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Abstract: The direction-of-arrivals (DOA) estimation with an unfolded coprime linear array (UCLA)
has been investigated because of its large aperture and full degrees of freedom (DOFs). The existing
method suffers from low resolution and high computational complexity due to the loss of the uniform
property and the step of exhaustive peak searching. In this paper, an improved DOA estimation
method for a UCLA is proposed. To exploit the uniform property of the subarrays, the diagonal
elements of the two self-covariance matrices are averaged to enhance the accuracy of the estimated
covariance matrices and therefore the estimation performance. Besides, instead of the exhaustive
peak searching, the polynomial roots finding method is used to reduce the complexity. Compared
with the existing method, the proposed method can achieve higher resolution and better estimation
performance with lower computational complexity.

Keywords: DOA estimation; unfolded coprime linear array; Toeplitz matrix; high resolution;
low complexity

1. Introduction

Direction-of-arrival (DOA) estimation is one of the most active research topics in the field of array
signal processing, and it has been widely used in radar, sonar, radio astronomy and other fields [1–4].
Many DOA estimation methods, such as Multiple Signal Classification (MUSIC) [5] and Estimation of
Signal Parameters via Rotational Invariance Techniques (ESPRIT) [6], have been well developed for
uniform linear arrays (ULAs), in which the inter-element spacing is restricted to the half-wavelength
of incoming signals, leading to a possible mutual coupling effect and inferior estimation performance.
To solve these problems, coprime linear arrays (CLAs) have been proposed in [7]. Composed of two
ULAs with larger inter-element spacing, a CLA can achieve a larger array aperture with less mutual
coupling effect, and consequently better effective estimation performance can be obtained.

The research of the DOA estimation with a CLA can be classified into two categories, which are
difference-coarray-based methods and subarray-based methods. The difference-coarray-based methods
aim to increase the degrees of freedom (DOFs). However, this class of methods requires a great number
of snapshots, which makes it computationally complex [8–11]. In the subarray-based methods, a CLA
is treated as two sparse uniform subarrays. Separately dealing with them, the uniform property of the
two subarrays can be directly exploited, making low-complexity DOA estimation possible. Besides, the
true DOAs can be determined based on the coinciding results of the two subarrays, and the ambiguities
caused by the large inter-element spacing can be avoided thanks to the coprime property [12–14].
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As they are more suitable for practical applications, many subarrays-based methods have been
proposed in recent years. In [12], the MUSIC algorithm is performed separately in both subarrays,
and the true DOAs are determined by finding the coinciding peaks of the two spectrums. In [13], the
above-mentioned method is improved; by taking advantage of the properties of complex exponential
functions, the method limits the peak-searching region and reduces the computational complexity.
Another method is proposed in [14]. Benefitting from the uniform property of the two subarrays,
ESPRIT is employed. Without the step of peak-searching, the complexity is significantly reduced.
Besides, the potential matching error problem in [12,13] is fixed with beamforming-based methods.

Unfortunately, dealing with the two subarrays separately, the subarray-based methods have
the following problems: (i) the DOF is determined by the subarray with fewer sensor elements, and
therefore the number of detectable signals is limited; (ii) the mutual information of the two subarrays
is lost, resulting in an inferior estimation performance; and (iii) an additional step is needed to pair the
results obtained from the two subarrays, which increases the computational complexity.

In order to solve these problems, a method based on a new geometry of unfolded coprime linear
arrays (UCLAs) is proposed in [15]. By rotating a subarray of a CLA 180◦, a non-uniform linear array
with a larger aperture can be obtained. Instead of treating the two subarrays separately, MUSIC is
performed on the outputs of the whole array. Being superior to a CLA and subarray-based methods,
the UCLA can achieve full DOFs as well as better estimation performance due to the exploitation
of both self and mutual information. Meanwhile, thanks to the coprime property, only the peaks
associated with the true DOAs exist in the MUSIC spectrum. However, this method still has some
problems: (i) the uniform property of the two subarrays is wasted; and (ii) the step of peak-searching
is involved, increasing the computational complexity.

In this paper, an improved DOA estimation method is proposed. Taking advantage of the uniform
property of the two subarrays, we average the diagonal elements of the estimated self-covariance
matrices of the observation of the two subarrays to make the covariance matrix of the outputs of the
whole array partially Toeplitz. Besides, instead of traditional MUSIC, root-MUSIC is used to avoid the
step of peak-searching. Compared with the method in [15], the proposed method can achieve higher
resolution and better estimation performance with lower computational complexity. Simulation results
are provided to show the performance of the proposed method.

2. System Model

Consider a UCLA composed of two uniform linear subarrays, in which the numbers of sensors are
M1 and M2, and the inter-element spacings are d1 = M2λ/2 and d2 = M1λ/2, respectively, with M1 and
M2 being two coprime integers and λ the wavelength of incoming signals. One sensor element is shared
by the two subarrays and is set as the reference point. The total number of sensors M = M1 + M2 − 1.
Figure 1 shows the case of M1 = 5 and M2 = 7.

Sensors 2020, 20, x 2 of 9 

 

based methods have been proposed in recent years. In [12], the MUSIC algorithm is performed 
separately in both subarrays, and the true DOAs are determined by finding the coinciding peaks of 
the two spectrums. In [13], the above-mentioned method is improved; by taking advantage of the 
properties of complex exponential functions, the method limits the peak-searching region and 
reduces the computational complexity. Another method is proposed in [14]. Benefitting from the 
uniform property of the two subarrays, ESPRIT is employed. Without the step of peak-searching, the 
complexity is significantly reduced. Besides, the potential matching error problem in [12,13] is fixed 
with beamforming-based methods. 

Unfortunately, dealing with the two subarrays separately, the subarray-based methods have the 
following problems: (i) the DOF is determined by the subarray with fewer sensor elements, and 
therefore the number of detectable signals is limited; (ii) the mutual information of the two subarrays 
is lost, resulting in an inferior estimation performance; and (iii) an additional step is needed to pair 
the results obtained from the two subarrays, which increases the computational complexity. 

In order to solve these problems, a method based on a new geometry of unfolded coprime linear 
arrays (UCLAs) is proposed in [15]. By rotating a subarray of a CLA 180°, a non-uniform linear array 
with a larger aperture can be obtained. Instead of treating the two subarrays separately, MUSIC is 
performed on the outputs of the whole array. Being superior to a CLA and subarray-based methods, 
the UCLA can achieve full DOFs as well as better estimation performance due to the exploitation of 
both self and mutual information. Meanwhile, thanks to the coprime property, only the peaks 
associated with the true DOAs exist in the MUSIC spectrum. However, this method still has some 
problems: (i) the uniform property of the two subarrays is wasted; and (ii) the step of peak-searching 
is involved, increasing the computational complexity. 

In this paper, an improved DOA estimation method is proposed. Taking advantage of the 
uniform property of the two subarrays, we average the diagonal elements of the estimated self-
covariance matrices of the observation of the two subarrays to make the covariance matrix of the 
outputs of the whole array partially Toeplitz. Besides, instead of traditional MUSIC, root-MUSIC is 
used to avoid the step of peak-searching. Compared with the method in [15], the proposed method 
can achieve higher resolution and better estimation performance with lower computational 
complexity. Simulation results are provided to show the performance of the proposed method. 

2. System Model 

Consider a UCLA composed of two uniform linear subarrays, in which the numbers of sensors 
are 𝑀ଵ  and 𝑀ଶ , and the inter-element spacings are 𝑑ଵ = 𝑀ଶ  2⁄  and 𝑑ଶ = 𝑀ଵ  2⁄ , respectively, 
with 𝑀ଵ and 𝑀ଶ being two coprime integers and λ the wavelength of incoming signals. One sensor 
element is shared by the two subarrays and is set as the reference point. The total number of sensors 𝑀 = 𝑀ଵ + 𝑀ଶ − 1. Figure 1 shows the case of 𝑀ଵ = 5 and 𝑀ଶ = 7. 

 

Figure 1. System model. 

Assume that 𝐾  (𝐾  is supposed to be known or can be correctly estimated by the Akaike 
Information Criterion (AIC) or Minimum Description Length (MDL) method [16], and 𝐾 ൏ 𝑀 ) 
uncorrelated, far-field and narrowband signals impinge on the UCLA from directions ሼ𝜃ଵ, 𝜃ଶ, … , 𝜃௄ሽ, 
with 𝜃௞ ∈ ሺ− 2⁄ ,  2⁄ ሻ and 𝑘 ∈ ሾ1, 𝐾ሿ. The signals received at the two subarrays can be respectively 
written as 𝐱ଵሺ𝑡ሻ = 𝐀ଵ𝐬ሺ𝑡ሻ + 𝐧ଵሺ𝑡ሻ (1) 

Figure 1. System model.

Assume that K (K is supposed to be known or can be correctly estimated by the Akaike Information
Criterion (AIC) or Minimum Description Length (MDL) method [16], and K < M) uncorrelated, far-field



Sensors 2020, 20, 218 3 of 9

and narrowband signals impinge on the UCLA from directions {θ1, θ2, . . . ,θK}, with θk ∈ (−π/2,π/2)
and k ∈ [1, K]. The signals received at the two subarrays can be respectively written as

x1(t) = A1s(t) + n1(t) (1)

x2(t) = A2s(t) + n2(t) (2)

where Ai =
[

ai(θ1) ai(θ2) · · · ai(θK)
]
, (i = 1, 2) is the directional matrix with

a1(θk) =
[

1 e jM2π sin (θk) · · · e j(M1−1)M2π sin (θk)
]T

(3)

a2(θk) =
[

e− j(M2−1)M1π sin (θk) e− j(M2−2)M1π sin (θk) · · · 1
]T

(4)

which are the directional vectors of the two subarrays, respectively. s(t) ∈ CK×1 denotes the source
vector, and ni(t) ∈ CMi×1 the white Gaussian noise vector with zero-mean and covariance matrix
σ2IMi , which is independent from the source signals. Therefore, the total outputs of the UCLA can be
written as

x(t) =
[

x1(t)
x2(t)

]
=

[
A1

A2

]
s(t) +

[
n1(t)
n2(t)

]
(5)

3. Proposed Method

3.1. Self-Covariance Matrix Reconstruction

The covariance matrix of the total output of the UCLA R can be estimated with L snapshots as

R̂ =
1
L

L∑
t=1

x(t)xH(t) =
[

R̂11 R̂12

R̂21 R̂22

]
(6)

with R̂uv = 1
L
∑L

t=1 xu(t)xH
v (t) and u, v ∈ {1, 2}.

The self-covariance matrix of the observation of either subarray can be written as

Ruu =


ru(0) ru(−1) · · · ru(1−Mu)

ru(1) ru(0) · · · ru(2−Mu)
...

...
. . .

...
ru(Mu − 1) ru(Mu − 2) · · · ru(0)

 (7)

where ru(m) =
∑K

k=1 Psk e jmMv sin (θk), u , v, and ru(−m) = r∗u(m). Psk denotes the power of the signal
coming from direction θk.

It can be observed that, because both the subarrays are uniform, the self-covariance matrix of
the signal received at either subarray is Toeplitz. All the diagonal elements are equal, and this can be
uniquely determined by its first column of the self-covariance matrix. To exploit this property, we can
average the diagonal elements of the estimated self-covariance matrix R̂uu by

r̂u(m) =
1

Mu −m

Mu−m∑
n=1

R̂uu(m + n, n) (8)

According to Equation (7), depending on the two sets of averaged elements{
r̂1(0), r̂1(1), · · · , r̂1(M1 − 1)

}
and

{
r̂2(0), r̂2(1), · · · , r̂2(M2 − 1)

}
, two Toeplitz self-covariance matrices

R̂11,T and R̂22,T can be constructed. Replacing R̂11 and R̂22 by R̂11,T and R̂22,T in R̂, respectively, we can
make the covariance matrix of the total outputs of the UCLA partially Toeplitz, which can improve the
estimate performance. In contrast with the traditional covariance matrix averaging technique, which
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is performed on the whole covariance matrix of the received signals, the proposed partial Toeplitz
averaging method is particularly well adapted to unfolded coprime linear arrays. The reconstructed
partial Toeplitz covariance matrix R̂T is given as

R̂T =

[
R̂11,T R̂12

R̂21 R̂22,T

]
(9)

3.2. DOA Estimation

After the reconstruction of the covariance matrix, the eigenvalue decomposition of the obtained
partial Toeplitz matrix R̂T can be expressed as

R̂T = ÛsΛ̂sÛ
H
s + ÛnΛ̂nÛH

n (10)

where Ûs contains the eigenvectors spanning the signal subspace and Λ̂s a diagonal matrix composed of
the K largest eigenvalues of R̂T, the eigenvalue matrix corresponding to Ûs; Ûn contains the eigenvectors
spanning the noise subspace and Λ̂n the eigenvalue matrix corresponding to Ûn. According to the
orthogonality between the signal and noise subspaces, the spectrum function can be written as

P(θ) =
1[

aH
1 (θ) aH

2 (θ)
]
ÛnÛH

n

[
aT

1 (θ) aT
2 (θ)

]T (11)

and the DOAs can be found by searching the peaks of the spectrum P(θ).
To reduce the computational complexity, the polynomial root finding method can be used instead

of an exhaustive search. Define
p(z) =

[
pT

1 (z) pT
2 (z)

]T
(12)

with
p1(z) =

[
1 zM2 · · · z(M1−1)M2

]T
(13)

p2(z) =
[

z−(M2−1)M1 z−(M2−1)M1 · · · 1
]T

(14)

which are related to the directional vectors of the two subarrays by

a1(θ) = p1

(
z = e jπ sin (θ)

)
(15)

a2(θ) = p2

(
z = e jπ sin (θ)

)
(16)

Then, the exhaustive peak search in Equation (11) can be transformed to the root finding of the
following polynomial:

pT
(
z−1

)
ÛnÛH

n p(z) = 0 (17)

It can be seen that, since the sensor elements are sparsely and non-uniformly located, p(z) contains
only several discrete powers of z and Equation (17) is not a full polynomial. In order to solve this
problem, we define two transformation matrices as

G1 =
[

01 H1
]
M1×(2M1M2−M1−M2+1)

(18)

G2 =
[

H2 02
]
M2×(2M1M2−M1−M2+1)

(19)

where H1 is a selection matrix with a dimension of M1× [(M1 − 1)M2 + 1], of which the [(i− 1)M2 + 1]th
element of the ith row is one and the other elements are zeros; H2 is a selection matrix with the
dimension of M2 × [(M2 − 1)M1 + 1], of which the [(i− 1)M1 + 1]th element of the ith row is one and
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the other elements are zeros. 01 and 02 are two zero matrices with the dimension of M1 × (M2 − 1)M1

and M2 × (M1 − 1)M2, respectively.
Then, we get

p(z) =
[

G1

G2

]
pu(z) (20)

where
pu(z) =

[
z−(M2−1)M1 z−(M2−1)M1+1

· · · 1 · · · z(M1−1)M2−1 z(M1−1)M2
]T

(21)

which contains all continuous power of z. Therefore, Equation (17) can be transformed as

pT
u

(
z−1

)
UnnUH

nnpu(z) = 0 (22)

where
Unn =

[
GT

1 GT
2

]
Ûn (23)

Equation (22) is a full polynomial to which the root finding technique can be directly applied.
It is known that if θi corresponds to the direction of an actual source, zi = e jπ sin (θi) would be a root
of Equation (22), and |zi| =

∣∣∣e jπ sin (θi)
∣∣∣ = 1. However, because of the presence of noise, the roots may

not be precisely located on the unit circle. Besides, note that if zi is a root of Equation (22), so is 1/z∗i .
Therefore, half of the roots will be inside the unit circle and half will be outside. The DOAs can be
decided by the K roots inside and closest to the unit circle as

θ̂k = arcsin
(

arg(ẑk)

π

)
(24)

4. Simulation and Analysis

4.1. Estimation Performance

In the simulations, the UCLA shown in Figure 1 with M1 = 5 and M2 = 7 is considered, and the
root mean square error (RMSE) is used for the performance assessment, which is defined as

RMSE =

√√√√(
1

QK

) Q∑
q=1

K∑
k=1

(
θ̂k,q − θk

)2
(25)

with K the number of source signals, Q the number of Monte Carlo trials, and θ̂k,q the estimate of the
true DOA θk of the qth Monte Carlo trial. Q = 500 is used in this paper. The Cramér–Rao lower bound
(CRB) for the unconditional model is also given as a benchmark [17].

Figure 2 depicts the RMSE performance of Zheng’s method in [15] and the proposed method
versus the signal-to-noise ratio (SNR) with K = 2 and L = 200, in both distantly separated angles
situation (denoted as general angles in Figure 2), where signals come from {20◦, 50◦}, and a close
angle situation, where signals come from {24◦, 25◦}. It can be seen that, in the distantly separated
angles situation, the estimation performance is comparable to Zheng’s method; in the close angles
situation, due to the reconstruction of the covariance matrix and the exploitation of the uniform
property of subarrays, the proposed method has higher resolution and better estimation performance
than Zheng’s method.
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Figure 2. Root mean square error (RMSE) performance versus signal-to-noise ratio (SNR ).

Figure 3 depicts the RMSE performance of the two methods versus the snapshots number with
SNR = 0 dB, in both the distantly separated angles situation (denoted as general angles in Figure 3)
and close angles situation. As shown in the figure, in the distantly separated situation, the two methods
can achieve similar estimation performance; in the close angles situation, the performance of Zheng’s
method decreases greatly for small numbers of snapshots, as MUSIC depends on the accuracy of the
estimated covariance matrix. On the contrary, benefiting from the reconstructed partially Toeplitz
covariance matrix, the proposed method remains robust and reliable even in the case of a small
snapshots number.
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To investigate the resolution of the proposed method, two signals are assumed to come from the
two close directions ∆θ1 and θ2 = θ1 + ∆θ, respectively, where θ1 is fixed at 20◦, and ∆θ is a small
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and controllable variable. The two signals are said to be successfully resolved if the two following
equations are satisfied: ∣∣∣θ̂1 − θ1

∣∣∣ < ∆θ
2

(26)∣∣∣θ̂2 − θ2
∣∣∣ < ∆θ

2
(27)

where θ̂1 and θ̂2 are the estimations of θ1 and θ2, respectively [14,18]. Figure 4 shows the comparison
of the resolution probability, which is calculated from the percentage of the success trials among 200
Monte Carlo trials, of Zheng’s method in [15] and the proposed method, with SNR = 0 dB and L = 200.
It can be seen that, benefiting from the partial Toeplitz averaging, the accuracy of the estimated
covariance matrix is enhanced, and the proposed method exhibits much better resolution performance.Sensors 2020, 20, x 7 of 9 
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4.2. Computational Complexity

Based on root-MUSIC, the number of complex multiplications of the proposed method
is O

(
(M1 + M2)

2L + (M1 + M2)
3
)
, which is obviously lower than Zheng’s method, which is

O
(
(M1 + M2)

2L + (M1 + M2)
3 + (M1 + M2)(M1 + M2 −K)T

)
, where L and T denote the number of

snapshots and the times of spectral searching respectively. The computational complexity comparison
versus the number of sensors ( M1 + M2 − 1) is given in Figure 5, with K = 2 and L = 200. It can be
seen that, without the exhaustive searching, the proposed method has much lower computational
complexity with better resolution and estimation performance.
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5. Conclusions

In this paper, an improved DOA estimation method with a UCLA is proposed. Exploiting
the uniform property of the subarrays, we average the diagonal elements of the two estimated
self-covariance matrices to enhance the accuracy of the estimated covariance matrices and the estimation
performance. Besides, the polynomial root finding method is utilized instead of exhaustive searching
to reduce the computational complexity. The simulation results show that the proposed method can
achieve higher resolution and better estimation performance with lower computational complexity.
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Abbreviations

DOA Direction-of-arrival
UCLA Unfolded coprime linear array
DOF Degree of freedom
MUSIC Multiple Signal Classification
ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques
ULA Uniform linear array
CLA Coprime linear array
AIC Akaike Information Criterion
MDL Minimum Description Length
RMSE Root mean square error
CRB Cramér–Rao lower bound
SNR Signal-to-noise ratio
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