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In the paper, we conceptualize Mathematical Knowledge for Teaching as introduced and 

elaborated by Ball et al. (2008) for the topic of combinatorics using Lockwood (2013) model of 

combinatorial thinking. We developed test consisting of three combinatorial problems and 6 

connected tasks (for each problem) focused on the Common Content Knowledge (CCK), Specialized 

Content Knowledge (SCK), Knowledge of Content and Students (KCS) and Knowledge of Content 

and Teaching (KCT) to answer our research question: What are the differences in the 

combinatorial PCK between preservice teachers with regard to their combinatorial CK? We 

analyse and discuss data collected from 10 preservice teachers concerning one of the combinatorial 

problems and its connected tasks. 
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Introduction and background 

Combinatorial topics form an important part of the Slovak mathematics curriculum at middle and 

high school levels, as they are thought to provide a rich environment for the development of 

problem-solving skills (Rosenstein et al., 1997). However, Slovak curriculum documents and 

textbooks lead students to value formulas more than the ideas. Our aim in teaching preservice 

teachers (PSTs) is to broaden their knowledge to enable them to scaffold their future students’ 

combinatorial thinking instead of the blind use of formulas. The motivation for our research is to 

inform our practice by both understanding more deeply how knowledge necessary to teach 

combinatorics is learnt and scaffolding such learning during the university studies of PSTs.   

Theoretical framework 

In this chapter, we are going to frame topic-specific (combinatorial) preservice teacher 

mathematical knowledge. We build on the theoretical framework of Mathematical Knowledge for 

Teaching (MKT) as introduced and elaborated by Ball et al. (2008). More specifically, we focused 

on CCK, SCK, KCS and KCT. We use Lockwood (2013) model of combinatorial thinking to 

specify combinatorial MKT. We are going to explain the framework using the following 

combinatorial task (Batanero, 1997): Four children: Anna, Barbara, Cyril and Daniel went to spend 

the night at their grandparents’ house. Their grandparents have two separate bedrooms for them 

(one downstairs and another upstairs). In how many different ways can the grandparents assign 

children to bedrooms? For example: Anna, Barbara, Cyril and Daniel will sleep in the room upstairs 

and nobody will sleep downstairs.  

The task can be solved in at least six different ways as depicted at the Figure 1 (see the next page). 

We can see two different ways how to group them. In the first way, there are three groups: S1-S2, 

C1-C2, F1-F2. We can see different types of solutions here. The first group, there are sets of 

outcomes (S), collections of the objects being counted. In the second group, counting process (C) is 
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clearly elaborated. In the third group, the solution stands on the using of the formula (F). The 

second way for grouping the solutions is the following: S1-C1-F1 and S2-C2-F2. Each of the group 

of the solutions can be characterized by the same mathematical idea and they differ by the level of 

abstraction. 

 

Figure 1: Six different solutions of the combinatorial problem 

Lockwood model highlights the importance of developing the relationships between sets of 

outcomes, counting processes, and formulas/expressions. “For a given counting problem, a student 

may work with one or more of these components and may explicitly or implicitly coordinate them.” 

(Lockwood, 2013, p. 253).  

 

Figure 2: Model of combinatorial thinking (adapted from Lockwood, 2013) 

Now, we are ready to frame combinatorial MKT. CCK: PST can solve a combinatorial problem 

using one direction in Lockwood model, usually it is S→C or C→F and/or perceive some direction 

from the proposed correct solution, usually it is F→C and/or C→S. SCK: PST can solve a 

combinatorial problem in at least two different ways and perceives (not necessarily suggests) all 

directions of the Lockwood model. KCS: PST realizes that student solving the problem in the way 

S1-C1-F1 can have difficulties to understand the solutions S2-C2-F2 and perceives different levels 

of abstraction. Moreover, PST is familiar with possible student combinatorial misconceptions. 



KCT: PST’s response to the student’s solution is scaffolding in the sense of the Lockwood model, 

meaning that it shifts students to the proximal level of abstraction. 

Context and research question 

The teacher education at bachelor’s level (3 year program) at our university is, concerning MKT, 

currently focused on advanced mathematics knowledge, with SCK partially addressed. At the 

master’s level (2 year program), the goals are framed mostly in terms of KCS and KCT 

development. This model is in line with the claim of Depaepe, Verschaffel and Kelchtermans 

(2013) from their literature review, which says: “Based on studies that use distinct test items to 

measure CK and PCK it is concluded that both knowledge components are positively correlated and 

that CK is a necessary, though not sufficient, condition for PCK.” (Depaepe, Verschaffel, & 

Kelchtermans, 2013, p. 21) However, none of the papers these authors reviewed concerned 

combinatorics. What is more, the profound understanding of specific mathematical content is one of 

the possible points of focus for the research in teacher knowledge suggested at CERME 9 (Ribeiro 

et al., 2015). Therefore, we are interested, in accordance with the theoretical underpinnings and the 

needs of the field, to find the answer to the research question: What are the differences in the 

combinatorial PCK between PSTs with regard to their combinatorial CK?  

Research Methodology 

Participants 

12 PSTs in the academic year 2017/2018 were finishing their master mathematics teaching 

programme, 10 of them participated in the data collection. They had already passed all mandatory 

courses, including Discrete mathematics, which aimed to develop advanced content knowledge 

concerning combinatorics, Methods of mathematics problem solving where among other things 

SCK was addressed and Didactics of mathematics. Therefore, we chose these participants to gain 

insight into our current practice of teacher education. However, their PCK could be developed 

outside of their mandatory courses. Thus, we needed to know whether the PSTs used other options 

to develop their PCK. Based on the short interviews, we found out that the university courses and 

mandatory school practices were more or less the only experience with mathematics education for 3 

out of the 10 PSTs (no additional experience), 3 of them provided regular tutoring and/or lecturing 

(narrow additional experience), 4 out of the 10 PSTs, furthermore, have written diploma thesis in 

mathematics education (broad additional experience). 

Test design and its evaluation 

We developed a research tool to capture PSTs’ CK and PCK in domain of combinatorics in 

accordance with our theoretical perspective. As explained by Depaepe, Verschaffel and 

Kelchtermans (2013), if cognitive perspective to teacher knowledge is taken in account (what is the 

case here), then test is very relevant tool to measure it. The research tool consisted of three 

combinatorial problems with six connected tasks each. The first and the third connected task to the 

combinatorial problem measured the level of CK (Lockwood, 2013). The remaining connected 

tasks measured PSTs’ level of PCK (Ball et al., 2008). All connected tasks were open-ended 

purposely, to let the PSTs display their CK and PCK without any restrictions or guidance.  



All PSTs solved one standard combinatorial problem and one of two, randomly chosen, non-

standard combinatorial problems. In the paper, we analyse 10 PSTs’ solutions of the already 

introduced combinatorial problem (Batanero, 1997) and the following connected tasks (time 

allocated for the task is given in the brackets): 

1. Solve the problem in several different ways (at least two). (8′) 

2. Which of your solutions is mathematically the most valuable? Explain why. (2′) 

3. There is solution    stated in the textbook. What set of outcomes corresponds with this solution? 

Write several elements of this set of outcomes. Explain. (5′) 

4. Imagine, this problem was solved by your students. Write down two examples of students’ 

solutions containing mistakes which are expected by you. Explain them. (10′) 

5. Imagine, you are a high school teacher and you are solving this problem during the lesson. There 

are following students’ solutions stated in their notebooks (in the Figure 3a and 3b). Explain these 

solutions and write down, how would you react. (5′) 

6. Look at the following students’ solutions (see Figure 3b, 3c and 3d). Order them according to the 

level of abstraction (1 – the most abstract solution, 3 – the least abstract solution). Explain. (5′) 

    

a) b) c) d) 
  

Figure 3: Examples of students’ solutions for the connected tasks 5 and 6 

The test was firstly verified by 6 PhD students in mathematics (5 of them had already finished their 

mathematics teaching programme) in order to prescribe the sufficient time for each individual task, 

to refine formulations, and suggest the coding. Table 1 briefly summarizes the coding. The authors 

coded PSTs solutions separately, afterwards the coding was compared and few inconsistencies were 

discussed and resolved. According to CK (see Table 2), we categorized PSTs into three groups. The 

low CK group included the PSTs who demonstrated neither CCK nor SCK. The medium CK group 

included the PSTs who demonstrated only CCK. Finally, the high CK group included the PSTs who 

demonstrated both CCK and SCK.  

PCK 

 Task Aim What PCK components were coded? 

KCS 
Task 4 

Formulation of 

misconceptions 

Is misconception typical and connected to combinatorics? 

Is explanation of the misconception focused on student’s 

thinking? 

Task 6 Level of Are solutions ordered according to level of abstraction? 



abstraction Are the reasons for ordering well explained? 

KCT Task 5 
Response on 

student’s solution 

Does PST understand student’s solution? 

Would the response which was suggested by PST 

scaffold student’s learning? 

Table 1: Evaluation of PCK 

CK 

 CCK SCK 

Conditions Problem solved correctly and/or 

understanding of the standard correct 

solution. 

Problem solved at least in two 

different ways and 

correct mathematical argumentation. 

Combinatorial 

thinking 

One direction from Lockwood’s 

model 

All directions: S → C; C → F; C → S;       

F → C; S → F; F → S  

Table 2: Evaluation of CK  

Findings & discussion 

First, we describe the distribution of the participants into different categories. Table 3 illustrates that 

our research sample covered most of the possible categories. Only the category with low CK is not 

fully covered, however as the assigned combinatorial problem was standard, it is not surprising. 

Given the distribution into coded categories and subject numbers, we will analyse these data in 

qualitative and interpretative way.  

Additional  

Experience 

Content  

Knowledge 

None Narrow  Broad 

Low  1 0 0 

Medium 1 2 1 

High 1 1 3 

Table 3: Numbers of PSTs grouped in categories 

Second, we take a deeper look into each of the PCK components given in the Table 1. We will 

provide examples of PSTs responses to explain how they were coded. 

Formulation of possible student misconceptions
1
  

Example A Example B  

  
Figure 4: Examples of misconceptions 

                                                 

1
 We translated PSTs answers from Slovak language and re-wrote it to preserve the structure used by PSTs. 



As we can see, in the Example A (Figure 4), PST tried to formulate misconception, however it is 

artificial and not connected to combinatorial idea. On the other hand, Example B (Figure 4) is very 

common one, it is called confusing the type of object (e.g. Batanero, 1997), it is clearly connected 

to combinatorics. 

 

Level of abstraction 

Example C 

“Solution 3 (Figure 3d) seems the least abstract to me, because the student is writing down the 

set of outcomes from which it is clear what is happening in each of the rooms. It is obvious that 

he can imagine what is going on in there. Solution 2 (Figure 3c) is the most abstract because the 

student is grouping those people, however he probably does not really understand what he is 

doing.” 

Example D 

“In the solution 3 (Figure 3d), there is clearly written which child is in which room … students 

can immediately imagine – from the representation – how the children are split into two rooms. 

In the solution 1 (Figure 3b), there is some intermediate step from the specific solution to the 

abstract one, or an attempt to simplify, to shorten process of writing down the set of outcomes. 

The solution 2 (Figure 3c) – lot of children would be probably lost in such kind of solution. It is 

logical, however quite symbolic. Unlike the other two solutions, here are rooms assigned to 

children not children to rooms.” 

In both examples, PSTs ordered the solutions in the correct way. The difference is, the PST from 

the Example C, did not notice different mathematical idea behind the solution 2 compared to 

solutions 1 and 3. On the other hand, PST from the Example D explains this difference. 

Response on student´s solution (depicted in the Figure 2a) 

Example E 

“I would call 4 volunteers, and I would ask the student with this solution to arrange them in all 

the possible ways when two of them are in the same room.” 

Example F 

“I would probably give 50% for understanding and coding. I want the student to realize that the 

set of outcomes is not the most adequate solution.” 

Example G  

“I would ask the student to check the set of outcomes whether it is complete. I would praise him 

for the representation of set of outcomes he came up with.” 

Student´s solution in the Figure 2a is the set of outcomes connected with the formula 2
4
. The 

activity suggested in the Example E is not related to this formula; therefore, it would probably not 

be scaffolding. In the Example F, PST would prompt student to use formula, which would not 

necessarily scaffold the student’s combinatorial thinking if the student is not ready to see the 

relevance of formula to the situation. In the Example G, the PST recognized that she cannot orient 



the student to the counting process or formula without the student first comprehending how the set 

of outcomes is generated, thus it was coded as scaffolding response. 

Third, we present which of the coded PCK components, were (+) or were not (-) observed in the 

particular categories of PSTs (see Table 4, the next page). In the Table 4, results of PSTs with 

medium and high CK are presented, the one PST with low CK demonstrated no PCK.  

 None experience Narrow experience Broad experience 

No SCK SCK No SCK SCK No SCK SCK 

KCS Misconceptions + - + - + + 

Level of abstraction - - - + - + 

KCT Understanding + + + + + + 

Scaffolding response - - - - - + 

Table 4: PCK components demonstrated / missing in particular PSTs categories   

Formulation of possible student misconceptions as part of the KCS was missing only for PSTs 

with high CK without broad additional experience. These PSTs did not have an opportunity to 

learn from their own mistakes and the lack of experience was not supporting them to learn from 

mistakes of others. This could be the reason why they were not able to estimate what kind of 

misconceptions are common. 

Level of abstraction as part of the KCS was observed only when PSTs had high CK and at least 

narrow additional experience. These differences can possibly be explained by the role of SCK as 

we defined it in combinatorics. If PSTs perceive all connections between possible solutions as 

suggested in the Lockwood´s model, they are able to understand how abstract particular student´s 

solution is. 

Understanding of the student´s solutions was managed by all PSTs except the one with the low 

CK. Obviously, the PST with low CK could not distinguish the nature of the error correctly, also 

she had troubles to reason the correct one. While the error was quite familiar, and the solution was 

the standard one, the other PSTs were able to explain the student’s solution using only CCK, it was 

not necessary to activate SCK here.  

Concerning scaffolding response, only the group of PSTs with high PCK and broad additional 

experience was able to provide scaffolding reactions. Moreover, the scaffolding reaction was 

suggested only if the level of abstraction was perceived and explained clearly.  

Conclusions 

Let us return to the research question: What are the differences in the combinatorial PCK between 

PSTs with regard to their combinatorial CK? On the one hand, PSTs with low or medium CK 

displayed less PCK. On the other hand, when it comes to formulation of misconceptions, they 

outperformed those, who had high PCK and none or narrow additional experience. Thus, the high 

CK did not automatically meant good combinatorial PCK. It seems that the other necessary 

condition for combinatorial PCK development was broad additional experience. It supported PCK 



development especially when the PST had high level of CK. This is important, because PST who 

becomes a novice teacher is expected to learn mostly through their own teaching experience.  

Back to our first motivation for the research, the findings will feed back to our research and practice 

in the following ways: (1) we need to inquire and specify how to develop combinatorial SCK 

effectively during the bachelor’s level programme. (2) We need to identify the key factors of the 

additional experience, which scaffolded PSTs learning and subsequently design the PST education 

to promote these factors. Therefore, we need to focus on the task construction and design similarly 

to Policastro, Mellone, Ribeiro and Fiorentini (2019) and Montes, Climent, Carrillo and Contreras 

(2019). 

Moreover, we will reframe the research with the model of Mathematics Teachers’ Specialized 

Knowledge (Carrillo, et al., 2018) which address the limitations we experienced using MKT model 

(Ball, et al., 2008). We suggest that such reframing and the subsequent comparison could bring 

more clarity into mathematical teacher knowledge needed for teaching combinatorics. 

Acknowledgements 

This work was partially supported by the Slovak grant VEGA 1/0265/17 and by the National 

project IT Academy – Education for the 21st Century. 

References 

Batanero, C., Navarro-Pelayo, V., & Godino, J. (1997). Effect of the implicit combinatorial model 

on combinatorial reasoning in secondary school pupils. Educational Studies in Mathematics, 32, 

181–199. 

Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for Teaching. Journal of Teacher 

Education, 59(5), 389-407. 

Carrillo, J., Climent, N., Montes, M., Contreras, L.C., Flores-Medrano, E., Escudero-Ávila, D., 

Vasco, D., Rojas, N., Flores, P., Aguilar-González, A., Ribeiro, M., & Muñoz-Catalán, M.C. 

(2018). The Mathematics Teacher’s Specialised Knowledge (MTSK) model. Research in 

Mathematics Education. (Online). DOI 10.1080/14794802.2018.1479981. 

Depaepe, F., Verschaffel, L., & Kelchtermans, G. (2013). Pedagogical content knowledge: A 

systematic review of the way in which the concept has pervaded mathematics educational 

research. Teaching and Teacher Education, 34, 12-25. 

Lockwood, E. (2013). A model of students’ combinatorial thinking. Journal of Mathematical 

Behavior, 32, 251– 265. 

Montes, M., Climent, N., Carrillo, J. & Contreras, L.C. (2019).  Constructing tasks for primary 

teacher education from the perspective of Mathematics Teachers’ Specialised Knowledge. 

Manuscript in preparation. 

Policastro, M., Mellone, M., Ribeiro, M, & Fiorentini, D. (2019). Conceptualising tasks for teacher 

education: from a research methodology to teachers’ knowledge development. Manuscript in 

preparation. 



Ribeiro, M., Aslan-Tutak, F., Charalambous, Ch., & Meinke, J. (2015). Introduction to the papers 

of TWG20: Mathematics teacher knowledge, beliefs, and identity: Some reflections on the 

current state of the art. In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Congress 

of the European Society for Research in Mathematics Education (CERME9, 4-8 February 2015) 

(pp. 3177-3183). Prague: Charles University in Prague, Faculty of Education and ERME.  

Rosenstein, J. G., Franzblau, D. S., & Roberts, F. S. (1997). Discrete mathematics in the schools 

(Vol. 36, Discrete Mathematics and Theoretical Computer Science). Providence, RI: American 

Mathematical Society, National Council of Teachers of Mathematics. 


