, A naturally embeds into R°.

Let AY be a basis of ®/,. We denote by V7 the free Z-submodule of Vg spanned by the
aY for oY € AY. Note that since W* acts transitively on the set of basis of ®); [Bou81,
VI.1.5], this does not depend on the choice of AV.

For any commutative pseudo-ring R, we denote by Vg = V; ®z R. Let a € ® be any
root. By definition of root systems, a(®¥) C Z. Thus « induces a Z-linear map on V7
and therefore an R-linear map on Vx uniquely determined by a(z®@\) = a(x)\ for z € V4
and A € R since a(zx) € Z.

For o € ® and any A € R, denote by Hpax = o ({\}) C Vi, by Dgax = @ *(Rs))
and by Dray = o~ (R>,\) Hp oy U lo)Ra A. If R is clear in the context, one can denote
those sets by H, », Da x and D, respectively. If A = 0, one can denote those sets by H,,
D, and D, respectively. We equip Vi with the topology generated by the sets D, 2 for
a € ® and A € R. Thus the linear maps « : Vg — Vg are automatically continuous.

For any basis A of ® and any subset Ap C A, we set:

Fi(AAp) = () Hran () DRa:{UEVR,VaeA,

CVGAP OéEA\AP

a(v)=0 ifaeAp
a(v) >0 ifadgAp

and

Fu(A Ap) = ﬂHRaﬁ ﬂ DRa:{veVR,VaEA,

acAp aEA\Ap

a(v)=0 ifaeAp
a(v) =20 ifadgAp

If A 'is any basis of ® and Ap = ), we set Ch o = Fi(A,0) and Ch o = FR(A,0). As
before, if R is clear in the context, we may omit to mention it in the notation.

2.2 Lemma. For any basis A of ®, we have C} = {v € Vg, Yo € &L, a(v) > 0} and
CY = {v € Vg, YVa € ®L,a(v) > 0}.
If A’ is another basis of ®, we have CX NCY, # 0 < A = A.

Proof. Let a € ®f and v € C¥ (resp. C,). By [Bou8l, VI1.6], there exist positive
integers ng such that v = 35, ngB. Since S(v) > 0 (resp. > 0) for any 8 € A, we get
that 35, n38(v) > 0 (resp. > 0). The converse is immediate since A C ®;. Hence
C% = {v € Vi, Ya € %, a(v) > 0} and Cx = {v € Vi, Ya € &%, a(v) > 0}.

Suppose A’ # A, then &, # ®{ and let a € &}, \ ®L. Hence —a € ®{. For any
v € CX,, we have —a(v) > 0 so that v & CR. O

2.3 Definition. For any v € V7, denote by 6, = {\v, A € R-¢}. This is called the “open”
half-line in Vz with direction v € V.

2.4 Lemma. For any basis A of ® and any Ap C A, the Z-vector facet FY (A, Ap) is
non-empty.

Proof. Tt suffices to prove it inside the reduced root system ®,4, so that we assume in
this proof that ® = ®,4 is reduced. Since W(P") acts simply transitively on the set of
bases of ", we know that the free Z-module V7 is the set of elements x = ) _\ noa”
such that n, € Z for any « € A. Define values p, € {0,1} by p, = 0 if a € Ap
and p, = 1 if a € A\ Ap. Consider the Cartan matrix C' = (8(a")), sca and the
matrix P = (pa),ea- According to [Bou8l, VI.1.10], C' is an invertible matrix over
Q. Hence there exist m € Z-¢ and a matrix N = (n,),.o with coefficients n, € Z
such that CN = mP. Define z = >\ n,a”. Then, for any 3 € A, we get that
B(x) = Y pennaB(@Y) = mps. If B € Ap, we have f(z) = 0 and if § ¢ Ap, we have
B(x) =m € Zsg. Thus x € FJ(A, Ap). O



2.5 Lemma. For any v € FJ(A, Ap), we have §, C FR(A, Ap).

Proof. For any a € A, any v € Cj o and any A € R, we have a(\v) = a(v)A by
R-linearity of . If @« € Ap, then a(vA) = 0. If o &€ Ap, then a(v) € Z~o by assumption
on v. Since A > 0 and a(v) € Z, we have a(v)A > 0. Thus a(Av) > 0 for any o € A\ Ap.
Therefore \v € FE(A, Ap) for any A € R+. O

2.6 Remark. Note that the set {A\z, A € Ry} for x € C} o is not contained in Cp 5
in general, even if z is R-torsion-free. For instance, take R = R[t]/(t?) with the lex-
icographical order a; + thy < as + thy <= a; < as or a; = as and by < by. Take
O = {+ta,+8,+(a+ )} of type Ay. Take x = 2a¥ + (1+1¢)5Y. Then ax) =4—(1+t) =
3—t>0and f(z) =2(1+1¢)—2=2t >0, so that z € C} 1, 5, Thus for any A € R\ {0},
we have a(Az) = (3 —t)A # 0 since 3 — ¢ is invertible in R so that, in particular, z is
torsion-free. But S(tx) = #(2¢) = 0 so that tz & Cp (, 5 with ¢ > 0.

The following Proposition generalizes [BT72, 7.3.5]. Since the topology of the R-
module Vg is not easy to manipulate (for instance, it is not necessarily a connected space
so that vector chambers cannot be defined as some connected components), we prove it
in a combinatorial way instead of a topological way.

2.7 Proposition. Assume that R = Rq. Let x € Vg and A, A" be two bases of ®. There
exists a unique w € W(®) such that x € CZ)(A) and Cp oy N (z+CR,) # 0.

Proof. Since any basis of a root system is contained in ®,4, we can assume that & is
reduced (i.e. ® = ®yq).

For uniqueness, consider w, w’ € W(®) such that = € ézjm HUU/(A and Cy )N (z+
CR) # 0 and Cy, N (x+CR) # 0. Let y € CpayN(z+CR)) and z € Oy p)N(x+CR)).
Let a € @ ). Then a(y) >0 and a(z) > 0 by Lemma 2.2. If a € @, ), then a(2) <0
and a(x) < 0. Thus a(x) = 0 so that a(y —z) > 0 and a(z —x) <0 by linearity of «.
Hence the sign of a is non-constant on C'}, which is a contradiction. Thus CI’I( A) = (I>+/( A)
which gives w(A) = w'(A) and therefore w = w’ according to [Bou81, VI.1.5 Thm.2].

For existence, we proceed as follows: let v € C7 A, so that 4, C Cf , according to
Lemma 2.5 and for any o € @, we have a(v) € Z \ {0}. We denote by ¥ the set of roots
a € ® such that a(z) < 0 or Vn € Rsg, Je €]0,n[, a(z + ecv) < 0. We denote by n(A)
the cardinality of ¥ N ®£. We prove, by induction on n, that for any basis A of ® such
that n(A) < n, there exists w € W (®) such that = € UZ,(A) and Cy A N (z 4+ CR) # 0.

Basis: suppose that ANW = (). For any o € A, we have o(z) > 0 and 3, > 0, Ve €
10,7a], a(z +ev) > 0. Denote by n = min{n,, « € A} > 0. Since any 3 € &} is a
linear combination with positive integer coefficients of the simple roots @ € A, we have
B(z) > 0 and for any ¢ €]0,n[, B(x + ev) > 0 since € < 7, for any . Hence ¥ N &} =)
and, therefore, n(A) = 0. Moreover # € Cx. Let € €]0,n[ and y = x + ev. Then
ye CiN(x+46,) C CXN(x+ CX ) according to Lemma 2.5. In particular, if A is any
basis of ® such that n(A) = 0, we have, in particular, A N ¥ = ) and we have seen that
the element w = id provides the basis of the induction.

Induction step: Let A be any basis of ® such that n(A) =n > 0. Thus ANV # () and
let « € AN W, that means we have either a(x) < 0 or Vi > 0, Je €]0, 7|, a(x +cv) < 0.
We prove that —a ¢ .

Suppose that a(x) < 0. Then —a(z) > 0. If a(v) € Z-o, let n be any element in
R-y. Then for any € €]0,7n[, we have —a(zx + cv) > —a(v)e > 0. If a(v) € Z-y, let
n = —5ye(r) > 0. Then for any £ €]0,7[, we have —a(z + ev) = —a(z) — a(v)e >
—a(z) — a(v)n = 0. Hence, in both cases, we get —a & V.

Otherwise, for any 1 > 0 there exists p €]0,n[ such that a(x + pv) < 0.

o If a(v) € Z~g, let Then —a(x) > a(v)p > 0. Moreover, for any ¢ €]0, p[, we have
—a(z+ev) = a(v)(p—¢) > 0. Hence —a ¢ V.
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o If a(v) € Z—g, suppose by contradiction that —a(x) < 0. Then —a(z) > a(v)p >
a(v)n. Thus, for n = —Tl(v)a(x) > 0, we get —a(z) > —sa(x) which is a contradiction.
Hence —a(z) > 0. Now, for any ¢ €]0, p[, we have —a(z + ev) > —a(v)e > 0. Thus
—a ¢ V.

As a consequence, in all cases, we get —a ¢ W. According to [Bou81, VI.1.6 Cor.
1 of Prop. 17|, we know that r, stabilizes ®£ \ {a} = (IJ:FQ(A) \ {—a}. Thus, @:Q(A) N
U = (L \ {a}) NV so that n(re(A)) = n(A) — 1 since @ € V. By induction, since
ro(A) is a basis of @, we know that there exists w € W(®) such that = € élora(A) and
Croraay N (@ + CR) # 0. O

We fix a basis Ay of ® and we denote by F(Ap) instead of FE(Af, Ap). The fun-
damental chamber is the set C} ; = Fi((). A vector face (resp. vector chamber)
is a set of the form w - Fp(Ap) (resp. w - C}p), for some w € W* and Ap C Ay.

2.8 Lemma. Let A be a basis of ®. For any Ap C A, we have w - FR(A, Ap) =
Fg(w(A), w(Ap)) for every w € W(®). Moreover Vg = U, ep (e w - CK-

Proof. For any @ € A and any = € Vg, we have

w(a)(w(z)) = ww'a(z) = az)

m

since w(a) = aow. Thus z € FE(A,Ap) < w(z) € w- F{(A, Ap) <= w(x)
F(uw(A), w(Ap). -
By Proposition 2.7, for any xz € Vg, there exists w € W* such that x € Cg (a)

O

w - C%. Hence we get the second equality.

2.9 Lemma. Let 5 € ® and FV be a vector face of Vg. Then either B(F") C R
B(F") = {0} or B(F") C Reo.

Proof. Write F* = w - F{(Ap), where Ap C Ay and w € WY. Let 8/ = w™'.5. Then
6’(F§(Ap)) = B(F¥). Maybe considering —f’, we may assume that §° € &,. Write
g = ZaeAf nea, with n, € Zso for all @« € Ay. Then if {a € Af|n, # 0} C Ap,
B'(Fg) = {0} and else f'(F¥) C Rso. Lemma follows. O

S
3

Given a vector face F, we denote by ®L, = {8 € ®, S(F’) C Rso}, by &5, = {8 €
®, B(F') C Reo} and by @}, = {8 € @, B(F") = {0}}.
2.1.3 R-affine spaces

An R-affine space is defined in the same way as an affine space over a field in which
we replace the underlying vector space by an R-module.
Let Z be any domain and R be a pseudo-ring equipped with a Z-module structure
such that:
Vze Z\{0},3r € R, zr #0.

The group GL,,(Z) canonically acts onto R™ by (¢; ;)i - (Zk)kr = (E;;l gk,jxj) . We can
k

therefore introduce the group:
Affz(n, R) = R" x GL,(Z).

Similarly, if V7 is a free Z-module, then GL(V7) naturally acts on Vi :== V; ®, R. We
can therefore define the Z-affine group of Vy as

Aﬁz(VR) = VR X GL(Vz)

11



If A is an affine space over Vi with some origin o, we define a natural action of Aff z(Vg)
on A by:

(v,9)-x=0+g(x —o0)+v V(v,g) € VR x GL(Vy), Vx € A.

This action is faithful and its image is called the Z-affine group of the affine space A and
(Enoted by Affz(A). We define the linear part of an element h € Aff;(A), denoted by

h , as the image of h by the quotient morphism Affz(A) ~ Aff ; (Vi) — GL(Vz).

2.10 Notation. Let Ay be an R-affine space with some origin o and underlying R-module
Vg defined as in 2.1.2. Note that Vg = 0 and Agr = {0} when ® = () so that any action
of any group on Ap is trivial. In the rest of this section, we assume that ® # ) but any
result can obviously be extended to the case of an empty root system.

Any root o € ® induces canonically a continuous R-linear form on V5 so that for any
a € ® and any A € R, one can define:

e an affine map 6, : Ag — R by O, (2) = alx —0) + )

e an affine hyperplane H, , = 9;71)\({0});

e an open half-affine space D, , = 9;,1)\(R>0) (resp. close D, = 9;1\(1%20));

e an affine reflection 7, ) : Ag — Ag with respect to Hy x by o (2) = 2 — O (7).

By abuse of notation, for any root v € ® and any point z € Ay, we will often denote
by «(z) instead of a(z — o).

We denote, by convention, D, . = lo)a,oo = Ap for any a € ® so that z € D, <
00 > —a(x) extends the definition of the D,y = {z € Ag, A > —a(z)} to any X €
R U {o0}.

2.11 Fact. For any a € ® and any A € R, the element ro\ € Affz(A) is identified with
(=AY, ry) € Affz(VR). In particular, 7?\> =r, € GL(V7).

Proof. For x € A, we have
(=X, 1) (x) = 0+ 1o(z —0) — A’
=0+ (z—0) —alr—o)a’ — A’
=2+ Oy ()"
= Tax(T)
We get the identification by faithfulness of the action. O

2.12 Fact. For (o, \) € ® x R, the map . is well-defined since 0, x(x)a” belongs to
the R-module Vg for any x € Ag. It is an affine reflection in the sense that it satisfies:

° 7’3,)\ = idy,;
o ro)\(2) =1 <= 1€ H,,;
o Toz,)\(Doz,)\) = D—a,—)\'

Proof. The second statement is immediate from the formula since Aa¥ = 0 <= X = 0.
Let y = ro(z) = x — O, (x)a”. Then

Oar(y)

aly) — A
a(z) — ala),(z) — A
(a(:p) - A) — 20, (2)
— Oa ()

12



Thus we get the first statement:

Ta,)\(y) =Y — ea,)\<y)av
=y + Ou ()"
=x
Finally, the third statement is given by Fact 2.13. U

2.13 Fact. For any (a, ), (5, 1) € ® x R, there is a unique (v, p) € & x R such that:

Ta,A<D5,u) =D, ,.
More precisely, we have
v =ra(B) =B - B(a)a p=p—Ba’)X
which make sense since R is a Z-module.

Proof. These are exactly the same results as in [Bou81l, VI§2|. We recall that W2 is
generated by the r, : ® — @ for a € ® given by ro(8) =z — x(a”)a so that r} = id.
We firstly prove that r (D, u) C D,Y . Forany (a, ), (B, ) € xR, let v = ra(ﬁ) =

f— B(a¥)a € ®. Note that y(a") = B(a¥) — f(a¥)a(a") = —p(a"). For any z € Dﬁ,w
let y = 7o a(x). Then
1(y) =v(z) = v(a")ban ()
=) - 6<aV>a<x>) T 6(aV>ea7A<x>
=6(z) -
=6(x) +
— 1
Thus y € lo)%p.

Conversely, if y € Dy, let £ = rqa(y). Then y = rqa(x) since 72, = id. Thus z €
row\(Dy ) C Dra(,y)p +(av)a- Since Ta(v) =7r2(B) = B and p — y(a")A = p+ B(aV)\ = p,
we get that ra,\(D,y ) C Dﬁu Thus D'yp = rax(Dg, )

The same equality holds for affine hyperplanes. O

A sector-face @) (resp. a sector @) is a set of the form = + FY (resp. x + CV) for
some = € Ap and some vector face F (resp. vector chamber C¥) of Vz. The direction
of ) is F and its base point is z.

2.14 Definition. An affine apartment over R is a 4-tuple
% = (AR7 VR7 (I)7 (Fa)aeé) such that:

1. @ is a root system over (Vg)*;

2. (T'y)aes is a family of non-bounded subsets of R containing 0, satisfying the following
property. Let 7 = {H,\|la € ®,\ € I',}. For H = H, ) € J we denote by
Ty = Ta the (affine) reflexion of Ag fixing H and whose vectorial part is r,. We
assume that ry stabilizes 77 for every H € J7.

3. Ap is the affine space over R with underlying vector-space Vg.
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A set of the form D, ) (resp lo)m,\, resp. H, ) for A € T, and a € @ is called a
half-apartment (resp. an open half-apartment, resp a wall) of Ag.

A set of the form D,, , (resp bm,\, resp. H, ) for A € Rand a € @ is called a phantom
half-apartment (resp. an phantom open half-apartment, resp a phantom wall)
of Ar. This phantom part terminology is there to indicate that the objects are carried
by the directions induced by the roots but not by the values prescribed by the valuation.
When in section 6 we make a use of algebraic groups over a valued field, these phantom
parts may appear after some extension of the base field.

The affine weyl group W2 of Ay is the subgroup of the group of affine automor-
phisms of A g generated by the ry, for H € 7. 1t is a subgroup of W* x V. Let a € @,
AeTl,and M = H,_,. By condition (2), if « € ® and A € I',, then 7,(Hy)) = Ha,
and thus —I'y, =T,. f o € &, w € W? and A € Ty, then w- H,x = Hy.o,) and thus
Iy, =Tya

2.1.4 R-metrics over affine spaces

For A € R, we denote by |A| = —Aif A € Rg and |A\| = X if A € R>( the absolute
value of A. It satisfies |\ + pu| < |\ + p| and |[Ap| = |A||p] for any A, u € R. The finitely
generated free R-module Vi = @, cov Ra” can be equipped with a W(®")-invariant
R-norm as follows:

Let ®* be any choice of a subset of positive roots and set ||z||zr = Y co+ [a(2)]. Then
2||z||r = X ,eq la(z)]. Since R is a torsion-free Z-module, by definition of root systems,
this defines a W (®"Y)-invariant map || - ||z : Vk — Rxo that does not depend on the choice
of ®*. One says that || - ||z is an R-norm, that is a map || - [|r : VR — Rxo such that for
x,y € Vg, one has:

1. ||z||r =0 <=z =0;
2. |Azl[r = Alll2][;
3. Mlz +yllr < llzllr + llyll&-

Moreover, it satisfies ||Av||gr = ||v]|z|A| for any v € Vz and any A € R so that Av € V.

Let Ag be an R-affine space with Vz as underlying R-module. Then, the map d3i¢ :
ARr x Ap — R defined by d5td(z,y) = ||y — z||r defines an R-distance. That is a map
d: Ar x Agr — R such that for all x,y, z € Ag, one has:

1. d(z,y) >0, and d(z,y) = 0 if and only if z = y;
2. d(z,y) = d(y, v);
3. d(z,y) < d(z, 2) +d(z,y).

The map d3t¢ is the standard R-metric considered by Bennett in [Ben94].
For x € Ap and € € R+, we denote by Bg(z,¢) the set {y € Ag| d(z,y) < ¢}. We
equip Ag with the topology whose a base is given by the Bg(z,¢) for x € Ag and € > 0.

2.15 Remark. It is easy to check that it coincides with the topology on Vg defined in
Subsubsection 2.1.2.

2.1.5 Filters

A filter on a set £ is a nonempty set .# of nonempty subsets of £ such that, for all
subsets F, E' of £, one has:

e [, '/ € % implies ENE € .F
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e F/C F and E' € .% implies E € .Z.

If £ is a set and .7, %' are filters on &, we define .# U %’ to be the filter {E U
F'|(E,E) € # x F'}.

If €,& besets, f: € — & beamap and .Z be afilter on €. Then f(.7) := {f(E)|E €
F} is a filter on f(E’). We say that a map fixes a filter if it fixes at least one element of
this filter.

If . is a filter on a set £, and E is a subset of £, one says that .# contains F if every
element of .# contains E. We denote it % > E. If E is nonempty, the principal filter
on &£ associated with E is the filter .#g ¢ of subsets of £ containing E.

A filter .7 is said to be contained in another filter #': . % € %' (resp. in a subset Z
in&: 7 e Z)if every set in .#’ is in ¥ (resp. if Z € .7).

These definitions of containment are inspired by the following facts. Let £ be a set,
Z be afilter on £ and E, E’ C £. Then :

e £ C E'ifand only if Fp¢ € Fpi g,
o F€.Z ifand only if e € .7,
e £5 .7 ifand only if Fp¢ > Z.

2.1.6 Enclosure map

We now define the enclosure of a filter on Ag. This definition is motivated by the fact
that the intersection of two apartments is a finite intersection of half-apartments. We
assume that we are given a families of sets I',.

2.16 Definition. Let Ap = (AR, Vr, P, (Fa)aecp) be an apartment. Let V be a filter on
AR. Then we define the enclosure cl(V) as:

(V) = {X € Ap3(Ae) € [T U{oo})| X O () Do,  V}.

acd acd

If © is a subset of Ag, we set cl(2) = cl(Fqa,). A subset  of Ap is said to be enclosed
if it is an element of cl(€2), that is, if it is a finite intersection of half-apartments.

Our definition of enclosure is inspired by [GR08, 2.2.2]. It is different from the enclo-
sure clgr defined in [BT72, 7.1.2].

o If QO C Ag, then cl(f2) is a filter whereas clgr(€2) is a set. But even if we identify

a set with the principal filter associated, the notions differ. Indeed, suppose for
example that A = R and that I', = Q, for all « € ®. Let x € R\ Q. Then cl({z})
is the set of subsets of R containing a neighborhood of x, whereas clgr({z}) = {x}

and Fizya, 7 cl({x}).
e One has cl(Q) 3 clgp(Q2) for every subset 2 of Ag: our enclosure is bigger.

Note that when A is a discrete subset of R, if we work with R = R, then the enclosure
of each subset €2 of A is the principal filter on Ag associated to clgr(€2) and thus we can
avoid the use of filters. When |S| > 2 however, this property is no longer true, even in
the discrete case. Indeed, suppose that A = Z? and that ® = {Id, —Id} so that Ar = R.
In this case, we work with R = R? ~ R[t]/(t?*). Let 2 = {(0,z)|z € R}. Then

() ={X cR?*|Fa,b R, X D[(—1,a),(1,b)]n},

and this filter is not principal.
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2.1.7 Germs, faces and local faces

Let Q = = + F" be a sector-face of Ag, where x € Ar and F" is a vector face in V.

The germ of @) at z is the filter germ,(Q) = {Q2NQ| 2 C A is a neighborhood of x}.
A local face (resp. alocal chamber) is a filter of the form germ, (@) for some sector-face
@ (resp. sector @)) based at z. Two local sector-germs germ, (@) and germ,(Q’) are said
to be opposite if the direction of () is opposite to the direction of @', i.e if Q = z + C?
and Q' = x4+ wq - C”, where C" is the direction of () and wy is the longest element of W7,

Alternatively, we denote by F*(x, F"), as done in [Roull], or by F, pv, as done in
[BT72, 7.2|, instead of germ,(Q). This will be a useful notation for Bruhat decomposition
4.38.

The face F(z, F") is the filter on Ag generated by the sets of the form

X = ﬂ ba,)\a N ﬂ Da,f)\on

ac¥ aced\¥

where U C ® and A € RU {oo} for (\,) € (R” U {o0})? such that X  F'(x, FV).

The germ of @) at infinity is the filter germ (Q) = {Q C A] I € F’, Q D
r+ &+ FU} If @ is a sector, then a subset X' of A is in germ (@) if and only if X
contains a subsector of ().

2.17 Lemma. Let Q) be a sector of Ag, = be its basis and y € Q. Then cl({z,y}) D
germ, (Q).

Proof. Let C" be the vector chamber of Vi such that @ = x + C¥. Let A be the base
of ® associated with C°. Let Q € cl({z,y}). Let (Aa)ace € (R U {oc})® be such that
Q D {x,y}. Then for all « € ®, a(x) > a(y) > =\, and for all @ € L, alxr) > —A,.
Set Xr = ﬂaeq)g lo)a7,\a 5 9. Then

Q5 () Dara N [] Do 2 QN Xr

aed), acd}

and thus Q € germ, (@), which proves the lemma. O

2.1.8 The pseudo-ring R°

In the previous sections, we have defined the notion of an affine apartment over a
totally ordered commutative pseudo-ring R. The current section is dedicated to the defi-
nition of the pseudo-rings R that will be considered in the sequel.

In the classical Bruhat-Tits theory, when one works over a field K endowed with a
valuation w : K* — Z, one usually chooses the ring R = R, in which the valuation group Z
is embedded. In our case, we will work over a field K that is endowed with a valuation w :
K* — A, where A can be any totally ordered abelian group. The rank rk(A) of A is then
defined as the (totally ordered) set of Archimedean equivalence classes of A. For instance,
if A = 7" for some n > 1, then rk(A) = {1,2,...,n}. By Hahn’s embedding theorem,
A can always be embedded as an ordered subgroup of the lexicographically ordered real
vector subspace of R™ X)) given by families (74)serk(a) With well-ordered support. This
motivates the following more general definition:

2.18 Definition. Given S a totally ordered set, 3° is the real vector subspace of R® whose
elements are given by families (z,),cs € R¥ with well-ordered support. It is endowed with
the lexicographical order.
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In order to be able to choose R = R™™) and use the theory that has been developped
in the previous sections, it is now necessary to endow R° with a pseudo-ring structure.
The choice of this pseudo-ring structure does not play a crucial role in this article and we
could just formally decide that the product of two elements in 937 is always 0. However, as
we are going to explain in the rest of this paragraph, it is sometimes possible to endow R°
with other pseudo-ring structures. This might play an important role in future articles,
for instance in order to endow the buildings we construct in the present article with a
Euclidean distance.

A simple method to endow 2% with various pseudo-ring structures consists in consid-
ering a totally ordered commutative monoid I' and a non-decreasing embedding:

t:S—=T
such that:
(i) for any s € S, 1(s) > 0;
(ii) for any s € S and vy € T', if 0 < v < «(s), then vy € ¢(5);
(iii) if S has a minimal element s, then ¢(sg) = 0.

Let I'sy (resp. I'sg) be the monoid of non-negative (resp. positive) elements in I'
and assume first that S has no minimal element. Consider the non-unital R-algebra
R[[t">°]] given by formal power series with real coefficients f = > . a,t7 such that
the support of the family (@) er., is a well-ordered subset of I'sy. It is endowed with
the lexicographical order and the ideal Ig of R[[t'>°]] spanned by the R#’ with ~ €
I'so\ ({0} U (S)) is the kernel of the R-linear order-preserving surjective morphism:

T R[[tr>°]] — R
Z a'ytfy = (CLL(S))SGS'
v€l>0

The non-unital ordered commutative R-algebra structure on R[[t'>°]] then induces a non-
unital ordered commutative R-algebra structure on R*.

Assume now that S has a minimal element. Let R[[t"2°]] be the unital R-algebra of
formal power series with real coefficients f = Zvel}o a,t7 such that the support of the
family (a,),er., is a well-ordered subset of I'so. It is endowed with the lexicographical

order and the ideal g of R[[t'20]] spanned by the Rt” with v € T'sq \ ¢(S) is the kernel of
the R-linear order-preserving surjective morphism:

T R[[trzo]] — R
Z a‘/tw = (CLL(S))SGS'

7€l >0

This allows us to endow 9% with the structure of a unital ordered commutative R-algebra.

2.19 Remark. Note that one can always find a monoid I' and an embedding ¢ satisfying
the desired conditions. Indeed:

(i) if S does not have a minimal element, then I' can be chosen to be the monoid
of non-increasing maps S — N together with the lexicographical order and ¢ the
embedding that sends s € S to the element of I":

u(s): S —N
1 ift<s
t—
{0 it t > s.
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The product of two elements of 23 is then always 0, so that we recover the trivial
pseudo-ring structure on R7.

(i) if S has a minimal element sp, then I' can be chosen to be the monoid of non-
incresing maps S \ {so} — N together with the lexicographical order and ¢ the
embedding that sends s € S to the element of I":

t(s) : S\ {so} - N
1 ift<s
t— ]
0 ift>s.
The product of two elements (a,)ses and (bs)ses of R is then (as,bs + bsyas)ses-

2.20 Example. If S is well-ordered, it can be identified with an ordinal . The Hessenberg
sum endows the ordinal w® with the structure of a totally ordered commutative cancella-
tive monoid. The Grothendieck group K (w®) of w® is therefore a totally ordered abelian
group. We can then set I' := K(w®) and consider the natural embedding:

t:S=a=T.

For example, when S is finite and has n elements, the R-algebra 9R° is then none other

than R[[t]]/(¢").

2.1.9 Topology and metric in R°

In this part, we state some specificities over the totally ordered commutative pseudo-
ring R = R° satisfying Rg = R = R°. In order to simplify the notation, we denote by
Vs, Ag, F§(Ap), ete. instead of Vs, Ags, Fis(Ap), etc.

If s € S and T is a binary relation on S (for example <, <, >, ...). We denote by
A, the space Apegptsy and we define 71, 1 Ag — At by WTS((l‘t)tes) = (x4)¢Ts, for
(SL’S) € Ag.

2.21 Lemma. The distance d29 : Ag x Ag — R satisfies the following properties:

1. For all € € %io, for all s € S, there exists t € [s,+oo[ and an open neighborhood
Xr of 0 in Ar such that T<;(B(0,€)) D {On<t} X Xg.

2. For all s € S, for every open subset Xg of Ag containing {0}, there exists € € R,
such that Bg(0,¢) C {On<s} x Ap X Ay

8. It is invariant under translation, that is: for all z,y,z € Ag, did(z,y) = d¥(x +
z2,y+2).

4. It is is Weyl-compatible (see [BS14, Definition 3.1]).

Proof. Point (3) is clearly satisfied and point (4) is [BS14, Lemma 10.1]). Let us prove (1).
Let € € MY, and s € S. Let s = min{s’ € supp(e)les > 0}. Suppose s < sp. Let
Xe = {z € Ar| d14(0,z) < les}. Then 7y, (B(0,€)) D {Op<so} X Xe. Suppose now
s > so. Then B(0,€) D {On<s} X Al 1oof and thus m<,(B(0,€)) D {On<:} x A, which
proves (1).

Let us prove (2). Let s € § and let A be an open neighborhood of 0 in Ag. Let
er € Roo be such that {z € Ag| d(0,z) < er} C Xg. Let € = (301 ser)tes € R°. Then
B(0,€) C {0} x A X A yoo[, which proves (2). O
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2.2 Definition of $3°-buldings
2.2.1 Bennett’s definition of 3°-buildings

Let Ag = (Ag, Vg, ®, (Ta)aca) be an affine apartment over :R° (see Definition 2.14). An
apartment of type Ag is a set A equipped with a nonempty set Isom(Ag, A) of bijections
f: As — A such that if fy € Isom(Ag, A), then Isom(Ag, A) = {fo o wjw € W3}, An
isomorphism between two apartments A, A’ is a bijection ¢ : A — A’ such that there
exists fy € Isom(A, Ag) such that ¢ o fy € Isom(Ag, A).

Each apartment A of type Ag can be equipped with the structure of an affine space
by using an isomorphism of apartments ¢ : Ag — A.

We extend all the notions that are preserved by W2 to each apartment. In particular
half-apartments, walls, enclosure, sector-faces, local germs, germs at infinity, ... are well
defined in each apartment of type Ag.

We say that an apartment contains a filter if it contains at least one element of this
filter. Recall that we say that a map fixes a filter if it fixes at least one element of this
filter.

2.22 Definition. An R%-building is a set Z equipped with a covering 27 by subsets called
apartments such that:

(A1) Each A € &/ is equipped with the structure of an apartment of type Ag.

(A2) If A, A" are two apartments, then A N A’ is enclosed in A and there exists an iso-
morphism ¢ : A — A’ fixing AN A’

(A3) For any pair of points in Z, there is an apartment containing both.

Given a Wal_invariant SR%-metric d on the model space Ag, axioms (A1)—(A3) imply
the existence of a 93%-valued distance function on Z, that is a function d : Z x Z — R
satisfying all conditions of the definition of a 9°-metric except possibly the triangle
inequality. The distance is defined as follows. Let z,y € Z and A be an apartment
containing them. Then the distance x and y is the distance the distance between their
images under any isomorphism of apartments from A to A.

(A4) For any pair of sector-germs in Z, there is an apartment containing both.

(A5) For any apartment A and all x € A, there exists a retraction p4 , : A — Z such that
pae does not increase distances and p’ ({z}) = {z}.

(A6) Let Ay, As, A3 be apartments such that A; N Az, Ay N Az and A3 N A; are half-
apartments. Then A; N Ay N Az is nonempty.

2.28 Remark. Suppose that S is reduced to a single element (thus RR° ~ R). The axioms
(A1) to (A4) correspond to the axioms (A1) to (A4) of [Par00a, 1.2]. Axiom (Ab) corre-
sponds to axiom (A5’) of [Par00a| and axiom (A6) corresponds to axiom (A5) of [Par00a,
1.4]. Note that under this assumption, (A6) is a consequence of the axioms (A1) to (A5).

2.2.2 Equivalent definition of 3°-buildings

We recall that we Ag is equipped with d%¢ (see 2.1.4 and 2.1.9), which is Weyl-
compatible (|[BS14, Definition 3.1]).

In [BS14], Bennett and Schwer prove that the definition of 93°-buildings is equivalent
to many other ones, see [BS14, Theorem 3.3|. In order to prove that the “building”
associated with a quasi-split reductive group over a valued field is indeed a 9%-building,

we will prove that it satisfies one of the equivalent set of axioms. We first need to define
two other axioms: (GG) and (CO). Let Z be a set satisfying axioms (A1), (A2) and (A3).
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(GG) Any two local sector-germs based at the same vertex are contained in a common
apartment.

Two sectors O, Q" based at the same point z are called opposite at x if there exists
an apartment A containing germ, (@), germ,(Q’) such that germ,(Q) and germ,(Q') are
opposite in A.

(CO) If @ and @' are two sectors which are opposite at their base points, then there
exists a unique apartment containing () and Q'

As a particular case of [BS14, Theorem 3.3|, we have:

2.24 Theorem. Let (Z,d) be a set satisfying (A1), (A2) and (A3), where d is a Weyl
compatible R metric on Ag. Then T is a A-building if and only if T satisfies (GG) and
(CO).

2.3 Main theorem

2.25 Theorem. Let A be a totally ordered abelian group with rank S, so that A can be seen
as a totally ordered subgroup of R¥. Let K be a field with a valuation w : K — AU {oo},
let G be a quasi-split (connected) reductive K-group and let S be a mazimal split torus in
G with cocharacter module X, (S). If G is not split, we assume that K is Henselian.

(i) The set IZ(G) = I(K,w, G) defined in section 6.5 and endowed with the distance
introduced in 2.1.4 is an R -building whose apartments have type:

& - (A57 VRa q)v (Pa)aéq))

where Vg is the quotient of the real vector space X, (S)®z R by the orthogonal of the
roots of G, Ag is an affine space over K5 whose underlying R -module is Vg @r R,
® is the root system associated to G in Vi and, for a € ®, T, is a subset of R° that
generates a subgroup in which A has finite index. The group G(K) acts on Z(G) by
isometries and the induced action on the set of apartments is transitive.

(ii) Let s € S, let S<s = {t € S|t < s} and let mps <, : RY — R be the natural
projection. Consider the valuation w<; = s <5 0 w. There exists an (explicit)
surjective map:

<s LK, w, G) = I(K, wes, G)

compatible with the G(K)-action such that, for each X € I(K,w<s, G), the fiber
724(X) is a product:

IX X ((CI)X>L Rr ker(ﬂmsés))
where ®x 1s a root system contained in P, (<I>X>L is the orthogonal of ®x in Vg,
and Ix is a ker(mys <¢)-building. The apartments of Tx have type:

A_X = (AXv VR/<(I)X>L7 Dy, (Fx,a)aecp)

where Ax is an affine space over ker(mys <5) whose underlying ker(mys <5)-module
is (Vie/(®x)") @r ker(mps <4) and for a € @y, T'x 4 is some subset of ker(mps <;).

The construction of the building Z := Z(G, K, w) is very close to the construction of
Bruhat-Tits buildings by Bruhat and Tits.

We start from the datum of a quasi-split redutive K-group G and a maximal K-split
torus S of G. We let T and N be respectively the centralizer and the normalizer of
S in G. The standard apartment Ag is an 9R°-affine space over the °-module given
by scalar extension to S:&° of the Z-module of cocharacter defined over K of T. We
construct an action of N = N(K) on Ag. Using a Chevalley-Steinberg system (z,)ace
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of G (i.e. a parametrisation of root groups U, compatible with Galois action of the
splitting extension K/K of G), where ® denotes the K-root system of (G, S), we define
the parahoric subgroups Py of G = G(K), for every filter V on Ag. We then define Z as
in Bruhat-Tits as G x Ag/ ~, where ~ is an equivalence relation defined in section 5.

We then need to prove that Z satisfies the axioms (Al) to (A6). For this, we use
Theorem 2.24 and we prove that Z satisfies the axioms (A1), (A2), (A3), (GG) and (CO).
The fact that Z satisfies (A1) follows immediately from the definitions. The axiom (A2)
is obtained similarly as in [BT72|. In order to prove (GG) and (A3) we generalize the
Bruhat decomposition (see Theorem 4.38). Before proving this decomposition, we prove
that G satisfies the Iwasawa decomposition (see Theorem 4.36). Restated in terms of
buildings, this decomposition asserts that if F' is a face of Z and C4, is a sector-germ at
infinity of Z, then there exists an apartment containing F' and C.,. We also prove (A4),
which is actually a consequence of the Bruhat decomposition.

Section 7 is dedicated to the projection map m<, that has been introduced in part (ii)
of theorem 2.25. We first construct the map m< itself, and we give an explicit description
of its fibers. We then prove that those fibers are associated to an 93°-valued root group
datum together with a compatible N-action: in other words, we check all the axioms
(RGD1-6), (V0-5) and (CA1-2). By the general theory developed in sections 3, 4 and 5,
we deduce the decomposition of theorem 2.25:

T (X) =Ix x ((2x)" ®r R°)

for some Zy that satisfies axioms (A1), (A2), (A3), (A4) and (GG).

In section 8, we finish the proof of theorem 2.25 by establishing axiom (CO). This ax-
iom is more geometric in nature. In order to prove it we first give a sufficient condition for
an “ R-building” to satisfy (CO) (see Lemma 8.2). Using this criterion and the projection
maps defined in section 7, we prove that our building satisfies (CO).

3 R-valued root group datum

In this section, if G is a group and X, Y are subsets of GG, we denote by:
e 1 the identity element of G;

o XY ={zy, z € X, y € Y} the subset of G obtained as image of the map X xY — G
given by multiplication in G;

e (X,Y) the subgroup of GG generated by X UY;
e [X,Y] the subgroup of G generated by the set of commutators [z, y] for x € X and
yey.

3.1 Abstract groups and axioms of a root group datum

We recall the following definition from [BT72, 6.1.1].

3.1 Definition. Let G be a group and ® be a root system. A root group datum of G of
type @ is a system (7, (U,, My )acao) satisfying the following axioms:

(RGD1) T is a subgroup of G and, for any root a € ®, the set U, is a nontrivial subgroup
of G, called the root group of G associated to «;

(RGD2) for any roots a, f € ® such that § ¢ R, the commutator subgroup [U,, Us] is
contained in the subgroup generated by the root groups U, for v € (o, f);
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(RGD3) if «v is a multipliable root, we have Us, C U, and Us, # Uy;

(RGD4) for any root a € ®, the set M, is a right coset of 7" in G and we have U_, \ {1} C
UaMoUa;

(RGD5) for any roots «, # € ® and any m € M,, we have mUgm ™ = U,_s);

(RGD6) for any choice of positive roots @ on ®, we have TUT N U~ = {1} where U™ (resp.
U~) denotes the subgroup generated by the U, for o € ®* (resp. o € &~ = —P™).

A root group datum is said generating if G is generated by the subgroups 7" and the
U, for « € . As in [BT72, 6.1.2(10)|, we denote by N the subgroup of G generated by
the M, for a € ® if & # () and by N = T otherwise.

We recall that, according to [BT72, 6.1.2(10)], axiom (RGD5) defines an epimorphism
Y : N — W(®) such that w(m) = r, for any m € M,, any o € ®. Thus, for any o € ¢
and any n € N, we have nUyn™! = Us,(a).

3.2 Example. Let K be any field and G be a reductive K-group, S a maximal K-split
torus of G and Z = Zg(S). According to [BT84, 4.1.19], there exist right cosets M, such

that G(K) admits a generating root group datum <Z(K), (Ua(K), Ma)a€¢> of type ®
which is the K-root system of G with respect to S. In particular, for such a root group

datum, one can apply any result of section [BT72, 6.1]. Moreover, N = Ng(S)(K) in this
example.

In Bruhat-Tits theory, it appears to be useful to consider some groups Z generated
by some well-chosen subgroups X, of the root groups U,. A first result is given by
Proposition [BT72, 6.1.6], for a group generated over a positively closed subset ¥ C &+
of roots, assuming a "condition (i)". A second result is given by Proposition [BT72, 6.4.9],
for a group generated over the whole root system, for some specific groups X, denoted
by U,,r in [BT72, §6]. In fact, we observe that the proof of this Proposition only relies on
two axioms of “quasi-concavity” (QC1) and (QC2) (see [BT72, 6.4.7]) that are satisfied
by a quasi-concave map f, and that we can translate those conditions onto conditions
over the groups X,. Nevertheless, according to addendum [BT84, E2|, condition (QC2)
is a bit too weak for some general results, so that it is useful to assume that the X, also
satisfies a condition (QCO). In our definition, the condition (QC2) takes into account
simultaneoulsy both conditions (QCO0) and (QC2) of [BT84]. Moreover, it appears to
be useful to extend conditions over the X, with some subgroup that normalizes the X,,.
Thus, we will use the following definition:

3.3 Definition. Let (T, (U,, M,)acs) be a generating root group datum of a group G
and N be the subgroup of G generated by 7" and the M, for a € ®. Let (X,)aco be a
family of subgroups X, C U, for @ € ® and Y be a subgroup of T'.

For a € &4, denote by:

e X, the trivial subgroup if a € ® and 2a € P;

e [, the subgroup generated by X,, Xs,, X o, X o, and Y;

e N,=L,NN.

We say that the family ((X,)ace,Y) is quasi-concave if it satisfies the axioms:
(QC1) Ly = X0 Xoa X 0 X 9aNy = X 0 X 2, X0 Xoa N, for any a € @pq;

(QC2) for every a, f € ® with f ¢ —Rpa, the commutator group [X,, Xjs] is contained
in the group X, g generated by the X, for v € («, B);
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(QC3) Y normalizes X, for every a € ®.
If Y is trivial, by abuse of language, the family of groups (X, )ace is said quasi-concave.

Note that condition (QC2) implies that X, normalizes X», so that one can also write
Lo = X0 XoX_oX 94N, in (QC1) for instance.

Because axiom (QC2) does not depend on Y in this definition, we will say by abuse
of language that the family (X, )aco satisfies (QC2) when this condition is satisfied.

With this definition, we get the following Proposition analogous to [BT72, 6.4.9].

3.4 Proposition. Let ((Xo)aco,Y) be a quasi-concave family of groups. Denote by X
the group generated by Y and by the X, for a € ®. Suppose that ® is non-empty. Then
for any choice of a subset of positive roots ® of ®:

(1) UyNX = X, Xo, for any a € Oyy;

(2) the product map H (XoXow) = X NUT (resp. H (X oX 00) > XNU)
aedﬁd aeq):]rd

induced by multiplication in G is a bijection for any ordering on the product;
(3) we have X = (X NUTX NU™) (X NN) for any choice of &+ in ®;
(4) the group X NN is generated by the N, for a € ®q.

Note that, by definition of N, even if Y = 1, it may happen that X, = X_, =1 but
N, # 1 for a multipliable root av. Moreover, Ny, C N, for any multipliable root c«. Thus
X N N is also generated by the N, for a € .

Proof. We observe that, since the family ( (XaX2a)weo » Y) is also a quasi-concave family
of groups, we can, and do, assume that X, = X, X5, in the proof.
Consider an arbitrary ordering on ®, (resp. ®_,). Let f, : Haeq)-kl Uy, — G (resp. fy :

Hae¢+d U, — G) the map induced by multiplication. Denote by Xt = f, (Hae<1>+d Xa>

and by X~ = f_ (Haeq);d Xa>. According to axiom (QC2) and [BT72, 6.1.6], we know
that the restriction of the map f, (resp. f_) to Haeqd X, (resp. Haecp;d X, ) induces
a bijection onto X (resp. X~) and that Xt (resp. X7) is a subgroup of G. In fact,
Xt cU™NnX and X~ C U NX. To prove (2), it suffices to prove that these inclusions
are equalities.

Denote L, and N, as in Definition 3.3. Denote by Z the group generated by the N,
for « € ®. Note that Y C N, for every a € ®,4, and therefore Y C Z since ¥4 is
non-empty. By definition, X~ X" Z is a subset of X as product of subgroups.

We will prove that this subset X~ X+ Z does not depend on the basis (or Weyl chamber)
A defining the choice of positive roots & in the root system ®. More precisely, we prove
that it is the same set if we replace A by r,(A) for o € A a simple root and we are done
since the r,, for a € A generate the Weyl group of ®. Let a € A C &4 and denote by )?
(resp. X_,) the product of the Xz (resp. X_p) for 8 € @1, \ {a}. According to axiom
(QC2), one can apply [BT72, 6.1.6] to the family of groups X (resp X_,) and Xj for
B e ®f\ {a} to get that X, (resp. X_, normalizes the e group X.. By the same way,

X_, is normalized by X, and X_,. Moreover, X and X_a are normahzed by Y since
Y normalizes the X, by (QC3). Therefore, L, normalizes X, and X _a, and so does N,,.
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Moreover Lo = X0 X _oNo = X_o X0 N, by (QC1). Hence we have

X-X*tZ = ()?_QX_Q (Xa)?a) (N.Z)
=X o X -oXoNuXoZ
=X _oLoXoZ
=X o XoX_oNoXoZ
_ ()?_axa) <X_a)?a) N.Z

= II X I x]~7

BET () Bera (@,

As a consequence, the set X~ X7 does not depend on the choice of A and, therefore, is
stable by left multiplication by elements in X, for any a € ®,4. Moreover, it is stable by
left multiplication by elements in Y since Y normalizes X~ and X . Thus, X~ X7 = X.

Now, let g€ X NU™ and write it as g =z 7z with 2~ € X, 2t € Xt and 2 € Z.
Then ztz = (z7) ' g € U~. By Bruhat decomposition [BT72, 6.1.15 ()], we have z = 1
since N — UT\G /U~ is a bijection. Hence 2t € UTNU~ = {1} by axiom (RGDG6). Thus
we get X N U~ = X ™. This proves surjectivity of the map X~ — X N U~ and therefore
(2). By the same way, we get the bijectivity of maps onto X N UT. We deduce (1) from
(2) by intersection with U, for a € ®,q4.

If n € XN N, write it as n = x~z 2. Then n = z by Bruhat decomposition [BT72,
6.1.15 (c)|. This proves Z = X N N which is (4) and, therefore, we deduce (3). O

Thanks to a valuation of a root group datum, we will apply later this proposition to
various examples of quasi-concave families of groups such as given in Example 3.44 or
Proposition 3.58.

3.2 R-valuation of a root group datum

In the following, we will assume that R is a totally ordered commutative pseudo-ring.

When R # R, there is no reason for R to satisfy the least-upper-bound property. In
particular, in this work, we avoid to introduce a notion of infimum and supremum in
R. If we did this, we would have to talk in terms of the totally ordered monoid of the
convex subsets of R containing oo which is not easy to manipulate. Obviously, for R = R,
such a monoid has been introduced in [BT72, 6.4.1]. This difference firstly appears in the
definition of the subsets of values I/, (see Notation 3.8).

The definition of a valuation of a root group datum, given by [BT72, 6.2.1], can be
naturally extended as follows:

3.5 Definition. Let ® be a root system and (7, (U,, M, )ace) be a root group datum.
An R-valuation of the root group datum is a family (¢4 )ace of maps ¢, : Uy, = RU {0}
satisfying the following axioms:

(VO) for any o € @, the set ¢,(U,) contains at least 3 elements;

(V1) for any @ € ® and A € RU {0}, the set U, = ¢, ([\, 00]) is a subgroup of U,
and Uy oo = {1};

(V2) for any o € ® and m € M,, the map U_, \ {1} — R defined by u — ¢_,(u) —
0o (mum™') is constant;
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(V3) for any a, 8 € ® such that f € Rea and any A\, u € R, the commutator group
[Uax, Ug,p| is contained in the group generated by the U,oisgratsy for m,s € Zsg
such that ra + sg € ®;

(V4) for any multipliable root o € ®, the map ¢y, is the restriction of the map 2, to
U2a;

(V5) for any a € ® and u € U,, for any v/, u” € U_, such that v'uu” € M,, we have
o) = —pa(u).

It is convenient to introduce notation of the trivial subgroup Us, » = {1} for any o € ®
such that 2a ¢ ® and A € R U {oo}.

As in Bruhat-Tits theory, in secton 6, we will make a use of Chevalley-Steinberg
systems in order to provide such a valuation. Namely, R will be the commutative pseudo-
ring R° so that A = w(K) will be canonically identified to a subset of R. For instance,
if G is split, then the root groups U, are isomorphic to G,. Thus, the pinnings of these
groups give isomorphisms z,, : K — U,(K) and one can define ¢, : U,(K) — A C RS by
Do O Ty = W.

3.6 Lemma. Aziom (V1) is equivalent to the following aziom:

(V1bis) for any o € ® and any u,v € U,, we have o,(uv™) > min(p,(u), pa(v)) and

o' ({oo}) = {1}.
In particular, for any a € @,
(1) for any u € U,, we have @,(u™") = o, (u);
(2) for any u,v € U, such that ¢, (v) > pa(u), we have p,(uv) = @q(u).

Proof. Consider o € ®. By definition, U, o, = {1} is equivalent to ¢, !({oo}) = {1}.

Suppose axiom (V1). Consider u,v € U, and let A = min(p,(u), ¢o(v)). Hence U, »
is a subgroup containing u, v since @, (u) = A and ¢, (v) > A. Therefore, uv™' € U,
gives us @, (uv™t) = A

Conversely, suppose axiom (V1bis). Consider A € R and pick uw,v € U,y. Then
Yo(uv™) = min(p,(u), po(v)) = A. Hence uv™t € U, and this proves that U, is a
subgroup of U,.

(1) Hence, for any v € Uy, if we take u = 1, then . (v™!) = pu(uv™1) = min(p, (1), pa(v)) =
¢a(v) and this inequality is also true for v™! instead of v.

(2) We have g (1) = ga((u0)o) > min(pa(u0), ga(v ) > min(pa(w), ga(v), ga(o) =
o (u) whenever o, (v1) = @, (v) > pa(u). O

3.7 Lemma. Under the assumption of aziom (V1bis), axiom (V5) is equivalent to the
following axiom:

(V5bis) for any o € ® and u € U,, for any v',u" € U_, such that v'uu” € M,, we have
p-a(u”) = —pa(u).

Proof. Let u € U, and v, u" € U_, such that v'uu” € M,. Then , by [BT72, 6.1.2(4)],

we know that (u”)"*u=!(u')™' € M,. Hence by axiom (V5), we have p_,((u”)™!) =

¢ao(u™'). By Lemma 3.6, we have ¢_,((u")™!) = p_o(v”) and p,((u)™!) = pa(u). Hence

©_a(u”) = @ (u) which gives us axiom (V5bis). The converse is the same argument. [

In all the following, we assume that a root group datum (7, (U,, M,)ace) and an
R-valuation (¢4 )ace are given. When a € @ is such that 2a & ®, we define Us, = {1}.
The valuation enables us to introduce the following sets of values:
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3.8 Notation. For any root a € ®, we define the following subsets of R:
o T'o = va(Ua\ {1});

o T, = {aw), w € Us\ {1} and Unguy = () Uniputuns } € T

’UEU2(1

3.9 Fact. From azioms (V1) and (V4), we deduce 2T, = 21" U T'y,,.

Proof. By definition 2I"!, C 2I',, and, by axiom (V4), we have I'y, C 2T,

Conversely, let A € 2I',\I'y,. Let u € U, such that 2¢,(u) = A. Then for any v € Uy,
we have A # @9, (v) by definition. Thus 2¢,(u) = A # 2¢,(v) by axiom (V4) and therefore
©al(u) # va(v) since R is Z-torsion free. If v, (v) > @q(u), we have @, (uv) = p,(u) by
Lemma 3.6(2). Thus Usy,w) = Usga@s) by definition. If ¢, (v) < ¢a(u), we have
Ya(uv) = pa(v) < po(u) by Lemma 3.6(2). Thus Uy p.w) C Uspa(u) by definition.
Hence we have U, ,, ) C ﬂveUQQ Un,pu(uw) and this is, in fact, an equality by considering
v =1 € Usy. Thus ¢, (u) € I',, by definition. Therefore A = 2¢,(u) € 2I7,. O

3.10 Remarks.
1. From axiom (V5) and [BT72, 6.1.2(2)], we deduce I'_,, = —T,,.

2. By definition, if 2a ¢ @, we have [, =T',,.

3. As in the Bruhat-Tits theory, when « is multipliable, it may happen that I, is
empty (dense valuation); it may happen that the intersection 2I", N Iy, is non-
empty (discrete valuation with unramified splitting extension K/K).

3.11 Notation. For o € ® and A € R, we denote:
Moy = My NU_q, ({ANDU-—q.
We provide some details of [BT72, 6.2.2]:
3.12 Proposition. Let o € ¢ and )\ € R.
(1) M, is non-empty if, and only if, A € pa(Us \ {1}) = Ty;
(2) 0 ({A}) C U—aaMapU—q-x;
(3) Max € o=a({=2ANea ({AN¥"a({=A}) C U—g-aUanU-a,-x;
(4) M_a,—x = Ma;
(5) Maaoxn C Mg .

Proof. (1) is a consequence of [BT72, 6.1.2(2)], since A # oo.

(2) For any u € ¢_'({\}), axioms (RGD1) and (RGD4) provide elements u',u” €
U_, such that m = v'uu” € M, . By axioms (V1bis), (V5) and (V5bis), we have
o a(W)) = —pult) = p_a((u) 1) = -\

(3) For any m € M, ,, by definition, there exist v’,u” € U_, and u € U, such that
m = v'uu” and p,(u) = A. By axioms (V5) and (V5bis), we have p_,(u') = —pq(u) =
poa(u”) ==X

(4) For any o € ® and A € R, consider m € M_, . By (3) and axiom (V1bis),
there exist v/, u” € U, and u € U_,, such that ¢_,(u) = =\ = —p,(v') = —p,(u”) and
m = v'uu”. Consider v = m(u”)"'m™! so that v’ = vmu~!. By [BT72, 6.2.1(2)] v € U_,,
and by |[BT72, 6.2.1(4)], m € M,. Hence m = v "W/u™' € M, NU_o0,*({\}U_o =
M, . Hence M_,, _\ C M, and we get the converse inclusion by exchanging (c, A) with
(—a, = A).

(5) If a is multipliable, then Uy, C U, and U_y, C U_, by axiom (RGD3) and
My, = M, by [BT72, 6.1.2(4)]. For u € ¢, ({2\}), by axiom (V4), we have 2\ =
20 (1) = 24 (u). Since R is Z-torsion free, it gives u € ¢ 1 ({\}). O
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Here, we follow a different strategy than in [BT84, 6.2] and we do not work with the
notion of “valuations équipollentes”.

We introduce the following useful Lemma from [Lan96, 7.5] with a different proof since
we do not define integral models here:

3.13 Lemma. Leta € g, A€ Ty, € ® and p € R. For any m € M, », we have

-1
mUgum™" = Uro(8)u—p(a¥)r-
In particular, we have mUa7,\m_1 =U_q-a.

Proof. We distinguish three cases on f3.

First case: 3 € ®,q \ Ra. For v = ra+ sf € ®(a, ) with r,;s € Z, define a map
t:®(a, ) = Rby t(y) =rA+spif s > 0and t(y) = oo if s < 0. Denote by X, = U, 4()-
Then the family of groups (X, ),ea(a,3) is quasi-concave. Indeed, for every v € ®(a, §)
we have either Xy, = X, = 1 or X_», = X_, = 1 so that axiom (QC1) is satisfied.
Let 71, 81,79, 82 € Z such that v; = ra + 510 and v, = ma + soff are in ®(a, f) with
v2 & Regyi. Then for any r,s € Z, if 57 < 0 or s < 0 we have [X,,,X,,] =1 and
if s1,s9 > 0, we have rt(y1) + st(y2) = t(ry1 + s72) so that axiom (QC2) is satisfied
according to axiom (V3). Let Y be the group generated by the X, for v € ®(a, ). For
any v € ®(«, 3), we have X, =1 if 7 € Ra and [U,,, X,] C Y by axiom (V3) otherwise.
Thus U, normalizes Y. By the same way, U_, _, normalizes Y so that M, \ normalizes
Y. Moreover, for every m € M, , we have mU,m™' = U, 5 by |[BT72, 6.1.2(10)].
Thus mU@“m_l C U3y NY = U, 8)t(ra (8)U2ra(8),2t(ra (8)) Py Proposition 3.4(1). Finally,

Usroa(8),42ra(8)) € Ura(8),t(ra(8)) Dy definition of ¢ since ¢(2r4(83)) = 2t(ro(5)).

Second case: € RaN®,g = {+a} Since My = M_o_», 7o = r—q and (—a)¥ =
—a" it suffices to do it for § = —a. Let m € M, and write it as m = v'uu” with
u' u” € p-L({=A}) and u € ;1 ({A}). Then v/ = m(u") " 'm " mu~! with m(u”)"'m~"! €
U,. Thus, axiom (V5) applied to (mu"m " u'u = m € M_, gives us p,(mu’"m=") =
o_o(u) ==X Let v € U_,, \ {1}. Then axiom (V2) gives us p_(v) — po(mom=1) =
0_a(u”") — po(mu’m=t) = —2X. Hence po(mvm™') = u+ 2\ = pu — B(a¥)\. Hence
mUgum ™" C Ury(8)u-p(a¥)r-

Third case: § € ®\P,q: Form € M, ) and 3 a multipliable root, we have mUss ,,m™" C
mUﬁéum*lﬂUm(gm = Usro(8),u—28(a")n = Ura(28),u—(28)(av)r- Since the inclusion mUg,,m™*
Uro(8),u—B(av)x holds for every o € ®pq, B € @, A €Ty, p € R and m € M, , it is in fact
an equality. O

3.3 Action of N on an R-affine space

We use the notations introduced in section 2.1.3. In the rest of this section, we assume
that ® # () but any result can obviously be extended to the case of an empty root system.

For « € ® and u € U, \ {1}, we denote by m(u) the unique element in M, given by
[BT72, 6.1.2(2)].

3.14 Definition. Let v : N — Affz(Ag) be an action of N onto Ag by Z-affine transfor-
mations. We say that the action of N onto Ay is compatible with the valuation (¢ )
if:

acd

(CA1) the linear part of this action is equal to ‘v : N — W (®) defined in [BT72, 6.1.2(10)|;

(CA2) for any € ® and any u € U, \ {1}, we have 2¢,(u) + a(u(m(u))(o) — 0) = 0.

27



In the rest of this section, we assume that an action v : N — Affz(Ag) satisfying
(CA1l) and (CA2) is given.

3.15 Lemma. For any o € ® and any v € U, \ {1}, we have v(m(u)) = ra,po()-
In particular, for any m € M, x, we have v(m) = 14 x.

Proof. Since m(u) € M,, we have "w(m(u)) = r,. By (CAl), there is a value A € R such
that v(m(u)) = rq.x. Since rox(0) = 0 — 042 (0)aY, we have a(v(m(u))(o) — o) = =2\ =
—2p4(u) by axiom (CA2). Thus A = ¢, (u) since R is Z-torsion free.

Let m € M, . By definition (see Notation 3.11), there exist u € ¢ ' ({\}) C U,
v, u" € U_, such that m = v'uv” . Thus m = m(u) and v(m) = v(m(u)) = ra. O

We want to understand how N acts by conjugation on the set of groups U, ) for a € ®
and A € R. To do this, we introduce a set of affine maps © containing the 6, ) and an
action of N onto this set.

3.16 Notation. Consider © = {f,,, o € &, A € R}. We endow O with the natural
partial ordering given by:

0>0 < Vre g, 0(x)=0(x).
3.17 Lemma. The group N acts onto © via
Va €@, VAE R, n-0u\=0an0v(n)=0(v(a),\+a(v(n")(o)—0)).
In particular, for any o, 8 € ® and any \, u € R, we have
Oan 01 = 0(rs(a), A — a(B")p).

Proof. Let 0, € ©. Tt suffices to prove that the map 6, yov(n™!) belongs to ©. Since N is
generated by the Mg for 8 € @, it suffices to prove it for any 8 € ® and any m € Mpy. Since
“w(m) = rg by |[BT72, 6.1.2(10)], by (CA1), there is a constant ;. depending on m such that
Y(m) = gy, Then B (15,u(2)) = (a—a(8")8) () + A—a()p = ra(a)(z)+ A— a8
Thus § o v(m) € ©. Hence the formula n -6 = 6 o v(n™!) defines an action of N on ©.
Let n € N. Since the map " : N — GL(V*) induces an action of N on @, for any
a € ® and any A\ € R, there is a value u € R such that 0, ov(n™) = 0(w(n™')(a), 1.
Evaluating this map in the origin o, we get u = 0(v(n~')(a), u)(0) = Oar o v(n 1) (0) =
a(v(n=1) (o) — o) + A O

3.18 Definition. For § =0, € O, define Uy = {u € Uy, 6 ov(m(u)) < —0}.
We recall the following result from [Lan96, 7.3|:
3.19 Lemma. For any 6 € ©, anyn € N, we have nUyn=! = U,.¢.

Proof. Let u € Uy C U, for some a € ®. Consider n € N and denote § = w(n)(a) € P.
Suppose that u # 1 and consider the element m(u) = vwwuu” € U_UU_, N M,,

with v/, u” € U_, uniquely determined by u. For any n € N, we have nm(u)n~! =

(nu'n= 1) (nun=1)(nu"n=t). By |BT72, 6.1.2(10)], (nu'n"t), (nu"n™') € U_p and nun™" €
Ups. Thus, by uniqueness in [BT72, 6.1.2(2)], we have m(nun=') = nm(u)n=' € Mj.
For any x € Ay, we have
fov(n™") (vim(nun="))(z)) =6ov(n')o (v(n)ovim(u)ovin)) (z)
=0 ov(m(u) (v(n ") (z))
< =0 (v(n")(2))
Thus fov(nt)ov(m(nun=')) < —fov(n~') which means that nun™"! € Upoy(n-1) = Un..

Hence nUpn™! C U, for any n € N and any 6 € ©. Thus, by applying it to (n™!,n-6)
we get n~1U,.gn C Uy which gives the equality nUgn =t = U,,.. O
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We get the following consequence as in [Lan96, 7.7
3.20 Proposition. For any a € ® and any A € R, we have U, \ = Uy, , .

Proof. Let v € U, and pt = ¢q(u). By Lemma 3.15, we have v(m(u)) = r4,. For any
x € AR, we have

Oax (v(m(u))(2)) =bax (v — (a(x) + p) o)
=—ar) —2u+ A
=—Oq(2) +2(X — p)

Thus u € Uy, , <= Oarov(m(u)) < —bar <= 1t 2 A <= u € Uy O

3.21 Corollary. For any o € ®, any A € R and any n € N, we have

~1
nUa ™" = Unn)(a) Mra(w(n=1)(0)—0)-

In particular, T, = ker v normalizes U, .

Proof. This is a consequence of Proposition 3.20 and Lemma 3.17. O

In section 6, we will see that, for R = 9° containing the I, for a € ®, the datum
of a root group datum together with an S9R°-valuation is sufficient to define a structure
of |¥-building. Because it may be simpler to provide an explicit affine action of N onto
Ags, we will make the following assumption:

3.22 Hypothesis. It is given a group GG and a non-empty root system ®. It is given a
generated root group datum (7', (Uy, Ma)acs) of G. It is given an R-valuation (p4),cq Of
the root group datum. Let N be the group generated by the M, for a € ®. It is given
an action v : N — Affz(Ag) compatible with the valuation.

3.4 Rank-one Levi subgroups
In this section, we work under data and notations of assumption 3.22.

3.23 Notation. For any o € ®, any A € R and any € € R, we define the subgroups

o Ué\z,)\ = 90;16)‘7 +OO]) = UM>>\ Ua,u;

o L, (resp. L;M\) the subgroup generated by U, and U_, _xic (resp. U, and
1A

701,7)\);

[ ] NOE(’)\ - NmLZ7>\ and N;’)\ - NﬂL, 7)\,

(7
If e = 0, we will denote Ly x, Nax, T, instead of ng\, Ng/\, T(SA.

3.24 Remark. Note that, L, = L_, _» by definition, but L'faﬁ)\ may differ from L, »
since the groups U, » and U, (; ) are distinct for A € T',.

We have U, 2 U/, with equality if, and only if, A € T',.

Indeed, if Ju € Usz\ U, y, then Vi > A, we have A < ¢q(u) < psince u € Uy, C UL, .
Thus ¢,(u) = A and so A € T',. Conversely, if A € T',, there exists u € U, such that

/

@a(u) = A. Hence u & Uy, for any p > A and therefore u & ., Ua,u = Uy -
8.25 Remark. Since LY, = (Uax,U_qa,-xte), taking 8 = —a and g = —\ + ¢, we have

«

L = (Usp, U pye). Hence LF \ = L7, . . By intersection with T', we deduce that
Tag,x = Tia,—)\—f—a'
For ¢’ > 0, we have Uy zyer C Uan and U_q _xje = U_q —(r+e/)4(e4<)- Hence we have

e+e’ € e+e’ € e+e’ € e+e’ €
Lo o C L, and thus T3, C 1% . By the same way LY C Lg \ and T\" C T 5.
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We state the following Lemma, which can be proven exactly as in [BT72, 6.3.1].
3.26 Lemma. Let o € P.

(1) For anyu € U, and v € U_,, such that p,(u) + ¢_o(v) > 0, there is a unique triple
(W', t,v") € Uy x T x U_,, such that vu = u'tv’.

(2) Moreover, we have t € Ty, p(u') = @o(u) and pa (V") = pa(v).

Proof. (1) By [BT72, 6.1.2 (4) & (7)], we know that L_, = M, U_,UUTU_,. If vu €
M,U_,, then Fu" € U_, such that vuu” € M,. By axiom (V5), we have ¢_,(v) = —@q(u)
which contradicts the assumption. Hence vu € U, TU_, and we get the existence. The
uniqueness is an immediate consequence of [BT72, 6.1.2(3)] and axiom (RGD6).

(2) By uniqueness, it is obvious if u = 1 or v = 1. Assume that u # 1 and v # 1. Then,
applying axiom (RGD6), we have v’ 7é 1. By axiom (RGD4), there exist w,w’ € U_, and
m € M_, = M, such that v/ = w'mw”. Moreover u = v~ u/tv' = (v"*w’)(mt)(t~ w"tv")
where (v'w') € U_,, (mt) € M, and (t "w"tv') € U_,. Hence by axioms (V5), (V5bis)
and Lemma 3.6(1) we have

pa(w') = —@a(u') = p_a(w”) (1)

and
pa(vw) = —pa(u) = p_o(t "), (2)

The assumption on u and v and equation 2 give us

P-a(V) > —@a(u) = p_a(v™'w"). (3)

Hence, equations 1, 2, inequation 3 and Lemma 3.6(2) give

— () = p_o(0) = p_a(vv™ W) = p_a(v W) = —pa(u). (4)

Since (vu)™' = u~tv™! = (V)71 (W)Y, one can replace a by —a, u by v~! and u’
1

by (v/)7! in order to have p_,(v™!) = p_o((v')7!). Applying Lemma 3.6(1), we get
P-a(v) = p_a(v).

Denote A = ¢, (1) = pq(u'). We know that m = (w') '/ (w”)™! € M,NU_oo ' ({AHU_ =
M, . In the same way, we have tm € M, . Hence v(t) = v(tm)v(m)™t = Ta,)\r;l)\ =
1. U

1

The following Proposition is similar to [BT72, 6.3.2, 6.3.3] and [Lan96, 8.1-8.6], in-
cluding considerations on the groups Lg, , we have introduced.

3.27 Proposition. Consider any o« € ®, any A € R and any ¢ € R-y. Under the
notations 3.23, we have the following equalities.

(1) We have L,y = Ua\U", T}, and L\ = Us\U_o 2T for any ordering on
factors.

(2) Moreover N, =T, \ and N; , =Tf ,

(3) If A € T, then for anym € M, x, we have L, ) = (Ua,)\Ta,AUla74\)I_I(Ua7,\mTa7,\Ua,>\)
and Ny =Ty {1, m}.

(4) [f A g Pou we have La,)\ - Ua,)\Ta,)\U—a,—)\ and Na,)\ = Toz,)\ = Tolé,)\-

(5) The groups T, x, T}, y and T, , are subgroups of Ty,

«,
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Proof. (1) Consider € € Rso and H. = L, , N T;. Then H. normalizes U, x and U_n, x4-
since so does Tj. Consider X, = Uy \U_q _r1eH.. Then X, C Lf a by definition and
is a subset stable by multiplication on the left by elements in H. and Uax. Moreover,
U_a,~x+eUax C Ugy (Tb N L‘Z{’/\) U_a-rt+e by Lemma 3.26. Hence X, is stable by multi-
plication on the left by elements in U_,, . since H. normalizes the subgroup U_, ;..
Hence X. = Lg ,. Moreover, by uniqueness of ¢ € T' in Lemma 3.26, we get 75, = H.
and therefore T, C1y.

Since U’ s = U.ooU-a,-r+c is an increasing union, we have La)\ = Ueso L 38
increasing union so that the equality L) \ = .o UanTi \U-a,-ate = UanT), /\U'a _a
holds.

Finally, since Uy, and U_o, 4. (resp. U, _,) are subgroups normalized by T, , (resp.
1! /\) we get the equality for any ordering by applying the inverse map.

(2) If n € N, then n € U*TU™ and by spherical Bruhat decomposition [BT72,
6.1.15 (c)|, we get n € T'. Thus N, C T ,. The same holds in L, , C U*TU".

(3) We know that () # M, C U ,\U_a ,\U A C Loy by Prop081t10n 3.12(3) and defi-
nitions. Consider H = L, N1, C T, » and any m € M, . Define X = (Ua7,\HU'_a7_A) U
(UapmHU, ) C Lay. By Lemma 3.15, we know that v(m) = r,,. Hence, we have
v(m?) = 12, = id. Thus m* € T, N Loy = H and m™' € Hm = mH. Since
U_g-x = mfan,)\m by Lemma 3.13, we deduce that L, ) is generated by U, and
m. Thus, it suffices to prove that X is stable by right multiplication by m and elements
in the groups H and U, .

Since H C Ty normalizes U’ , _y and U, x and T}, , = L, , N'T, C H, we deduce from
(1) that L, \H = UsnHU' , _, is a group. Hence XH = XU, = X

On the one hand, we have Ua«\HULaﬁ/\m C UgxHmU, . On the other hand, we
have UgxHmUq m C U \HU_oxm? = Ua\HU' , _, U UsnHo L({=A}). Let u €
¢t ({=A}). By Proposition 3.12(2) and (4), there exist v/, u” € U, and m' € M_, _, =
M, » such that m/ = w'uu”, so that m/ € Lgx. But v(mm') = v(m)v(m') =r7 , =id by
Lemma 3.15 since m,m' € M, . Thus mm’ € T, N L, = H. Hence u € Uy, \HmU,, .
As a consequence, Uy \Ho~L({=A}) C Uy xHmU,  since H C T, normalizes U, x. This
proves that Xm C X and therefore L, = X. Since H C T}, x C L, we deduce L, \ =
(UanTapU’ ) U (UapnmTunUsy). Finally, (UsaTapU' o _\) N (UapymTouaUan) = 0
because the existence of an element in this intersection would imply that m € L, ,, which
is not possible by (2). By uniqueness in Lemma 3.26, we deduce H =T, , C T,

Let n € Nyy. Ifn e Ua7,\Ta7,\ULa7_A C U-TU™, then n € T by Bruhat decomposition
[BT72, 6.1.15(c)|]. Hence n € T'N Ly = T, . Otherwise, n € Uy xmT, \U,, . Hence
nm € Uy \To\U_q,—» because m? € H C T, » and Lemma 3.13. Thus nm € T and
therefore n € T, ym. Hence N, » = T, {1, m}.

(4) If A & T, we know that —\ & —I', = I'_, by Fact 3.9. Hence we have U_, _, =
U’ _» by Remark 3.24 and therefore L[, , = L, x by definition. Hence N, x = N/, =T}, ;.
Since LZM = U, \T, AU—a,-a; we deduce that T, » =T}, by uniqueness in Lemma 3.26.

(5) has been shown among the proof. O

3.28 Corollary. For any e > 0, any a € ® and any A\ € R, we have
L;)\ = Ua,)\Ufa,f)\JreN;)\ = Ufa,f)\quUa,)\N;)\

Proof. If ¢ > 0, it is a consequence of (1), (2) and (5) since 7, normalizes U, and
U_a,—rte-

If ¢ = 0, the first equality is a consequence of (3), (4) and (5) since 7, normalizes
U_a-a U- L and U, and since we have mU, xm™" = U_, _» by Lemma 3.13. The last
equality is obtained in the same way by exchanging (o, A) with (—a, —\) since L, ) =
L_, _» by definition and, therefore, N, x = N_, . O
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Technical lemmas of computation of some commutators

We want to estimate some commutators in terms of the valuation of root groups. Let
us firstly recall immediate consequences of axioms.
The following Lemma is [BT72, 6.3.5] with € denoting the r 4+ s of Bruhat-Tits.

3.29 Lemma. Let A € R and ¢ > 0. For any u € Usa 2\ and any v € U_, _x1e, we have
[u, v] € UareToU—q,—rp2--

Proof. We can assume that u # 1 and v # 1. Let = po(u) € Ty and p=¢_,(v) € T_,.
Let m € M, , andn € M_, ,. Let v',v" € U_, _, such that u = v'mv”. Let v/, v" € U, _,
such that v = u/'nu”.

On the one hand, one can write

/ —1

[u, v] =u(u'nu")u"t (u'nu”)
:(uul)nuuu—l(u//)—luu—ln—l(ul)—l

=(ut)(n[u", u™ ) (nu” ) () ()

By axiom (RGD2), we have [u”,u™!] = 1. By Lemma 3.13, we have nu~'n"! € nU, ,n~! =
U_q jt2p- Moreover p1+2p > —A+2¢e. Hence [u,v] € U,U_y —xt2:Uqr—c. By Proposition
3.27, we have U_q —xt2:Uar—c C Ugr—TpU—_q,—r42:. Hence [u,v] € Uy TpU_q —rt2e-

On the other hand, an analogous writting gives

[u,v] = V' (mP”, v)m ™) (mom ™) (V') o™t (6)

By axiom (RGD2), we have [v”,v] = 1. By Lemma 3.13, we have mvm™" € mU_, ,m™' =

Ua,ptou. Moreover p +2pu > A+ e. Hence [u,v] € U_y _x1:Upr1U_. By Proposition
3.27, we have U_q _rcUa e C UprreToU— —r+e. Hence [u,v] € Uy xiThU—q.
By uniqueness of the writing in UTTU~ (axiom (RGDG6)), equations (5) and (6) give

[u,v] € UsThU—_a—ri2: N UapeToU—o C Uape TyU—i —rt2e

The following Lemma is [BT72, 6.3.6] with ¢ denoting the k + ¢ of Bruhat-Tits.

3.30 Lemma. Let A € R and € > 0. Then the product
Usaor—eUa pThU_o,— 2y
1S a group.

Proof. According to Proposition 3.27, this subset is stable by right multiplication by
elements in Uy x, T and U_q4e. If w € Usq2x—c. Then for any v € U_, 4., we have

-1

vu = ulu" ", vjv € uWUprreTHU_n —ri2e¥

by Lemma 3.29. Thus Usyox—cUa zTpvu C Usq2r—eUa N ThUz0,20—cUa a e ToU—a,—aq2:U— —2e-
Since Uy, normalizes U, by axiom (RGD2) and T}, and since U_,, _y19. is a subgroup of
U_a,—x+e, We are done. O

The following Lemma is [BT72, 6.3.7] with e denoting the k + ¢ and A\ denoting the k
of Bruhat-Tits.
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3.31 Lemma. Let A € R and e > 0. For anyu € Uy and v € U_, _x1e, we have
[u, v] € UsaorteUnrteToU—a,—r+2:U—20,—22+ 3¢ (7)
If, moreover, u € Us,, that is u € Usy2n, then
[, v] € Usaort2eUapte ThU—a,—rt3:U—20,—2244c - (8)
Note that Usaor+2:Uarte = Uarte-

Proof. We can assume that u # 1 and v # 1. We keep the same notations as in the proof
of Lemma 3.29: A < pp = ¢q(u) € 'y and —A+e < p=¢_,(v) €el'_y; me M,, and
neM_,_p v, v elU_,_, such that u =v'mv"; v, v’ € U, _, such that v = u'nu".

By axiom (V3), we have [u”,u™'] € Uz ,—,. Hence, by Lemma 3.13, we have

nUQQ,ﬂ,pn_1 CU_5 N nU%%n_1 =U_9, N U—a,%mp = U_saut3p C U_20,—2x13¢-
Thus, formula (5) gives
[u,v] € UyU—_20,—97+3:U—0,—r2:Un r—e-
Applying Lemma 3.30, we get
[u, v] € UyTyU_q,—rt2:U_2a,—2713¢-
By axiom (V3), we have [v",v] € U_94,—,. Hence, by Lemma 3.13, we have
MU _g0pym ™" C Uzy N mUw,p_Tﬂm—1 = Upy N Um%wﬂ = Usagutp C Usaorte-
Thus, formula (6) gives
[u,v] € U_qr—cUsaorieUapieU—a-
Applying Lemma 3.30, we get
[u, v] € Usa2a4eUa e TU—q.

Uniqueness of the writting in UTTU~ (axiom (RGD6)) gives (7).
If, moreover, u € Us,, then we have [u”,u™!] = 1 by axiom (RGD2) and nu~'n"! €
U_2a N U,a,,)\+2€ = U,2a7,2)\+4€. Thus

[u, U] € UaU—Za,—2A+45Ua,>\—5-
Applying Lemma 3.30, we get
[U, U] € UaTbU—a,—A+36U—2a,—2)\+4e-

Hence, by Lemma 3.29 and uniqueness of the writting in UTTU~ (axiom (RGD6)), we
get (8). O

3.32 Notation. Let A € R, ¢ > 0 and a € ®. Consider u € U,y and v € U_, _x4e.
Then, according to Lemma 3.26 and axiom (RGDG6), there is a unique t(u,v) € T} such
that [u,v] € Uy at(u,v)U_q —r+e. The element ¢(u,v) is then called the 7T-component of
[u, v].

The following Proposition details [BT72, 6.3.9]. This Proposition becomes really im-
portant in order to prove that fibres of the 93°-building among projection maps also are
buildings, see Proposition 7.4.
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3.33 Proposition. Let A € R, ¢ > 0 and o € . T, is the group generated by the
T'-components t(u,v) of commutators [u,v] for u € Uy and v € U_y _xyc.

In particular, T}, , is the group generated by the T-components t(u,v) of commutators
[u,v] foru € Upx andv € U’ _;.

Proof. Denote by X the subgroup of T}, generated by {t(u,v), u € Uy, v € U_q _rtc}-
Since [u,v] € Lg, \, we have X C Lg N1y, We prove that ¥ = Uy \XU_q _xic IS
a group. It is stable by left multiplication by elements in U, and X since the sub-
group X C Tj normalizes U, . For v € U_,_ 4. and uzw € Y, we have vuzw =
ulu™t vjvzw. Let v’ € U,y and v' € U_, ;e such that [u™ v])u/t(u"! v)v'. Then
vurw = (uu')(t(u™t, v)z)(zw'vr)w. We have uu’ € U, and t(u™",v)z € X. Moreover,
since x € X normalizes U_, 4., we have (z7'v'vz)w € U_, x4 This proves that Y is
a subgroup of Lf , containing U,y and U_, xie. Hence Y = Lg ,. By Proposition 3.27

(1) and uniqueness in axiom (RGD6), we get X =T ,.
Since U’ , _ is the union ..o U—a,-x1e, We get that T/, , = (.., T} \ by intersection of
L,y = Ueso UanU—a, 2T, with T'. This gives the second assertion of the Proposition.
O

We obtain the following Corollary, corresponding to [BT72, 6.4.25 (ii) and (iii)| which
does not use infimum and supremum.

3.34 Corollary. Let \ € R, e > 0 and o« € ®. Then the following commutator subgroups
satisfy

[Tj,m Ua,/\} C Uap+eUsaorte 9)
and
[T57A,U_a7_ﬂ CU_q-rteU—2a,—274e- (10)
Moreover,
[Ton: Uan] € U (11)
and
[ToaU—aa] C UL, s (12)

Proof. 1f € = 0, the inclusions are immediate since T, x C T} normalizes U, » and Usq 2x C
Uqax. Assume that ¢ > 0 and consider the group Z = Usg oateUarteToU—o —ateU—20,—2x+e-

We prove inclusion (9) on the set of generators {[t(u,v), x|, z,u € Uyx, v € U_q _rje}-
We will show that [t(u,v),z] € Z. By Lemma 3.31, we have [u,v] € Z and we can write
it as [u,v] = uguit(u,v)vive. By Lemma 3.31 and axiom (V3), all the commutators
(o7 zu), [v™h 2], [z, ui], 2, us), [x,v1] and [z, vs] are in Z. We have that z[u,v]z™! € Z.
Indeed, ruv = v[v~ !, zulzu € Zru and zvu = v[v™!, x]eu € Zru since v € Z. Moreover
rurt = [z, ulu; € Z and zvizT! = [z,v]v; € Z for i € {1,2} since u;,v; € Z. Hence
rt(u,v)r~! € Z and we get [t(u,v),z] € Z since t(u,v) € Ty, C Z. Since T, normalizes
Uz, we have [t(u,v),z] € U,. Thus [t(u,v),z] € Z N Uy = Usg2x+eUnrte-

We prove inclusion (10) on the set of generators [t(u,v),z| for z € U_,_), u €
Upx and v € U_y _rye. Let p = @ o(x) € Ty, If p > =X+ ¢, then z € Z and
therefore [t(u,v),xz] € Z. Otherwise, denote ¢’ = X + u so that 0 < & < . By
Lemma 3.30 applied to the root —a and the parameters —\ +e € R and ¢ — & >
0, it gives a group Z' = Ua —(-rte)+(c-)ToU—-a,~>4eU_2a,2(—2r4e)—(c—ery Which one can
rewrite as Z' = Uy, TyU_q -r4:U_20,—2rteter. Let m € M_,, = M, _, and write
x = ymz with y,z € U, _,. Denote t = t(u,v). Then [t,z] = tymzt~'z"'m 1yt =
[t, yly[t, m]m]t, zlm~ty~t. We have [t,m] € T, C Z' since v([t,m]) = [1,7_,,] = id. By
inclusion (9), we have [t,y],[t, 2] € U —pteUsa—2pte C Un—p C Z'. By Lemma 3.13,
we have mUa,_M+€U2a7_2M+5m*1 = U_o—ptet2uU—-20,—2p+etau- Since pp+¢e > —A+ ¢ and
2u+¢e > =2\ +e+¢, we have m[t,2lm™ € U_, 31U 94, _orterer C Z'. Since y € 7/,
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we get that [t, 2] € Z" as a product of such elements. Moreover, [¢,z] € U_, since T' nor-
malizes U_,. Hence, we have either [t,z] € ZNU_, or [t,z] € Z'NU_,. By uniqueness in
axiom (RGD6), we get U_p, —x+:U_20,—orteter = Z'NU_o C ZNU_y = U_o —3+:U_20,—2x+<
and we are done.

Since L, , is the increasing union Lf , = (J.., L5y, and also is T}, , = U€>O Y
we get that the commutator subgroup [17, ,,Ua ] (resp. [T}, \,U_o 1)) is the increasing
union of commutator subgroups U€>O[Tj,)\, Uap] = Uz20 UapeUsa 20+ Which is Ui (resp.
U’ ) since Usgoxrye C Uatg for every e > 0. O

3.5 Subgroups generated by unipotent elements

In this section, we work under data and notations of 3.22. Moreover, we fix a non-
empty subset 2 C Ag. For simplicity, we will forget the chosen origin o of Ay in this
section, i.e. we will denote by «a(x) the quantity a(xz — o) by abuse of notation.

3.35 Remark. In Bruhat-Tits theory, some results on groups are expressed in terms of
concave functions f [BT72, §6.4] associated to abstract groups endowed with the structure
of a valued root group datum. In fact, only some well-chosen concave functions are
considered for reductive groups over local fields. For instance, the optimized function f’
associated to a concave function f is defined in [BT84, 4.5.2] as:

f(@)=inf{\ €T, A > f(«) or, when % c o, % > f(%)}

In Bruhat-Tits theory, since the valuation group A is contained in R, f’(«) is well defined
and is an element of I, so that it is relevant to work with the group U, /(o). More
specifically, for a subset 2 € Ag, some concave functions fq can be considered in order
to define parahoric subgroups P C G. Once the building Z has been constructed, this
subgroup Py turns out to be the pointwise stabilizer of (2.

Recall that the quasi-concave maps were defined by:

fala) =inf{\ € R, Vz € Q, a(x)+ = inf ﬂ ), +oo[= sup{—a(z), = € Q}
z€N
Here, we do not use infimum and supremum, so that we replace this definition by some
intersections or unions of groups.
Note that in the Bruhat-Tits theory, such a function fq satisfies fo(2a) = 2fq(a)
which is the case of equality of the concave inequality 2f(«) > f(2«). This equality
induces an equality of groups U, = U, fUsq s in [BT72, §6.4].

3.36 Notation. We denote by:

Uoz,Q - ﬂ Ua,fa(m) aQ - ﬂ a,—a(z)

e z€Q

We denote by Ugq (resp. Uj,) the subgroup of G generated by the union of subgroups
Ua (resp. U], ) for a € ®.

It is convenient to introduce the notation Usaq (resp. Uy, o) as being the trivial group
when a € ® and 2a & P.

If it is given a choice of positive roots @, we denote U" and U~ as in (RGD6). We
denote by:

Ut =UqgnU* U =uLnU*
Uy =UqaNU™ Uy =U,NU~
To=UaNT To=UNT
No=UgNN Ny =ULNN
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If Q = {x}, we denote Uy, Uy, etc. instead of Uy (5}, Uay, etc.

Note that the notation N, was not introduced in [BT72]. In the context of algebraic
groups, under favourable assumptions (typically a simply-connectedness assumption), the
rational points of a group are generated by the unipotent elements. That is why we denote
with a Ng the N-component of the group Ug generated by some unipotent elements.

3.37 Fact. By definition, we have the following equalities:
UO(,Q = ﬂ Ua,x = Spa_l (ﬂ [—Q{(l’), +OO]>
x€N €

and

o= N1 (m—a<x>,+oo]).

e z€Q

Note that the intersections (), cq[—a(x), +00] and (), .o] — @(x), +-00] are convex sub-
sets of R that may not be intervals of R when R # R.

3.38 Fact. The group Ty normalizes Uyq and U, o for any a € .

Proof. For any z € {2 and any € > 0, we know that T} normalizes U, _q(s)4<- It remains
true by taking increasing unions and intersections of these groups. O

3.39 Lemma. For any o € ®pq, we have Usq 0 C Uy q.

Proof. By axiom (V4), we have Uy 2y C U, x. Hence

UZa,Q = ﬂ U2a,a: = ﬂ U2a,—2a(a}) - ﬂ Uoz,—oz(a:) = ﬂ Uoz,x = Uoc,Q-

e e e e

O

3.40 Notation. Let a € . We denote by L, o (resp. L, o) the subgroup of G generated
by Ua and U_n q (resp. Uaq and U’ o). We denote

Too=LooNT =L,oNT

Nog=LooNN =L,qNN.

Note that since €2 is not empty, there exists some point x € €2 so that we have
Lo D Lag since Uy D Uy and U_p,, D U_p . Therefore T, o and T}, o are subgroups
of T}, according to Proposition 3.27(5) applied to Lz = La,—a(a)-

Note that, L, o = L_, o by definition, but L’ "o TRAY d1ffer from L/

The following Lemma corresponds to [BT72 6.4.7 (QC1)] with a dlfferent proof since
we do not use concave maps.

3.41 Lemma. For any a € ®, we have:
Loo = U-a0UsoNao = UsoU-aoNeo (QC1)

N\ o=ThoCTh and Lhg=UaoThqU 0o =U0oThoUsg. (QCT)

Note that the group U, may not be commutative, when « is multipliable for instance.
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Proof. Obviously, the set UO{’QUfa,QNa,Q is contained in L, o and the set Ua’QULa,Qj\Vfé,Q
is contained in Ly, o by definition. Assume that g € Lo (resp. L[, q) and write it as a
product g = [[%, h; with h; € Uy UU_nq (resp. h; € Uy U Ulyq) For 1 <i<m,
denote

N — @a(hz) if hl € Ua,g, L 0] if hz € UO{’Q,
1 o ifh €U g, =\ goialhs) if hi € U_gq.

Hence for any = € Q, we have \; > —a(z) and p; > —(—a)(x) = az) (resp. w; > a(x)).
Let A = minj <<, A and g = min <<, pt;. Then A = \; for some ¢ so that U,y = Uy, C
Uae and p = pj for some j so that U_o, = U_o,, C U_4,. Moreover h; € Usx UU_q
for any 1 < ¢ < m by definition of A and u. Let ¢ = A+ p > —a(z) + a(z) =0
(resp. € > 0). Thus g is in the group generated by U, ) and U_,, = U_, _x;. which is
Le = UanU—a a1 NG\ by Corollary 3.28. Since U, C U, for every x € 2, we have
Uax C Uyq. By the same way, U_, _y4. C U_,q. Hence L;)\ C Lygq. Thus N;A =
NNL,, CNNLyg = ]A\/faﬂ. Moreover, N, =T, C T, o when £ > 0 by Proposition
3.27(2). This gives g € Ua,gU,aﬂKfmg for any g € Lo q (resp. g € Ua,oU’ , oT}, o for any
g € L, o). The two other equalities in (QC1) are obtained in the same way.

Moreover, by Bruhat decomposition [BT72, 6.1.15(c)], it gives L, o N N = JA\ZQ cT,
which gives the first part of (QC1’). Since N[, o = T}, o C Tj normalizes Uy o, we get the
first equality of the second part of (QC1’). Finally, last equality can be obtained in the
same way replacing Lg , by LE, , =U_o ,N°, Us —pye = U_a 2417, . \Uan. O

3.42 Lemma. The following commutator subgroups satisfy
[Ua0, Uclm] - Uéa,ﬂ [Ua0, Ula,g] C Uz;,QUia,QTolz,Q

Proof. We check it on a set of generators.

Consider u € Uy and u' € Ul o. For any z € Q, let A = —a(z) € R. Let u =
Ya(u) =X+ and p = @,(u') =X+ €' with € > 0 and €’ > 0. Then, by axiom (V3), we
have [u7ul] € UQQ,2>\+€+€' - Uéa,2)\ = Uéoz,a:' Hence [u7 U/] S ﬂxeﬂ Uéa,x = Uéa,Q'

Consider u € Uyq and v € U’ ,o. For any v € €, let A = —a(z) € R. Then
u € U, and there exists ¢ > 0 such that v € U_, _»;.. By Lemma 3.31, we have
[u,v] € UsaorteUartet(U, V)U_q —r42:U-20 —2r1+3: Where t(u,v) is the T-component of
[u,v]. Hence, by Lemma 3.26, there are v’ € U,, v' € U_, uniquely determined such that
[u, v] = Wt(u,v)v". Moreover, o (u) = A+ 5 > —a(z) and p_o(v)) = =X+ £ > a(z).
Hence v’ € U], , and v' € U’ , for any x € Q. Hence v’ € U/, o and v' € U’ . Thus
t(u,v) € Lo NT =T, o. Hence [u,v] € U, T, qU" ,q = U, U, o1 q since T, o C T},
normalizes U’ , ¢. O

The following Lemma corresponds to [BT72, 6.4.7 (QC2)|. It is an immediate conse-
quence of axiom (V3) and of the definitions.

3.43 Lemma. Let o, f € ® be such that B ¢ —Rsoa. Let Ua,p)o (Tesp. U(,oz,ﬁ),ﬂ) be the
subgroup of G generated by the U, o (resp. U. o) for v € (a, B) (see Notation 2.1). Then
the commutator subgroups satisfy:

[Ua@, U@Q] C U(a7ﬁ)7Q (QCQ)

Va2, Uéﬂ] - U(,oz,ﬁ),ﬂ (QC2)

Proof. Let u € Uy, v € Ugg and v' € Ujj . Let A = pa(u), p = ps(v) and p' = @p(v’).
Let 7, s € Z~o such that v = ra+ sf € ®. Then for any = € €, we have A\ > —a(x),
p > —pB(x) and ¢ > —p(x). Hence rA + su > —ra(zx) — sf(z) = —y(x) and rA + sy’ >
—ra(r) — sf(z) = —y(z). Thus U, ,;xn1sy C Uyp and U, paqee C UL, Because this
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inclusion holds for any = € €2, we have, by definition of U, o and U,’Y,Q, that Uy ,aysp C Uy
and U, ;xq o0 C Ul . By axiom (V3), the commutator [u,v] (resp. [u,']) is contained in
the group generated by the Usatspratsp C Urarspa (168p. Uratsprrtsy CUlgripa) U

3.44 Example. According to Lemmas 3.41(QC1) and 3.43(QC2), the family ((Us.0)ace, Y)
is quasi-concave for every subgroup Y of 7 since T}, normalizes each U, o for a € ® and
Uno = Ua0Usaq by Lemma 3.39. In particular, for Y = 1, we get from Proposition 3.4:

(1) UaNUq = Uyq and Usy, NUq = Usy N Uy = Usp o for any a € Opq.

(2) The product map H Ung — U3 =UgNUY (resp. H U_ao—= Uy =UanNU™)
acdt, acdt,
is a bijection for any ordering on the product.

(3) We have Ug = Ut Ug No = U5 UZ N,
(4) The group NQ is generated by the ]A\/faﬂ for a € ®,4.

Since for every o € @, the group T}, o C T} normalizes U, o and U’ , o, we deduce
from Lemmas 3.42 and 3.41(QC1’) that U, oU’ , (T NUY) is a group for any ordering of
the product. Since U/, ¢ is a subgroup of U, o, we deduce from Lemma 3.43(QC2’) that
the family ((U L 0)acd; Y) is quasi-concave for any subgroup Y of T} since Tj normalizes

«

the U}, for a € ®.
We have, as in [BT72, 6.4.25(i)|, the following:

3.45 Proposition. Let a, 3 € ® be two roots such that § & Ra. Let \,u € R and ¢ > 0.
Then the following commutator subgroup satisfies

[Tﬁaw Ua)\} - Ua,A+e U2a,2,\+5-

Moreover,
[T[I?,w Uav/\] C UQ,A'

Proof. There is nothing to prove for ¢ = 0. Assume ¢ > 0 and consider the group
X generated by the subsets Ug,, U_g e and U_ap_9,4.. Then X contains 75 by
definition.

For s € Z, denote e(s) = { 0 ifs>0

e ifs<<0”
Uratsgrrtspte(s) for (r,8) € Zsg x Z such that ra + s € ®.

By axiom (V3), we observe that the commutator [z,y] for x € U, UU_g_,4e U
U_28,—2u+c and y € U(r,s)EZ>o><Z Uratspratsute(s) belongs to Y. Thus X normalizes Y and
[X,U,.] CY. Hence [Tg,w Uaa] CY NU, since T5, € X NT normalizes U,.

Consider the root system ®(«, 5) = ® N (Za + Z5) and the family of groups defined
by Xravss = Uratsprrtsute(s) for r > 0 and ra + s8 € ® and by X, = 1 otherwise.
Then the family of groups (X) g4 4 18 quasi-concave (axiom (QC1) is obvious for this
set since either X 5, = X_, =1 or Xy, = X, = 1 and axiom (QC2) is a consequence of
axiom (V3)). Thus by Proposition 3.4, we get that Y N U, = X, Xo0 = Usr+Usa201¢-

Since T , = (.~ T5,,.» we get that any element in the commutator subgroup [T} ,, Ua 2]
belongs to the commutator subgroup [T ,,Ua| for some e > 0. Thus [Ty ,,Usx] C

0

U5>0[T§,M7 Ua,)\] = U€>0 Ua,)\+eU2a,2)\+e = U(,)h)\'

Consider the group Y generated by the
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3.6 Local root systems

In this section, we work under data and notations of 3.22. Moreover, we fix a non-
empty subset 2 C Ag. For simplicity, we will forget the chosen origin o of Ag in this
section, i.e. we will denote by a(z) the quantity a(x — o) by abuse of notation. The goal
of this section is to define a root system ®¢ depending on the local geometry of €2 inside
Ap with respect to some hyperplanes H, » for a € ® and A € I"/, that will be the walls of
AR.

3.46 Notation. We define the following subset of roots:
O ={ac®, I\, € R, Vx €Q, —a(z) =}

O ={aecd IN, e, Ve e, —alxr) =N}
Note that, by definition, we have &g C &g, C P.

3.47 Lemma. Let a € . The following are equivalent:

(i) o € g

(i) Ju € U, such that Vx € Q, @,(u) = —a(z) and Vv € Usy, pa(t) = po(uv);
(i) a € ®g and Ju € Uyq such that Vv € Use, uv € U], g

Proof.

(i) = (ii): If o € Pg, let A, € I/, such that Vx € Q, —a(x) = \,. By definition, there
is u € U, such that —a(z) = ¢q(u) and Uy e, ) = ﬂU€U2a Un,pu(uw)- Thus Vv € Usq, we
have @' ([pa(u), +00]) C o5 ([pa(uv), +00]) and therefore p,(u) = @q(uv).

(ii) = (iii): Let u € U, such that Vo € Q, ¢,(u) = —a(x) and Yv € Usy, @o(u) =
@o(uv). Forany z,y € Q, we have —a(z) = ¢q(u) = —a(y) so that u € (,cq Uaz = Uao-
Suppose by contradiction that there is a v € U, such that uv € U&Q. Then for any
x € Q, we have uv € U/, , and therefore p,(uv) > —a(z) = @4 (u) which contradicts the
assumption.

(iii) = (i): Assume that there exists a u € U,,q such that Vv € Usa, uv € U/, o. Let
Ao = @o(u). Forz € Q,sinceu € Uy g C Uy, we have Ay, = o (u) > —a(x). Let v € Us,.
Then uv ¢ U], o and there is x, € Q such that uv ¢ U, , . Thus @,(uv) < —a(z,) <
Ya(u). Hence Uy pow) C Unypa(uv) for every v € Usy and we get Un o) = [yer, Uarpa(uo)
by taking v = 1, so that A\, = @, (u) € I, If, moreover, a € ®f,, then Yy € Q, we have
—a(y) = —a(x) = A, O

Without infimum and supremum, we provide a different proof and a slightly different
statement of [BT72, 6.4.11]:

3.48 Lemma. For any o € ®pq, we have 'v(Nyq) C {1,r.} with equality if, and only
if, either o or 2 belongs to Pg.
Proof. According to [BT72, 6.1.2(7) & (10)], since ng C NN (Us,U_,T) =T U M,,
we have ”I/(Kfmg) CA{Ll,ra}

Suppose that o € ®q. Let u € U, given by Lemma 3.47(ii) and A = p,(u) € I, C T,,.
Then, by Lemma 3.15, we have (M, ) = {ro}. Moreover, by Proposition 3.12(3), the
set M, is contained in L, . Moreover, for any = € €, we have —a(z) = X\ which gives

Usz = Uy and U_, , = U_, o and therefore M, » C N, q. Thus r, € v(Nyq).
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Suppose that 2a € ®q, then r, € ”y(ﬁaﬂ) since NQQ,Q C ng by definition.

Conversely, suppose that r, € ”V(]\Nfa,g). Consider any n € w1 ({r,}) N Na,g. Note
that n ¢ T since "v(T') = id by [BT72, 6.1.11(ii)|]. Write n as a product n = [[;_, u; for
r € Zso and u; € Uyq UU_, o with u; # 1 which is a generating set of the group L, o

containing N, . For any i € [1,7], denote

\ = (pa(ui) if U; € Uom o Qo—a(ui) if U; € U_a,
e oo ifu; € U_y, i = oo ifu; € Uy,

and consider A = min{\;, i € [1,r]} € RU{oo} and p = min{y;, i € [1,7]} € RU {oo}.
For any i € [1,r], we have either \; = 0o or u; € Uy 0 = [),cq Ua,e Which gives ¢q(u;) =
i = —a(x) for every x € Q2. Thus U, 5, C Uy . By the same way, U_, ,, C U_q 0. Thus
Uar C Uy and U_,,, C U_, . Hence, for x € €2, we have A > —a(z) and p > o).
Denote ¢ = A+ p > 0. Then n € L , and thus n € Nj o \ T which gives ¢ = 0 and
A € T', by Proposition 3.27. Hence Vz € QA > —a(z) and 4 = —A > a(z). Thus
Ve € Q, —a(x) = X eT,. If A € I, then we have a € ®. Otherwise, by Fact 3.9,
A € iT%, and thus Vz € Q, —(2a)(z) = 2X € I}, which means 2a € ®q.

[

3.49 Proposition. The group Ng normalizes Uy,.

Proof. Let o € 4 and n € ],\70479. Let f € ® and u € Ujq,.

If w(n) = id, then n € T by [BT72, 6.1.11(ii)] and therefore n € T, o C T}. Thus
nun~" € Up .

Otherwise a or 2a € O by Lemma 3.48, so that for any x € €2, we have —a(z) = X €
I',. Denote by v = w(n)(f). Then n € L, since Uryq C Uiy, and therefore n € Tym
for any m € M, » by Proposition 3.27.

Let 2 € Q and € = @g(u) + f(x) > 0. Then mum™" € U, _gu)te+8a)r = Uy —y(z)+e
with v = r,(8) = 8 — B(a”)a according to Lemma 3.13. Thus nun~' € U, for every
r € Q and therefore nun=' € Uj,. Hence n normalizes Uy, since it is generated by the

U} o
5.0 N
Thus Ng normalizes Uy, since it is generated by those elements n according to Example
3.44(4). O

In the following Proposition, we detail the proof of [BT72, 6.4.10] with some changes
since we do not use infimum here.

3.50 Proposition. The subset ®q is a sub-root system of ®, i.e. a root system in the
R-subspace V5 generated by Pq.

Moreover, the group homomorphism v : N — GL(V*) induces a group homomorphism
Ng — GL(Vg) sending n onto the restriction of “w(n) to Vg with image the Weyl group
of ®q and kernel Tq.

Proof. Let W = " (Ng) which is a subgroup of the Weyl group of ®.

We firstly prove that ®q is stable by W, Let n € Ng and w = "(n) € W(®).
Consider any a € ®q and denote f = w(«). Consider an element u € U, such that
Vz € Q, po(u) = —a(z) and Vv € Us,, @olu) = pa(uv) given by 3.47(ii). Let u = nun'.
By [BT72, 6.1.2 (10)], we have & € Uy. Since n € N C Ug, we have & € UsNUg = Us.g by
Example 3.44(1). Let v € Uyp and denote v = n~'on € Uw-1(28) = Uza. Suppose that uv €
Uj q- Since Ng normalizes U}, by Proposition 3.49, we have wv = n~'ton € UyNU, = Ui
by Proposition 3.4(1) applied to U{, (this is possible according to Example 3.44). This

contradicts the assumption on u since for any = € Q, we have p,(uv) > —a(x) = @ (u).
Thus uv ¢ U .
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Finally, for € Q, we have Uj, = U, NUs = n(U, N Uy)n~" = nU, ,n~" since
n € Ng C N, normalizes U, by Proposition 3.49. Thus for z,y € €2, we have Uy, =
nU;, ,n~' =nU, n' = U, Thus, for v =1, we have u ¢ U, , = Up, for any = € Q.
Hence, for any x € , we get pg(u) < —f(z) < pp(u). Thus, by characterisation in
Lemma 3.47(iii), we have 5 € ®q.

Secondly, since N is generated by the ng according to Example 3.44(4), we get from
Lemma 3.48 that W2 is the group generated by the reflections r, for o € ®q. Hence ®q
is a oot system inside Vi by definition and the restriction of elements in W2 to Vi is
the Weyl group of ®q. B

Finally, the kernel of Ng — GL(V{3) is contained in ker w N Nog =T N (N NUg) =Tg
by definition. O

3.51 Example. Consider G = SLy(K), let T be the subgroup of diagonal matrices and
U, (resp. U_,) the subgroup of upper (resp. lower) unitriangular matrices, inducing a

0 1
10 and M, = M_, = mT.

There are parametrizations a : K* - T, u, : K = U, and u_, : K — U_,, of these groups
1
1 .
O). We get a valuation

given by a(z) = <5 S) Uo () = (é Qf) and u_a(y) = (_y 1

of the root group datum given by @i, (utq(x)) = w(z). For x,y € K with w(x) > 0 and
w(y) > 0, define u = uq(x) € Usp and v = u_o(y) € U’ o. Then

[, o] = 1 =z 1 0 1 —x 1 0\ 1—aoy+2%y? 2%
U= 0 1)y 1J\o 1) \y 1) 7 zy? 1+ 2y

We set z = 1 + 2y € K* since w(zy) > 0. Denote by t = a(z) € T, by v = u, <ﬂ>

generating root group datum of G if we take m =

and by v = u_, <—x—§2) One can easily check that [u,v] = w'tv’ so that t = a(1 + zy) =
t(u,v) € T, for every m,y.

Assume, for instance, that w : K — Z is a discrete valuation of rank 1. Thus T}, , =
{a(z), w(z—1) = 1}. By the same way, we get 7", , = T, and Ty = TN (U, ,, U’ ) =
TN (Ua1,U_a1) =1{0(2), w(z—1) > 2}. In this case, we have Ty & (17,0, 1", 0) = Tt o-

This example and the second inclusion of Lemma 3.42 suggests to us introduce the

following subgroup of T (which is denoted by Hy ¢« in [BT72, 6.4]).
3.52 Notation. Let T3 be the subgroup of Tj generated by the T7, ¢ for a € .

3.53 Lemma. We have T C T C 1y and all these groups are normal in T,. In partic-
ular, all those inclusions are inclusions of normal subgroups.

3.54 Remark. The second assertion of this lemma becomes obvious when 7' = Zg(S)(K)
is the group of rational points of the centralizer of a maximal split torus S of a quasi-split
reductive group G. Indeed, in this case Zg(S) is a maximal torus of G by definition and
thus 7" is commutative. But note that Zg(S)(K) may not be commutative if G is not
quasi-split.

Proof. Since T, normalizes the U, and the U/, for any A € R and any a € ®, it
normalizes U, o and Ut/xﬂ as intersection of such groups. Therefore Tj, normalizes Ug,
U and Ly, q for any o € @. Since Ty, is a subgroup of T, it normalizes the intersections
To =TNUq, Tg = TNUG and T, o = L;, oNT for any o € . In particular, Tj normalizes
T¢, being generated by the T7, ¢, for a € ®. Thus it suffices to prove the inclusions.

For a € ®, we have T}, = L, o NT C UgNT. Hence a generating set of T¢ is
contained in T, and therefore T C Th.

If v € Q, then Uy C Uy, for any a € ®. Hence Uy C U, and thus To =T N Uy C
Toz = To—a@ C Ty by Proposition 3.27(5). O

)
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We have the analogous to [BT72, 6.4.27]:
3.55 Lemma. For any o € ®, the following commutator subgroup satisfies
[T{;, UO(,Q] C U;’Q

Proof. Since T C T, normalizes U/, o and, by Lemma 3.42, U, q normalizes U, g, it
suffices to prove that for a generating set X of T, for every u € U, o and every z € X,
we have [z,u] C U} q. We consider X = (Jgeq Tjsq. Thus, let B € @, u € Uy and
t € Tg . Consider any = € Q.

We firstly assume that « is non-divisible. Then z € Uy, = Us—a(e) and t € Tj .=
Té’_ B(x)- We proceed by cases.

Case 1: ¢ Ra Then, by Proposition 3.45, we get that [t,u] € U’

_ !/
a,—afx) Ua,x'
Case 2: € Ryoa Then 8 € {a,2a} since o is non-divisible and ¢t € T, , since
T3a0 C Tt - Thus, by Corollary 3.34(11), we get that [t,u] € U}, _ ) = Up,-
Case 3: 8 € Rega Then 8 € {—~a, —2a} since a is non-divisible and t € 7", , since
T’ 90e C T 4 Thus, by Corollary 3.34(12) applied to —a, we get that [t,u] € U}, _ ) =
Ul ..
Finally, if « is divisible, we have that u € Usa , and we have ever shown that [t,u] €
U’%w. But since T' normalizes U, we have [t,u] € U, N U’%J =Ul, .
Since the inclusion [t,u] € U], holds for every x € Q, we get [t,u] € (,cq UL, =
/
. U
a,

3.56 Notation. For a € &, we denote by

% o Ua@ if (6% Q (I)B
L wo ifaedy

We denote by Uy, the subgroup generated by 7¢ and the Uy ¢ for a € ®.

3.97 Remark. If o € ®F, then RaN & C .

Indeed, let § € Ra and write it § = ra with 2r € {£1, 42, £4}. By definition, there
is A\, € R such that Vo € Q, —a(z) = \,. Thus, with 2X\g = 2r), (that belongs to R
since it is a Z-module), we have Vz € Q, —25(z) = —2ra(z) = 2\ so that § € &g, since
R is Z-torsion free and —f(x) € R for any = € Ap.

The difference between &g and ®f, is that @ takes the group structure into account
whereas the set ®¢ only considers the structure of 2. For instance, any point x € Ag
satisfies ®* = & whereas we will have W (®,) = W (®) if, and only if, z is a special vertex.

We recall that, in Bruhat-Tits theory, there exist situations in which we never have
®, = @ (for instance a dense valuation with I, = ) for a multipliable root a@ € ®, a
discrete valuation with a totally ramified extension K/K splitting G).

The following Proposition corresponds to the beginning of the statement [BT72, 6.4.23]
with a different proof since we do not define quasi-concave maps.

3.58 Proposition. The family of groups ((U;Q)a@,Tg) 18 quasi-concave and the group
Ug is a normal subgroup of Ug.

Proof. Since U} o C Ugq for any @ € ® and, by Lemma 3.53, T3 C Tq, we know that
Ug is a subgroup of Ug. Moreover, T normalizes the U,q for a € ® since T3 is a
subgroup of T}, by Lemma 3.53, which gives (QC3). Let a € ® be a non-divisible root.
By Lemma 3.55, we have [Uaq,Tg] C U, g C U qg. In particular, T¢; normalizes Uy .
By Example 3.44, since the families (Un,0)ace and (U], q)ace are quasi-concave and since

a € Py & —a € P, we deduce that the family ((U;’Q)a@, 1) satisfies axiom (QCL).
Now, consider any (5 € ®.
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Case § € &g: If 8 € —R.opa, by Lemma 3.42, we get that [Us o, Uj o] = [Uaq, Usg] C
U oUl 0Tl o C UG (since [Una, Uy, o] C [Uag,U’, o] and a is non-divisible). Oth-
erwise, by Lemma 3.43(QC2’), we get that [Us,Uj gl = [Usn, Usal C [1,c(s Usa C

[Lew@s Ula:

Case a,3 € ®\ &y: Then [Usa,Uj o) = [Us o, Us ol C Uj by definition. Moreover, if
B & —Rsoa, we have [Ug 6. Uj o] C I c(ap Usa since (Unn)ace is quasi-concave.

Case f € &\ &5 and o € ¥f: By Remark 3.57, we know that 8 ¢ Ra. Since
Usq = Usa, we have inclusion [U,0,Uj o] C Unp . Let v = ra+ sf € (a, ) with
r,s € Z~g. By definition, the linear form « is constant on €2 but 3 is not. Therefore v is
non-constant so that v ¢ ®5. Thus for every v € («, ), we have U, o = UZ .

Thus from the three cases, we deduce that axiom (QC2) is satisfied by the family
(U 0)ace and that U, o normalizes U since it is generated by T and the Uy, for 5 € ®.
Also does Usq o since it is a subgroup of U, o. Since U, o normalizes U for every a € @,
the group Uq generated by the U, o also normalizes Uy,. U

3.59 Notation. We denote by Gq the quotient group U /Uy,

For a € &, we denote by m the canonical image of U, g in Gq.

We denote by T, the canonical image of Ty in Go.

For a € @}, we denote by M, o the canonical image of M, ,, with A, = —a(x) for
any = € (it does not depend on the choice of z € €2 by definition of ®f,).

The following Lemma corresponds to part of [BT72, 6.4.23] with a completely different
proof.

3.60 Lemma. For any a € @, we have Uy g C Usp o <= a & Pq.

Proof. Assume that Uaq ¢ Usan. Suppose, by contradiction that Uyq C UsoUl . Let
u € Uy and write it v = vw with v € U(’LQ, w € Us,. Then w = v™'u € Uaa N
Usa = Usan. Since v € U(’LQ C Ug, it contradicts the assumption. Hence there exists
u € Upo \ UsaUl, - Let Ay = ¢o(u) € I'y. We prove that A, € I',. Indeed, let v € Us,.
If, by contradiction, we have o, (uv) > @4 (u), then uv € U], and therefore u € U, oUsq
which contradicts the definition of u. Thus ¢, (uv) < pu(u) for every v € Uy, and
therefore Uy o, () = (Nyer, Uapa(uww) Which means pq(u) = A, € I',. Now, for any x € Q,
we have u € U,, and therefore —a(z) < ¢, (u). But if —a(z) < ¢, (u) for every z € Q,
then u € (,cq U/, = Ul q which contradicts the definition of u. Thus, there exists an
element y € Q such that —a(y) = pa(u) = Ay € T,. Finally, a € &, since U, q is not
trivial. Thus for every = € €2, we have —«(z) = —a(y) = A\, € '), which proves a € .

Conversely, let a € ®q C 5. Then Uy o = U/, by definition. Let u € U, such that
Ve € Q, vo(u) = —a(x) and Yo € Usy, @a(uv) < ¢o(u) given by Lemma 3.47(ii). By
contradiction, suppose that u € USZQUQ(LQ. Then we would have some v € Us, o such that
w € Uy g =Ul g =U,, forany x € 0. Thus ¢, (uv) > —a(x) = pa(u) which contradicts
the assumption on u. Hence U, o ¢ UsaU2a,0. This gives m 7 m because if we had
m C m, then we would have U, q C UzaoUg N Us. But Uy NU, = U g according

to Proposition 3.4(1) since the family (U7 q)acs,T¢) is quasi-concave. O

The following theorem summarizes the work of this section and of the previous one.
It corresponds to the last statement of [BT72, 6.4.23], applied to X = T and X* = T.

3.61 Theorem. The system (T_Q, (Uaﬂ, Ma7g)a€¢0) s a generating root group datum of
type ®q in Gq.
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Proof. Axiom (RGD1) is satisfied because if U, o = 1, then U, o C UsNU, = U, o, would
contradict the assumption A, € I'/, in the definition of o € ®g.

Axiom (RGD2) is satisfied because the family (U, 0)aco is quasi-concave by Example
3.44.

Axiom (RGD3) is a consequence of Lemma 3.60.

Axiom (RGD4) is a consequence of Proposition 3.12.

Axiom (RGD5) is a consequence of Proposition 3.50.

Axiom (RGDG6) is a consequence of Proposition 3.4.

It is a generating root group datum since the U, o generates Uy by definition.

4 Parahoric subgroups and Bruhat decomposition

In this chapter, we work under data and notations of 3.22. We assume that the root
system is non-empty. Any statement can be generalized for an empty root system by the
trivial way (G = N =T and Ag = {o} when ® is empty).

4.1 Parahoric subgroups

In this section, we will consider various subsets €2 of Ag.

4.1 Notation. For a non-empty subset {2 C Ag, we denote by Ngq the subgroup of G
generated by N and T}, (as defined in [BT72, 7.1.3]) and by Py (resp. Pj) the subgroup
of G generated by T, and Ug (resp. Ty, and UY,).

4.2 Notation. For any basis A of ®, we denote by U{ (resp. Uy) the subgroup of G
generated by the U, (resp. U_,) for a € ®1.

4.3 Lemma. For any non-empty subset 2 C Ag, any basis A of ®, we have:
e PoN N = Ng = TyNg = NoTy;
o PoNUL =UqNUL;
o PonNUs =UqNUjx;
o Po=(PonNUL)(PaNUL)(PaNN)=T,Ug.

Proof. Since T, C N normalizes Ug, it normalizes NQ N NUg so that Ng = TbeQ =
NoTy, and Py = UgT, = (U NUX)(Ug N UA)NgTb according to example 3.44(3).

Let p € P, and write it as p = uvn with n € NQTb CN,ue UQﬁUA and v € UgNU,.
If p € N, then pn~! = uv gives p = n by spherical Bruhat decomposition [BT72, 6.1.15(c)].
Thus N N Py = Ng. If p € UX, then n = v~ }(u"tp) € UyUL. Thus n = 1 by [BT72,
6.1.15(c)] again and u~'p = v € Uy N UL = {1} by (RGD6). Thus p = u and therefore
PoNUXL = Uy NUX. By an analogous method, we get that Po N UL = Ug N U,. O

4.4 Notation. We denote by:
No={neN, vz e, v(n)(z) =z}

the pointwise stabilizer of €2 in N and by PQ (resp. PQ) the subgroup of G generated by
Uq (resp. Uf,) and No. The group Py is called the parahoric subgroup of 2 in G. It is
constructed to be the pointwise stabilizer of (2 in G (see Lemma 5.5).

4.5 Fact. If QY C Q C Ay are two non-empty subsets, then Uq is a subgroup of Ugqy.
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Proof. For a € ®, we have Uy o = [\,cq Uae C [Nyeqr Uaw = Uar. Thus Ug C Uy since
these groups are respectively generated by the U, q, U, o for o € ®. O

4.6 Remark. As a consequence, the same inclusions hold for groups ]’\79 =NNUg, Ty =
TN UQL\PQ = T,Uq, No = N N Py, No being the pointwise stabilizer of €2 in N, and
ﬁnally PQ = NQUQ

4.2 Action of N on parahoric subgroups

The action of N on Ay can be compared with the action of N on V* as follows:

4.7 Lemma. For any o € ®, anyn € N and any x € 2, we have:

v(n)(@)(z = 0) = a(v(n)(z) — v(n ") (0)).

Proof. We know that v(INV) is contained in the subgroup of Aff;(Ag) generated by the rg ,
for p € ® and p € R and that “v(Mg) = {rsz} by (CAl) and [BT72, 6.1.2(10)]. Moreover,
N is generated by the Mg for 8 € ®. Thus, it suffices to prove that for any € Ag, any
B € ® and any u € R, we have:

rs(e)(z — o) = a(rg,,(z) —rj,(0).

Note that T[;L = rg,. For any v € Ag, we have:

P(@) = 15,(0) = (& — (B(z — 0) + )BY) = (0 — (Blo — 0) + p)B")
—r—0— Bz —0)B"

Hence
a (rgu(r) —1p,u(0)) = alz —0) — a(B)B(z — 0) = rg(a)(z — o).
O

4.8 Lemma. For any n € N and any o € ®, we have nUOl’Qn’1 Usi(n)(a) w(n) (@) and

! -1 _ !
nUaon™" = Uy (o) wim)(@)-

Proof. Let z € Q. We have nU, n"!' = U (a),—a(@—o)+a(v(n-1)(0)—0) according to Corol-
lary 3.21. But —a(z — o) + a(v(n™1)(0) — 0) = oz(l/(nfl)(o) —v(n Y ov(n)(z))) =
—%w(n)(a)(v(n)(z) — o) according to Lemma 4.7. Thus nUa,xn = le, (n)(),v(n)(z) by def-

inition. Hence nUson™' = (,cq MUaen™ = Nyecq Unm)@)wm)@ = Unm)@)wm)i©)- We
proceed in the same way for U}, o = (,cq U.50 U, —a(e)+e- O
4.9 Proposition. For any n € N, we have nUqn™' = U,y ) and nUjn™! = Ué(n)(m.

Proof. By Lemma 4.8, we have nU, qn~ 1= = Uny(n)(a)w(n)(@)- Since Uy, ) is generated by
the Ug,m)q) for € ® and w(®) = & by definition of root systems, We are done. We
proceed in the same way for Uy,. O

4.10 Corollary. The group NQ normalizes Ug and UY,.
Proof. Since v(n)(2) = Q2 for any n € Ng, we are done by Proposition 4.9. O
4.11 Corollary. For anyn € N, we have nﬁmfl = ﬁy(n)(g) and nﬁg’zrfl = ﬁ;(n)(ﬂ).

Proof By definition, nNQn = N, v(n)(@) being a pointwise stabilizer in N. We have

PQ = NQUQ since NQ normahzes Uq by Corollary 4.10. Thus, by applying Proposition
4.9, we get that nPQn =N, v(n)@Uvn)(@)- The same holds for PQ O
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4.12 Corollary. For any non-empty subset Q0 C Ag, any basis A of ®, we have:
® ﬁQ NN = NQ;
o PoNUL =UgNUS:

PonUsy =UgNU;;

o Py = (PonUNH(PonUZ)(Pon N) = UqgNo.

Proof. By Corollary 4.10, we have ﬁg = UQ]/\}Q. Thus, one can conclude as in Lemma 4.3
using [BT72, 6.1.15(c)|. O

4.13 Corollary. We have ]\79 C Nq C ]/\\[Q In particular, NQ and Nq fix €.

Proof. By definition, we have Uq C Pq C Po. Thus, by intersection with N, by Lemma
4.3 and Corollary 4.12, we deduce N C Ng C Ngq. O

4.14 Lemma. The group Ng normalizes 15.

Proof. Forany a € ® and any n € ]/\\79, we get that nUOhQn_1 = Uy(n)(a),0 and nULa,Qn_l =

Ul n)().0 Py Lemma 4.8 since v(n)(2) = Q. Thus nL, on~! = L) (),0- Since N nor-
malizes T', by intersection with 7', we get nTC’mn_1 = Tv,u(n)(a),ﬂ- Thus n normalizes 7§

since it is generated by the T, o for a € ® and *w(n)(®) = ®. Hence Ng normalizes
Tz, O

4.15 Proposition. The subset U,T is a normal subgroup of ﬁg

Proof. Let us recall that T C T C T, by Lemma 3.53. Thus 7§ normalizes U, so that
ULTS is a subgroup of Ug = UgTy, therefore of ﬁg

Let @« € ® and u € U,qo. By Lemma 3.55, we have [U,q,T3] C Ul qg. Thus
uTgu™ C UyTE. By Lemmas 3.42 and 3.43(QC2’), we get that [Uyq,Ujq] C UyTg.
Thus uUéﬂu_l C ULTE. Hence U, normalizes UGTy for any o € ®. Therefore Ug
noramlizes U{,T§.

Moreover, according to Lemma 4.14 and Corollary 4.10, we deduce that ]ng and thus
P, normalizes UL TG, O

4.16 Proposition. The group Ng normalizes Ug,

Proof. We firstly prove that the action of ]/\}Q on ¢ via ‘v stabilizes ®f,. Let a € P
and n € Ng. By definition, there is a constant A, € R such that Vo € Q, —a(z) = A,
For any = € Ag, we have w(n)(a)(x — o) = a(v(n™)(z) — v(n~1)(0)) by Lemma 4.7.
If z € Q, then nu(n™')(z) = z so that —w(n)(a)(z —0) — a(z — v(n 1) (0)) = —a(x —
0) + alv(n=1)(0) — 0) = Ao + a(v(n=1)(0) — 0). Hence, w(n)(a) € ®;, and therefore Ng,
stabilizes .

Let n € Ng and o € ®. If a € dg, we have Uy = U, o by definition. Thus,
by Lemma 4.8, we have nU on~" = Ulyimyare = Ubmya).o since v(n)(a) € @5 and
v(n)(Q) = Q. If a ¢ &, then we have U; o = Uy by definition. Thus, by Lemma 4.8,
we hfiVe nU;Qn_l = U (n)(0).2 = Us(ny ()0 Since v(n)(a) ¢ @5 and y(n)(Q) = Q.

Since Uy is generated by the U for a € @, we got that n normalizes Uy, for any

n c ]/\}Q O
4.17 Corollary. The group U is a normal subgroup of ﬁQ

Proof. 1t is a immediate consequence of Proposition 4.16 and Proposition 3.58 since ﬁQ
is generated by Ng and Ug,. 0
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4.3 Parahoric subgroups as intersections over their fixed points

We get propositions analogous to that of [BT72, 7.1.4] as follows:

4.18 Lemma. Let A be a basis of ® with order ®3 in ®. Let C} o be the vector chamber

over A. Then, for any x € Ag, we have Upicy  C UX. In particular, NHC;M = {1}
and Nz+C}’%A = Tb-

Proof. Let Q = x + Cp 5. Let v € C7 5 so that z + 6, C z + C}, 5 according to Lemma
2.5. Let o € ®£. Thus a(v) € Z+( by definition of v.

Let ¢ € Rog. Theny € x+ev € x+6, C . Moreover, we have a(y) = a(z) +a(ev) =

a(r) + a(v)e. Hence U_nq C U_o, = ¢-8([a(z) + a(v)e, 00]). Since this is true for any

e > 0 and [_.ola(x) + a(v)e, 00] = (N.ogla(z) + €, 00] = {00} (because a(v) € Z and
R is Z-torsion free), we get that U_, g = U_,~ = {1}. Thus, Uq is generated by U, q
for a € ®L, therefore is a subgroup of UX. We conclude by applying Lemma 4.3. O

4.19 Lemma. For any basis A of ®, any positive root o € ®L and any non-empty subset
Q C Ay, we have

Unovcy s = Ungicy , = Uao:

Proof. Let v € CJ o so that a(v) € Zso. Since Q2 +627A D QA+ ChA D OQ+9,, we
have Uavﬂj@vR’A - (’]a,QjLC}v{A C Ua0+s,- Thus, it suffices to prove that Ua7ﬂ+6v C Uy C
Ua7§2+5}§,A'

Let v € Uy 04s,- Then for any y € Q, any € € Ry, if A = ﬁe, then we have by
definition:

Pa(u) 2 —aly + W) = —a(r) —¢

since y + Av € Q 4 §,. Since this inequality holds for every ¢ > 0, we get that ¢, (u) >
—a(y). Thus u € U, by definition. For any x € Q + UURA, write z = y + z with y € Q
and z € 62%. Then —a(z) < 0 by definition so that —a(x) < —a(y) < @q(u). Thus,
Uaﬂ C Ua,Q+6%7A' ]

4.20 Proposition. For any non-empty subset Q2 C Ag, and any basis A of ®, we have
PonN UX — UQJrC},{’A = UQJré%,A PaoN Ug = UQ*G%,A = Ugfcyw

Proof. On the one hand, we have Q+C}  C Q+627A so that Uﬂj@vRA C Uatey , C Ux
by Lemma 4.18. Hence, U +T and Uqycy  are generated by the same subgroups
Ua79+5;A = Unarcy, . = Uagq for a € (®X)na according to Example 3.44 and Lemma
4.19. Thus UQ—I—@;,A = UQ+C%7A C PoN UX

On the other hand, we have P, N UL = Ug N UL by Lemma 4.3 and this group is
generated by the U, q for a € (P4 )na according to Example 3.44. Hence we get the first
equalities.

Since Uy = U™, and —527 A= U;}%’_ A, We get the second equalities by applying the
first ones with —A instead of A. O

4.21 Corollary. For any non-empty subset Q@ C Agr and any basis A of ®, we have

Proof. This is a combination of Proposition 4.20 with Lemma 4.3. 0

Thus we get, as in [BT72, 7.1.8]:
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4.22 Corollary. For any non-empty subset 2 C Ag and any basis A of ®, we have
Py = NQUQ+5§M UgiﬁvR’A = NQUQ+C}’2’A UQ,C;M. Moreover

PoN N =Nq Pon UX = UQJFUIJ%’A = UQ+C})2’A PN U; = Uﬂféqf:c,A = UQ,CE’A

Moreover, Po and Ug are normal subgroups of ﬁg

Proof. This is a combination of Proposition 4.20, Corollary 4.10 and spherical Bruhat
decomposition [BT72, 7.1.15(¢c)|. O

The previous Proposition 4.20 and Corollary 4.22 enables us to state the following
proposition (see [BT72, 7.1.5]).

4.23 Proposition. Let Q and Q' be two subsets of Ar. Let A be any basis of .
(]) [f Q/ C Q +6UR7A, then PQPQ/ C NQUEUQ/_’_@URANQ/.
(2) IfQ CQ+Chp and Q C QY — Cy 5, then PoPoy = NoUqy_z» U,z Noy.
Proof. According to Corollary 4.21, one can write
PQPQ/ - NQUQ_@UR,AUQJ’_GUR,AUQI—FGUR,A UQ,_GUR,ANQ,'

Assume that Q' C Q+U%7A. Thus Q’—i—@%A - Q—i—@URA so that Ug,ze = CUg v -

Hence PoPo = NQUQ_@UR’APQ/. Now, write Py = UQ,_ng’A UQ,j@vR’ANQ/. Then
PaPoy = NoUn oy, \Usv 3, Uiy o N

and, since Uy_gv  Ug_gv  C Uy according to Proposition 4.20, we get (1).
Assume, furthermore, that Q@ C Q' — U;A. Then Q — UZ,A C Q- GEA so that
Uq_&v L C Uﬂ_ngA. Thus

R,

PQPQ/ = NQUQ_@UR,A UQ,"’@UR,ANQ,

Thus, we deduce from Proposition 2.7, as in [BT72, 7.1.6 & 7.1.7]:

4.24 Corollary. For any non-empty subset Q@ C Agr and any point x € Ag, there is a
basis A of ® such that B B
PoP, C NQU&UJC_’_GUR’ANQC.

Proof. Let y € {2 be any point. By Proposition 2.7, there exists a basis A of ® such that
xr—y € 62%. Thus =z € y + GE,A CcQ+ UURA. Thus, by Proposition 4.23(1) applied to
) = {z}, we have the desired inclusion. O

4.25 Corollary. Let x,y € Agr. There exists a basis A of ® such that

PP, =N,U, & U N,.

y—Cra”z+Ch A

Proof. By Proposition 2.7, there exists a basis A of ® such that x —y € U;A. Then
T €Y+ GZ,A C Q+ 627A and Then y € = — 627A C Q+ U%’A. Thus, by Proposition
4.23(2) applied to € = {z} and Q = {y}, we have the desired equality. O

Finally, we deduce that ﬁQ can be written as an intersection, as in [BT72, 7.1.11]:
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4.26 Proposition. Let Q C A, Q # 0. Then PQ =N

mGQ

Proof. The inclusion ﬂxeﬂ Pm D PQ is a consequence of the fact € — 139 is decreasing.
Let us prove that (), .o ﬁx C ﬁg

Let €29 C Agr. We begin by proving that if z € Ag, one has ﬁgoﬂﬁ ﬁgou{x} Lety €
Q) and C" be a vectorial chamber such that y — 2 € C?. Then Uag+cv C Uyrcv C Uppcw.
Let g € PQO N P,. Write g = nvu, with n € NQO, v € Ug,—cv and u € Ugytcv, which
is possible by Corollary 4.22. By Lemma 4.32 and Lemma 4.27, one has U, cv C P
Therefore u € P and g7'u € P Thus nv = n/v/v', with n’ € Nm, u € Ugycv and
v' € U,_cv. Therefore, n'~'n = o/(v'v71) € UXCU.UACU (where Acv denotes the basis
of ® associated to C"). By [BT72, 6.1.15 c)|, n’ = n and by axiom (RGDG6), v = .
Therefore, n € Nx N NQO C j\\fﬂou{x}, v € Ugy—cv NU,—cv and u € Ugyycov N IBI Moreover,
by Corollary 4.22 and by Proposition 3.4, one has:

Ugy—cv NP, C Ugy—cv N (U;C,J N P,) = Ugy—cv N Uyp—cv C Ugguia)—c

and symmetrically, Ug,+cv N ﬁm C Uioufa})+cv- Therefore ﬁgo N ﬁx = ﬁgou{m} (by Corol-
lary 4.22).
By induction, we deduce that for each finite subset 2" of €2, one has:

Py = ﬂ P,.
e

Let t zo € Q. Let Fin(£2, z9) be the set of ﬁnite subsets of Q containing . Let g€

N.ca P,. Then for all ' € Fm(Q 7o), 9 € [yeqr P, = Py and thus g € Norerin(©@,z0) Py
Let us prove that ﬂﬂ,eFm 0.20) Py C Po.
Let g € ﬂQ,eFm(Q 2o) oy Since Nm is, by definition the stabilizer of z¢ and Tj is the

kernel of the action v : N — Aff(Ag), the quotient group Nx0 /T, can be identified with
a subgroup of W" which is finite. We write the cosets nTy, ..., nyTy, with k € Z>o and
ni € Ny, for all i € [1,k]. Choose a vectorial chamber C? (for example, C? = 7).
For ' € Fin(Q, zo), one can write g = ngugvg, with ng € NQ/7 ug € Ugicv and
v € Ugr_cv. Let
J ={j € [1,k]| 3Q € Fin(8, 20)|VQ € Fin(, x0)| Q@ D ¥, ng & n;T}.

For j € J, we pick Q; € Fin(£2, o) such that for every €' € Fin(, zy) such that
Q' D Q;, ng ¢ nTy. Let Q = Ujes @ and £ € [1,k] be such that ng € n T} Then
el k]\ J.

Let

F ={Q € Fin(Q, o) |ne € neTy}.

Then for every Q' € Fin(Q, xy), there exists 2" € F such that ' C Q" and in particular,
Q= UQ/G]-' .

Let ' € Fin(), o). Let Q" € Fin({2, zo) be such that Q" € F. As T, C Now, we
deduce that n, € NQ// - NQ/ Consequently, n, € ﬂﬂ,eFm Q,0) NQ/ - ]/\}Q

For ' € F, write ng = nghq/, with hq: € H. Let Ql,Qg € F. Then hg,uqg,vg, =
ha,uq,vq, and by axiom (RGDG6), we deduce that hg, = hq, = h, ug, = ug, := u
and vg, = vq, := v. Then g = nshuv. Moreover u € ﬂQ/ef Ugyicov C Ugiov and
v E ﬂﬂ,ef Uq—cv C Uq_ v Therefore, g = nshuv € NQUQ+CUUQ v = PQ (by Corol-
lary 4.21) and hence g € PQ. Consequently,

ﬂﬁmc ﬂ ﬁQ/CﬁQCﬂﬁxa

xeQ) Q' eFin(Q,x0) xeQ)

which proves the proposition. O
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4.4 Subgroups associated to a filter

If £ is a set, we denote by (&) the set of subsets of £. Let X : Z(Ag) - Z(G),
) — Xq be a decreasing map (for example, X = U, N, ﬁ, ...). If Vis a filter on Ag, we
set Xy = Ugey Xa. If X is a subgroup of G for every subset Q of Ag, then Xy is a
subgroup of G.

4.27 Lemma. Let V be a filter on Ag. Then Uy = Uqyy), Nv = Ncl(v) and Ty = Ty).
Moreover Ny = Ny, Py = Pawy and Uyy = Uq vy for every a € ®.

Proof. As 'V € cl(V), one has Uqyyy C Uy. Let us prove the reverse inclusion. We
first assume that V = ) is a set. Let u € Ugy. Then by definition of Uy, there exists
k € Zsy, roots ay,...,0q € ® and elements u; € U, o such that u = Hle u;. For
a € &, set N\, = min{p,,(u;), ¢ € [1,k] and oy = a} (one may have A\, = 00). Set
Q' = Naeo Do Fori € [1,k] and x € Dy, », , we have ¢, (u;) = Ao, > —a;(x) so that
u; € UaivDai,/\ai C Uq, . Hence u € Uy and Q' € cl(€2). Thus v € Ugyq) and therefore,
Uq = Ua(q)-

We no longer assume that V is a set. Let u € Uy. Then there exists {2 € V such
that u € Ug. Therefore, u € Uy and thus there exists ' € cl(Q2) such that v € Ugy.
As Q' € cl(2), @ € cl(V) and thus v € Uqy). Hence Uy C Uy, which proves that
Uy = Uaw)-

For any filter V, by definition, we have Ny = Uaqev Ng = Uaey NN Uq = N N Uy.
Thus NV = NNUy = NNUqyy) = Na). By the same way, we have Ty, = Ty and
Ua,y = Uqa(v) for any a € @, smce UaNU, = U, according to Example 3.44.

For any filter )V, by definition and Lemma 4.3, we have P, = UQGV TyUq = TyUy.
Thus Py = Py and, by intersection with N, we have Ny = Ngy). O

4.28 Remark. As V € cl(V), one has Nd(v) C ]/\71; but this inclusion is strict in general.
For instance, if G = PGL(2) and K is a local field, if z is the center of an edge of the
Bruhat-Tits tree, there is an element of N C G = G(K) permuting the two vertices of
the edge and, therefore, fixing . The enclosure cl(V) of {z} is the edge and the pointwise
stablhzer of cl(V) cannot exchange the vertices of the edge so that Nd(v) # Ny. Thus

cl(V ) 7 PV in general.

4.29 Remark. Using Example 3.44(3) and Lemma 4.3 we deduce the following decompo-
sitions, when V is a filter on Ag:

Uy = (Uy N UX) (Uy N UZ) (Uy N N) with Uy NN = Ny,

Py = (PyNUX) (PyNUy) (PN N) with P,NN = Ny,

Indeed, let u € Uy. Let Q € V be such that u € Ug. Then one can write u = v~ u"n, with
ut € UgNUL, u= € UgNU, and n € UgN N and thus u € (UyNUL)(UyNUX)(UyNN).
Thus Uy C (Uy NUXL)(Uy NUX)(Uy N N) C Uy and we get similarly the statement with
P.

Recall that given a vector facet F¥ and a point = € Ag, we denote by F, pv the germ
of x + FV at z (see definition in section 2.1.7).

4.30 Proposition. Let C” be a vector chamber of Vg and x € Ar. Denote by F = F, cv
the germ of x + CV at x. Then, for any basis A of ®, we have:

° ﬁ;ﬁUa:Ua,f for any root a € P,
(] ﬁ]:ﬂNI]/\}]::Tb;

o PrNUL =UrNU};
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o PrNU; =UrnUs;
o Pr=(PrnUN(PrnUL)(Prn N).

Proof. Let a € ®L and Q € F. According to Corollary 4.12 and Example 3.44, we have
PonNU, =UaNU, = U,q since U, is a subgroup of UI by definition. Thus

ﬁ;ﬁUa: <U ﬁﬂ>mUa: UﬁﬂmUa: UUa,Q:Ua,}'

QeF QeF QeF

and we proceed in the same way for a € ®,,.
According to Corollary 4.12, we have

PrnUf = |J PanUf = | UanUL =Ur UL
QeF QeF

and the same is for Uy. Let Q € F. There exists ¢ > 0 such that Q D B(0,¢) N (z + C?).
Since Nq is the pointwise stabilizer of € and, for any o € ®, the affine map « is non-
constant on €2, there exists no A € R such that r, ) fixes Q pointwise. Thus v(Ng) is

trivial and, therefore, ]/\79 = T,. Hence

PrNN = UﬁQmN: UJVQ:Tb:JV;.
QeF QeF

Finally, if p € 13;, there exists €2 € F such that p € P. By Corollary 4.12,
pe <J39 N Ug) <J39 N Ug) <J39 N N) C (13; N UK) (13; N U;) (13; N N) .
Henceﬁ;z(ﬁ;ﬂUz) <ﬁ]:ﬁU£) <ﬁ]:ﬁN) 0

4.31 Corollary. Let x € Ag and C be a vector chamber of V. Consider the sector
Q = x4+ C" and the filter F = F, ¢ be the germ of Q) at x. Then Py = Py and Pr = Pr.

The following three statements are intended to prove an analogous to [BT72, 7.2.6]

4.32 Lemma. Suppose that R = Rg. Let x € Ar and F* C Vg be a vector facet. Then
{z} € cl (Fppv).

More generally, write F* = Fi(A, Ap), where A is a basis of ® and Ap C A. Let A
be a set such that A D Ap D Ap. Set F¥ = F*(A,Ap). Then cl (Fypv) D F o fo-

Proof. Let 2 € cl(F, pv). By definition, there exists ¢ > 0 and values A\, € I', U {o0}
such that Q D (N ce Dax. 2 B(x,€) N (x4 FY). By definition, there exists a basis A of
® and a subset Ap of A such that FV = Fj(A,Ap). If Ap = A, then F¥ = 0 and we
have x € Q.

We now assume that Ap # A. Let v € F7(A, Ap). Then |v] := 37 cypa) [w vl € Zso
since 0 € FY(A, Ap) by assumption on Ap.

Let A € R-y. Then \v € ¢, and thus \v # 0. Suppose moreover that 0 < |v|A < e.
Then y := o+ A € B(z,e) N (x 4+ 6,) C B(z,e) N (x + FY) by Lemma 2.5. Let
a € ®. Then —a(y) = —a(z) — Aa(v) < A, since y € D, . If a(v) € Zgp, then
Ao + () = —a(v)A = 0. Otherwise, a(v) € Zs( and therefore

Ao +a(z) € ﬂ [—Aa(v), 0o[= ﬂ [— A, 00l

)\6]0,‘75‘[ Ae]ovm[
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Let p € Reg. If p < —¢, then pu ¢ [—m,oo[. If > —e, then p ¢ [—Wo’f(v),oo[.
Consequently (¢, = ([=A,00[C R>p and hence Ay + a(x) > 0. As this is true for

> vfa(v)

every a € ®, we deduce that x € Q, which proves that {z} € cl(F, pv).

Let now A be a set such that A D Ap D Ap and F¥ = FE(A,AP). Let ¥ =
® N Daen, Ra, ¥ =on Doca, Re and X = N,cp \o Dgox,. Let A €0, ﬁs[ and
y=x+ M. Let « € ®_\ V. Then y € Q and a(z) > a(y) > —A,. Therefore z € X. Let
2 € XNB(z,e)N (x+ FY). Let € ®,. Then a(z) > a(x) > —A,. Let o € d_. Then
if a €U, a(z) =a(z) > —Xo. faed_ \ T, then o € ®_\ ¥ and thus a(z) > —\,.
Therefore z € Q and hence Q D X N B(z,€) N (z + F*). Consequently Fy v € Cl(Fy po),
which proves the lemma. O

4.33 Proposition. Suppose that R = Rg. Let o € ®, v € A and F* be a vector facet
in V. Then

- Uy if @ € @F, LI DY,
@ = UL if a € B

Proof. By Lemma 4.32, {z} € cl(F, pv), and thus U

a,l(Fp pv)
to Lemma 4.27.

By definition, there exists a basis A of ® and a subset Ap of A such that F* =
FE(A,Ap). If Ap = A, then F” = 0 and we have &, = ): there is nothing to prove.
Suppose now that Ap # A and consider o € ®F,. Let u € U_a7, po- Let Q € F, po be
such that u € U_, . Then there exists ¢ € R~ such that Q D B(x,e) N (z + F"). Let
v € F7(A,Ap). Then [v] := 3" g [w-v|1 € Zsg since 0 ¢ F7(A, Ap) by assumption
on Ap.

Let A= 557 and y = 2+ Av. Then y € B(z,2) N (z +6,) C B(w,e)N(x + F*) C Q by
Lemma 2.5 and thus ¢_,(u) > —(—a)(y). Moreover a(A\v) > 0, thus ¢_,(u) > —(—a)(x)
and thus u € U’ which proves the Lemma since &, = —®F,. O

—a,x)

= Uq7, po C Uaz according

4.34 Corollary. Suppose that R = Rg. Let « € ®, v € Ap and C* be a vector chamber

in V. Then
I B Upo if € oFf,
@Feer T UL if a € g,
Proof. Let a € ®. If a € ‘ng, then we have U, , = U, zycv according to Lemma 4.19.
By definition U, z1cv C Uo7y o0 and U, 7, .o C© U, by Proposition 4.33. Thus U, , =

Ua,m+C“ = Ua,]—'x’cv .
If a € @p, let u € U, ,. For any y € v+ C?, we have a(y — x) < 0 by definition.
Thus pa(u) > —a(z). Let € = @, (u) + a(x) > 0. Consider

Q=z+ (C’”ﬂa‘l(] —5,0[)) =x+ (C”ﬂba75> =+ ( ﬂ 103570> mf)w.
BeDL,

Then €2 € F, ¢v» as non-empty intersection of open neighbourhoods of = in x +C". More-
over, for any y € €2, we have —¢ < a(y — z) < 0. Thus —a(y) < —a(z) + & = @, (u).
Hence u € Uno C Ua 7, co- Therefore Uc'w C Ua,7, v Hence Proposition 4.33, we have
UaFp oo = Ug s O

4.35 Corollary. Suppose that R = Rg. Let v € A and C' be a vector chamber in V.

Let A = A¢. For any ordering of (@X)nd and of (@Z)nd, we have

ﬁ]:x’c - H Ua,x H Uémm Tb - H Uémm H Ua,m Tb

ae<q>z>nd Oée<<1)2)nd Oée<<1)2)nd aE(@X)nd

Proof. Tt is an immediate consequence of Proposition 4.30 and Corollary 4.34. 0

52



4.5 Iwasawa decomposition

Thus, we obtain the Iwasava decomposition whose proof can be conducted in the same
way as in [BT72, 7.3.1]:

4.36 Theorem (Iwasawa decomposition). Suppose that the totally ordered commutative
pseudo-ring R is equipped with a Q-module structure. Let C, C" be two vector chambers
of VR and x € Ag. Let F = F, ¢ be the germ of C at x. Then

G — UC/Nﬁ]:
and there is a natural one-to-one correspondence
I/V&H = N/Tb — UC/\G/?]:.

Proof. In this proof, we denote by Ut = Uer, by B = Pr and by Z = UtNB. Let
A =Ac and A’ = A and @, @, the associated subsets of positive roots.

First step: rank-one Levi subroups are contained in Z. Let a € ® be any root.
Let L, = (U_4, Uy, T) and m, = m(u) for some u € U, \ {1}. By [BT72, 6.1.2(5)], we
recall that M, = T{1,m,}. By [BT72, 6.1.2(7)], we know that

L,=U,TUU,Tm,U,.

Let By, = (Uar,U_o 7, Tp). Consider the set Z, = U,M,B,. We want to prove that
L, C Z,. The inclusion U,T C Z, is obvious. Hence, it suffices to prove that m,u € Z,
for any u € U, since U,T is a group (indeed, the subgroup T normalizes U, by definition
of Uy,).

Suppose that a € @ (resp. a € ®5). If p,(u) = —a(z) (resp. @o(u) > —a(x)),
then v € Uy —a@) = Uar (resp. u € U;{ﬁa(l«) = U,,r) by Corollary 4.34. Thus u € B, C
Zo. Otherwise, p,(u) < —a(z) (resp. ¢o(u) < —a(z)) . Write u = v'mv” for some
m € M, and v',v" € U_,. Write m = tm,, for t € T. By axiom (V5bis), we know that
©_o(V") = —@a(u) so that ¢_,(v") > —(—a(z)) (resp. p_o(v") = —(—a(z))). Thus
" eU',,=U_qr (resp. v € U_qp = U_q5) by Corollary 4.34 since —a € —0f =

(resp. —a € ®f = —®,). Hence myu = myv'tm 0" = Smav’mglzgmatmgllv” € Zy.
€Ua €T

Second step: 7 is stable by left multiplication by root groups of simple roots
with respect to C'. Let a € A" and V,, = (Us | B € &%, \ {a}). We recall that V, is
normalized by U, and U_, by axiom (RGD2) and that U}, = VU, = U,V,, by [BT72,
6.1.6]. Hence

U_oZ =U_V,U. ., NB=V, U ,UNBCV,L,NB.

But since L, C Z,, we have
U_oZ CV,UT{1l,my}B,NB.
On the one hand, since B, C U,U_,N by Remark 4.29, we get
V,U,T{1}B,NB cUTTU,U_,NB
=UtTU_,NB
On the other hand, since B, C U_,U,N by Remark 4.29, we get
VU T{ma}BoNB cUtTm U_,U,NB
=UTmaU_om,'mUsm,'NB
=U*TUU_,NB
=UtTU_,NB
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Hence U_,Z c UTTU_,NB.

To conclude, we want to show that U_,N C Z. Consider any u € U_, and any n € N.
Let v = n~tun. Then v € Ug with 8 = “w(n~1)(—a). From the first step applied to 3, we
get that since v € L_g, we have

un =nv enU_gT{1,mg}B_z
CnU_gn 'nNB
=U,NB
cZ

Hence U_Z CUTTZB=U"TUYNBB=U*NB = Z.

Third step: Z contains a generating subset of G. 7 is stable by left multiplication
by U_, for a € Acr, by U, for a € L, and by T.

Since these groups generate GG, we deduce that G = Z. Indeed, let H the group
generated by the U, for a € ®, by U_, for « € A and by T'. For any a € A, the element
m, belongs to L, and since W is a Coxeter group generated by the m, for a € A, the
group NN is contained in H. Thus for any 8 € ®~, there exist a root @ € ® and an element
n € N such that the root group Uz = nU,n""' is contained in H. Since the root group
datum is generating, we deduce that H = G.

Fourth step: determination of double cosets From the equality G = Z = UL, N ﬁ;,
we deduce a natural surjective map:

N — UL\G/Pr
n UZ,nP;

Let n,n’ € N such that n’ € Ui/nﬁ;. Denote C"” = n=!' - (" another vector chamber.
Then

WV n €Prn U0
(n') F A

= PrUY, by [BT72, 6.1.2(10)]
- ﬁfU+//
=T, (U;,, N 13;> Ui, by Proposition 4.30

- (U;u N ﬁ]—‘) TbUX{/

Hence, by [BT72, 6.1.15(c)], the element (n’)~'n is sent onto the double cosets of U, \G/UX.,
arising from some element in T} and therefore (n’)~'n € T,. Hence, it induces a bijection

N/T, — U \G/Pr. 0

4.6 Bruhat decomposition

4.37 Notation. Given a point z € A and a vector chamber C of Vi, we denote by F, ¢
the germ at x of the sector z 4 C.

In the following theorem, we generalize the affine Bruhat decomposition [BT72, 7.3.4].
In the particular case where G = G(K) for a split reductive group G over a 2-local field
K, this is a particular case of [Kap01, Proposition (1.2.3)].

54



4.38 Theorem. Suppose that the totally ordered commutative pseudo-ring R is equipped
with a Q-module structure. Let C,C" be two vector chambers of Vg and x,x' € Ag be two
points. Then R R

G = Pr, .NPr, .,

and there is a natural one-to-one correspondence
N/Tb — P}—z,C\G/P]:z/,c/

4.39 Notation. Let C,C’ be two vector chambers of Vi and z,2" € Ar be two points.
We denote by @ = x + C and @' = 2’ + C’ the corresponding sectors in Ag. Denote by
A = Acg and A" = Agr respectively the bases of ® defining C'= Cj o and C' = Cp /.

According to Proposition 2.7, there is a unique w € W (®) such that 2’ — z € GZ(A)
and Cp AN (2" —z + ") # . We denote it by w(z,C,2’,C") = w. We also denote by
l(x,C 2, C") the length of w in the Coxeter system (W (®), (74)aca)-

We denote by A” = w(A), by C” = Chay and by Q" =z + C" so that 2’ € Q" and
Ql N Q// 7& @

Note that the uniqueness of w € W(®) and the simple transitivity of the action of
W(®) imply that A”, and therefore C”, is uniquely determined by x, ', C’. We denote it
by C(z,2',C") = C".

4.40 Lemma. Let x € Ag and C' a vector chamber of Vg. Then for any n € N, we have

D -1 __
NPz, o0 = PF 0w mime -

Proof. We have nﬁfzycn_l = UQefzcnﬁQn_l. By 4.11, we have nﬁgn_l = Ay(n)(g).
Moreover, we have {v(n)(S2), Q € Foc} = Fum)@),wmn) ) since v(n)(x + C) = v(n)(z) +

w(n)(C) by definitions. Thus nPr, ,n~' = Jger Po = Pr . mmc - O

v(n)(z),"w(n)(C)

We follow the proof given by Bruhat and Tits. It relies on the following technical
Lemma from [BT72, 7.3.6]. In our context, the notion of half-line is not obvious but it
has been given in Definition 2.3 so that for a well-chosen v € V7, given by Lemma 2.4 one
can follow word by word the proof given by Bruhat and Tits, since all the intermediate
results have been generalized.

4.41 Lemma. Suppose that R is equipped with a Q-module structure. Let C,C" be two
vector chambers of Vg and x,x" € Ag be two points. Let g € G and n € N be such that
g € Pr,onPr, . Let A = Ac the basis of the vector chamber C. Let v € C 5.

(1) Then we have either:

(a) g € ﬁ;z’cnﬁ;x,’c, for any z € x + 90, or
(b) there exist a value A € R~y and an element n' € N such that:
i. g€ ﬁ;z’cnﬁ;x, o for any z = x 4+ pv with p €]0, A[

it. g € ﬁ;y’cn’ﬁ;x/ o With y =z + Av,
iin. L(y,Con' -2’ n'-C") > lx,C,n-2',n-C").

(2) Moreover, we have g € 13;2702\[13;%, o Jorany z € x +6,.

Proof of (1). We denote by A = Ax and by A’ = Aer.
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Reduction step: If g € ﬁ;x’cnﬁ;x/ o then gn™! € ﬁ;x’cﬁ;n'x/ o by Lemma 4.40.
Thus, up to replace g by gn™! and 2/, C’ by n-2',n - C’, we can assume that n = 1.

Let C" = C(x,2',C"), A" = Acr and Q,Q’, Q" as in Notation 4.39. Denote ¥~ =
(®4) ,NPryr and ¥F = (5) NPL,. Let b € Pr, .. By Corollary 4.35, we can write b

as a product:

(1) (1) (1)

ag(@}) . acev- acv+

where u, € U, for every o € (@X)nd and u, € U(’M for every a € (@g)nd and t € Tj,.

For a € ®f and 2 € = + §,, write z = x + Av with A € R.. Then, we have
a(z) = a(z + M) = a(z) + Aa(v) > a(z) with last inequality given by assumption on v.
Thus

U €U 7, = Unp by Corollary 4.34 since « € (IDX
= ¢o ([Fa(@), +o0]) € gt ([~a(z), +oo)) since — a(z) < —a(z)
=Us: =Usr. ¢ by Corollary 4.34 since « € (IDX
C Pr...

In the other side, we have u, € Uy 7, o C Ua, since Uy 7, . is either equal to U, . or U, ,
by Corollary 4.34 and U}, , C Uy,,. By definition of C”', we know that 2’ € x + o =qQ"
and there is some element y € Q' N Q". Write y = 2’ +v' € x + C” with v' € C’. For any
a € ®F,, we have a(2')—a(r) > 0since 2'—z € D” and a(y—z) = a(z’)+a(v')—a(zr) > 0
since (2’ — x) +v' € D". Hence, if o € ®F,, then

U € Ua,:v = @;%[—O&(l’), +OO]) - @;1([—C‘é<l’/), +OO]) = Ua,m/ = Ua,fx/’cl

because Uy, 7, ., = Ua for a € @}, by Corollary 4.34. Otherwise, o € @}, and a(z') —
a(x) > —a(v') > 0. Hence

o € Una = 03 ([—a(2), +00]) € 3] = a(@’), +00]) = Ul = Unz

because Uy 7, ., = U(’l’x, for a € ®,, by Corollary 4.34. Thus u, € ﬁf,/ o for every
a € L, and, in particular, for every a € UT. Therefore, we have

Uy = H Uy | € ﬂ ﬁ]—‘z’c and ( H ua> t e ﬁ;z,’c,.

ae(@f) . 2€x+8, e+

Hence, up to replace g by u;lg, we can assume that g € uﬁ;x, o for some u =
[loco- ta With uq € Uy 5, . = U, for a € U™,

Decomposition step: If u = 1, then the condition (a) is satisfied. In particular, if
C" = —C, then {(z,C, 2',C") is maximal by definition of the length in W with respect to
Ap and, in this case, u = 1 since U~ = (&) NPy, = (®5)  NOL=0.

Suppose that u # 1 (and therefore C” # —C'). By assumption on v and R, for

a € U, we can define \, = W

ug € U, = 03" (] — a(z), +oc]), we have that —¢q(us) — a(x) < 0. Hence Ay € R is
positive. By finiteness of ¥, there is a maximal element A = A\g € R~ for some 3 € ¥~.
If we set y =2 + \v € x 4+ J,, we have that for any o € U™:

since a(v) € Z.o (since —a € ®%). Because

a(y) = a(z) + Aa(v) = a(z) + Aaa(v) = —pa(ua)

with equality at least for a = [.
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We firstly prove (1)((b))ii. We have shown that ug € Ug, \ Uj, and that u, € U,y
for any o € W=, Thus u € U,. Since U, NUs = Uj, according to Example 3.44, we
have u € U, \ U,. Since Us, # Us,, we know by Lemga 3.60 that either g € @,
or 23 € ®, so that, in particular, the image @z of ug in G, is non-trivial. Let C"" =
C(y,2',C") and A" = Agm. Thus, by Theorem 3.61 and spherical Bruhat decomposition
[BT72, 6.1.15], we know that there are v € [[ oA Ua, v € [[,cam Ua and 0’ € N, such
that @ = u/n’u”. According to Proposition 4.20, one can lift those elements in elements
u' € Uypro = [oea Uays v € Uypom = [[penm Uay and 0’ € N, such that there exists
an element v € Uy = U, (mdeed y is a point so that &) = @ by deﬁmtlon) so that

u = vu'n'u”. Since v € U’ C P]: o U €Uyc C P]: e and u”" € Uypom C P;,C, since

FororN(y+C") # 0 by construction of C"” = C(y, 2/, C"), we get that u € P;y’cn P}—x/,c/'

We secondly prove (1)((b))i. Consider any value p €]0, A[ and denote by z = = + pw.
For any aw € U, since a(v) € Z~g, we have that a(z) = a(z) + pa(v) > a(z) + Aa(v) >
—a(Ua). Hence uq € U, , C Uz, .. Hence g € ﬁfz,cﬁfz/,c/-

It remains to prove (1)((b))iii.

We firstly prove that ((y,C,n’ - 2',n' - C") > l(z,C,2’,C"). Let H be the set of
hyperplanes in Vg that are kernels of elements in ®. We know that the length ¢(w) of an
element w € W is equal to the number of hyperplanes in H separating Cg o and C]§7w( A)
[Bou81, chap. VI § 1, no. 6] and that two vector chambers of Vi intersect if and only
the corresponding vector chamber in Vg intersect, according to Lemma 2.2. Hence, for
z € Apg, the number ¢(z,C,2’,C") is the cardinality of H, which is the set of elements
H € H such that z+ H separates z+C and a neighbourhood of z in z+C". But, for H € H,
the set of elements z € A such that H € H, is either the open half-space ' + H + C or
the closed half-space 2/ + H + C and its intersection with the open half-line = + §, is an
(open or closed) half-line. Hence H, D H, so that ((y,C,n’ - 2',n' - C') > l(z,C,2',C").
More precisely, w' = w(y,C,z’,C") is upper than w = w(z,C,2’,C") in the sense that
there exists w” € W such that v’ = ww” with {(w') = l(w) + ((w").

We prove that ((y,C,n'-2/,n"-C") > {(z,C,z’,C") whenever n' € T,. Indeed, suppose
by contradiction that it is an equality. Then w’ = w and therefore C" = C". But since

the image u € @y of w is in the subgroup Uy N Uy, generated by the root groups U,
for « € ®, N ®, N L, whereas the image v’ € G, (resp. v’ € G,) of v’ (resp. u”) is

contained in U} X (resp. UX,) generated by the root groups [ U, for a € ®, N ®L (resp.

®, N ®L,). If n' € Ty and A” = A", then we have w € Uy N Uy, NUL -T-UJ,. In
particular, u = 1 because of axiom (RGDG) of spherical root groups data and [BT72,
6.1.6]. In particular u € U, which is a contradiction. As a consequence, when n’ € Ty, we
have ((y,C,n' -2’ n' - C") > l(z,C 2, C").

We prove that £(y, C,n’ -2’ . n'-C") = {(y,C,2', C") with equality if, and only if n’ € Tj,.
Since n' € N, we get that w(y, D,n’ - z,n’ - D') = v(n)w(y,C,2’,C"). Denote t = v(n')
and w' = w(y,C,2’,C"). Hence, we want to prove that ¢(tw') > ((w’) with equality if,
and only if, t = 1. Let W, = W(®,) the Weyl group of the root system ®, and identify it
with a subgroup of W = W (®). Any vector chamber of ®,, which is a simplicial cone in

some quotient of Vg, can be identified with its inverse image in Vx. Let C be the vector
chamber of ®, containing C. Let R (resp. R,) the generating system of W (resp. W) of

reflections with respect to the walls of C' (resp. C'). Let wy (resp. wy) the longest element
with respect to R (resp. R,) of W (resp. of W,). We have wy(C) = —C and wé(é) = —C
so that w)(C) D we(C).

In the quotient group G, consider the minimal parabolic subgroup B associated to
the vector chamber C. Write B =T - [Loco,nat U,. Since w'(C) = C", we have U, cm C
w'Bw' ™. Since u € Uy_c, we have u € w()Ew’gl. Since u € U, U, cn'Uycm, we have U €
Btw'Bw' ™. Let (rg, .. .,r1) be areduced decomposition of w'~'wy € W with respect to R.
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Then wy = w'ry - - - 1 and we know that ¢(w ’) = {(wp) — k [Bou81, chap.VI,§1,no.6cor.3 of
prop.17]. For 1 <i < k — 1, denote w; = w'rg - - - 141 and, wy, = w’. Then w; = w;17; so
that the vector chambers w,(C ) and w;41(C) have a wall H; in common and the reflection
s; with respect to H; is s; = wi+1wi_1 = wi+1riwi_+11 = wiriwi_l

On the other hand, let w] be the unique element in W, such that the chamber wg(é)
of ®, contains the chamber w;(C) of ®. Note that for i = 0, we have w{, equals to the

wy, previously defined. We have wj = wy, = w’ since w’ € W,,. Finally, the two chambers

/

wl(é) and w§+1(5) are adjoining or equal according to the fact that s; belongs or not

to W,. When s; € W,, we also have that s; = w], ,w; ". By [BT72, 6.1.15(a)], for any
0 <i < k, there exists a unique w! € W, such that Buw,B = Bw,B. Since T € w)Buw'y ",
we have wj = w}. Since 7@ € Btw'Bw'™" and wj, = w', we have wjtw'.

Let I = [0,k —1] and let [, = {i € I, wj,, = w;}. Fori € I, we have wi,, = w;

(2
1
and w, +1 = w). Moreover, we have ever seen that 1f i ¢ I, then we have wj w';" =

~

wipw; = s;. If i ¢ I, we observ that r} = lewz = w'; 's;w! is a reflection with

respect to a wall of C: in other words, we have r; € R,. From [BT72, 6.1.15] and axiom
(T3) of Tits systems, we therefore deduce that for i € I, we have

Bw! B = Buw, B = Buw(r{B C Bw.BR;B C Bw/B U Bu[r/B.
Hence, we get a partition of I\ I; in two (possibly empty) subsets:
={iel\ L, w,, =w} and L={iel\L, w,, =uwr

so that I = I, U I, U I5. Flnally, we denote w; = w w'; Lw; for 0 < i < k. Note that we
have Wy = wy and W = tw'w L' =t

For i € I, define d; = m_lm = w;&lwgﬂm_lﬁw’i—lwi.

If i € I, since w_; = w} and wl,, = w], we have d; = w;}jw] w’-_lagw’i—lwi =
wiHw; = 7.

If © € Iy, since wi,; = s;w; and w41 = s;w;, we have d; = w;rllwgﬂw’;lwi =

1
w; sisiwiw’; w; = 1.

If i € I3, then d; = wiiwl wi,  ww'; w; = wiiwl riw'; w = wihw =1y

As a consequence, we have wy = Wy = Wi (W "Wg_1) - - - (W1 W) = Wrdp_1 -+ dy =
tw' [ [iep,up, 7o Hence £(tw') > £(wy) — Card(ly U I3) = l(wp) — k = £(w') and, if this is
an equality, then we necessarily have that I, = (). In that case, wy = twy and therefore
t=1.

To conclude, if we have {(y,C,n' -2’ n’ - C") > l(y,C,2',C"), then {(y,C,n' - z',n' -
C") > l(x,C,2',C") since L(y,C 2/, C") = (z,C,2',C"). Otherwise, we have {(y,C,n’ -
n - C") =Ly, C,2',C") and n’ € T,. We have seen that in this case {(y,C,z’',C") >
l(z,C,2',C") and therefore we also have that ¢(y,C,n'-2',n' - C") > l(z,C, 2, C"). O

Proof of (2). If g satisfies condition (a), there is nothing to prove. Otherwise, we define
a strictly increasing sequence ()\;); of values in R and a sequence of elements (n;); in N
by Ao = 0, ng = n and for ¢ > 1, while g is in the case (b) when we apply step (1) to
(xr+ Xio1v,C), 2’ + C" and n;_1 € N, we set \; = \;_1 + A and n; = n/ where A > 0 and
n’ € N are both given by (b). At some point k € N, the element g will be in case (a) for
Yr = + A\pv and ny since the length in the spherlcal (hence ﬁmte) Weyl group is bounded
so that this process stops. Thus g € P; anP]-‘ v C Pf CN(K)P; o for any z € yp+9,
and for any i € [0,k — 1] we have g € P_F CnZP;,C, C P_F CNP;, , for any z =z + v
with p €]\, Aiz1[ and g € Pf N CnHlP; s or © P;yi NP; s fOr Yir1 = x4+ Aipv. We
k
get the result from the decomposition R~ = (I_l])‘i’ )\iﬂ[l_l{)\iﬂ}) L Ag, 0ol O

=0
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Since the topology of Apg is less usual than the topology of Ag, we detail how to
generalize the proof of the affine Bruhat decomposition.

Proof of Theorem 4.38. Let g € G. By Iwasawa Decomposition 4.36 applied to —C and
For v, there exist u € Uy, n € N and v’ € Pr, , such that g = unu’. Write u =

HﬁG(CI’Z)“d ug with ug € U_g for 5 € (®)_,
Let v € CF 5 so that B(v) € Zsg for any 8 € ®L. For f € ®f, define \s = 0 if
w_p(ug) = oo and \g = ﬁ(ﬁ(x) — cp_ﬁ(u5)> otherwise. Let A € R-( be such that

A > max{)\s, 8 € ®L} and consider y = z — \v €  — §,. For any 8 € ®L such that

ug # 1, we have S(v)A > B(v)A\g = B(x) — @_p(ug). Thus —p(z — Av) + p_g(ug) > 0.
Hence we get that ug € U’ 5 for any § € ®}.

By Proposition 4.30 and Corollary 4.34, we know that Us, C ﬁ;y’c for any 5 € .
Therefore u € P, .. Hence g = unu' € P]—‘y’CNP]-‘I,’C,. Since x = y+ A € y+ 6, C
y + C according to Lemma 2.5, Lemma 4.41(2) gives that g € Pr, oNPr, . Hence,
G=Pr, NPr, .

Now, let n,n’ € N be such that n’ € ﬁ;x’cnﬁ;x/ﬁc/. Let 2" = v(n/)(2') and C” =
‘w(n')(C") so that n’ﬁfz,yc, (n)~t = ﬁ; " o according to Lemma 4.40. Let n” = n(n')~!.
Then 1 € ﬁfzycn”ﬁfz,,c,, which gives n” € P_F CP; s on- By Proposition 4.30 and Re-
mark 4.29, we have ]35’0 = Pr, . and P;x,,’c,, = P;x,,’c//. By Lemma 4.27, we have
P;x’c = Pd(;z’c) and P;x,,’c// = Pd(fzu,cn)'

Let Cﬂ: C(z,2",C") (see Notation 4.39) so that (z + C®) N (2" + C") # () and
2" € x+CO). Let X = {Q' € Fonon| Q' C 2+C®}. Then X C F,u o (as sets of subsets
of Ay) and thus Pr, ., D Uguey Por. Lety € (z+CB)N(z"+C"). Then by Lemma 2.17,
cd({z",y}) D Furcn. Moreover z+C® € cl({z”,y}) and thus Fpr v € z+C®. In other
words, 2+ CG) € Fon cn. Therefore, for every Qe Fur on, there exists 27 € X such that
Q" > Q" (one can take Q" = QN (z + C®) for example). Consequently,

P}—x”,c” = U PQ”-

Let Q € cl(Foe) and Q" € X. Set & = QN (Q" — C®). By Lemma 4.32, z € ,
2 € Q" and thus z € Q' (since 2 € x + C®)). Therefore

D —-C®and V' cax+C® c+ 06

Using Proposition 4.23(2), we get that PoPor C No'Uy, zm Uqn @ Nar. By Propo-

sition 4.30, we have Ng = Ng» = Ty,. By Proposition 4.20, we have U, om C U, and

Ugricm C Ul where A®) is the base associated to C® Thus PoPor C PoPor C
Ui TyUxs for every Q € F, o and every Q" € X. Hence n” € P; CP; en =

Par, o) Ugrex Por € Uy ThUxs). By [BTT72, 6.1.15], we get that n” € T,. Hence
n' € nT,. This provides the correspondence between the quotient group N/T, and the
double cosets Pr, \G/Pr,, . O

5 Building associated to a valued root group datum

Let Vg be a finite dimensional R-vector space and let & C Vg be a root system that
such Vif = (®). Let V7 be the free Z-submodule of Vi spanned by ®¥. Let R be a nonzero
totally ordered commutative pseudo-ring such that Rg = R. Let A be an R-affine space
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with some origin o and underlying R-module Vg := V; ®z R. Let G be a group and let
(T, (Us)acw, (Ma)aca, (Pa)aco) be a generating R-valued root group datum of G of type
®. Denote by N the subgroup of GG that is generated by the M, for a € &, and assume
that we are given a compatible action v : N — Affz(A) of N on A. We adopt all the
notations that have been introduced in sections 3 and 4 and that are associated to the
data we are given.

Under these assumptions, we can define the following relation on G x A:

y = v(n)(z),
(g,2) ~ (h,y) < In € N, {g‘lhn U,

This relation is reflexive and symmetric. Moreover, for any (g1, g2, g3) € G and (21, o, x3) €
A, if we can find nqo,no3 € N such that

Ty = v(n12) (1),
z3 = v(n23)(2),
g5 gans € Uy,
95 " gsnas € Us,,

then:
{1’3 = V(n23n12) (371),

~1 1 1
g1 gznasniz € g1 GaUgz,nio C Uyingy Ugo,nie = Uy,

where the last equality is given by Proposition 4.9. Hence ~ is an equivalence relation on

G x A.

5.1 Definition. The R-building associated to the datum:

<G7 T, (UG)QE(I” (Ma)aecb, (‘pa)aeqh V)

is the quotient:

Z(G.T,(Us)aco, (Ma)aca, (Pa)ace, V) == (G x A)/ ~ .

To simplify notations, we will denote it Z(G) in the rest of this paragraph.
We denote by [g, z] the class in Z(G) of (g,2) € G x A.
The group G then acts on Z(G) by:

g - [h, x] == [gh, z].
5.2 Lemma. The map:

i:A—7I(G)
x— [1, 2]

18 1njective.

Proof. Let z,y € A such that i(z) = i(y). We can then find n € N N U, = N, such that
y = v(n)(x). By Corollary 4.13, we deduce that = = y. O

5.3 Fact. For any n € N and any x € A, we have n - [1,z] = [n,z] = [1,v(n)(x)]. In
particular, the subgroup N stabilizes i(A).

In particular, we identify A with the subset i(A) of Z(G). More generally, we identify
any subset €2 of A with the subset i(Q2) of Z(G).
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5.4 Definition. An apartment of Z(G) is a subset of Z(G) of the form:
A:gA:{[gvl‘]v "L‘GA}

for some g € G, endowed with the set Isom(A, A) of bijections ¢ : A — A given by
t:x+— [g,v(n)(z)] for some n € N.
A local face (resp. local chamber) of Z(G) is a filter on Z(G) of the form:

F=g-germ,(z+ F’) ={g-Q, Q¢cgerm,(v+ F")}
for some g € G, some x € A and some vector face (resp. vector chamber) F* in Vj.

5.5 Lemma. [see [BT72, 7.4.4]] Let Q be a non-empty subset of A. The group Py is the
pointwise stabilizer of ) in G. R
In particular, for any filter V on A, the group Py, fizes V.

Proof. 1f Q = {z} is a single point and g € G, then

r=v(n1)(v)

o @)Hneﬁx,gean
gn~ e U,

1,2 =g-[1,1] <:)E|nEN,{

since N, is, by definition, the stabilizer of z in N. Thus, the stabilizer of z in G is Uﬁx,
which is P, by Corollary 4.12. Hence, Proposition 4.26 gives that P is the pointwise
stabilizer of (2. O

5.6 Proposition. (see [BT72, 7.4.8]) The set I satisfies (A2). More precisely, let g € G.
Then:

1. there exists n € N such that g™ -z =n-x forallx € ANg-A.
2. ANg- A s enclosed.

Proof. We may assume that Q = AN g.A is nonempty. Let X be the set of subsets
2 C Q such that g. N N P~ # (). By definition of Z(G), X contains {z}, for all x € Q. Let
O e X, 25 € Q and ny,ny € N be such that gn, € ﬁgl and gngy € ﬁ{m}. Let us prove
that Q; U {z,} € X.

By Corollary 4.24, there exists a vector chamber C* C VR such that Ny Ingy € Pgl P C
Na,. Ugo U N,, (we used the relations Po, = NQIPQI and P,, = P,,N,, from Lemma 4 3
and Corollary 4.12). Therefore, there exists n € NQI and n}, € Nm such that n} 'n; n2n2 €
NNUL UL = {1} by [BT72, 6.1.15(c)]. Set n = nyn} = nanh. Then gn € Po, NP, =
ﬁglu{m} (by Proposition 4.26). Consequently, €; U {z2} € X and by induction, every
nonempty finite subset of €2 is in X'.

The group N/T, is finite. Indeed, Nxo is by definition the stabilizer of zy and T}, is the
kernel of the action v : N — Affz(A). Thus the quotient group N,,/T} can be identified
with a subgroup of W* which is finite. Write N/T, = {niTp, ..., niTp}, with k € Zxg
and nq,...,npy € N. Choose oy € . Let Fin(Q2,z) be the set of finite subsets Q of
(2 such that 2o € Q. Let J be the set of elements of j € [1, k]] such that there exists
Q; € Fin(£, ) such that gn; ¢ PQ Let Q = Ujes ;. Then Q € Fin(Q, zo). Moreover,
if jeJ, gn; ¢ Po, O PQ. Let i € [1,k] be such that gn; € ﬁﬁ Then i ¢ J and thus
for all Q' € Fin(Q, z), gn; € Py. In particular, for all z € Q, gn; € P.. Consequently,
gni € Nyeq P, = Py (by Proposition 4.26) and thus for all z € Q, g~'.z = n;.z.

It remains to prove that {2 is enclosed. Let g = gn;. Then g-ANA=g-ANA=Q.

Moreover, g € P and thus there exists n € N such that p :=ng € P,. By Lemma 4.27,
Po = Py there exists Q' € cl(€2) such that p € Py. Then for x € €, one has
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gox=n"tpr=n"txrecAandthus o e Qforallz € Q. Lety € Q. Then gy € Q
and thus gg.y = g.y. Consequently, g.y = y and thus y € Q. Therefore, ' C Q and thus
Q=0 €cl(): Qis enclosed, which proves the proposition.

0

5.7 Remark. Let x € Z(G) and @ be a sector-germ at infinity. Then by Lemma 5.10,
there exists an apartment A containing z and Q.. Let () C A be a sector whose germ at
infinity is (). Then we denote by z + () the translate of @) at x. This does not depend
on the choice of A by (A2) (Proposition 5.6).

5.8 Corollary. [see [Lan90, 9.7(i)]] Let Q be a non-empty subset of A. The group Ug
acts transitively on the set of apartments of Z(G) containing €.

Proof. Let A" an apartment containing 2 and g € G such that A" =g A. Let n € N
such that g7tz =n-zforallz € ANg-A D Qasin Proposition 5.6. Hence gn € Py by
Lemma 5.5. By Corollary 4.12, there exist u € Ug and n’ € No C N such that gn = un’.
Hence A’ =g-A=gn-A=un’'-A=wu-A. This proves the transitivity. O
5.9 Corollary (see [BT72, 7.4.10]). The group N is the stabilizer of i(A) in G.
The group Ty, is the pointwise stabilizer of i(A) in G.

Proof. We firstly prove that Uy = {1}. Let @ € ®. Then Uya = (),cp Us—a(z—o)-
Considering the elements x = 0 + A\a¥ € A for A € R, we get that

Ua,A C ﬂ Ua,fa()\av) = ()0(;1 <ﬂ [_2)\7 OO]) :

AER AER

But the last intersection is reduced to oo since for any ¢ € R-y and any u € R, we have
p & [—2(—p —e),00]. Thus U, s = ¢, ({oc}) = {1} for any o € ®. Hence Uy = {1}.
Let g € G be such that g - A = A. By Proposition 5.6, there is n € N such that
Vo € A, go' -2 =n-x. Hence gn € PA by Lemma 5.5. Since PA = NA by Corollary 4.12,
we have that gn € N. Thus g € N. Moreover, since the action of N on A is induced by
that of v via n - [1, 2] = [1,v(n)(z)], we deduce the result. O

5.10 Lemma. (1) Any two local faces are contained in a single apartment of Z(G). In
particular, Z(G) satisfies axioms (A3) and (GG).

(2) Any two sector-germs are contained in a single apartment of Z(G). In other words,

Z(G) satisfies aziom (A4).

(8) If F is a local face and Qo is the germ at infinity of a sector, there exists an
apartment containing F and (.

Proof. (1) Consider an element g € G and a local sector-germ germ,,(Q”) € A such
that germ,,(Q') = g - germ_,(Q"). By the Bruhat decomposition 4.38, we can write

g = gunger With g € Paerm,(Q)s 92 € Peerm,n(@v) and n € N. By Lemma 5.5, we then
have germ,(Q) € g,n - A and:

germ,, (Q') = ¢ - germ,,(Q") = gzn - germ,,(Q") € g,n - A.

(2) Let Qo and Q. be two sector-germs at infinity in Z(G). Since G acts transitively
on the set of apartments in Z(G), we may assume that 0, € A. Consider an element
g € G such that Q' = g- Q. Let (13500 be the set of roots in ® that are positive on ).
By [BT72, 6.1.15(a)], we can write g = uynv, with uy, v, € U%oo and n € N. Since u

and v, fix @), we then have QO € uyn - A and:

Q:)o:g'Qoo:u+n‘Qoo@U+n'A.

(3) We obtain it similarly as (i), by replacing the Bruhat decomposition by the Iwasawa
decomposition (4.36). O
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6 Valuation for quasi-split reductive groups

6.1 Notations and recalls for quasi-split reductive groups

Let K be any field and G be any reductive K-group. Recall that G splits over a finite
Galois extension of K and denote by K/K the minimal one [BT84, 4.1.2]. Denote by
G = Gg the K—group obtained by a base change from K to K.

When K is algebraically closed, the theory of structure of reductive groups enables us
to consider Borel subgroups. In general, over an arbitrary field, a reductive group does
not admit any Borel subgroup defined over the ground field and we therefore need to
consider the minimal parabolic subgroups. The intermediate situation is that of quasi-
split reductive groups:

6.1 Proposition-Definition. [BT84, 4.1.1] One says that a reductive K-group G is
quasi-split if it satisfies the following equivalent conditions:

(i) G contains a Borel subgroup defined over K;
(ii) G contains a maximal K-split torus S such that its centralizer Z¢(S) is a torus;
(iii) for any maximal K-split torus S of G, its centralizer Zg(S) is a torus.

We will now assume that G is a quasi-split reductive K-group. We provide a choice
of a maximal K-split torus S and a Borel subgroup B such that T = Z¢(S) is a maximal
torus of G contained in B. This is always possible [Bor91, 20.5, 20.6 (iii)]. Thus T = Tx

is a maximal K-torus of G containing S = Sz.

We denote by ® = &(QG, S) the root system of G with respect to S and we call it the
relative root system. We denote by d = @(é, ’f‘) the root system of the split group G
with respect to T and we call it the absolute root system.

6.2 Recalls on root groups and their parametrizations
6.2.1 Definition of root groups

Given a basis A of ® (resp. A of ®), we denote Dyn(A) (resp. Dyn(A)) its Dynkin
diagram. The edges represent orthogonal defects of the basis which will translate defects
of commutativity between root groups. Multiple edges appear between two simple roots
of different lengths and are oriented from the long root to the short root.

Given a reductive K-group G and a maximal K-split torus S, the choice of a minimal
K-parabolic subgroup of G containing Zg(S) is equivalent to the choice of a basis A
of the relative root system [BT65, 4.15]. In partlcular if G is quasi- spht the choice of
S C T C B as before naturally determines a basis A = A(G, T, B) of ® = ®(G, T) and
a basis A = A(G, S,B) of ® = &(G, S).

Recall that root groups of G over K are defined by the following proposition:

6.2 Proposition-Definition ([Bor91, 14.5 & 21.9]). For any root a € ®, there exists a
unique K-subgroup of G, denoted by U,, which is closed, connected, unipotent, normal-
ized by Zg(S) and whose Lie algebra is g, + gon. It is called the root group of G with
respect to a.

If U is a positively closed subset of ®, then there exists a unique K-subgroup of G,
denoted by Uy, which is closed, connected, unipotent, normalized by Zg(S) and whose
Lie algebra is Z Ja-

acV
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Note that the definition depends on ® and, therefore, on the choice of the maximal
split torus S defining T = Zg(S).
Moreover, these root groups satisfy the following proposition:

6.3 Proposition ([Bor91, 21.9]). For any ordering on a positively closed subset ¥ of ®,
the product map Haewnd U, — Uy is an isomorphism of K-varieties.

For any pair of non-collinear roots a,b € ®, the subset (o, f) = {ra+sp € ®, r,;s €
Zo} is positively closed and [Uq, Ug] C Uyg).

We denote by U; for @ € ® the root groups of G with respect to T.

6.2.2 The Galois action on the absolute root system

Even if we can define a x-action on the Dynkin diagram for an arbitrary reductive
K-group, we assume for simplicity that G is a quasi-split reductive K-group.

We consider the canonical action of the absolute Galois group ¥ = Gal(K,/K) on the
abstract group G(Kj). Since G is quasi-split, we can choose a maximal K-split torus S
and we get a maximal torus T = Zg(S) of G defined over K. Thus, we define an action
of ¥ on X*(Tk,) by:

Vo €%, ¥y € X'(Tw,), o x =t o(x(o7' (1))

6.4 Notation (The Galois action on the absolute root system). This is a summary of
[BT65, §6] for a quasi-split reductive K-group G. Denote by A a set of absolute simple
roots and by Dyn(&) its associated Dynkin diagram. There exists an action of the Galois
group ¥ = Gal(K/K) on Dyn(A) which preserves the diagram structure. This action
can be extended, by linearity, to an action of ¥ on Ve = X*(Tg) ®z R, and on P,
The restriction morphism j = ¢* : X*(T) — X*(S), where ¢ : S C T is the inclusion
morphism, can be extended to an endomorphism p : V* — V* of the Euclidean space
V*. This morphism p is the orthogonal projection onto the subspace V* of fixed points
by the action of > on V*. The inclusion of ® in the Euclidean space v provides a
geometric realization of the absolute roots from which we deduce a geometric realization

of of & = p(®) in V*. The orbits of the action of ¥ on ¢ are the fibers of the map
p:d— O

6.5 Definition. Let & € ® be an absolute root. Denote by ¥z be the stabilizer of a for
the canonical Galois action. The field of definition of the root « is the subfield of K
fixed by X5, denoted by Ly = K.

This is determined, up to isomorphism by the relative root @ = alg. Indeed, a is an
orbit of absolute roots, which means that if 8| = @|g = «, then 8 = o-a and L =o(La).
For a root o € ®, we denote by L, the class of Lz for als = a. We call it the splitting
field of a.

6.6 Remark. If o € ® is a multipliable root, then there exists a, @’ € a such that a+a’ € d
[BT84, 4.1.4 Cas II]. Because « is an orbit, we can write @’ = o(a) where o € ¥ is of
order 2. As a consequence, the extension of fields Lg/Lg 5 is quadratic. By abuse of
notation, we denote this extension, determined up to isomorphism, by L, /La,.

6.2.3 Parametrization of root groups

In order to valuate the root groups thanks to the A-valuation of the field, we have to
define a parametrization of each root group. Moreover, these valuations have to be com-
patible. That is why we furthermore have to get relations between the parametrizations.
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A Chevalley-Steinberg system of (G, K, K) is the datum of morphisms: Z5 : G,z — Us
parametrizing the various root groups of é, and satisfying some axioms of compatibil-
ity, given in [BT84, 4.1.3|, taking into account the commutation relations of absolute
root groups and the Gal(]K/ K)-action on root groups. Note that despite the morphisms
parametrize root groups of é, a Chevalley-Steinberg system also depends on the quasi-
split group G because of the relations between the Tz where a € ®. According to
[BT84, 4.1.3], a quasi-split reductive K-group always admits a Chevalley-Steinberg sys-
tem (7a)5.5-

6.7 Notation. Let us recall that there are elements in Ng(S)(K) defined by:

mg = $a<1)i’,a<1)fa<1)
for & € ® such that for any E € ® and any u € JK, we have:

mazz(u)m-g € {7, 5 (+u)}

according to second axiom defining Chevalley systems. Moreover, one can observe that
m_z = mg from the matrix realization in SLs.

Let o € ® be a relative root. Let 7 : G* — (U_,,U,) be the universal covering of
the quasi-split semi-simple K-subgroup of relative rank 1 generated by U, and U_,. The
group G splits over L, (this explains the terminology of splitting field of a root). A
parametrization of the simply-connected group G® is given by [BT84, 4.1.1 to 4.1.9]. We
now recall it to fix the notation.

The non-multipliable case Let a € ®,4 be a relative root such that 2a ¢ ® and
choose @ € a. By [BT84, 4.1.4], the rank-1 group G* is isomorphic to Ry_/k(SLop_ ).
Inside the classical group SLay.., a maximal Lg-split torus of SLa . can be parametrized
by the following homomorphism:

zZ: Gm,]L& — SLQJL&
t — £ 0
0 ¢!
The corresponding root groups can be parametrized by the following homomorphisms:
y_ . Ga,]L& — SLQ,]L@ Yy - GUMLa — SLQ,]L@
o 10 . 1 u
! —v 1 " 0 1
According to [BT84, 4.1.5], there exists a unique Lg-group isomorphism &5 : SLoy,. — G@
satisfying ZTi5 = 7 0 & o y4, where G¥ is the simple factor of Gz of index a.
6.8 Notation. Thus, we define K-homomorphisms
Lo =T O RLa/K(fa °yy) T_q =TO0 RLa/K(Sa °0y_)

which are K-group isomorphisms between Ry _/k(G,,1,) and respectively U, and U_,.
We also define the following K-group homomorphism:

a=mo Ry x(&aoz): Rx(Gmus) = T

where T* =T N (U_,, U,).
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6.9 Fact. For anyd € ®, anyt € T(Lg) and any u € Ly, we have t7z(u)t™! = Tz (a(t)u)
by definition of root groups. Thus, for any a € «, we have that:

trg(u)t ™ = zq(a(t)u)

by definition of the Weil restriction. Thus, since a matriz calculation gives @(z)xq(uw)a(z7!) =
1o(2%u), we get that for any & € a, any z € L%, we have:

a(@)(z) = 22

6.10 Notation. We define maps m,, : G, 1, — Ng(S) and m_, : G, 1, — Na(S) [BT84,
4.1.5| given by:

M (u) :xa(u)x—a(u_l)xa(u) m_q(u) :x—a(u)xa(u_l)x—a(u)
: o . 0 u 0 wul
whose matrix realizations in SLyy,, are respectively -l 0 and w0

The unique elements m(z,(u)) and m(z_,(v)) defined in [BT72, 6.1.2(2)] are then:
m(@a(u)) =m_o(u’) m(z—a(v)) = ma(v")
We define an element m, = mq(1) = m_,(1) = m_, € Ng(S)(K).

6.11 Fact. We observe that m, = mg for any a € « by definition of the x, as Weil
restriction.
From matrix realization in SLy we can easily check that:

—1.
o

o VucL,, v_n(u)=muzs(u)m
o Vu ey, my(u)=a(u)ym, =m,a(u?);

° mizid.

The multipliable case: Let o € $,4 be a relative root such that 2o € ®. Let a € «
be an absolute root from which « arises, and let 7 € X be an element of the Galois
group such that a + 7(a) is again an absolute root. To simplify notations, we let (up
to compatible isomorphisms in ¥) L. = L and Ly = L -(5) in this paragraph. For any
z € L, we denote "x instead of 7(x). By [BT84, 4.1.4], the K-group G* is isomorphic to
Ry, /k(SU(R)), where h denotes the hermitian form on I x L. x L given by the formula:

1

h:(x_1,x0,21) — Z ;.

i=—1

The group G, can be written as Gf, = H G7(@(7(@)) where each Go@-o(7(@)
o€eGal(L2/K)
denotes a simple factor isomorphic to SU(h), so that SU(h)r, ~ SL3 .
We define a connected unipotent ILo-group scheme by providing the LLy-subvariety of

RL/]LQ(AZ,]L)3
Hy(L,Ly) = {(u,v), v'u=v+ v}

with the following group law:
(u, ), (W, 0") = (u+u' v+ +uu).
Then, we let H(IL,Ly) = Ry,/x(Ho(LL,Ly)). For the rational points, we get

H(L,Ly)(K) = {(u,v) e Lx L, uv =v+ "v}.
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We parametrize a maximal torus of SU(h) by the isomorphism

Z: RL/]L2<Gm,]L) — SU(h)
t 0 0
t — [0 ¢t 't 0
0o o 7t

We parametrize the corresponding root groups of SU(h) by the homomorphisms:

y_: Ho(L,Ly) — SU(h) yyr: Ho(L,Ly) — SU(h)
1 0 0 1 —"u —v
(u,v) u 1 0 (u,v) +— |0 1 w
—v —"u 1 0 0 1

By [BT84, 4.1.9], there exists a unique Lo-group isomorphism &5 : SU(h) — Ga(@)
satisfying:

Y+ (u, v) =Ta(u)Ta4a(—v)Ts("w) y-(u,v) =t_5(u)T-5-a(v)T_a("u)
6.12 Notation. From this, we define K-homomorphisms
Lo =T O R]L2/K(€& © y-f—) Lq =T O R]LQ/K(g& © y—)

which are K-group isomorphism between the K-group H(LL,L,) and the root groups U,
and U_, respectively and the group law is given by ., (u, v)zis(u/,v") = xio(u+u' v+
v 4 und).

We also define the following K-group homomorphism:

a=moRy,k(oz2): R k(GpnL,) = T
where T* =T N (U_,, U,).

6.13 Fact. Let a and 7 be as before. For any t € T(Lg) and any (u,v) € H(L,L,), we
have

75 () Tara(—v)Tg(u)t ™! = T5(a(t)u)Tapa(— (@ + Q) (t)v)Ta("a(t) )
by definition of root groups. Thus, we have that:
trg (u, v)t ™t = zo(a(t)u, at)a(t)v)

by definition of the Weil restriction. Thus, since a matriz calculation gives &(2)xq(u, v)a(z™1) =
T (2227, 2720), we get that for any z € L%, we have:

a(a(z)) = (z)?z L

6.14 Notation. We define maps m,, : H(IL,Ly) — Ng(S) and m_, : H(L,Ly) — Ng(S)
given by [BT84, 4.1.11]:

Ma(u,v) =zo(wv, (V) Da—a(u, v)aa(u() ™, (0) )

M_o(u,v) =2_o(uv™, () Nz (u, v)r_o(u(™) ™, (0) ™)

whose matrix realizations in SU(h) are respectively

0 0 —(u)! 0 0 —v
0 —(wu! 0 0 —(W)vt 0
v 0 0 ()t 0 0
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The unique elements m(z,(u,v)) and m(z_,(u,v)) defined in [BT72, 6.1.2(2)] are
then:

m(xq(u,v)) =m_q(u,v) m(x_q(u,v)) = mg(u,v)

Even if (0,1) ¢ H(L,Ly)(K) in general, one can define an element m, = m,(0,1) =
m_q(0,1) = m_,, that in fact belongs to Ng(S)(K).
By convention, we set mg, = Mg

6.15 Fact. We observe that 5(1)2_5(1)T5(1) = mg (resp. m-) has matriz realization:

1 00 1 0 O 1 00 1 0 O 0 1 0
011 0O 1 0 01 1]=10 0 1 resp. -1 0 0
0 0 1 0 -1 1 001 0 -1 0 0 0 1
so that we have:
My = mam:alma = MgM~ M~y
Moreover

o V(u,v) € H(L,Ly), v_o(u,v) = maxs(u,v)m;?!;

o V(u,v) € H(L,Ly) \ {(0,0)}, ma(u,v) = a(w1)m, = maa(v);

° mi:id.

6.3 MP-valuation of a root groups datum

As before, let G be a quasi-split reductive K-group with a choice of a maximal split
torus S contained in the maximal K-torus T = Z¢g(S) contained in a Borel subgroup
B, together with a parametrization of root groups (z,) deduced from a Chevalley-
Steinberg system, defined in Notations 6.8 and 6.12.

Denote G = G(K), T' = T(K) and N = N(K). For any relative root o € ®, denote
Uy, = Uy(K) and M,, = T'm,, where the element m, € G is defined as in Notations 6.10

and 6.14. Then, by [BT84, 4.1.19(ii)], we know that (T, (Ua,Ma)a€¢> is a generating

root group datum of G of type ®. B
From now on, we assume that the extension K/K is univalent (generalizing definition
of [BT84, 1.6.1]). This means that the A-valued ground field K satisfies the following:

acd

6.16 Assumption. There is a unique valuation w' : K* — A’ such that:
e N\ is a totally ordered abelian group;

e there is a strictly increasing map A — A’ that identifies A with a finite index subgroup
Of A/;

e for all x € K*, we have w'(z) = w(zx).
Thus A’ identifies with a subgroup of A ®7 Q C 3. Note that for any sub-extension

K/L/K and any o € Autg (L), we have w' oo = w’. We still denote, by abuse of notation,
the valuation w : L* — R for any sub-extension K/IL/K.

6.17 Example. According to corollary 3.2.3 and section 4.1 of [EP05]|, the assumptions
6.16 are all satisfied if K is Henselian.

6.18 Notation. For each root o € ¢, we use the parametrization z, of the root group
U,, given by the choice of a Chevalley-Steinberg system and the choice of an absolute
root @ in the orbit a, to define a map ¢, : U, — R U {oo} as follows:
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e v,(ra(y)) = w(y) if o is a non-multipliable and non-divisible root, and if y € L,;
e ©u(za(y,y)) = sw(y) if a is a multipliable root and if (y,y’) € H(La, Laa);

o 020 (74(0,9')) = w(y) if o is a multipliable root and if 3 € LY.

Note that, by convention, we set w(0) = oo = sw(0).

6.19 Remark. Despite the parametrization x, depends on the choice of a € ® such that
als = a, the value p,(u) € R U {oc} for u € U, does not depend on this choice.

Indeed, assume for instance that o € ®,4 is non-multipliable. For any o € Gal (K/K),

1

the isomorphism 07" : Lyg) — L, induces a K-isomorphism of the Weil restrictions:

J+ R,k (GavLo(a)> — Ri_/k (Ggr,). Thus the parametrization of U, defined by a

instead of o would be precisely z, 0 j : Ry, /k (GaJLa(a)> — U,. Since w = wo j, we
deduce that the value of ¢, does not depend on o. If o is a multipliable root, we can
make a similar observation.

6.20 Proposition. The datum (pa),cqe i an R -valuation of the root group datum
(T, (U, Ma)aeq)), i.e. it satisfies axioms (V0) to (V5).

According to Bruhat-Tits [BT84, 4.1.11], it is easy to check it. Such a verification is
carried out by Landvogt [Lan96, 7.4].

Proof. Axiom (V0) is immediate since ¢,(U,(K)) contains A U {co} and the totally
ordered group A is not trivial by assumption. Axiom (V4) is immediate by definition.

Axioms (V1), (V2) and (V5) for a non-multipliable: Let A\ € R® and let g; =
To(u1), g2 = To(uz) be elements in U, for some parameters uy,us € L, then gig; " =
To(U))To(uz) ™ = 2o(ur)Ta(—us) = 2o(ur — uz). Thus @u(g1g5 ") = w(uy — ug) >
min(w(uy),w(uz)) = A. Moreover, x,(0) is the only element with valuation oo which
gives (V1).

Let z4(u) € U, with u € LY and m = myt € M, = M_,, with t € T. By formulas in
6.9, we have mz,(u)m™ = mytza(u)t™'m;t = mozo(a(t)u)mt = v_,(a(t)u). Hence
Vo (Ta(1)) — Pa(Mmre(u)ym™) = w(u) — w(a(t)u) = —w(a(t)) which does not depend on
u. This proves (V2).

Let z,(u) € U, and z_,(u'), z_o(u") € U_,, such that x_, (v )z, (u)x_o(u") € M,. By
uniqueness in [BT72, 6.1.2(2)] and formula defining m_,(u™!) in 6.10, we get v/ = u” =

u™l. Thus ¢_o(7_o(u)) = w(u™) = —pu(z4(u)) which gives (V5).

Axioms (V1), (V2) and (V5) for a multipliable: Let A\ € R and let g, =
To(Uu1,v1), g2 = To(ug, v2) are in U, » for some parameters (ul,vl), (ug,v9) € H(Lq, Lay),
then u;"u; = v; + "v; gives w(u;) = sw(v;) > A Thus gig; " = xa(ul,vl):pa(u%w)*l =
To (U, V1) Ta(—Ug, W) = To(uy — us, Uyty — v1 — 3). Hence 0o (9195 ") = 1w( Uiy — V] —
vy) = 2min(w(ur) + wlus), w(vr),w(vs)) = A. Since, for (u,v) € H(Lq,La,), we have
u = 0 whenever v = 0, we get that x,(0,0) is the only element with valuation co. This

gives (V1).
Let z4(u,v) € U, with (u,v) € H(Ly,Loy) \ {(0,0)} and m = myt € M, = M_,
with ¢ € T. By formulas in 6.13, we have mz,(u,v)m™! = mutz,(u,v)t"'m;! =

Mata(@(t)u, a(t) a(t)mg' = z_o(=a(t)u, a(t) "a(t)v). Hence o (2a(u))—¢—a(maa(u)ym™) =
tw(v) — tw(a(t) "a(t)v) = —w(a(t)) which does not depend on (u,v). This proves (V2).

Let z4(u,v) € Uy and _, (v, 0"), x_o(u”,v") € U_, such that z_, (v, v")z(u, v)x_o(u”,0") €
M,. By uniqueness in [BT72, 6.1.2(2)] and formula defining m_,(u,v) in 6.14, we get
(W, v") = (w7, Thus ¢_q(z_a(u/,v)) = tw(v™') = —pa(za(u,v)) which gives
(V5).
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Axiom (V3) of commutation: It is a consequence of [BT84, Annexe A|.

6.4 Action of N on an affine space

In the sequel, we adopt the following notations:

: a quasi-split reductive group over K,
: a finite Galois extenion of K on which G splits,
: a maximal K-split torus of G,

: the centralizer of S in G,

Z Rk wn=Q

: the normalizer of S in G,
and for any algebraic K-group H:

H : the scalar extension Hz of H to ]K,
: the group of cocharacters of H,

H)
*(H) : the group of characters of H,
H)

: the group of rational characters of H over K.

The natural pairing of abelian groups:
X.(S)®@X*(S) = Z
is perfect and therefore induces an isomorphism:
X.(S) ®z R = Homg (X*(S) ®z R, R).
By tensorization by the pseudo-ring 8%, we obtain an isomorphism of S3°-modules:
Vi = X.(S) ® R® = Homp(X*(S) ®z R, R) ® R° = Homg (X*(S) @z R, R°).

The Weyl group W := N(K)/T(K) acts R-linearly on X,(S) ® R and hence R°-linearly
on V;. Since X (T) is a finite index subgroup of X*(S), we have:

X*(S) @z R = X3 (T) @z R.
Moreover, for each t € T(K), the map:

p(t) : X5 (T) @R — RS
X @A = —Adw(x(t))

is well-defined and is R-linear.
We can therefore see p(t) as an element in V; and we get a group homomorphism:

p:T(K)—W
t— p(t).

Let T,(K) be the kernel of p and let V be the subspace of Vi given by vectors v such
that a(v) = 0 for every root a € ®. The quotient V := V;/V; is then an R¥-module that
is endowed with the following structures:
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- a morphism:
7: T(K)/Ty(K) - V.

induced by p;

- a morphism:

j:W = GL(V)
induced by the action of W on V;.

Let W’ be the push-out of the morphism p : T(K)/T,(K) — V and the inclusion
T(K)/Ty(K) € N(K)/T,(K). The group W’ is then an extension of W by V:

1>V -sW W1 (13)

If K : W — Autgoup (V) is the induced action by conjugation of W on V, we can see the
previous exact sequence as a class in the cohomology group H?(W, V). But this group is
trivial since W is finite and V' is uniquely divisible. Hence exact sequence (13) splits and
W' =V x, W. The action x is computed as follows:

Vo € V.Y € W, n(w)(v) = j(w)(v),
Hence j induces a morphism:
J W =Vx,W—=VxGL(V)=A(V).

By composing the projection N(K) — N(K)/T}(K), the natural morphism N(K)/T;(K) —
W' and j', we get a morphism:

v N(K) — AF(V)

with kernel Tj(K) such that the following diagram commutes:

1—— T(K) N(K) T 1 (14)
1 xl/ AfE(V) —= GL(V) — 1.

6.21 Lemma (see [BT84, 4.2.5, 4.2.6 and 4.2.7|). For any relative root o € ®, any
absolute root o € ® such that als = a and any t € T(K), we have:

a(v(t)) = —w(a(t)).
Proof. For x € Xj(T), we have by definition of the action that
X((1)) = x(p()) = —w(x(t)) (15)
Inside the R-module X*(S) ® R = X3 (T) ® R, we have the identification

a®l= Z ola)® ~1

oeGal(K/K)

Thus, applying the formula (15) to x = (@) for o € Gal(K/K), we get

K : K]

o€Gal(K/K)
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6.22 Lemma. The subgroup of N(K) generated by the mg for & € ® is finite.

Proof. As a split group is, in particular, a quasi-split group with ]Ig = K, we keep notations
Tz, &, mg of section 6.2.3 for & € & = (G, T). Denote by 7' = T(K) and by N = N(K).
Let N; be the subgroup of N generated by the mg for a € ®. Let T; be the subgroup of
T generated by the 3(—1) €T for & € ®. The group T, is finite since it is a subgroup
of a commutative group T generated by finitely many elements of order 2. Moreover, for

any a, 5 € ®, we have

~ ~

a(-Dymza(-1)"! = a(~1)a

Thus 7; normalizes N;. Moreover for every a, B € (AI;, we have
mamzma = maxg(l)xfg(l)xg(l)mgl
= 7,3, p(e), ()
for two signs €1,e9 € {£1}, according to axioms of Chevalley systems. Since this belongs

to N, we necessaroly have that £ = 5. Thus mamgmg = mTN(B)ra(E)(el). Thus Nlﬁ/ﬁ
identifies to a subgroup of the Weyl group W(CAI;) and therefore N; is finite. O

6.23 Lemma (see |[BT84, 4.2.9]). Let m,, for o € ® be defined as in Notations 6.10 and
6.14. There is a point o € V' such that v(my)(0) = o for every o € ®.

Proof. According to Facts 6.11 and 6.15, the subgroup N; of N(K) generated by the m,,
for a € ® is contained in the subgroup of N(K) generated by the mg for a € . Thus,
according to Lemma 6.22, the group NV; is a finite subgroup of N = N(K). Since V' is,
in particular, an R-vector space on which N acts by affine transformation, the group N;
has to fix a point o € V. In particular, it is a fixed point by the m, for a € ®. O

6.24 Notation. We denote by A the %7 affine space with underlying %° module V' and
origin o chosen as in Lemma 6.23.
Thus, we have by definition that v(m,) = 74,0 = idy —a(- — 0)a" for any a € .

6.25 Proposition. The action v : N(K) — Aff(A) satisfies (CA1) and (CA2).

Proof. The condition (CAl) is a consequence of the commutation of the diagram (14)
since it is well-known in reductive groups that W ~ N/T naturally identifies with W (®).

We use notations of sections 6.2.3 and 2.1.3. Let o € ® and u € U, \ {1}. Consider
the unique element m(u) € M, given by [BT72, 6.1.2(2)] and consider ¢t = mom(u) € T.
Let A € RR° such that v(m(u)) = 74.x. On the one hand, v(t) = v(mam(u)) = reoores =
(x = x+ AaY) so that a(v(msm(u))(o) — o) = 2X. On the other hand, according to
Lemma 6.21, we have a(v(t)) = —w(a(t)) for any & € ® such that a|s = o. Thus
2\ = —w(a(t)). Moreover v(m(u))(0)—o0 = ro(0)—0 = —Aa”. Thus a(v(m(u))(o)—o) =
—2)\ = w(a(t)). if we show that w(a(t)) = —2p.(u), then condition (CA2) will be proven.

If o is non-multipliable and non-divisible, then one can write u = z,(z) with z € L.
Then m(u) = m_o(271) = m_q—a(z) according to Notation 6.10 and Fact 6.11. Thus
mam(u) = ——a(z) and therefore a(t) = (—a)(t)™' = (—a)(—=a(z))"! = —z~2. Thus
w(a(t)) = —2w(z) = —2@pq(u).

If o is multipliable, then one can write u = x,(y, z) with (y, z) € H(LL,, L2a) \ {(0,0)}.
Then m(u) = m_q(y, 2) = m_q—a(z) according to Notation 6.14. Thus mam(u) = —a(z)
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and therefore a(t) = (—a)(t)™! = (—a)(—a(z))™! = 27272 Thus w(a(t)) = —w(z) =
—2pa(u). o

If « is divisible, then there are f € ¢, f € ® and 7 € Gal(ILg/Log) such that
a =20, Bls = and a = f + 7(5). By definition mg = m,. In particular, u € Us and
t = mgm(u). Thus, we have shown that w(8(t)) = —2pp(u). Hence, using (V4), we get
w(a(t)) = w(B(t)) +w(T(B)(t)) = —4ps(u) = —2¢qa(u). O
6.26 Remark. By definition, the groups T,(K) and T(K), are respectively kernels of p
and v. Thus, by commutativity of the diagram (14), we have that T,(K) = T(K)s.

6.5 The 9%3°-building of a quasi-split reductive group

In this section, we have defined a generating root group datum (T, (Ua,MQ)a@)

(in the sense of Definition 3.1) together with an ¥ valuation (a),q Of this root group
datum (in the sense of Definition 3.5, see Proposition 6.20). Moreover, in Notation 6.24 we
defined an JR°-affine space A together with an action v of N by affine transformations given
by commutative diagram (14). According to Proposition 6.25, this action is compatible
with the valuation in the sense of Definition 3.14. Thus assumption 3.22 is satisfied and
by construction R® = ER%. Thus, we provided a datum as in assumptions of section 5 so
that we can define, as in Definition 5.1, the following space:

6.27 Definition. The 9%i°-building associated to the quasi-split reductive K-
group G is:

I(G) =I(K,w, G) =T (G, T, (Us)aca, (My)acs, (¥a)acs, V) -

7 Projection maps

7.1 Construction and explicit description of the fibers

Let Ay be a convex subgroup of A, and set A; := A/Ag. The group A; is then naturally
endowed with a structure of totally ordered abelian group.

Denote by w; : K — A; U {oo} the composite of the valuation w followed by the
projection A — Aj.

In the sequel, we set:

0:=w(Asg), M:=w(As),
O:=wi ' ((A)s0), M= wi'((A1)s0),
Ki=0/M, O;:=0/M, M;:=M/M,
k:=0/M= 0,/ M.

Observe that the rank rk(A) is isomorphic to the set rk(A;) Il rk(Ag) endowed with
the total order such that s; < sq for any sy € 1k(Ag) and s; € rk(A;). Hence R™%0) g
an ideal of R™®) such that:

Rrk(/\) /Rrk(/\o) %J Rrk(Al)

as ordered R-algebras. Let 7 : R*™®M — R be the projection. By tensorization, it
induces an R*™™)-affine linear epimorphism between apartments:

Tlaff - A(Ka W, G) — A(Kv Wi, G)
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which is compatible with the action of N. By taking the product with G and by passing
to the quotient, we get a surjective map:

7 I(Kw,G) = Z(K w, G)

which is compatible with the G-action.

Take now ¢g; € G and 27 € A(K,w,G), and consider the point X; := [(g1,21)] in
I(K,w;, G). By setting Uy, := g1U,,g; ', we can define the map:
ox,  Ux, x mg ({11}) = (K, w, G)
(U,Z) [(pgla )]
7.1 Proposition. The image of px, is the fiber 71 ({X1}).

Proof. For any (u, z) € Ux, X mq ({21}), we have:

T(px, (u, 2)) = [(ugr, 7(2)] = [(ugr, z1)] = u- Xy = Xi.

Hence Im(py,) € 7 1({X1}). Conversely, choose an element X := [(g, )] in the fiber
71 ({X1}). We then have [(g,7(z)] = [(gl,xl)] € I(K,wy,G) and hence we can find

n € N such that v(n)(x;) 7’r( ) and gy 'gn € Uy, = g7'Ux,g1. Set u := gng;' and
z:=v(n7Y)(z). Then u € Uyx,, 2z € m5 ({21}), and :

m(ox, (u, 2) = [(gn, v(n~")(2))] = gnn~" - [(1,2)] = g - [(1,2)] = [(9,2)] = X.
Hence X € Im(py,), and Im(px,) = 7 1({X1}). O

As a consequence, if Ur-1(x,) stands for the pointwise stabilizer of 7 1X,) in Uy,,
then for any ug € Ur-1(x,), u € Ux, and z € mg ({1}), we have [(ug1, 2)] € 7 1(X1), so
that:

i (uou, 2) = [(uougs, 2)] = uo - [(ugn, 2)] = [(ugy, 2)] = @x, (u, 2).
Hence ¢y, induces a surjective map:

H(Ux, [Ur(pxap) % mog ({21}) = 771 ({ X))

Consider now two elements (u, z) and (v, ) in Uy, x m ¢ ({z1}) such that ¢y, (u, z) =
ox, (U, 2"). Then we have [(ugy, 2)] = [(v'g1, 2’)], and hence we can find n € N such that

{z = v(n)(2), 16)

91 “lu gln ceU,. C Ul’l
By setting m := ging; *, we get m € Ux, N g1 Ng; " and :

{z' = (g 'ma1)(2),

ulu'm € gU.g;7 "
In other words, if we introduce the groups:

NO,X1 = []X1 N glNgfl,
UO,z = glegflu

and the group homomorphism:

Vo, x; - N07X1 — Aff (W;ffl({l‘l}))
1= (97191 =1 (e
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then m € Ny x, and:

utu'm e Uy ,.

{Z' = vy, x,(m)(2), (17)

Conversely, if we can find m € Ny x, satisfying (17), then we can write u™'u'm =
g1vg; t with v € U,, and hence:

¥x, (ulv ZI) = [(ulgla ZI)] = ulgl[(lv ZI)]
= ugivg; m” gi[1, 2] = ugrv([L, vo.x, (m™")Z])
= uglv([lv Z]) = ugl[L Z] = u[glv Z] = @Xl(uv Z)
We have thus proved the following proposition:

7.2 Proposition. Consider the group No x, == Nox,/ (Uﬂ-—l(Xl) N glNgfl) and the group
homomorphism: B
307)(1 : N07X1 — Aff (W;ﬂ}({l‘l}))

induced by v x,. For each z € 74 ({z1}), set Uy, = Up./ (Unr1(x,) N 91U.97 ). Endow
the set (Ux, /Ur-1((x,})) X Tagt ({@1}) with the equivalence relation defined in the following
way: (p,z) ~ (p,2') if, and only if, there exists n € No, satisfying equations:

{z' = To.x, (1) (2),

_ 18
pip'n € Up.. (18)

Then the map Oy, nduces a bijection:

(Ux, [Ur1 i) X Togt ({21}) .

~

T ({X1).

which is compatible with the action of Ux, /Ur-1(1x,y) and which will still be denoted Dy, .

7.2 The root group data axioms for the fibers

For oo € ®,,, set:

Uoe == Ux, N 910097 ",

Uoe :=Un/ (Us—r(pxi N 1097 ")
So.x, == Ux, Ng1Sg1 ",

So.xy = So.x:/ (Un-1¢0xap) N 915971)
Tox, == Ux, N1 Tg; ",

Tox, =Tox,/ (Uergxip N1 T ),
Moo = Ux, N g1 Magy ",

Mo, :==1Im (Moo = Nox, - Nox,) -

7.3 Lemma. Let L/K be any finite extension of K and consider the extension of the
valuations vy and v to L. For any x € L, if vi(z) > 0 then v(x) > 0.

Proof. We have v(L \ {0}) C 8" and v; = 7 ov where 7 : RN — /M is the natural
projection. The result then follows from the fact that 7 is non-decreasing. O

7.4 Proposition. Let ©y be a subset of A(K,wy,G). Let Tg,1 be the subgroup of T
defined as in notation 3.52 and associated to . We then have Tg | C Ty,
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7.5 Remark. Note that, in the previous proposition, the group 73, ; is defined thanks
to the apartment A(K,w;, G) while the group T, is defined thanks to the apartment
AK,w, G)

Proof. Let zy € Q. Since T¢, | C Ty, 4, it suffices to prove it for 0y = {z,}. Let a € ®.
Consider any u™ € U, , and any v~ € U’ so that og(ut) 4@l (u™) > 0. Let t(u™,u™)
be the unique element in 7" given by Lemma 3.26(1) so that v~ (u™)~! € U, TU_,.

We firstly prove that ¢, (u™) 4+ ¢_q(u™) > 0.

Case a non-multipliable root: Write u™ = x,(z) and v~ = z_ (y) with z,y € L,.
By definition ¢! (u™) = vi(z) and ¢! (u™) = vy (y). We have ol (u™) + o (u™) = vi(z) +
v1(y) = vi(zy) > 0. Hence p,(ut) + p_o(u™) = v(x) + v(y) = v(zy) > 0 by Lemma 7.3.

Case a multipliable root: Write ut = z,(u,z) and u~ = z_,(v, y) with (u, z), ( ,Y) €
H(Lg, Ly,). By definition ¢}(u™) = fvi(x) and ¢}(u~) = svi(y). We have ol (u®) +
pLo(u”) = sui(x) + Fui(y) = gui(zy) > 0. Hence po(ut) + ¢o(u”) = ju(z )+—14y)=
sv(zy) > 0 by Lemma 7.3.

Thus, in both cases, we get that ¢, (u™)+ ¢_(u™) > 0 which implies that t(u™,u™) €
T}, according to Lemma 3.26(2).

According to definition of T, , and Proposition 3.33, we know that the group T, ., ;
is generated by the t(u™,u™) ut € U,,, and u~ € U_,,,. But we have shown that the
t(u™,u”) all are contained in the group T, hence we get that T, , , C T;. Since, by
definition, the group T} ; is generated by the T, , | for a € @, then it is contained in
Ty. O
7.6 Corollary. For any non-empty subset Q1 C Ay, any p € ﬁg\l and any v € Uy , we
have pup™' € Ug, Ty,

Proof. 1t is an immediate consequence of Proposition 4.15 and Proposition 7.4. 0
7.7 Corollary. For a € ®, we have:
Ux, N91Ua97" = 0100197
Ur-1x0) N 91097 = 01U} 07"
Proof. The first equality immediately follows from:
Ux, Ng1Uag1 " = 01 (Uay NUa) 91" = 010a0,91 -

The second equality is a bit more delicate. If we choose x € A(K, v, G) such that 7(x) = x;
and we set X := [(g1,z)] € 7 1(X;), then we have:

UW*I(X1) N gonzgl_l - pX N gonzgl_l
g g1 (par N Ua) gl_l
g gan,mgl_l-

Hence:

Ueixy N01Uagi ' Cor | [ U |90 = 01Ul u00 "
z€A(K,v,G)
7r(a:) T
Conversely, let’s take u € U/, , and let’s prove that qrug; ' € Ur-1(x,)- In other words,
we have to check that giug; ' fixes 771(X1). To do so, take X := [(vgy,2)] € 771(X))
with v € Uy, and = € mq (21). By corollary 7.6, we have (g 'vgi)u(g; 'vg1) ™ € UL Ty.
But the groups U, and T, both fix z. Hence v(giug; ')v~" fixes [(g1, )], so that gjug;
fixes v - [(g1, )] = X, as wished. O
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7.8 Lemma. For a € ®,,, the subset Moﬂ of No,xl s a right coset of TO,Xl n No,xl-

Proof. For any m,m’ € My, and t € Ty x,, we have m™'m/ € Ty x, and mt € My, It is
therefore enough to check that M, is not empty. To do so, we distinguish two cases.

Assume first that « is non-multipliable. Since o € ®,,, we can find y € L, such that
wi(y) = —a(z1). We then have:

ZL‘a(y) S Uoz,—oz(azl) — Ua N le
"L‘—a(yil) € Ufa,a(ml) = U—a N le,

so that:
{glxa(y)gfl € Up,a
g12—a(y g " € Up—a.
Hence:
Moa(y) == ma(y)gr' = 120 (y)7-a(y™)7a(y)gr" € Mo

Assume now that « is multipliable. Since a € ®,,, we can find (y,vy") € H(La, Laa)
such that w;(y') = 2a(z1). We then have:

2o (yy' ™" (TY) ™) € Unmaer) = Ua N Uy,
2o (YY) (Y)Y € Usmater) = Ua N Uy,
oY, ¥) € U—na@r) = U—a N Uy,
so that:
e (yy ™ (YY) gt € Una
giza(y(Ty) ( Y € Uoa
012-o(y,¥)91 " € Up—a-
Hence:

Moy, Y) = g1ma(y,¥)97 " = aza(yy ™, (V) Da_aly, v)za(y(y) ™ (Ty) Dot € Moo
0

In the sequel, we will keep the notations mg,(y) and mg(y,y’) that have been used
in the previous proof.

7.9 Proposition. The system (To,xl, (Uo,a)ae%l, (Mo,a)ae%l) is a generating root group
datum in Ux, /Ur1(x,).

Proof.

Axiom (RGD1). Since o € ®,,, we can find u € U, such that 7(p,(u)) = —a(xy).
By lemma 7.7, we have:

glugfl € gangfl N (UX1 \Uﬁ—l(xl)) .

Hence Uy is not trivial.

Axiom (RGDZ2). By proposition 6.20, given two roots «, 8 € ®,, such that o &
—R, 3, the group [Ua,—a(z,), Us,—p@y)] is contained in the group spanned by the groups
Uy,—ry(z1) With v € & N (Zsoa + Z~o3). Hence the group [Upq,Up g is contained in the
group spanned by the groups Uy, with v € ® N (Zsoa + Zof).
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Fix now v € ®\ ®,, and u € Uy, \ (Ur-1(x,) N 910491 ") = 91Uy e, \ UJ, . )91 " We
then have (¢, (97 'ug1)) = —y(z1). But v € ®,,, hence:

Upmiontortug) % ) Uninton o5 ugnury)”

u' €Uz

In other words, there exists v’ € Uy, such that:

—(z1) = 70y (g1 ugr)) < 7@, (g7 ugrn’)),

and we necessarily have m(po,(u)) = 2m(p,(u')) = 27(p, (g7 'ug1)) = —2vy(x1). We
deduce that 2y € ®,, and that:

91 ugr = (g7 ugie) - u'

with:
/ —1 / -1 _ -1
ugiwgy € (UL 91 = Unrxy) N 1UL97
g7 g1 € 1Usy 097" = Upay-

The last equalities show that the image of u in UO,,Y belongs to Uo,zm and hence the
group [Uo.a, Ug ] is necessarily contained in the group spanned by the groups Uy, with
S (barl N (Z>Oa + Z>OB)~

Axiom (RGD3). If a and 2« belong to ®,,, then Uy, C U,, and hence Uoga C Uoﬂ.
Let’s check that this inclusion is strict. The condition that o € ®,, implies that we can
find (y,y') € Ho(La, L2a) such that Trp, /p, (v') = N, /1., (y) and wi(y') = —2a(z1).

If y # 0, then:

glxa<yay/)g;1 € (UXI mgangfl) \ (Uw—l(Xl) mgangfl)

and:
9017y, y)97 " € (Ux, N g1Usagy ") -

Hence the class of g174(y,3')g; " in Up,o is not in Ug g,
Now assume that y = 0. Let (z,2’) be any element of Hy(Lq, La,) with z # 0. Let
A € LX such that w;(A\?2") > w;(y'). We then have:

(A2, \22' +9) € Hy(Ly, Log),
Az # 0,
w1 A2 4+ 1) = —2a(zy).

Hence the class of g12,(Az, \22' +¢') in Ug, is not in Ug .
Axiom (RGD4). Take any element @ € Uy _,, \ {1} and fix a lifting

u & ((]){1 N glUfagfl) \ (Uﬂ'_l(Xl) N glUfaglil)

of w.

Assume first that « is non-multipliable. We can then find y € L, such that:

u=gr oy ot

By lemma 7.7, we have w;(y) = —a(z). Hence:
u=(012a¥) " 07 )ma(y)(912av) " 0") € Unama(y)Voa € UnaMoalo.a.
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Now assume that « is multipliable. We can then find (y,y") € Ho(La, Las) such that:

u= g7 o(y,y)gr "

By lemma 7.7, we have w;(y’) = 2a(x;). Hence:

T,/ T,/ T,/ 1 -1

u=(g1za(yy™ " (Y) ™)  ar)  maly, v) - (e (w(y) L (Y)Y
€ UO,ama<y7 y/>UO,CV g UO,aMO,aUO,a-

Axiom (RGD5). Take o, 3 € ®,, and m € Mg,. Let m € M, be a lifting of m.
Since g; 'mg; € M,, proposition 6.20 implies that:

(91 'mg1)Us(g1 'mg1) ™" = Uss)-
Since m € Uy,, we deduce that mUy gm ™" = Uy, (5), and hence:
mﬁovﬁm_l — Uo,ra([g)

Axiom (RGD6). Let U(j)t,xl be the subgroup of Uy, /Ux-1(x,) generated by the Uy o
for « € 7. Take Ty € U;Xl, . € Uy, and ¢ € Tyx, such that fu, = u_. By
setting UO“—LX = (Upa, o € @) , we can find a lifting uy of 7y in Uy , a lifting u_ of
u_ in on , a lifting ¢ of ¢ in T x, and an element u E Ur-1(x,) such that tu, = uu_.

- +
Nr=1(zq) UAﬂw_l ml)gl , WE can find u+ S UAmﬂ.—l(xl)

and n’ € NAﬂﬂ_l(ml) such that u = g0/ u+u7g1 . We therefore have:

Since PIAOW_I(Xl) = 91NArm I(x )UA

u_ € Uprmi(ay)

g1 Htuggy = n'u u (gy u_gy),
and hence:
Utgi'tutg U™ =Un/v U".
But g; 'tg1 € T, ' € Npynr-1(zy) € T and T normalizes UT. Hence:
Ut(gtg) U~ =U'U.
We deduce that:
g1 'tgr =1,
1 =1, -1 (-1 + -
uf (g upgr) =ul(gy u-gr) €eUTNU™.
But UT N U~ = {1}. Hence, by using corollary 7.7, we get:
up = gy g7t € giUamn-1 91 C Unm1(x),s

-1 —
u_ = gqru’ gy Le 91Usan—1() 01 e Ur-1(x1)>

t = glnlgfl = uu:lull € U7T_1(X1)7

I
—_

so that uy, =u_ =

The root group datum is generating. Indeed, Uy, is spanned by the ¢;U, 4,97 !
for a € ®. So it suffices to check that:

gan,xlgfl g <U7r—1(X1)7 TO,XU UO,B‘B € (I):v1>

for each a € ®. To do so, fix a root @ € ® and an element u € ¢Uy 0,97 If u €
glU(;mgl_l, then u € Ur-1(x,) by corollary 7.7. Otherwise, two cases arise:

o if « € &, , then corollary 7.7 implies that Uy, = gan,xlgfl, and hence u € Uy ,.

o if o € ¥, then, by proceeding as in the proof of axiom (RGD2), we have 2a € ®,,
and u € Uz-1(x,)Up 24-

O
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7.3 The valuation axioms for the fibers

Fix a € &,,. Observe that, according to corollary 7.7, given u € (le \Uﬂ—l(xl)) N
g1Usgyt and ' € Ur1(x) N g1Usg7t, we have 7(pa(u)) = —a(r;) and m(pq(u)) >
—a(xy). Hence:

Pa(u) < pa(u),
so that:
Polur) = pa(u).

By choosing an element #; € m,g({x1}), we can therefore define the map:
B Ua — RER) U {00}

that sends the class in Uy, of an element u € Uy, N g1Uag; " to ¢a(g; tugr) + a(iy) if
u & Ur—1(x,) and to oo otherwise.

7.10 Proposition. The system (T x,, (Uo.a)acts, (Moga)act,, s (Po)ace,,) is a valued
generating root group datum in Ux, /Uz-1(x,).

Proof. Observe that axiom (V4) is obviously satisfied. We will therefore use it freely to

prove the other axioms.

Axiom (VO0). By corollary 7.7, the image of 3, contains co as well as {\ € T, +
a(Z1)|m(A) = 0}. Since a € ®,,, we can find v € T',, such that a(z1) = m(a(z1)) = 7(7),
and hence:

(N €T, +a(@)|r(\) =0} = {u — 7 + a(@)|Te N REGY.

If o is non-multipliable, then the set I, N R™®0) contains Ay and is hence infinite. If o
is multipliable, then, by axiom (V4), the set Im(%,) contains $Im(%,,), and is hence also
infinite.

Axiom (V1). Fix A € Rk(o) € R™*A) " and take u,v € Ux, N g1U,g; * such that:
Calgr 'ugr) + (@) > A,
Calgr 'vgr) + aldy) > .
Then:
Calgr uvgr) + a(Z1) > min{pa (g7 ug1), palgr 'vgr)} + (@) > A,
Calgr v 1) + a(@1) = palgy 'ugr) + (@) > A

Hence UO,a,)\_:: 7. ([\, +0]) is a subgroup of Ug,. Moreover, g, '({oc}) is the trivial
subgroup of Uy, by definition.

Axiom (V2). Let a € ®,,, 7 € My, and u € Uy_, \ {1}. Denote by n (resp. u)
a lifting of m to My, (resp. of W to Up—o). Since w # 1, we have v € Ur-1(4x,}) and
nun~' & Uz-1((x,y). Hence:

P_o@) —Ba(mun") = p_a(g7 'ug1) — a9y 'nun"gy).

But the function:
u € Uy = p—algy 'ugr) — a9y 'nun™"g1)

is constant by proposition 6.20.
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Axiom (V3). Fix a,8 € ®,, and A\, € RAo such that 3 € —R,.a. By setting
Uoapn i= G1Usr—a@ g1 - and Uga .y := 3, ([A, oc]), corollary 7.7 implies that:

Uoor = Uoan) / (01Uagi " N Ur-1(x1)) = Uoan/ (glU(;mgfl) :
By proposition 6.20, the group [Up oz, Up g, is contained in:

(Uopatasprtan | Pya € Zso, pa+qB € ®).
Now take p,q € Z~¢ such that v := pa + ¢f € &\ ®,, and fix an element:

u € U07v7p>\+qu \ (glU;7m191_1) C o (me \ U',y,xl) 91_1-

Since (¢, (g9; 'ugi)) = —y(z1) and v ¢ ®,,, we have:
Usas # (] Ustion o aamuy
u' €Uz

In other words, there exists v’ € Uy, such that:

—(z1) = 70y (g7 ugr)) < 7@y (g7 'ugin’)),

and we necessarily have:

P2y () = 20, (u') = 20,97 'ugr) = 2 (pA + qu — v(21)),
(o (') = 21 (4 (g7 "ugr)) = —27(1).
We deduce that 2y € ®,, and that:

g7 ugr = (g7 'ugi) - u'

with:
uglulgfl € glUf;,xlgfl = PW_I(Xl) N glUvg;17
gw'_lgfl € U 2y, 2pr+2qp-
The last equalities show that the image of u in Uo . prsqu belongs to Ug oy apriagu, and
hence the group [Ug .z, Uop,) is necessarily contained in:
<U0,pa+q57p>\+qu | D, q € Z>07 po+ qﬁ € (I)a:1>
Axiom (V5). Let a € ®,,, u € Uy, and @,u” € Uy _, such that wun"’ € My ,. Let
u be a lifting of w in Uy _,. Note that uw # 1.
Assume first that « is non-multipliable. By proceeding as in the proof of the axiom
(RGD4), there exists y € L) such that:
wi(y) = —a(z1),
(9170 (¥)gr u(gr2a(y)or ) = mo.a(y)-
Since ¢174(y)g; " € Upo and mg o (y) € Mo, uniqueness in paragraph 6.1.2.(2) of [BT84]
implies that g;z4(y)g; " is a lifting of both @ and @”. Hence:
P _a(@) = ¢-algr 'ugy) — a(@1) = —¢a(za(y)) — a(@1) = =B, (@).
Assume now that « is multipliable. By proceeding as in the proof of the axiom
(RGD4), there exists (y,y’) € Ho(La, Lan) such that:
wi(y') = —2a(21),
(grzalyy™" (y) Dar ) - u (gzay(y) ™ ()7 Der ) = moal(y. y).

Since grza(yy' ", (") )gr " and giza(y("y') ", (")) gy " are both in Uy, and mo.a(y, ') €
M., uniqueness in paragraph 6.1.2.(2) of [BT84] implies that g1z, (yy' ™, (Ty) Vg ! is
a lifting of w’. Hence:

?_o(@) = o_algr 'ugr) — a(@y) = —galza(yy' ™, (Ty) 7)) — a(@1) = =5, (@).
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7.4 Compatibility axioms for the N-action

7.11 Lemma. The group Ny x, is the subgroup of Ux,/Uz—1(x,) spanned by the My, for
acd, .

Proof. Example 3.44 shows that the group Ny x, is spanned by the g;(N N Lq.,,)g; " for
a € ®. We distinguish 3 cases:

o if —a(x;) €Ty, then g1Lo.,9;" C Ur-1(x,)- Hence g;(N N Loz)git C Ur-1x7) N
-1
GiNg; .

o if —a(xy) € ', \ T, then, by proceeding as in the proof of the axiom (RGD2), one
can see that 2a € ®,, and:

NN N Laz)gi' S a(NN Lo NUp gy € gi(TUMa)gy ' N Ux,
= g1(T'U May)gy ' N Ux, € Tox, U Mo a-

o if —a(zy) €I, then o € ®,, and:

gl(N N Laﬂn)gl—l - gl(N N Lo N UJ11)91_1 - gl(T U Ma)gl_l NUx, = T07X1 U MO,a'

We deduce that Ny x, is the subgroup of Uy, spanned by Ur-1(x,) N g1 Ng;' and the
My o for a € @,,. Hence No,xl is the subgroup of Uy, /U-1(x,) spanned by the Mo,a for
o€ d,y. U

Consider the R™“0)-module V,, = ker(r)/ ((®,)* Nker(r)), the affine space:

Ay, =g (21)/ ((@a)™ Nker(m))
and the projection:
pr: mg (21) — Ay,
By the previous lemma, the image of g x, (Nox,) in GL(V) is Nox, /Tox, £ W(®,,) C
Fix((®,,)*). Hence 7y x,(No.x,) induces a morphism:
Ux, - N07X1 — AH(AxI)

7.12 Proposition. The action Uy x, is compatible with the valuation (P, )aca,, -

Proof. Axiom (CA1) is obvious. Let’s prove axiom (CA2). To do so, let a be a root in
®,, and take w € U, \ {1}. We can find y € L, such that u := g;7,(y)g; * is a lifting of
win Uy, and v1(y) = —a(xq). We then have:

a(vo.x, (mo.a(y) (1) = #1) = alvox, (Mo.a(9))(0) = 0) + aluf x, (moa(y)) (@1 — 0) = (&1 — 0))
= —2pa(wa(y)) — 20()
= —2p, (7).

The multipliable case is analoguous. 0

7.5 Conclusion

7.13 Theorem. The fiber 7=(X;) is isomorphic to:

T (Ux, /Us1(x1), (Toa)act,,  (Moa)aca,, > (Bon)acts,  Vxi)) X ($a)" .
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Proof. All the previous considerations show that the 5-tuple:

(UXl/Uﬂ'_l(Xl)7 (UO,a>a€<I>zl ) (Mo,a)ae%l ) (@0,@)0{6@11 ) ﬁXl))

is a generating and valued root group datum together with a compatible action. We can
therefore consider the building:

Z (Ux,/Us-1(x1)s (Uoa)acts, s (Moa)acs,, » (Pon)act.,,  7x,))

and it can be described as:

(UXl/Uﬂfl(Xl) X A$1>L) / ~

where:
Yy = ﬁXl (n)(:c),

u,z) ~ (v,y) < In € N, .
(u,2) ~ (v.y) 0% {u_lvnEUm.

Consider now the surjective map:

pr: 77_1(X1) — 1 (UXl/Uﬂfl(Xl)a (Uo,a)ae%la (Mo,a)ae%, (@O,a)aéq)xl ) yXl))

induced by the projection pr : m ¢ (71) — A,,. It is compatible with the Uy,-action. Take
a point:

XO = [<u07 .To)] S (UXl/Uw—l(Xl)a (Uo,a)aecbzlv (MO,Q)QGCI’IN (@0,04)046‘1’11 ) le)) )

and fix a lifting &y of xo in 7. (21). Observe that, if X := [(u,z)] € pr~!(Xp), then there
exists n € Ny x, such that:

{prm = Tx, (n)(20)

—1 T
ug un € Ug z,.

Hence x — Vg x, (n)(Zo) € (®,, )", and we can find y € (®,, )+ such that z — 7 x, (n)(Zo) =
7 -y where 7 is the image of n in W(®,,). Since a(Zy + y) = a(Zy) = a(xg) for each
a € &,,, we deduce that:

T =Vo,x,(n)(To +y)
U51U” € UO,io = <Ua7f0 ‘ o€ (I):L“1> = <Ua,fi“o+y | o€ (I):h) = Uf0+y

Hence X = [(ug, To + y)], so that the map:
Ux, + (pr) " (w) = pr(Xo)
x = [(ug, x)]

is surjective. Now take x, 2’ € (pr)~" (o) such that 1x,(z) = ¢x,(2’). We can then find
Ny x, NU, such that 2’ =7y x, (n)(z). Hence z = 2/, and ¢y, is a bijection. O

7.14 Remark. (i) A subset of 771(X}) is the intersection of an apartment of Z(K, w, G)
with 77(X)) if, and only if, it is of the form A,, x (®,,)" with A,, an apartment
of 7 (UX1/U7T_1(X1)7 (UO,a)CVGCI)zl ) (MO,a)aecbzl ) (@0,&)&6@11 ) le) .

(i) By considering all the intersections of an apartment of Z(K,w, G) with 7=1(X}),
one endows the fiber 771(X) with a system of apartments of type:

(Tra_ffl(Xl)a (I)a (f‘a)a@b)

where T, =T, if o € ®,, and [, = 0 otherwise. The fiber 771(X1) then automati-
cally satisfies axioms (A2), (A3), (A4) and (GG).
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7.15 Example. Let Ay be a totally ordered abelian group and let k& be a field endowed
with a valuation wqy : k — Ag U {oc}. Set K := k((t)), let w; be the t-adic valuation on
K, and let w : K — Z x Ay be the valuation defined by w(z) = (w; (), we(at=<1®))).

Consider a reductive k-group Gy and set G := Gy XK. One can find a finite extension
K’ of K over which w; does not ramify and G splits. Thus 0 € I} , for every a € @, and
hence the point X; :=[(1,0)] € Z(K,w;, G) is a hyperspecial point.

Now take u € Uy, and z € w4 ({0}) such that [(u,z)] € 7~1(X;). Since u € Uy,,
we can find aq,...,, € ® so that u can be written as w;...u,, with u; € U,, ¢ for each
i € {1,...,n}. Each u; can then be written as vuj with v; € Uy, and uj € U], . As a
consequence, the product u;...u,, can be written as u'v;...v, for some v’ € Uy, that fixes
7~ 1(X1). Hence:

/

[(u, )] = [(Wv1..vn, )] =u" - [(v1...00, )] = [(V1...0n, T)],

and the map:
Ux, G x g ({0}) = 77 H(X0)
(9, 2) = [(g,7)]

is surjective. Now, if ¥x, (g, ) = ¥x, (¢, 2’) for some g, ¢, x,2’, then we can find n € N

such that:
z' = v(n)(x)
g9 n eU,.

In particular:
n€gg U, NN C G(k[[t]) NN = N,.

Hence, 1x, induces a bijection:

Uy, (G, kywo) — 7 (X)),

7.6 Further notations related to the projection maps

In this section, we fix some notations that will be used throughout the paper. Let’s fix
some sy € rk(A). Given a positive element Ay, in the archimedean class of A corresponding
to sg, we define:

Asgy i ={A€A|Fn>0,\ <nly},
Aoy :i={N € AlVn > 0,1\ < Ay }-

The sets A>s, and A-,, are both convex subgroups of A and they do not depend on the
choice of A\g,. We may therefore introduce the quotients:

Acsy i =AN/A>g,,
Acsy = A/Asg,.

Denote by weg, : K — A, U {oo} (resp. w<s, : K — A<y, U {oo} ) the composite of the
valuation w followed by the projection A — Ay, (resp. A — Acg,). According to the
previous section, we have three projection maps:

T<so LK, w, G) = IT(K, w<s,, G),
220 I(K, wegy, G) = I(K, weyy, G),
Tesy = T2 0 <y : LK, w, G) = I(K, wey,, G).
The map <, : Z(K,w, G) = I(K, w<s,, G) then induces a surjection:
Moo T (X) = (723) 7 (X)
for each X € Z(K, ws,, G).
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8 The axiom (CO)

In this section, we prove that the building Z that we constructed satisfies (CO). Let
us sketch the ideas of our proof. We proceed as follows.

1. (see Subsection 8.1) We begin by giving a sufficient condition for an R-building to
satisfy (CO).

2. (see Subsection 8.2) We prove that when S admits a minimum, if C' and C' are two
sectors opposed at x € Z, then the corresponding sectors of m<4(Z) are opposed at

T<s(x).

3. (see Subsection 8.3) We still assume that S admits a minimum and we prove (CO).
Let 2 € Z and C, C be two sectors opposed at . Let A be the apartment containing
the germs at infinity Ch, Cwo of C, C. We want to prove that z € A. We consider an
apartment Ao containing C' and an isomorphism ¢ : Ao — A fixing AcNA. We then
prove that ¢(z) = x. For this, we act by contradiction and assume that ¢(z) # =.
Then we prove that there exists a minimal s € S such that 7<,(¢(z)) # 7<,(z).
By working in the R-building m_, (71';; (7<s(x))) and by using steps (1) and (2), we
reach a contradiction.

4. (see Subsection 8.4) We then prove (CO) in the general case, by considering G (K((£))).

8.1 A sufficient condition for (CO) for R-buildings

In this subsection , we assume that S is reduced to a single element. Let Zg be a set
covered with apartments and satisfying (A1), (A2), (GG), (A4) and
(Iwa) : for all local face F', for all sector-germ at infinity C\, there exists an apartment

containing F' and C.

8.1 Lemma. Let x,y € Iz and Cy be a sector-germ at infinity of Ir. Then there exists
n € ZLsg, T1,..., %, € [2,y] such that [z,y] = U} [xs, 2i11] and for all i € [1,n — 1],
there exists an apartment A; containing [x;, ;1] and Cx.

Proof. This is a standard result. Let A be an apartment containing [z,y]|. For a € [z,y)
(resp. a € (z,y]) we choose a local chamber CJ (resp. C; ) of A such that C;f N[z,y] D
germ, ([a,y)) (resp. C, N [z,a) 3 germ, ([a,z])). For a € (z,y] (resp. a € [z,y)) we
choose an apartment Al (resp. A;) containing C and C,, (resp. C; and C,), which is
possible by (Iwa). We choose a neighborhood V,* (resp. V.7) of a in [a, y] (resp. in [z, a])
such that V' C Af (resp. V- C A7), Set V, =V, V, =V, and V, = V," UV, for
a € (z,y). Then by compactness of [x,y], there exists a finite subset {ay, ..., a;} of [z, y]
such that [z,y] = UL, Va,, and the result follows. O

8.2 Lemma. Let C., Co be two sector-germs at infinity of Ig. Let v € Ig. We assume
that germ_(x + Cy) and germ,(z + Cy) are opposite. Then:

1. C and Cy, are opposite,
2. there exists a unique apartment ACOO,COO containing Cy, and éw;
3. the point x belongs to Aq_ ¢ -

Proof. We follow [Par00a, Proposition 1.12] and [Roull, Proposition 5.4 2)]. Let A &
be an apartment containing C, and Co. Let C =24 Cy, C =2+ Cy, Cp = germ, (C)

and C, = germ,(C). Let Ac and Ag be apartments containing C' and C. Let AC o
be an apartment containing C,,C,. Let y,§ € Ac, @, be such that y € C, g € C and
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x € [7,y]. Let § (resp 0) be the ray of Ag (resp. Ag) based at z and containing y (resp.
J).

The ray § meets A, 5 . We choose y' in 6N A, 5 . Let r: [0, 00[— 0 be the affine
parametrization of § such that r(0) = x and (1) = ¢'. Using Lemma 8.1, we choose
n € Lo, to=0<t; <...<t,=1such that for all i € [0,n — 1], [r(t;), (¢ Z+1)] and Cy,
are contained in an apartment A;.

Let r : (—o00,0] — 0 be the affine parametrization of R such that 7(0) = z and
r(=1) = §. Weset t_y = —1. Then § = r(t_y) € 7(t)) + Cso = z = Cs. Let i €
[0,n—1]. We assume that r(t;) +Cy, contains r(t;_1). Let B; be an apartment containing
[r(ti —€),7(t:)] U [r(ti),7(ti + €)], for € > 0 small enough (one may take By = A, 5 and
B; = Ac, for i > 0). By assumption, A; contains r(t;_1) and as [r(t; —€),r(t; + €)] is a
segment in B;, [r(t;_1),7(t;11)] is a segment in A;. In the apartment A;, r(¢;) + C.isa
sector parallel to 7(t;y1)+ Cno. As r(t;)+Cs contains r(t;,_1), we deduce that r(t;1)+Cs
contains r(t;). By induction, we deduce that r(to) = z € 7(t tn)+Coe = ¥ + Cso. Therefore
r € Aq_ e, Consequently, z + Cy and @ + C are two opposite sectors of Ac e
Therefore, C,, and éoo are opposite and by (A2), there exists at most one apartment

containing C, and C,, which proves the lemma.
O

8.2 Preservation of the opposition

The aim of this subsection is to prove that if S admits a minimum and if ¢' and C are
two sectors opposite at some point x € Z, then for every s € S, C<; and C<, are opposite
at m<s(x). For this, our idea is to prove that if C} o, ..., Ch. is a gallery of sector-germs
at infinity such that germ,_ ., (7<s() + Cio0<s), - -+, germy_ ) (T<s(¥) + Cho0.<s) s a
gallery from germ,_ () (C) to germ,__ (C), then germ, (z + Cio0), . .., germ, (z + Ch.o0)
is a gallery from germ,(C) to germ, (C).

8.2.1 Preleminaries on enclosed sets

Let C' be a sector of Ag and s € S. Write C = = + w.C}, , where x € Ag and
w e W?. One sets C<s =z + w{y<s € Ac;sla(y<s) > 0, Voo € Ay}, This is the sector of
A~ corresponding to C. One has C<y C m<s(Ag) but this containment is strict, because
T<s preserves large inequalities but not strict inequalities.

Let C be a sector of Z. Write C' = ¢.C, with g € G and C a subsector of Ag. We set
Ces = g.égs. This does not depend on the choice of g and C' by the lemma below.

8.3 Lemma. Let g1, g, € G, CV C? be sectors of Ag and s € S. Suppose that g,.C"H) =
g2.C ). Then g;. Cis = go. C(<2

Proof. For i € {1,2}, set A; = ¢g;.Ag. Let h € G inducing an isomorphism ¢ : A; — A,
fixing A; N As. Then maybe considering hg; instead of g;, we may assume that A; = A,.
Let n = g5 '.g1 € N. Then n.C) = C®), As the restriction of n to Ag is induced by an

element of W we deduce that n.C'(Slg = C . Therefore g;. C(< S) = go. C(§23) , which proves
the lemma. ]

8.4 Lemma. Let (\,) € (R°U{00})® and Q = (,cg Dar.. We assume that there ezists a
vector chamber C of Ag and 1<, € A<, such that germ,_ (v<s+C%,) € (Nyeqp Dayre,(ra)-

Then WSS(Q) = ﬂaeb Da77r§s()\a)'

Proof. Let € = (\,co Daxe,(r)- The inclusion 7<,(€2) C Q' is clear. Let us prove the
reverse inclusion. Let &1 = @gﬁ.
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Let 2L, € Q'N (v<, + CY,) and 2z, € (v, +CL,) N (2L, — C%,). Then for all o € &+,
one has —7m<s(Aa) < (<) < alz<s) < a(zl,) and for all @ € 7, —m<,(Aa) < a(2L,) <
a(z<s). In particular,

a(z<s) > —T<s(Aa),
for every a € .

Let y<s € . Set ®(y<s) = {a € P|la(y<s) = —7m<s(Aa)}. Then by definition,

Qn ({yﬁs} X A>S) = {y<s} X ﬂ Darei0a)-

O‘eq)(ygs)

If ®(y<s) is empty, then {y<;} x Aoy C Q and thus y<; € m<4(2). We now assume that
®(y<s) is nonempty. By choice of z<;, one has a(z<; —y<s) > 0, for all @ € (y<,). Write
Y<s = (Yt)i<s and z<5 = (2¢)1<s. For a € (y<s), set

Sa = min{t € supp(z<s — y<s)|a(z) > aly)}-

Let k& = |®(y<,)|- We write ®(y<;) = {a1,...,ax} in such a way that (sq,)icp i is
increasing. For i € [1, k], one sets u; = z,, — ys,. € Ag. Then for all j € [1, k], one has
has:

aj(u;) > 0if 54, = 8o, and a;(u;) = 0 if 54, > s4,. In particular, for all 4,j € [1, k], one
a;(u;) >0and j > 1 = a;(u;) > 0.

(19)
If (y<s,0) € Q, then we are done. Suppose that (y<s,0) ¢ €. Let

§ = min{t € supp(Aa)|Fax € P(y<s)| — m=t(Aa) > 0}.

One chooses #;, € R such that ay(tpur) > —7m—5(A\s,) - Let i € [2,k]. Suppose we have
constructed (t;);efix) such that

k
> tiou(uy) > —m—5(Aa,)
j=i

for all £ € [i,k]. Then one chooses #;_; € Rsq such that $¥

i b1 (ug) > —m=5(Aa,_y )
Then by (19), one has > ;_; | a(tju;) > —m—5(Aa,) for all £ € [i — 1,k]. By induction,
we thus find (¢y,...,%) € R such that Zle ap(tjuj) > —m_z(A,,) for all £ € [1,k].

Let y.; = (ayy;) € Az, where a; = 1 if t < sand a; =0 if t > s. Let

k

y = (y<§7 thuh O) c AS'
i=1

Let a € ®(y<s). Then:

k

aly) = ( — <s(Aa), tha(uj)v O) > —Aap-

j=i
Therefore, y € Q. Moreover m<;(y) = y<s and thus m<4(2) = Q

/

O
8.5 Remark. The above lemma is not true when €2 is an arbitrary enclosed subset of Ag.
For example if S = {1,2}, Ag = R and o = Id, one has D, 1) N D_q,0,1) = O but
DyoN D_q o is nonempty.
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8.2.2 Projection of an intersection of apartments

8.6 Lemma. Let s € S. Then the map A — w<s(A) from the set of apartments of T to
the set of apartments of m<s(Z) is a bijection.

Proof. This map is surjective by definition. Let A and B be two apartments such that
<s(A) = m<4(B). As the action of G(K) commutes with 7<;, we may assume that
A = Ag. Let g € G(K) be such that B = g.Ag. Then n<,(g.Ag) = 1<s(B) = m<s(Ag) =
9.7<s(Ag).

By Proposition 5.6, there exists n € N such that g.x = n.z for all x € A<;. Then by

Lemma 5.5 g~tn € Z3A§S.
By Corollary 4.12, if A is a basis of ®, then:

Py, = (Us, NUX)(Us, NU)N,_..

By Example 3.44, Uy_ N Uil = Us., NUL = {1}, thus g 'n € N, hence g € N and
B = Ag, which proves the lemma. O

8.7 Lemma. Let A, B be two apartments and s € S. We assume that there exists
a sector C' based at some x € T such that T<,(A) N m<(B)  germ,_ ,1(C<s). Then
WSS(A N B) = 7TSS<A) N 7T§s<B>-

Proof. Using some g € G(K), we may assume that A = Ag and C' = x + germ (C}). Let
Qs = m<s(Ag)N7<s(B). One has Q<; D m<;(AgN B). Let us prove the reverse inclusion.

By Corollary 5.8, there exists u € Uq__ such that u.m<s(Ag) = 7<4(B). By Lemma 8.6,
u.Ag = B. By definition of Ug, there exist k € Lo, 1, ...,a € ® and elements u; €
Ua; 0., such that u = Hle u;. For a € @, set N\, = min{p,,(u;)|i € [1,k] and oy; = a}
(one may have \, = 00). Then Q< C ﬂa@ Do rey(r)- As Q< contains a local chamber,
we can apply Lemma 8.4 and one has Wgs(ﬂaeq) Dm,\a) = Nueo Pa,re.(da)- Moreover u

fixes (),ce Do, and thus Ag N B contains (), cg Da,r,- Thus
T<s(AsNB) O () Dares(pna) O Qe
acd
Therefore Qs = 7<;(Ag N B), which proves the lemma. O

8.8 Remark. If we already knew that Z is a building, we could use [SS12, Lemma 3.7 and
3.10], but their proof uses the fact that retractions are 1-Lipschitz continuous, which we
want to prove.

8.2.3 The exchange condition

We now prove that Z satisfies the exchange condition (EC) (see Lemma 8.10 or [BS14,
Section 2| for the definition of (EC)). We will use it to prove that Z satisfies a property
called the sundial configuration (SC) in [BS14, Section 2| (see Lemma 8.13).

8.9 Lemma. Let A be an apartment of Z. Let D be a half-space of Ag. Suppose that
AN Ag contains D. Then either A = Ag or there exists a« € ® and \ € T'y, such that
ANAg =Dy,

Proof. Using (A2) we write AN Ag = (,co Dao, Where (€o) € [ cp(Ta U {oo}). Let
a € ®. If the hyperplane defining D is not parallel to a~!({0}), then A\, = co. Lemma
follows. O

8.10 Lemma. The set L satisfies the exchange condition (EC): if A and B are apartments
of T such that AN B is a half-apartment, then (AU B)\ (AN B)UM is an apartment of
Z, where M 1is the wall of AN B.
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Proof. Using isomorphisms of apartments, we may assume that A = Ag. Then by
Lemma 8.9, there exists @ € ® and A € I', such that D := AgN B = D, . By Corol-
lary 5.8, one has B = u.Ag, where u € Up. By Example 3.44, we can write u = u up,np,
where uf, € U}, up € U, and np € N. Moreover, either U}, = {1} or U, = {1} (de-
pending on whether o € ®, or @ € ®_). By symmetry, we may assume that U}, = {1}.
Then U, = U, p.

One has A = ¢, (up). Using (RGD4), we write uj, = vomui', with uy,v, € Ut and
m € M,. By (V5) and Lemma 3.7, we have A = —¢_,(uy) = —p_o(vy) = @a(up). Let
D_=Duyx Dy =D_,_yand M = H, )= D_ND,. Then one has:

U/BU/+D7 - 'U+m.D7 - 'U+.D+ — D+ and U,BU+D+ — U,BD+ — 'U+m.D+ — 'U+.D,.
Therefore:
(UBAS U AS) \ (AS N UBAS) U M = UBD+ U D+ = 'U+.D+ U D+ = 'U+.AS,

which is an apartment of Ag, which proves the lemma. O

8.2.4 Germ of a gallery of local chambers and conclusion

8.11 Lemma. Let C, Cw be two sector-germs at infinity and x € I. Let C' = z + Cag
and C = z + Cx. We assume that there exists s € S such that germ,_ ) (C<s) =

germks(é’gs). Then germ,, (C) = germ, (C).

Proof. Let A be an apartment containing C. Then 7<,(A) 3 germ,_ (2)(C<,) = germks(x)(cgs).
Let A be an apartment containing C. By Lemma 8.7, T<s(AN A) = 1o(A) N (A).
Let §<s € C<y N T<s(A). Then there exists § € AN A such that 7<,(§) = J<s. As
y € A we have gy € C'and as y € A, we have § € C'. Using Lemma 2.17, we deduce that
CNC 3 dc{x,y}) 2 germ,(C), germ,(C) and thus germ,(C) = germ,(C).
U

Two sector-germs ()1 - and ()2 o are said to be adjacent if there exists an apartment
A containing )1 » and ()3 o, and such that z + Q1 » and = + (2~ are adjacent, for any
x € A. If such an A exists, then any apartment containing )1 - and ()2~ satisfies this
property.

We now assume that S admits a minimum. We denote it 0s. We denote 7, instead
of <o, and if C' is a sector of Z, we denote C_(, instead of C<y,.

8.12 Lemma. Let C be a sector of I. Then germ  (C—oy) = m—o4(germ(C)). In
particular the sector-germs at infinity of m—o4(Z) are exactly the m—o4,(Cso) such that Cu
is a sector-germ at infinity of I.

Proof. As m_yg, germ, and C' +— C—y, commute with the action of G, it suffices to check
it when C'is a subsector of C'} 5, which is straightforward. O

8.13 Lemma. Let A be an apartment of T and Cs be a sector-germ of A. Let Cw be
a sector-germ of I adjacent to Cy and different from it. Then one can write m_g4(A) =
Do, U Dy, where for both i € {1,2}, D;oq is a half-apartment of m—o,(A) and there
exists an apartment mos(A;) containing Dy, and m—gg(Cas).

Proof. By Lemma 5.10, Proposition 5.6, Lemma 8.2 and by [BS14, Theorem 3.3], 7—o,(Z)
is an R-building and in particular, it satisfies the axiom (SC) of [BS14|. Moreover
705 (Cso) and m_o,(Cso) are adjacent and thus the lemma is a consequence of the para-
graph after (SC) in [BS14, page 385].

U
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Galleries of local chambers Let v € Z. Two local chambers C ,, C;, are called
adjacent if there exists an apartment A containing C ., Cs, and two adjacent sectors
()1, Q2 of A based at x such that germ (1) = C;, and germ,(Q2) = Cy,. By (A2), this
does not depend on the choice of apartment A. A gallery of local chambers based at
z is a finite sequence I';, = (C' 4, ..., Ck ) such that for all i € [1,k — 1], C;, and Cit1,
are adjacent local chambers based at x. The length of I'; is then k. The gallery is called
minimal if £ is the minimal possible length for a gallery joining C , and Cj ,.

If C,, C, are two local chambers based at z, there exists a gallery ', joining C, to
C,. Indeed, by (GG), there exists an apartment A containing C, and C,. Let Q and Q
be the sectors of A corresponding to C, and C,. Then if T is a gallery of sectors from Q
to @, then the germ T, of I' at z is a gallery joining C, to C,. The minimal length of a
gallery joining C, to C, is called the distance between C, and C, and we denote it
d(Cy, Cy).

8.14 Lemma. Let A be an apartment and Cy be a sector-germ at infinity of Z. We
assume that m—g4(A) D 104 (Cs). Then A5 Cw.

Proof. Let ©Q € C be such that 7y, (A) D m—0,(€2). Let B be an apartment containing
Cw-. Then QN B € C. Moreover m—g,(A) N 1oy (B) D m—o4(©2N B) and by Lemma 8.7,
T_os (AN B) = m_o4(A) N m—o4(B). We identify B and Ag and we assume that Cy is
the germ of Cfg. We choose (yn,—o5) € m—o5(A N Ag)Z, such that S(yn,—os) — 400 for
all B € Ay, Let (y,) € (AN Ag)Z, be such that m_og(yn) = Ynos for all n € Zsy. Then
AD AN B 3 cl({ynn € Zso}) D Cu, which proves the lemma.

U

8.15 Lemma. 1. Let C' and C be two sectors of T and Cs,, Cs be their germs. We
assume that C.y and C., are adjacent. Let A be an apartment containing Cy. Then
one can write A = Dy U Dy, where Dy, Dy are half-apartments of A which have the
same wall and such that for both i € {1,2}, there exists an apartment containing D;

and C~'OO.
2. Lety € . Then germ, (y + Cy) and germ, (y + Cs) are adjacent.

Proof. Let m = m—y,. By Lemma 8.13, one can write 7(A) = Dy U Dy, where D; . and
7(Cy) are contained in an apartment m(A;). Then w(A) N7(A;) is a half-apartment and
thus by Lemma 8.7 and (A2), AN A, is a half-apartment. Let H be the wall of AN A;.
Then by (EC) (Lemma 8.10), (AU A;) \ (AN A;)) U H is an apartment A, of Z. By
Lemma 8.14, A4; 3 Cy. Let D; = AN A; and Dy = A, N A. Then (A, Dy, Ds) satisty the
condition of (1).

Let now y € Z. We want to prove that germ, (y + Cs) and germ, (y + Cy) are
adjacent. As there exists an apartment containing y and Cy, there is no loss of generality
in assuming that y € A.

Maybe exchanging the roles of D; and Dy, we may assume that D;  C,,. Suppose
y € Dy. Then A, contains y+C, and y+C and thus germ, (y+Cy) and germy(y+é'oo)
are adjacent (and distinct).

By construction, H is also the wall of ANA,. Let 2 € H, C' = 2+Co and C = 2+ Cyp.
Then z 4+ Cy C D; and 2 + Cx, ¢ A. Therefore H separates x + Co and z + C in A;.

Let ¢ : A — Ay be the isomorphism of apartments fixing A N As. Then ¢ induces a
map (still denoted ¢) from the set of sector-germs at infinity of A to the set of sector-
germs at infinity of As. If # € H, x + Cs and z + C. share a panel in H. Let Cl# Cy
be the sector-germ at infinity of A such that = + C and z + C_ share a panel in H.
Then C, € D, and thus ¢(Cl)) = C._. Therefore ¢(Cs) = C and thus for all y € A,

oy + Co) = 0(y) + Cue.
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Let now y € A\ D;. Let ¢ € RY be such that B(y,e) C D,, which exists by
Lemma 221 (2). Then ¢(B(y, ) N (y + Cx)) = By, ) N (3 + Cor) = Bly,6) N (y +
Cs). Therefore germ, (y + Cx) = germ, (y + Cx) and in particular germ, (y + Cu) and

germ, (y + C) are adjacent. Lemma follows.
0

Using Lemma 8.15 (2) we deduce the following proposition.

8.16 Proposition. Let I' = (C) ,...,Ch) be a gallery of sector-germs at infinity.
Then for all x € T, T, = (germ, (2 + Cl ), - - ., germy (z + Ca o)) is a gallery.

8.17 Lemma. Let x € Z. Let Cm,é'm be two local chambers based at x. Let wqy be the
longest element of WY. Then:

1. d(Cx,C’x) < l(wg) and
2. d(Cy, Cy) = l(wy) if and only if Cy and C, are opposite.

Proof. Let A be an apartment such that m<,(A) contains C, and C,. Using an isomor-
phism of apartments, we identify A and Ag. Let C§ and CS be the vector chambers of Ag
such that C, = germ,(z +C%) and C, = germ, (x+CS) Write CS = w.Cg, with w € W",
By [Bro89, I Proposition 4], one has £(w) = d(C%, C4) = d(C,, C,). By definition of wy
we deduce that d(C,, C,) < £(wy). Point 2 is a consequence of the uniqueness of wy, see
[BB05, Proposition 2.2.9] for example. O

8.18 Lemma. Let x € Z and C, C be two sectors opposite at x. Let s € S. Then Ccs
and C<g are opposite at m<(x).

}jroof. Let A be an apartment containing germ,__(,)(C<s) and:germWSS(x) (C<s). Let Q and
@ be the sectors of A based at m<,(z) and such that Q< and Q< contain germ,_ ) (Cxs)
and germks(x)(égs). Let I' = (Q1,00, Q2,005 - - - » Qk,00) be a minimal gallery of sector-

germs at infinity of A from germ_(Q) to germ. (Q). Then by Proposition 8.16, I', =
(germ, (z+ Q1.00); - - -, germy, (z+ Qp.0)) is a gallery. By Lemma 8.11, germ, (24 Q1,00) =
germ,, (C) and germ,(z + Q) = germ,(C). As germ,(C) and germ,(C) are opposite,
we have k > ¢(wp). As I' is minimal, one has k < ¢(wp). Consequently, k = ¢(wp) and
thus by Lemma 8.17, germ,_ (,y(C<;) and germWSs($)(é§s) are opposite, which proves the
lemma. O

8.3 Proof of (CO) when S admits a minimum

8.19 Lemma. Let x € T and let C' and C be two sectors opposite at x. Then there exists
an apartment A containing C' and C'.

Proof. Let Ac and Ag be apartments containing C' and C respectively. By (A4) (Lemma 5.10)
we can find an apartment Agr e containing subsectors C” and C’ of C and C. Let us
prove that x € Ag .

Let ¢ : Ac — A ¢ be an apartment isomorphism such that ¢|ana,, o = Id|acna
Set y := ¢(z). We want to prove that x = y. By contradiction, assume that = # y.

c’,cr’

Let A, , be an apartment containing both x and y and ¢ : A, , — Ag. Let supp(y —
x) C S be the support of 1(y) — ¢ (x) € Vs. Then supp(y — x) depend neither on the
choice of A, , nor on the choice of 1. By assumption, supp(y — ) is nonempty. Let sy be
the minimum of supp(y — x). Let g € G(K) inducing the isomorphism . Then we have:

9 Teso(®) = Ty (9 - ) = Ty (Y(2)) = Moo (V) = T<so (92 9) = 9 T<so(y)
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and:

G T<so(T) = s (9 7) = Ty (V(2)) # T<so(V(Y) = T<so (9 ¥) = g - T<so(Y)

and hence m<, () # <5, (y).
Set X = ey (2) = My (y) and Iy = 725 (X) C Z. Set

T=sg = T=s0,X :IX - (71-2;8)71()() - I<K7 wSSmG)v

with the notation of 7.6. Then 7_,,(2) # T—s, (y) and (722)~1(X) is an R-buillding.
Since v € AcNZy andy € AC',é' NZx, the sets AcNZx and AC,@,HIX are nonempty.
Moreover, let h € G(K) inducing ¢. Then:

¢(AC N ZX) g ACI,C’/ N (h . IX) == AC/7C~'[ N ﬂ-zio(h . X) == AC/7C~'[ N ﬂ-zio(h . X)

= AC’,C” N W;;O (¢(x)) = ACQC” N W;;O (7T<so (y))
= AC/,C" N Ix.

Hence ¢ induces a map ¢»s, : Ac N Zx — Aqr e N Iy, which induces itself a map:

Ost Ay > Acrér

—s0
where Ag =, = T=s,(Ac NZx and Ag g _y = M=o (Acr o) N Ix.

We know that ¢_, (75, (2)) = 75 (y) # 7—s, (). But the sectors-germs C_,, :=
T—s0(C<sy NZ.,, (z)) and é:so = W:SO(C'SSO HIRSO(:,:)) germwzso(m)(ﬂzso(C)) are opposite
in 7_, () (in the R-building (7=)~(X)).

Hence, by Lemma 8.2, 7, () belongs to the unique appartment of 7—s,(Zx_, (x)) con-

taining germ (7=, (C)) and germ, (7=, (C)). In other words, 7y, (Zr.. (2)) € Ac,=sy N
AC,’(;,FSO. Since ¢ fixes Ac N AC’,C‘” we deduce that ¢y, (T—s, (7)) = T=s, (y) # T=s,(T):
contradiction! Hence = = y. O

8.4 Proof of (CO) in the general case

Let K = K((t). Let G = G(K) and G = G(K) Let & : K — Z x A be defined by
o>, apt?) = (n,w(an)), if a, # 0. Let T = Z(G,w) and 7 = I(G,&). Note that the
rank of the ordered abelian group Z x A is S := {04} S, where 04 is an element of S such
that s > 0g for all s € S. In particular, we have an isomorphism of ordered R-algebras

R x RS = RS,

Let 2 € Z and consider C' and C' two sectors in Z opposite at z. According to example
7.15, if w; stands for the t-adic valuation on K, we have a projection:

w1 — I(K,wt,G)

such that the fiber of the point X; := [(1,0)] is Z. Let C' and C' be sectors of 7 such that
cn 7 1X;) = C and CNa'(X;) = C. The sectors C and C being opposite, we deduce

that there is an apartment A of Z that contains both C:’ and C. Hence AN7'(X;) is an
apartment of Z = 71(X) that contains both C and C'.

8.5 Proof of (CO) for the fibers of the projection maps

Adopt the notations of section 7. In particular, we have a projection map:

7T I(Kw G) = (K w, G).
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Fix a point X; € Z(K,w;, G), let z € 77(X;) € Z(K,w, G) and consider C' and C
two sectors of 7~ !(X;) opposite at . Let C' and C be sectors of Z(K,w, G) such that
CnrY(X,) = C and CNa'(X;) = C. The sectors C' and C being opposite, we

deduce that there is an apartment A of Z(K,w, G) that contains both C and C. Hence
ANn~1(X;) is an apartment of 771(X}) that contains both C' and C'.
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