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Abstract

The Multilevel Monte-Carlo (MLMC) method developed by Giles [Gil08] has a natural
application to the evaluation of nested expectation of the form E [g(E [f(X,Y )|X])], where f, g
are functions and (X,Y ) a couple of independent random variables. Apart from the pricing of
American-type derivatives, such computations arise in a large variety of risk valuations (VaR
or CVaR of a portfolio, CVA), and in the assessment of margin costs for centrally cleared
portfolios. In this work, we focus on the computation of Initial Margin. We analyze the
properties of corresponding MLMC estimators, for which we provide results of asymptotical
optimality; at the technical level, we have to deal with limited regularity of the outer function
g (which might fail to be everywhere differentiable). Parallel to this, we investigate upper
and lower bounds for nested expectations as above, in the spirit of primal/dual algorithms for
stochastic control problems.

1 Introduction
Nested expectations – to be understood as expectations of functionals of conditional expectations
– are ubiquitous in the field of financial risk assessment: from standard risk management compu-
tations, where a market factor is simulated up to a certain time horizon and then the performance
of a portfolio is evaluated conditionally on the value of the factor, to dynamic hedging of deriva-
tives products, in particular nowadays after the widespread establishment of the so-called valuation
adjustments to derivative trades.

The paradigm of linear risk-neutral pricing of financial contracts has indeed changed in the
last years, under the influence of market regulators: for several type of trades, banks and financial
institutions have to post collateral to a central counterparty (CCP, also called clearing house) in
order to secure their positions. Every day, the CCP requires each market member to deposit a
certain capital according to the risk exposure of their contracts. From the modeling point of view,
taking into account this type of regulatory capitals in the valuation of a derivative trade gives rise
to non-linear (backward stochastic– or partial–) differential equations.

One of these protection capitals is the Initial Margin (IM) deposit: in case of default of one of
the CCP members, the aim of this capital is to cover potential losses experienced by the hedging
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portfolio during the liquidation period of the defaulted member – concretely, the IM is materialized
by the Value-at-risk or Conditional value-at-risk (CVaR) of the member’s portfolio over a time
period ∆. Since the time window ∆ is small in year units (typically, one week), the usual approach
in view of the computations is to apply an asymptotic expansion for the solution of the involved
stochastic equation as ∆ becomes small, see Henry-Labordère [HL17, Section 4.2] and Agarwal
et al. [ADG+19]. To be more precise, let us borrow the mathematical setting from [ADG+19]:
assuming for the underlying asset price the stochastic model dSt = µtStdt+ σtStdW

hist
t , the value

V of the hedging portfolio replicating a claim ξ solves the (eventually) linear Backward Stochastic
Differential Equation (BSDE)

Vt = ξ +

∫ T

t

(
−rsVs + Zsσ

−1
s (rs − µs) +RCα

√
(s+ ∆) ∧ T − s

∣∣Zref
s

∣∣) ds−
∫ T

t

ZsdW
hist
s ,

where rt is a risk-free rate. Recall from BSDE theory that the solution to the equation above is
the couple of processes (Vt, Zt); using standard notation in derivative pricing theory, the wealth
δtSt invested in the asset at time t is related to the Z component via δtSt = Ztσ

−1
t , δt being the

number of shares of the asset S contained in the portfolio at time t (a.k.a. the portfolio’s delta).
The second term inside the time integral appears due to the aforementioned asymptotic expansion
as ∆ becomes small (note that the argument of the square root is equal to ∆ for every s ≤ T −∆),
and corresponds to the additional IM cost, computed using a reference value δref

t of the delta via
Zref
t = δref

t Stσt. The constant Cα is related to the CVaR of a standard normal distribution (we
refer to Section 3 for more details), and R denotes the net interest rate of the account used to fund
the IM cost. The reference value δref is fixed by some external source, and often corresponds to
the delta of a standard risk-neutral portfolio (in the simplest case, the Black-Scholes portfolio - but
other choices are possible). When ξ = Φ(ST ), rt is deterministic, σt and δref

t are both functions of
time and the underlying price St, we have the following classical Feynman-Kac representation for
the initial price V0

V0 = E

[
e−
∫ T
0
rsdsΦ(ST ) +RCα

∫ T

0

e−
∫ t
0
rsds

√
(t+ ∆) ∧ T − t

∣∣Zref(t, St)
∣∣dt] , (1.1)

where the expectation is computed under a probability measure such that dSt = rtStdt+σtStdWt.
The function Zref(·) being defined via a conditional expectation, the problem of computing the
price V0 requires, in general, to evaluate a nested expectation. This is our motivation for tackling
expectations of the form

I := E [g (E [f (X,Y ) |X])] , (1.2)

by Monte-Carlo simulation, notably in situations where the function g has the regularity of the
absolute value function z 7→ |z|, as in (1.1). Precisely, we consider the formulation in this setting
of the Multi-level Monte-Carlo method, introduced by Giles in [Gil08]. For a detailed survey of
the MLMC method and various recent extensions and generalizations, see also [Gil15]. Our main
result in this direction (Theorem 2.6) is to prove that the so-called antithetic Multi-level nested
estimator [Gil15, Section 9] asymptotically achieves the performance of an unbiased estimator (that
is: complexity O(ε−2) for a tolerance ε2 on the mean-squared error), even in this setting of limited
regularity for the function g. On the other hand, in the (practically interesting) case where g
is convex, we introduce and analyse a representation of (1.2) as the solution of a (primal/dual)
optimization problem. In the spirit of Americain option pricing, this representation leads to upper
and lower biased non-nested estimators, that we tackle with a regression-based procedure.

In the general setting, X,Y are two independent random variables with values respectively in
Rd and Rd′ , and f : Rd ×Rd′ → R and g : R→ R are two measurable functions. By independence,
the conditional expectation in (1.2) can be rewritten as:

E [f (X,Y ) |X] = Ef (X), (1.3)
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where for every x ∈ Rd, Ef (x) := E [f (x, Y )]. A natural estimator of the conditional expectation
in (1.3) is, for n ≥ 1,

Êf,n(X) :=
1

n

n∑
i=1

f(X,Yi)

where the (Yi)1≤i≤n are i.i.d. samples of Y independent of X. Conditional on the value of X, the
estimator Êf,n(X) is of course unbiased; the regularity of the outer function g will determine the
bias of the random variable g

(
Êf,n(X)

)
and therefore of related nested estimators – see Section 2

for precise definitions. In order to estimate the bias and overall the performance of such estimators,
there is a tradeoff between the smoothness of the function g and that of the probability distribution
of the underlying random variables – the less regularity on g, the stronger the requirements on
the underlying distribution. As mentioned above, the precise regularity conditions we are going to
impose on the function g, motivated by the applicability to (1.1), together with the assumptions on
the law of the underlying random variables, represent the core of our study and the main difference
with other works (as we discuss more in details below).

In the existing literature, efforts have been made to evaluate the nested expectation I in (1.2)
in the case of limited regularity, where g is a step function g = 1[a,∞). This setting appears when
evaluating tail distributions and quantiles; in the financial context, E [f (X,Y ) |X] will typically
represent the loss of a portfolio, conditional on the value of some market factorX. To our knowledge,
in early papers dealing with this problem using nested Monte-Carlo methods, such as the seminal
paper of Gordy and Juneja [GJ10] or Broadie et al. [BDM15], it is assumed that for n ≥ 1, the
couple of random variables

(
Ef (X),

√
n(Êf,n(X) − Ef (X))

)
has a joint density gn w.r.t. the two-

dimensional Lebesgue measure, and that the partial derivatives ∂ygn(y, ·) and ∂2
ygn(y, ·) admit finite

moments (up to order 4), uniformly in n. Under these conditions, the authors obtain an expansion
of the bias of the nested estimator at order 1. Assumptions of this kind may look rather strong1

and overall do not seem obvious to check: notably, a control on the moments of the joint law that
is uniform over n does not seem easy to achieve. The analysis of the bias is pushed forward in
the nice paper by Giorgi, Lemaire and Pagès [GLP18], where a higher order expansion is derived.
These authors work, on the one hand, with a setting where g is smooth, and on the other hand with
an opposite setting where g is a step function: in the latter case, it is assumed that both couples
of random variables (Ef (X), Ef (X)− Êf,n(X)) and (Ef (X), X) admit smooth densities on R2 for
n ≥ 1, and again that a certain number of their partial derivatives with respect to the first variable
exist and are continuous2. As a comparison with our setting, our Assumption 2.3 do not require
existence of densities and their derivatives.

Let us mention some works where other types of functions g have been considered. In Bujok et
al. [BHR15], the authors consider the pricing of CDO tranches and face the problem of estimating
E [g(E [Z|X])] in the precise case where g is piecewise linear and Z a Bernoulli random variable
depending on some economic factor X ∈ [0, 1], while in the survey paper [Gil15], the case where g
is twice differentiable is discussed, thus allowing for more general assumptions on X. In Giles and
Goda [GG19], the aim is to estimate E [maxd∈D E [fd (X,Y ) |X]] where D is a finite set; similar
assumptions to ours, though more restrictive, are made (see further below for more details). In
both papers, the tolerance ε2 on the mean-squared error is achieved with complexity O(ε−2), using
an antithetic Multi-level estimator.

In our setting, the function g would typically be the absolute value – and more generally, a
continuous and piecewise C1

b function (see our Assumption 2.1). With respect to the works cited
1As an example, one can check that in the case where X is Gaussian, Y is a Bernoulli random variable with

P(Y = 1) = 1− P(Y = −1) = p with p > 0.5, and f(X,Y ) = XY , we have Ef (X) = (2p− 1)X, Êf,1(X)−Ef (X) =
(Y1 − 2p + 1)X, so that the couple ((2p − 1)X, (Y − 2p + 1)X) does not have a density with respect to the two-
dimensional Lesbesgue measure.

2More precisely, denoting respectively p1 and p2 the two densities, in order to derive a bias expansion at order
R ∈ N, [GLP18] assume existence of the partial derivatives ∂(l)

x p1(x, y) for l = 0, ..., 2R+1, ∂(l)
x p2(x, y) for l = 0, ..., 2R,

and that ∂
(2R+1)
x p1(x, y) is continuous.
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above, we are in a situation of intermediate regularity of the function g – less than C2, but more
regular than a step function – thus allowing to drop restrictive assumptions on the distribution of
the underlying random variables. It will be sufficient for us to only exploit some (mild) regularity
of the law of Ef (X) in the neighbourhood of the singularities of g, instead of considering the joint
law of Ef (X) and its estimator. The arguments used in this work are close to those in Giles and
Haji-Ali [GH19], where g is a step function and the authors assume that in a neighbourhood of the
discontinuity point of the step function, the random variable Ef (X)√

Var(f(X,Y )|X)
has a bounded density;

the resulting Multi-level estimator achieves mean-squared error ε2 with complexity O(ε−2| log ε|2).
Once again, we would like to point out that such conditions on the underlying distributions are
stronger that ours. In fact, our setting allows to treat the case of a butterfly option payoff (see
Section 3.2), for which the assumption of existence of a bounded density seems out of reach, while
our milder Assumption 2.3 proves to be checkable in financial meaningful cases.

The paper is organized as follows. In Section 2, we study the generic problem of estimating I.
Here we compare theoretically and numerically different nested estimators. In particular, we show
that using the MLMC method, the tolerance ε2 on the mean-squared error can be achieved with
complexity O(ε−2) for a function g satisfying Assumption 2.1, provided that the probability that
the conditional expectation E [f (X,Y ) |X] is close to the singular points of g can be controlled
polynomially. In Section 2.3 we introduce an algorithm computing lower and upper bounds using
non nested Monte Carlo simulations. In Section 3 we show that the problem of evaluating the
option price V0 (1.1) with initial margin correction fits in the framework of our generic problem,
and we numerically compare the results obtained using the different methods.

Notations. We denote ‖f‖∞ the sup-norm for bounded functions, and ||A||p := E [|A|p]
1
p ,

p > 0, the Lp norm for vector-valued random variables. For a function f : R 7→ R, its Total-
Variation semi-norm is defined by ‖f‖TV := sup

∑N
i=1 |f(xi) − f(xi−1)|, where the supremum is

taken over finite sequences of increasing points (xi)i.

2 Theoretical methodology
As mentioned in the introduction, we want to design optimal Multilevel estimators in situations
where the function g is of the form g(x) = |x| or g(x) = (x − a)+ for some a ∈ R. Such examples
enter in the class of functions covered by the following assumption: essentially, we are asking that
the function g be continuous and piecewise C1

b .

Assumption 2.1. The function g is continuous, and there exists a finite set of points −∞ = d0 <
d1 < ... < dθ < dθ+1 =∞ such that on each open interval (di, di+1), 0 ≤ i ≤ θ, g is of class C1, g′
is bounded and Hölder continuous for some exponent η ∈ (0, 1].

We will also need to be able to control the probability that the random variable Ef (X) = E [f (X,Y ) |X]
takes values in a neighbourhood of the singularities of g; Assumption 2.3 below precisely takes care
of this. Finally, our remaining Assumption 2.2 requires finiteness of some moment of order p > 2
for the random variable f(X,Y ), a condition which is met in most of the examples of practical
interest.

Assumption 2.2. There exists p > 2 such that E [|f (X,Y ) |p] <∞.

Assumption 2.3 (Small ball estimate around the singularities). There exist some positive constants
ν, Kν and z0 such that

P (dist(Ef (X), D) ≤ z) ≤ Kνz
ν , ∀z < z0 , (2.1)

where dist(y,D) := min1≤i≤θ |y − di|.

4



Note that, if the random variable Ef (X) has a bounded density p, then Assumption 2.3 trivially
holds true with ν = 1, since in this case P (dist(Ef (X), D) ≤ z) ≤

∑θ
i=1 P (|Ef (X)− di| ≤ z) ≤

2θ||p||∞z. On the other hand, Assumption 2.3 is more general: it is stated in terms of the distri-
bution of Ef (X) and does not require existence or regularity of a density for Ef (X).

The basic estimator of the nested expectation (1.2) approximates the inner conditional expecta-
tion and the outer expectation with independent Monte-Carlo samples; we obtain the plain Nested
Monte-Carlo (NMC) estimator

ÎM,N =
1

M

M∑
m=1

g

 1

N

N∑
j=1

f
(
Xm, Y

m
j

) , (2.2)

where M,N ∈ N∗, and (Xm)m∈N∗ ,
(
Y mj
)
j,m∈N∗ are independent i.i.d. families having the same dis-

tribution asX and Y respectively. Multilevel (ML) estimators are obtained by combining estimators
of the form of ÎM,N . In the following Section we consider the so called antithetic ML estimator,
for which we show that it achieves the asymptotically unbiased setting; another “standard” (and
sub-optimal, then) ML estimator is also analysed in Section 2.2, see (2.8).

2.1 Multilevel Monte-Carlo estimator
Let us consider two independent families of i.i.d. random variables

(
X l
m

)
l,m∈N∗ and

(
Y l,mj

)
j,l,m∈N∗

,

distributed according to X and Y respectively. We denote L ∈ N∗ the number of levels in the
estimator. Let M = (M0, ...,ML) ∈ (N∗)L+1, resp. n = (n0, ..., nL) ∈ (N∗)L+1, be multi-indexes
representing the number of samples used to approximate the outer expectation, respectively the
inner conditional expectation in (1.2) at the different levels. We assume nl > nl−1 for every
l = 1, . . . , L. The antithetic Multilevel estimator of I is defined by

ÎML
M,n =

1

M0

M0∑
m=1

g

 1

n0

n0∑
j=1

f
(
X0
m, Y

0,m
j

)+

L∑
l=1

1

Ml

Ml∑
m=1

g
 1

nl

nl∑
j=1

f
(
X l
m, Y

l,m
j

)
− 1

2

g
 1

nl−1

nl−1∑
j=1

f
(
X l
m, Y

l,m
j

)+ g

 1

nl−1

nl∑
j=nl−1+1

f
(
X l
m, Y

l,m
j

) .

(2.3)

Note that, in the expression inside the curly brackets, the function g is evaluated more than once
on different empirical means, constructed using the samples X l

m and Y l,mj at level l only. From now
on, we set

nl = n02l, 0 ≤ l ≤ L ;

the remaining degrees of freedom of the estimator lie in the choices of n0, L, and of the sample size
Ml for every l.

The mean-squared error of ÎML
M,n can (as usual) be decomposed into bias and variance

MSE := E
[(
ÎML
M,n − I

)2
]

=
(
E
[
ÎML
M,n

]
− I
)2

+ Var
(
ÎML
M,n

)
. (2.4)

Under Assumptions 2.1, 2.2 and 2.3, we separately estimate the bias and variance terms in (2.4).

Proposition 2.4 (Bias estimate). Let (Yj)j∈N∗ be an i.i.d. family of random variables distributed
according to Y and independent of X. Under Assumptions 2.1, 2.2 and 2.3, there exists a positive
constant κ such that

∀n ≥ 1,

∣∣∣∣∣∣E
g
 1

n

n∑
j=1

f(X,Yj)

− g (Ef (X))

∣∣∣∣∣∣ ≤ κ

n
1
2 (1+

(p−1)ν
p+ν ∧η)

. (2.5)
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Note that the smooth case with no singularities (that is, g ∈ C1
b with Lipschitz continuous derivative)

corresponds to η = 1 and ν = ∞. In this case, the exponent for n at the denominator of (2.5)
becomes 1

2 (1+(p−1)∧1). If p ≥ 2, this number is worth 1
2 2 = 1. Therefore, in this case Proposition

2.4 provides the standard O
(

1
n

)
estimate for the bias in the presence of a smooth function.

We now turn to an estimate of the variance term. Proposition 2.5 estimates the contribution to
the global variance of the ML estimator coming from level l. To do so, let us introduce the notation

Vl := Var

g
 1

nl

nl∑
j=1

f (X,Yj)

− 1

2
g

 1

nl−1

nl−1∑
j=1

f (X,Yj)

− 1

2
g

 1

nl−1

nl∑
j=nl−1+1

f (X,Yj)

 .

Proposition 2.5 (Variance estimate). Under Assumptions 2.1, 2.2 and 2.3, there exists a positive
constant κ̃ such that

Vl ≤
κ̃

n
1+

(p−2)ν
2(p+ν)

∧η
l

(2.6)

holds for every l ≥ 1.

Once again, note that in the smooth case (that is: g ∈ C1
b with Lipschitz derivative, no singularities),

we can take η = 1 and ν = ∞. The exponent for nl in (2.6) then becomes 1 + p−2
2 ∧ 1. If we are

allowed to take p→∞, this number tends to 1 + 1 = 2, which corresponds to a O
(

1
n2
l

)
estimate of

the variance at level l.
We are now in position to apply the Multilevel Theorem of Giles [Gil15] and conclude on global

convergence rates. Since we wish to keep track of the constants arising from our assumptions (for
numerical purposes), we also provide a brief proof of the theorem.

Theorem 2.6. Let Assumptions 2.1, 2.2 and 2.3 hold true, and consider an error tolerance ε > 0.
There exist n0,M0, L such that the bound MSE = O(ε2) as ε→ 0 is achieved with a computational
complexity O

(
ε−2
)
with the choice :

nl = n02l, Ml = M0 2−(1+
(p−2)ν
4(p+ν)

∧ η2 )l, 0 ≤ l ≤ L.

As a comment on Theorem 2.6, note that it states an existence result for an optimal set of ML
parameters L, nl and Ml achieving the performance fo the unbiased setting. Unfortunately, the
question of how to set numerically the constants n0,M0, L remains open – this is a usual situation
in MLMC literature: we know how to optimize convergence rates, but some constants remain
implicitly defined. However, supposing that we knew the constant κ (resp. κ̃) in Proposition 2.4
(resp. Propositon 2.5), then we could choose the following optimal values for n0,M0, L (see the
proof of Theorem 2.6 for further details): for any n0 ∈ N∗, set

L =


log
( √

2κ
nα0 ε

2

)
α log 2

 , M0 =

⌈
2

ε2
κ̃ n−β0

1− 2−
L+1
2 (β−γ)

1− 2
1
2 (β−γ)

⌉
. (2.7)

Remark 2.7. Note also that the optimal number of Monte-Carlo samples at level l is of the form
Ml = M02−(1+a)l for a positive constant a, so that the computational cost at level l is proportional
to nlMl = n0M0 2−al = O(ε−2)2−al: as usual in the ML framework, the most expensive levels are
the coarsest ones. As we have done for Propositions 2.4 and 2.5, it is instructive to consider the
case corresponding to η = 1 in Assumption 2.1. If we can take p to be large in Assumption 2.2, Ml

approaches M0 2−
(

1+ ν
4∧

1
2

)
. When there are no singularities, then we can take ν →∞ in the small

ball estimate (2.1) and obtain Ml = M0 2−
3
2 l. When there is at least one singularity but we can

still take ν = 1, then we obtain Ml = M0 2−
3
4 l. Overall, Theorem 2.6 tells that, as soon as ν > 0

and p > 2, we can make the choice Ml = M02−(1+a)l for some positive a, which is still enough to
achieve an overall cost of order O

(
ε−2
)
for the ML estimator.
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Proof of Theorem 2.6. We start from the decomposition (2.4). Due to the telescopic sum property
of the ML estimator (2.3), it is clear that we have that E

[
ÎML
M,n

]
= E

[
g
(

1
nL

∑nL
j=1 f

(
XL

1 , Y
L,1
j

))]
.

By Proposition 2.4, there exists a positive constant κ, independent of n, such that

∣∣∣E [ÎML
M,n − I

]∣∣∣ =

∣∣∣∣∣∣E
g
 1

nL

nL∑
j=1

f (X,Yj)

− I
∣∣∣∣∣∣ ≤ κ

nαL
= κn−α0 2−αL,

with α :=
1

2

(
1 +

(p− 1)ν

p+ ν
∧ η
)
.

This estimate drives our choice of the number of levels; we want the squared bias to be smaller
than ε2/2, which gives :

κ2 n−2α
0 2−2αL ≤ ε2

2
⇐⇒ L ≥

log
( √

2κ
nα0 ε

2

)
α log 2

.

We therefore choose L as in (2.7).
On the other hand, Proposition 2.5 states that

Vl ≤ κ̃ n−β0 2−βl, ∀ 1 ≤ l ≤ L,

where β = 1 + (p−2)ν
2(p+ν) ∧ η. The computational cost Cl for one single sample in the layer l is

proportional to nl, hence bounded by a constant times 2γl with γ = 1. The hypotheses of [Gil15,
Theorem 1] are therefore satisfied: in particular, it is easy to check that α ≥ 1

2 min (β, γ) and that
p > 2 implies β > γ. Hence, we are in the first case of [Gil15, Theorem 1], which states that the
overall complexity of the ML estimator behaves as O

(
ε−2
)
.

The optimal number of Monte-Carlo samples Ml can be set by minimizing the computational
cost of the ML estimator under the constraint that the global variance is smaller than ε2/2. The
solution is of the form Ml = M0 2

−(β+γ)l
2 where M0 is a constant chosen so that the variance is

smaller than ε2/2. More precisely, by independence Var
(
ÎML
M,n

)
=
∑L
l=0

Vl
Ml

, and the following
estimate holds :

L∑
l=0

Vl
Ml
≤

L∑
l=0

κ̃n−β0 2−βl

M02−
l
2 (β+γ)

=
κ̃n−β0

M0

1− 2−
L+1
2 (β−γ)

1− 2−
1
2 (β−γ)

,

where we recall that β > γ. Hence, settingM0 =

⌈
2
ε2 κ̃n

−β
0

1−2−
L+1
2

(β−γ)

1−2−
1
2
(β−γ)

⌉
yields Var

(
ÎML
M,n

)
≤ ε2/2

and by Equation 2.4, overall we obtain MSE ≤ ε2/2 + ε2/2 = ε2. It is sufficient to note that
β+γ

2 = 1 + (p−2)ν
4(p+ν) ∧

η
2 to conclude the proof.

One can notice that, once the quantitative bias and variance estimates (2.5) and (2.6) have
been established, the proof of Theorem 2.6 is relatively straightforward. The most difficult part lies
indeed in proving Propositions 2.4 and 2.5; their proofs are provided in Sections 2.4 and 2.5.

2.2 Other nested estimators
We analyse in this Section alternative nested or MLMC estimators that will be tested in our
numerical experiments. Some simulation-based lower and upper bounds on I that do not require
nested simulations will be presented in the following Section.

The first is the plain Nested Monte-Carlo estimator (2.2). We denoteMSENMC := E
[(
ÎM,N − I

)2
]

the associated mean-squared error.
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Proposition 2.8 (Complexity of the Nested Monte-Carlo estimator (2.2)). Let Assumptions 2.1,
2.2 and 2.3 hold true, and consider an error tolerance ε > 0. As ε→ 0, the bound MSENMC = O(ε2)

is achieved with a computational complexity O

ε−2

(
1+ 1

1+
(p−1)ν
p+ν

∧η

) with the choice M ∼ ε−2 and

N ∼ ε
− 2

1+
(p−1)ν
p+ν

∧η .

Note that in the smooth case where we can take η = 1 and ν = ∞, the exponent in the definition
of N becomes (p−1)ν

p+ν ∧ η = (p− 1)∧ η. If p ≥ 2, we retrieve the standard computational complexity
O
(
ε−3
)
for nested estimators involving smooth functions.

In addition to the antithetic ML estimator ÎML
M,n considered in Section 2.1, we introduce a non-

antithetic “standard” ML estimator ÎML2
M,n , ML2 estimator in short, defined by

ÎML2
M,n =

1

M0

M0∑
m=1

g

 1

n0

n0∑
j=1

f
(
X0
m, Y

0,m
j

)+

L∑
l=1

1

Ml

Ml∑
m=1

g
 1

nl

nl∑
j=1

f
(
X l
m, Y

l,m
j

) (2.8)

− g

 1

nl−1

nl−1∑
j=1

f
(
X l
m, Y

l,m
j

) ,

where the notation is the same as in Section 2.1. We denote MSEML2 = E
[(
ÎML2
M,n − I

)2
]
the

associated mean-squared error .

Proposition 2.9 (Complexity of the non-antithetic ML estimator (2.8)). Let Assumptions 2.1, 2.2
and 2.3 hold true, and consider an error tolerance ε > 0. There exist n0,M0, L such that the bound
MSEML2 = O(ε2) as ε → 0 is achieved with a computational complexity O

(
(log ε)2ε−2

)
with the

choice :
nl = n02l, Ml = M0 2−l, 0 ≤ l ≤ L.

As our main Theorem 2.6, Propositions 2.8 and 2.9 are also based on the bias and variance estimates
derived in Section 2.1; their proofs are postponed to the Appendix.

Observe that in terms of complexity for a given error tolerance, the two estimators considered
in this Section are theoretically less efficient that the antithetic MLMC estimator (2.3). They will
all be compared in our numerical tests.

2.3 Non nested upper and lower bounds
Following common practice in American option pricing (see [HK04]), another way of estimating
nested expectations is to approach their value through lower and upper bounds which are com-
puted using non nested Monte Carlo algorithms. Using Legendre-Fenchel transforms, a similar
result has been proved (though their statements, proof and applications differ from ours) in the
recent paper [GL18, Theorem 2.1] where the authors provide non-nested bounds for E [g (E [H|Ft])]
where (Ft)t∈[0,T ] denotes a filtration, H an FT -measurable random variable and g is convex. Our
upper bound in Theorem 2.11 looks similar to [GL18, Theorem 2.1]), while our lower bound has
a different representation from theirs. Furthermore, here we complement our lower/upper bounds
with theoretical error estimates (see Theorem 2.11).

Lemma 2.10. Let K ∈ R and R a real integrable random variable. For any measurable function
ϕ : R→ R and random variable O, we have

E [(E [R|O]−K)+] ≥ E
[
(R−K)1ϕ(O)≥K

]
=: Cϕ(K),

E [(K − E [R|O])+] ≥ E
[
(K −R)1ϕ(O)≤K

]
=: Pϕ(K).
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Proof. Let ϕ and O as above. Since

E
[
(R−K)1ϕ(O)≥K

]
= E

[
(E [R|O]−K)1ϕ(O)≥K

]
and (E [R|O]−K)+ = (E [R|O]−K)1E[R|O]≥K , we deduce that

E [(E [R|O]−K)+]− E
[
(R−K)1ϕ(O)≥K

]
= E

[
(E [R|O]−K)(1E[R|O]≥K − 1ϕ(O)≥K)

]
.

Note that the random variable inside the expectation in the right hand side above is always non-
negative, from which we obtain the first inequality. The second inequality is obtained with a similar
argument.

Given a convex function g : R → R, g is differentiable except on a countable set of points. For
a differentiability point z ∈ R of g, we have

∀x ∈ R, g(x) = g(z) + g′(z)(x− z) +

∫ ∞
z

(x− u)+µ(du) +

∫ z

−∞
(u− x)+µ(du), (2.9)

where µ(du) corresponds to the second derivative of g in the sense of distributions. Let us define,
for a measurable function ϕ : R→ R, the functional

Jϕ = g(z) + g′(z)(E [R]− z) +

∫ ∞
z

Cϕ(u)µ(du) +

∫ z

−∞
Pϕ(u)µ(du). (2.10)

Although Jϕ also depends on z, we omit this dependence in our notation, for the sake of simplicity.

Theorem 2.11. Let R be a real integrable random variable and g : R→ R a convex function such
that g(R) is integrable. The following identity holds

sup
ϕ
Jϕ = E [g(E [R|O])] = inf

ε
E [g(R− ε)] , (2.11)

where the inf is taken over the set of random variables {ε is integrable and such that E [ε|O] = 0}.
Equality is attained for ϕ?(O) = E [R|O] and for ε? = R− E [R|O]. Moreover, the following error
estimate holds:

0 ≤ Jϕ? − Jϕ ≤ 2E
[∣∣ϕ?(O)− ϕ(O)

∣∣µ([ϕ?(O), ϕ(O)])
]
. (2.12)

If g is Lipschitz with Lipschitz constant Lg, the error estimate

0 ≤ E [g(R− ε)]− E [g(R− ε?)] ≤ Lg ‖ε? − ε‖1 . (2.13)

is straightforward. Finally, if g is improved to C2 with bounded second derivative, the upper bound
in (2.13) can be replaced by 1

2‖g
′′‖∞ ‖ε? − ε‖22 .

In (2.12), µ([a, b]) stands for the measure of the interval [a, b] if a ≤ b or [b, a] if b < a. When
g(x) = x+ (µ is the Dirac measure at 0) as in our numerical experiments, the bounds (2.12)
and (2.13) are replaced by 2E [|ϕ?(O)− ϕ(O)|] and E [|ε? − ε|], with no hope to significantly im-
prove them. If g were C2 with bounded second derivative, we would get the better estimate
2‖g′′‖∞E

[
|ϕ?(O)− ϕ(O)|2

]
for (2.12).

Proof. To obtain the inequality E [g(E [R|O])] ≥ Jϕ for every ϕ, it is sufficient to replace x by
E [R|O] in (2.9) and then apply Lemma 2.10 and Fubini’s theorem. Optimality of ϕ?(O) = E [R|O]
is also implied by Lemma 2.10, and the equality on the left hand side of (2.11) follows.

The identity on the right hand side of (2.11) is also straightforward to prove: for any integrable
random variable ε such that E [ε|O] = 0, we have E [g(R− ε)] ≥ E [g([E [R− ε|O])] = E [g(E [R|O])]
by Jensen’s inequality. It is immediate to check that equality is reached for ε? = R−E [R|O], which
concludes this part of the proof.
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We nowmove to the error estimates. Using Cϕ (u) = E
[
(R− u) 1ϕ(O)≥u

]
= E

[
(ϕ?(O)− u) 1ϕ(O)≥u

]
and Pϕ (u) = E

[
(u− ϕ?(O)) 1ϕ(O)≤u

]
, we get

Jϕ? − Jϕ =

∫ ∞
z

E
[
(ϕ?(O)− u)

(
1ϕ?(O)≥u − 1ϕ(O)≥u

)]
µ(du) (2.14)

+

∫ z

−∞
E
[
(u− ϕ?(O))

(
1ϕ?(O)≤u − 1ϕ(O)≤u

)]
µ(du). (2.15)

Now, if ϕ?(O) ≥ u > ϕ(O), we have

0 ≤ (ϕ?(O)−u)
(
1ϕ?(O)≥u − 1ϕ(O)≥u

)
= (ϕ?(O)−u)1ϕ?(O)≥u>ϕ(O) ≤ (ϕ?(O)−ϕ(O))1ϕ?(O)≥u>ϕ(O).

Similarly, if ϕ(O) ≥ u > ϕ?(O),

0 ≤ (ϕ?(O)− u)
(
1ϕ?(O)≥u − 1ϕ(O)≥u

)
≤ (ϕ(O)− ϕ?(O))1ϕ(O)≥u>ϕ?(O).

Otherwise, we have (ϕ?(O)− u)
(
1ϕ?(O)≥u − 1ϕ(O)≥u

)
= 0 and overall we get (applying the posi-

tivity of the measure µ)∣∣∣∣∫ ∞
z

E
[
(ϕ?(O)− u)

(
1ϕ?(O)≥u − 1ϕ(O)≥u

)]
µ(du)

∣∣∣∣ ≤ E [|ϕ?(O)− ϕ(O)|µ([ϕ?(O), ϕ(O)])] .

Using analogous arguments, the second integral in (2.14) can be bounded by the same upper bound
as above; estimate (2.12) follows.

Finally, assuming that g′′ exists and is bounded, we can apply Taylor’s theorem with Lagrange
remainder and get

g(R− ε)− g(R− ε?) ≤ g′(R− ε?)(ε? − ε) +
‖g′′‖∞

2
(ε? − ε)2.

Taking expectations and using that E [E [g′(R− ε?)(ε? − ε) | O]] = 0 since g′(R−ε?) isO-measurable
and ε?, ε are centered conditionally on O, we obtain the announced improvement of estimate
(2.13).

Upper and lower biased estimators

We set R = f(X,Y ) and O = X to restore our main setting. Note that any choice of admissible
ϕ and ε in (2.11) leads to a lower bound Jϕ and an upper bound E

[
g(f(X,Y )− ε)

]
for the nested

expectation E [g(E [f(X,Y )|X])]. The optimal choices ϕ?(O) = E [R|O] and ε? = R − E [R|O]
would require to exactly evaluate the conditional expectation itself; we can actually approach these
optimal choices by approximating conditional expectations, as we do below, based on a (linear)
regression algorithm.

Let (pi)i≥0 (resp. (qi)i≥0) be a basis of L2(X) (resp. L2(Y )). Given N ∈ N∗ and k, d ∈ N, we
solve the following Ordinary Least Squares minimization problem

(l∗j )0≤j≤k = argmin
lj∈R, 0≤j≤k

1

N

N∑
i=1

f(X̃i, Ỹi)−
k∑
j=0

ljpj(X̃i)

2

, (2.16)

(u∗ab)0≤a,b≤d = argmin
uab∈R, 0≤a,b≤d

1

N

N∑
i=1

f(X̃i, Ỹi)−
d∑

a,b=0

uab pa(X̃i)
(
qb(Ỹi)− E

[
qb(Ỹi)

])2

, (2.17)

where for 1 ≤ i ≤ N , each (X̃i, Ỹi) is a independent copy of (X,Y ). We then define:

ϕ∗k(X) :=

k∑
j=0

l∗jpj(X), ε∗d :=

d∑
a,b=0

u∗ab pa(X)(qb(Y )− E [qb(Y )]). (2.18)
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Notice that the coefficients (l∗j )0≤j≤k and (u∗ab)0≤a,b≤d are random and independent of (X,Y ), being
functions of the sample (X̃i, Ỹi)1≤i≤N . This property allows to obtain the following

Proposition 2.12. The following inequalities hold

E
[
Jϕ∗k
]
≤ E [g(E [f(X,Y )|X])] ≤ E [g(f(X,Y )− ε∗d)] . (2.19)

Proof. In order to obtain the inequality on the left hand side, it is sufficient to take conditional
expectation with respect to (X̃i, Ỹi)i≤N , then exploit the independence with respect to (X,Y ) and
proceed as in the first part of the proof of Theorem 2.11. Similarly, since the coefficients l∗ and u∗
are independent of (X,Y ), it is easy to check that E [ε∗d|X] = 0, so that ε∗d is admissible for (2.11),
and the inequality on the right hand side follows.

When k, d,N → +∞ (see [GKKW02, Chapter XI] for precise conditions), ϕ∗k and ε∗d converge in
L2 to the optimal ϕ∗ and ε∗. Owing to the error estimates in Theorem 2.11, the lower-upper estima-
tors in Proposition 2.12 converge to the true value of the nested expectation E [g(E [f(X,Y )|X])].
Even if we do not derive here precise convergence rates (though this is theoretically possible, build-
ing on the reference above), the practical interest of the estimators in Proposition 2.12 is clear: we
can replace the expectations on the left and right-hand side of (2.19) with standard (non-nested)
Monte-Carlo estimates based on i.i.d. samples of (X,Y ) (see Section 3.3 for details about the final
simulation algorithm). This provides an upper and a lower bound for the nested expectation; by
observing the size of the interval between the two bounds, we decide whether the precision of this
estimation procedure is acceptable for our purposes.

2.4 Proof of the bias estimate in Proposition 2.4
For x ∈ Rd and n ≥ 1, let us define

Êf,n(x) =
1

n

n∑
j=1

f(x, Yj) and δEn(x) = Êf,n(x)− Ef (x).

We first control the moments of δEn(X).

Lemma 2.13. Assume that there exists p ≥ 2 such that E [|f (X,Y )|p] <∞. Then, there exists a
positive constant Cp independent of n such that

∀n ≥ 1, ∀q ∈ (0, p], ||δEn(X)||q ≤
Cp√
n
.

Proof. Since ||δEn(X)||q ≤ ||δEn(X)||p for q ∈ (0, p], it is sufficient to deal with the case q = p.
Let us define Zj = f (X,Yj) − Ef (X) and, for n ≥ 1, Sn =

∑n
i=1 Zi. Conditionally with respect

to X, S is a martingale, since the variables Yj are i.i.d. and independent from X. By Burkhölder’s
inequality [HH80, Theorem 2.10], there exists a constant cp only depending on p such that a.s.,

E [|Sn|p|X] ≤ cp E

∣∣∣∣∣
n∑
i=1

Z2
i

∣∣∣∣∣
p/2

|X

 ≤ cp np/2 E [|Z1|p|X] ,

where in the last inequality we have used the fact that
∣∣∑n

i=1 Z
2
i

∣∣p/2 ≤ n
p
2−1

∑n
i=1 |Zi|

p. Since
δEn(X) = Sn

n , we obtain ||δEn(X)||p = 1
nE [|Sn|p]

1
p ≤ Cp√

n
, where Cp = c

1/p
p ||Z1||p.

In order to prove estimate (2.5), we expand g around the point Ef (X), using a Taylor expansion
with integral remainder. To cope with the non smooth character of g, let us introduce the generalized
derivative of g which is equal to 0 on the set {d1, ..., dθ}, and to g′ elsewhere. By a slight abuse of
notation, we will also denote this function by g′. The following lemma is standard: we provide a
short proof for completeness.
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Lemma 2.14. Under Assumption 2.1, for any x /∈ {d1, ..., dθ} and any y ∈ R, we have

g(y)− g(x) = g′(x)(y − x) + (y − x)

∫ 1

0

[
g′(x+ λ(y − x))− g′(x)

]
dλ . (2.20)

Moreover, for every x, y ∈ (dk, dk+1),

|g(y)− g(x)− g′(x)(y − x)| ≤ [g′]η
1 + η

|y − x|1+η, (2.21)

where [g′]η = max0≤k≤θ supz1,z2∈(dk,dk+1),z1 6=z2
|g′(z1)−g′(z2)|
|z1−z2|η .

Proof. Without loss of generality, we assume that x < y and consider the finite set (e1, ...ek) =
[x, y] ∩ {d1, ..., dθ}, ordered in ascending order. Let us also denote e0 = x and ek+1 = y if ek < y.
Since g is continuous on R and C1 with Hölder continuous derivative on each interval (ei, ei+1), we
have g(ei+1)−g(ei) =

∫ ei+1

ei
g′(s)ds. Summing over the index i, we obtain g(y)−g(x) =

∫ y
x
g′(s)ds.

We then obtain (2.20) adding and subtracting g′(x) inside the integral and then applying the change
of variable s = x+ λ(y − x). To prove (2.21), it is sufficient to use (2.20) and the Hölder property
of g′ on the interval (dk, dk+1).

We are now ready to prove Proposition 2.4. By Lemma 2.14, applying (2.20), we have that the
identity

g
(
Êf,n(X)

)
− g (Ef (X)) = δEn(X)g′ (Ef (X)) (2.22)

+ δEn(X)

∫ 1

0

(
g′ (Ef (X) + λδEn(X))− g′ (Ef (X))

)
dλ =: T1 + T2

holds on the set Ef (X) /∈ {d1, . . . , dθ}. By Assumption 2.3, this set has probability equal to one.
Using the tower property of the conditional expectation, we have

E [T1] = E [δEn(X)g′ (Ef (X))] = 0,

since E [δEn(X)|X] = E
[
Êf,n(X)

∣∣X]− Ef (X) = 0 a.s., and g′ is bounded.
We now control the term E [T2]. We have to consider separately the cases where Ef (X) is close

to, respectively far from, the singularities of g. To do so, let us set h = 1
2 min1≤i6=j≤θ (|di − dj |)

and introduce a parameter z ∈ (0, h) to be fixed later. We consider the following partition:

Ω1 = {min1≤j≤θ |Ef (X)− dj | ≤ z} , Ω2 = Ωc1 ∩ {|δEn(X)| > z} , Ω3 = Ωc1 ∩ {|δEn(X)| ≤ z} .

We upper bound the values of the three expectations E [T21Ω1
] ,E [T21Ω2

] and E [T21Ω3
]. For the

first term, note that since g′ is bounded, we have

|E [T21Ω1
]| ≤ 2 ‖g′‖∞ E [|δEn(X)|1Ω1

] ≤ 2 ‖g′‖∞ P (Ω1)
1
q ‖δEn(X)‖q∗ , (2.23)

where we have applied Hölder’s inequality with q, q∗ ≥ 1 such that 1
q + 1

q∗ = 1 and q∗ ≤ p, where p
is the exponent appearing in Assumption 2.2. Assumption 2.3 ensures that P (Ω1) ≤ Kνz

ν . Then,
it follows from Lemma 2.13 that

|E [T21Ω1
]| ≤ 2 ‖g′‖∞K

1
q
ν z

ν
q
Cp√
n
.

For the second term, note that 1Ω2 ≤
(
|δEn(X)|

z

)r
for any r > 0. Therefore

|E [T21Ω2
]| ≤ 2

‖g′‖∞
zr

E
[
|δEn(X)|r+1

]
= 2
‖g′‖∞
zr

‖δEn(X)‖r+1
r+1 ≤ 2

‖g′‖∞ Cr+1
p

zrn
r+1
2

,
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where we applied Lemma 2.13 in the last inequality, under the condition that r + 1 ≤ p. For the
third term, note that on the set Ω3, both Ef (X) and Êf,n(X) belong to the same interval (di, di+1).
Applying estimate (2.21), we obtain :

|E [T21Ω3
]| ≤ [g′]η

1 + η
E
[
|δEf (X)|1+η

1Ω3

]
≤ [g′]η

1 + η

C1+η
p

n
1+η
2

,

where we have applied Lemma 2.13 in the last inequality. Putting things together, we have shown
that the inequality∣∣∣E [g (Êf,n(X)

)
− g (Ef (X))

]∣∣∣ ≤ 2 ‖g′‖∞K
1
q
ν z

ν
q
Cp√
n

+ 2
‖g′‖∞ Cr+1

p

zrn
r+1
2

+
[g′]η
1 + η

C1+η
p

n
1+η
2

holds for all z ∈ (0, h), r ≤ p− 1 and q such that q∗ ≤ p.
The minimum point of the right hand side corresponds to the minimum point of the function

z ∈ R→ Ψ (z) := Γqz
ν
q n−

1
2 + Λrz

−rn−
r+1
2 ,

where Γq = 2 ‖g′‖∞K
1
q
ν Cp and Λr = 2 ‖g′‖∞ Cr+1

p . The minimum of Ψ is achieved at z∗ =(
Λrrq
νΓq

) q
rq+ν

n−
1
2

rq
rq+ν , which is smaller than h for n large enough. The value Ψ(z∗) at the minimum

point is proportional to n−
1
2

(
1+ rν

rq+ν

)
. In order to maximize rν

rq+ν under the constraints r + 1 ≤ p,
1
q + 1

q∗ = 1 and q∗ ≤ p, we set r = p− 1 and q = p
p−1 , which finally yields the estimate∣∣∣E [g (Êf,n(X)

)
− g (Ef (X))

]∣∣∣ ≤ κ1

n
1
2 (1+

(p−1)ν
p+ν ∧η)

,

for all n ≥ h−2(1+ ν
rq )
(

Λrrq
νΓq

) 2
r

=: N , where κ1 = Γq

(
Λrrq
νΓq

) ν
rq+ν

+ Λr

(
Λrrq
νΓq

) −rq
rq+ν

+
[g′]η
1+ηC

1+η
p . We

conclude the proof of estimate (2.5) for all n ≥ 1 (and not only for n ≥ N) by improving the constant
κ1 to κ = κ1 + κ2N

1
2 (1+

(p−1)ν
p+ν ∧η), where κ2 is a uniform bound on |E

[
g(Êf,n(X))− g (Ef (X))

]
|

for 1 ≤ n ≤ N .

2.5 Proof of the variance estimate in Proposition 2.5
For simplicity, let us define

Ẑ1 :=
1

nl−1

nl−1∑
j=1

f (X,Yj) , Ẑ2 :=
1

nl−1

nl∑
j=nl−1+1

f (X,Yj) , Ẑ :=
Ẑ1 + Ẑ2

2
=

1

nl

nl∑
j=1

f (X,Yj) ,

(2.24)

so that Vl = Var
(
g(Ẑ)− 1

2g(Ẑ1)− 1
2g(Ẑ2)

)
. Let us also define

δẐ1 = Ẑ1 − Ef (X), δẐ2 = Ẑ2 − Ef (X), δẐ = 1
2 (δẐ1 + δẐ2) = Ẑ − Ef (X).

Recall that h = 1
2 min1≤i 6=j≤θ (|di − dj |), and introduce a parameter z ∈ (0, h), to be fixed later.

We consider a partition of Ω into disjoint sets, analogous to the one used in the proof of Proposition
2.4:

Ω̃1 =

{
min

1≤j≤θ
|Ef (X)− dj | ≤ z

}
= Ω1,

Ω̃2 = Ω̃c1 ∩
{

max
(
|δẐ1|, |δẐ2|

)
> z
}
,
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Ω̃3 = Ω̃c1 ∩
{

max
(
|δẐ1|, |δẐ2|

)
≤ z
}
.

We bound Vl from above using the second moment E
[(
g(Ẑ)− 1

2g(Ẑ1)− 1
2g(Ẑ2)

)2
]
. For A ∈

{Ẑ, Ẑ1, Ẑ2}, it follows from (2.20) and Assumption 2.3 that

g(A) = g (Ef (X)) + δA

∫ 1

0

g′ (Ef (X) + λ δA) dλ with δA = A− Ef (X),

and therefore, using the identity δẐ = δẐ1+δẐ2

2 , we get :

(
g(Ẑ)− 1

2
g(Ẑ1)− 1

2
g(Ẑ2)

)2

≤ 2

(
δẐ1

2

∫ 1

0

(
g′
(
Ef (X) + λδẐ

)
− g′

(
Ef (X) + λδẐ1

))
dλ

)2

+ 2

(
δẐ2

2

∫ 1

0

(
g′
(
Ef (X) + λδẐ

)
− g′

(
Ef (X) + λδẐ2

))
dλ

)2

≤ 2||g′||2∞
(

(δẐ1)2 + (δẐ2)2
)
.

We first focus on the set Ω̃1. According to Lemma 2.13, there exists a positive constant Cp s.t.

E
[(

(δẐ1)2 + (δẐ2)2
)
1Ω̃1

]
≤ ||δẐ1||22q∗P

(
Ω̃1

) 1
q

+ ||δẐ2||22q∗P
(

Ω̃1

) 1
q ≤ 2

C2
p

nl−1
K

1
q
ν z

ν
q ,

where we have applied Hölder’s inequality twice with conjugate exponents q, q∗ ≥ 1 such that

2q∗ ≤ p, and we have used nl − nl−1 = nl−1. On the set Ω̃2, since 1Ω̃2
<

max(|δẐ1|,|δẐ2|)
r

zr for any
r > 0, we obtain :

E
[(

(δẐ1)2 + (δẐ2)2
)
1Ω̃2

]
≤ 2

zr
E
[
max

(
|δẐ1|, |δẐ2|

)r+2
]
≤ 4

zr
Cr+2
p

n
r+2
2

l−1

,

for any positive r such that r + 2 ≤ p, again owing to Lemma 2.13. Finally, in order to control the
term E

[
(g(Ẑ)− 1

2g(Ẑ1)− 1
2g(Ẑ2))21Ω̃3

]
, we use the fact that, on the set Ω̃3, all the variables Ẑ1,

Ẑ2, Ẑ and Ef (X) belong to the same interval (di, di+1). Using the fact that g′ is Hölder continuous
together with the identity δẐ = 1

2 (δẐ1 + δẐ2), we have on the set Ω̃3 :(
g(Ẑ)− 1

2
g(Ẑ1)− 1

2
g(Ẑ2)

)2

≤ 2
(δẐ1)2

4

∫ 1

0

∣∣∣g′ (Ef (X) + λδẐ
)
− g′

(
Ef (X) + λδẐ1

)∣∣∣2 dλ

+ 2
(δẐ2)2

4

∫ 1

0

∣∣∣g′ (Ef (X) + λδẐ
)
− g′

(
Ef (X) + λδẐ2

)∣∣∣2 dλ

≤ 2
[g′]2η

4η+1 (1 + 2η)

(
(δẐ2)2 + (δẐ1)2

) ∣∣∣δẐ2 − δẐ1

∣∣∣2η .
Now using the inequalities

∣∣∣δẐ2 − δẐ1

∣∣∣2η ≤ 22η
(
|δẐ2|2η + |δẐ1|2η

)
, |δẐ1|2η|δẐ2|2 + |δẐ1|2|δẐ2|2η ≤

|δẐ1|2η+2 + |δẐ2|2η+2 together with Lemma 2.13 one more time, we obtain :

E

[(
g(Ẑ)− 1

2
g(Ẑ1)− 1

2
g(Ẑ2)

)2

1Ω̃3

]
≤ 2

[g′]2ηC
2η+2
p

(1 + 2η)n1+η
l−1

.
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Gathering the estimates obtained so far, we have shown that the upper bound

Vl ≤ E

[(
g(Ẑ)− 1

2
g(Ẑ1)− 1

2
g(Ẑ2)

)2
]

≤ 8||g′||2∞K
1
q
ν z

ν
qC2

p

1

nl
+

8||g′||2∞Cr+2
p 2

r+2
2

zr
1

n
r+2
2

l

+ 2
[g′]2ηC

2η+2
p 21+η

(1 + 2η)

1

n1+η
l

,

holds for every z < h, r ≤ p − 2 and q such that 2q∗ ≤ p. We conclude by minimizing the right
hand side with respect to z, and setting r = p− 2 and q = p/2

p/2−1 .

2.6 An alternative set of hypotheses
We can formulate a version of Theorem 2.6 under an alternative set of hypotheses, where we relax
the assumption on the regularity of g, at the price of strengthening the condition on the law of the
random variable E[f(X,Y )|X]. We obtain the following result, which may present interest in its
own. Note that, as a difference with Assumption 2.1, here g′ may fait to be Hölder continuous.

Theorem 2.15. Let us assume that g admits a derivative g′ in the sense of distributions which
has bounded variation. Let us assume that Ef (X) has a bounded density χE w.r.t. the Lebesgue
measure and that there exists p > 2 such that E [|f(X,Y )|p] < ∞. The, the tolerance ε2 on the
MSE of the antithetic ML estimator (2.3) can be achieved with complexity O(ε−2).

The proof of Theorem 2.15 mimicks the one of Theorem 2.6; once again, we need to rely on an
estimate of the bias and of the variance at each level, which is the content of the two propositions
below.

Under the boundedness assumption on the density of Ef (X), we manage to relax the regularity
hypothesis on the function g′ by exploiting the arguments of [Avi09, Thm 2.4 (i)].

Proposition 2.16 (Bias estimate under bounded variation condition for g′). Under the assumptions
of Theorem 2.15, there exists a constant κ > 0 such that∣∣∣E [g (Êf,n(X)

)]
− g (Ef (X))

∣∣∣ ≤ κ

n1− 1
p+1

.

Proof. Proceeding as in the beginning of the proof of Proposition 2.4 (see equation (2.22)), we have

E
[
g
(
Êf,n(X)

)
− g (Ef (X))

]
= E [T2]

with T2 := δEn(X)

∫ 1

0

(g′ (Ef (X) + λδEn(X))− g′ (Ef (X))) dλ.

Applying Hölder’s inequality with q, q∗ in the interval [1, p] such that 1
q + 1

q∗ = 1, we obtain

|E [T2]| ≤
∫ 1

0

‖δEn(X)‖q∗ ‖(g
′ (Ef (X) + λδEn(X))− g′ (Ef (X)))‖q dλ.

By Lemma 2.13, we have ‖δEn(X)‖q∗ ≤
Cp√
n
. For the second term, it follows from [Avi09, Thm

2.4(i)] that for every 0 ≤ λ ≤ 1 and r ≤ p,

‖g′ (Ef (X) + λδEn(X))− g′ (Ef (X))‖q ≤ 31+ 1
q ||g′||TV ‖χE‖

r
q(r+1)
∞ ‖δEn(X)‖

r
q(r+1)
r .

Now applying again Lemma 2.13 to the last term on the right hand side and maximizing the
exponent r

q(r+1) by choosing q = p
p−1 (corresponding to q∗ = p) and r = p, we obtain∣∣∣E [g (Êf,n(X)

)
− g (Ef (X))

]∣∣∣ ≤ κ

n1− 1
p+1

,

where κ = 31+ 1
q ||g′||TV ‖χE‖

r
q(r+1)
∞ Cp, and this concludes the proof.
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Proposition 2.17 (Variance estimate under bounded variation condition for g′). Under the as-
sumptions of Theorem 2.15, there exists a constant κ̃ such that

Vl ≤
κ̃

n
1+ p−2

2(p+1)

l

,

for every l ≥ 1.

Proof. We restore the notation of Proposition 2.5. Applying the Taylor expansion (2.20) to x =
Ef (X) and y ∈ {Ẑ1, Ẑ2, Ẑ} defined in (2.24), we have(

g(Ẑ)− 1

2
(g(Ẑ1) + g(Ẑ2))

)2

≤ 3

(
δẐ

∫ 1

0

(
g′(Ef (X) + λδẐ)− g′(Ef (X))

)
dλ

)2

+
3

4

(
δẐ1

∫ 1

0

(
g′(Ef (X) + λδẐ1)− g′(Ef (X))

)
dλ

)2

+
3

4

(
δẐ2

∫ 1

0

(
g′(Ef (X) + λδẐ2)− g′(Ef (X))

)
dλ

)2

. (2.25)

The expectation of the first term on the right hand side of (2.25) can be bounded by

E

[(∫ 1

0

(
g′(Ef (X) + λδẐ)− g′(Ef (X))

)
dλ

)2q
] 1
q

E
[
(δẐ)2q∗

] 1
q∗
, (2.26)

where we used Hölder’s inequality with q > 1 and q∗ such that 1
q + 1

q∗ = 1 and 2q∗ ≤ p. By Lemma
2.13, the second factor in (2.26) is bounded by Cp

nl
. Moreover, by Jensen’s inequality and [Avi09,

Thm 2.4(i)],

E

[(∫ 1

0

(
g′(Ef (X) + λδẐ)− g′(Ef (X))

)
dλ

)2q
]
≤
∫ 1

0

E
[(
g′(Ef (X) + λδẐ)− g′(Ef (X))

)2q
]

dλ

≤ 32q+1||g′||2qTV||χE ||
p
p+1
∞ ||δẐ||

p
p+1
p .

We proceed as in the proof of Proposition 2.16: we apply again Lemma 2.13 to ||δẐ||
p
p+1
p and then

optimize the resulting n
− p

2q(p+1)

l over q under the constraint q∗ ≤ p/2, which leads to the choice
q = p

p−2 . Overall, we have just showed that the expectation of the first term on the right hand side

of (2.25) is bounded by a constant times n
−1− p−2

2(p+1)

l . Similar computations for the two other terms
in (2.25) lead to the same upper bound, which concludes the proof.

The proof of Theorem 2.15 now boils down to the application of [Gil15, Theorem 1] with
coefficients α = 1− 1

p+1 , β = 1 + p−2
2(p+1) and γ = 1, which satisfy α > 1

2 max(β, γ) and β > γ.

3 Application to initial margin computations
In the following, we work ona a probability space (Ω,A,P) and consider the augmented filtration F
of a Brownian motion W , that is Ft = FWt := σ (Ws, 0 ≤ s ≤ t,NP) where NP denotes the family
of P−negligible sets of A. In this Section, we consider examples of IM computation where Theorem
2.6 applies. More precisely, we generate expectations by means of a Black-Scholes (BS) model

St = S0e

(
r−σ22

)
t+σWt , S0 > 0, (3.1)
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where the interest rate r > 0 and the the volatility σ > 0 are constant. The model (3.1) provides
a simple (yet meaningful) setting where we can evaluate explicit reference values (or unbiased
estimates) for some of the involved nested expectations (see Proposition 3.3 and Section 3.3 for a
detailed discussion of several financial examples), which we can use to test the multi-level estimators.

In [ADG+19], the IM correction for an option with payoff Φ(ST ) is computed according to
the CVaR of the future evolution of the replicating portfolio over a small time interval ∆ > 0.
When ∆ = 0 (that is : no IM correction), the price at time t is given by the classical BS price,
E
[
e−r(T−t)Φ(ST )

∣∣St], with first derivative δ(t, S) = ∂sE
[
e−r(T−t)Φ(ST )

∣∣St = s
]
. As shown in

[ADG+19], for small values of ∆, a first order correction to this BS price is given precisely by the
integral term in (1.1), Zref being computed according to the same BS model:

RCα E

[∫ T

0

e−rt
√

(t+ ∆) ∧ T − t |Zt|dt

]
, (3.2)

where: R is the funding cost net interest rate, Cα := CVaRα (N (0, 1)) = e−
x2

2

(1−α)
√

2π

∣∣∣∣
x=N−1(α)

is

the CVaR of a standard Gaussian random variable, and

Zt = z(t, St) := σSt δ(t, St). (3.3)

Using the likelihood ratio method of Broadie and Glasserman [BG96], we can restore an expres-
sion of Z in terms of an expectation:

zBS (t, s) = σs ∂sE
[
e−r(T−t)Φ(St)

∣∣∣St = s
]

= E
[
e−r(T−t)Φ(St)

WT −Wt

T − t

∣∣∣∣St = s

]
= E

[
e−r(T−t) (Φ(St)− Φ(St))

WT −Wt

T − t

∣∣∣∣St = s

]
. (3.4)

In the last expression, the conditionally centered term −Φ(St)
WT−Wt

T−t that we have artificially
introduced allows to reduce variance in the simulation, by playing the role of a control variate.

Assuming that every hedging operation is performed before T̃ := T−∆, we have
√

(t+ ∆) ∧ T − t =√
∆ inside (3.2), which allows us to consider the slightly modified quantity:

RCα
√

∆ T̃ E

[
1

T̃

∫ T̃

0

e−rt |z(t, St)|dt

]
=: RCα

√
∆ T̃ × I. (3.5)

The proposition below, whose proof is elementary, shows that (3.5) can be cast under the form of a
nested expectation as (1.2). In particular, instead of discretizing the time integral over [0, T̃ ] – which
would produce a bias – we introduce an independent random variable with uniform distribution
over [0, T̃ ]. Note that the product of constants RCα

√
∆ T̃ is fixed once and for all; in the following,

we therefore focus on the evaluation of the expectation I = E
[

1
T̃

∫ T̃
0
e−rt |z(t, St)|dt

]
.

Proposition 3.1. Let Y , Z̃ and U be three independent random variables such that Y, Z̃ ∼ N (0, 1)

and U ∼ U([0, T̃ ]), and consider the function g : x ∈ R→ |x|. Then X = (U, S0e
(r−σ22 )U+σ

√
UZ̃) ⊥

Y , and the expectation I in (3.5) satisfies

I = E [g (Ef (X))] = E
[
|E [f (X,Y ) |X]|

]
,

where f is defined by

f : ((t, s) , y) ∈ ([0, T̃ ]× (0,∞))× R→ e−rT

(
Φ
(
s e(r−σ22 )(T−t)+σ

√
T−t y

)
− Φ (s)

)
y

√
T − t

. (3.6)
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Proof. Using the fact that St and WT −Wt are independent, we have :

I =
1

T̃

∫ T̃

0

E
[
e−rt |z(t, St)|

]
dt

=
1

T̃

∫ T̃

0

E

[∣∣∣∣∣E
[
e−rT

(
Φ
(
s e(r−σ22 )(T−t)+σ(WT−Wt)

)
− Φ (s)

) WT −Wt

T − t

]
s=St

∣∣∣∣∣
]

dt.

Since WT −Wt
d
=
√
T − t Y and U ∼ U([0, T̃ ]) is independent of Z, we can write

I = E

∣∣∣∣∣∣E
e−rT

(
Φ
(
se(r−σ22 )(T−t)+σ

√
T−tY

)
− Φ (s)

)
Y

√
T − t


t=U,s=S0e

(r−σ22 )U+σ
√
UZ̃

∣∣∣∣∣∣


= E
[
g

(
E [f ((t, s) , Y )]

t=U,s=S0e
(r−σ22 )U+σ

√
UZ̃

)]
.

Now, using the independence of X = (U, S0e
(r−σ22 )U+σ

√
UZ̃) and Y , the argument of g in the last

expression is precisely E [f (X,Y ) |X].

From now on, the function g will correspond to the absolute value, g(x) = |x|.

Additional notation. In the rest of this Section we will make use of the following notations,
specific to the BS framework: for every T > 0, K > 0, r > 0, s > 0, every t ∈ [0, T ) and a ∈ [0,K),
we define :

N : x ∈ R→
∫ x

−∞

e−z
2/2

√
2π

dz, (the c.d.f of the standard normal distribution), (3.7)

d1 (t, T, s,K) :=
log
(
s
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

, (3.8)

A(t) :=
log
(

K
K−a

)
σ
√
T − t

, B(t) :=
log
(
K+a
K

)
σ
√
T − t

, (3.9)

δt : x ∈ R→ N (x−B(t)) +N (x+A(t))− 2N (x), (3.10)

Ht : x ∈ R→ e−
A(t)2

2 e−A(t)x + e−
B(t)2

2 eB(t)x − 2. (3.11)

For future purposes, it is important to observe the identity
√

2π δ′t(x) e
x2

2 = Ht(x). (3.12)

Remark 3.2. Notice that A(t) > B(t) > 0, since K2

K2−a2 > 1 .
We will also make use of the following well-known asymptotic expansion for the c.d.f. of the standard
normal distribution (see e.g. [Gor41]) :

N (z) ∼
z→−∞

−
exp

(
− z

2

2

)
z
√

2π
. (3.13)

3.1 Call and put options
The usual price at time 0 ≤ t ≤ T of a call option of maturity T > 0 and strike K > 0 is defined
by :

vcall(t, St) = E
[
e−r(T−t)Φcall(St)

∣∣∣St] , (3.14)
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where Φcall(s) = (s − K)+. Similarly, we define vput from Φput(s) = (K − s)+ for a put option.
Recall that the delta of a call option is positive : in the BS case (3.1),

δcall(t, St) = N (d1 (t, T, St,K))) > 0, (3.15)

while for a put option, the delta is negative:

δput(t, St) = −N (−d1 (t, T, St,K))) < 0. (3.16)

Hence, we are in a situation where the conditional expectation E[f(X,Y )|X] has constant sign and
the function g, here the absolute value function, does not induce any nonlinearity. It is also possible
to derive closed formulas for the expectation I.

Proposition 3.3. Denote Icall = E
[∣∣∣Ecallf (X)

∣∣∣] resp. Iput = E
[∣∣∣Eputf (X)

∣∣∣] the expectation I in

(3.5) associated to a call resp. put option, where X and Ecallf (X) are given in Proposition 3.1.
Then,

Icall = S0σN (d1 (0, T, S0,K)) , Iput = S0σN (−d1 (0, T, S0,K)) . (3.17)

As a comment, note that Icall and Iput do not depend on T̃ .

Proof. We justify the first expression in (3.17). We follow the arguments of [GM12, Lemma 2.2]:
using the martingale property of (e−rtvcall(t, St))t≤T̃ , it is possible to show (by differentiating
w.r.t. S0) that the process e−rtδcall(t, St)σSt = e−rtZcallt is also a martingale. Since the sign of
Zcallt is positive (see (3.15)), we obtain:

Icall =
1

T̃

∫ T̃

0

e−rtE
[∣∣Zcallt

∣∣]dt =
1

T̃

∫ T̃

0

E
[
e−rtZcallt

]
dt

=
1

T̃

∫ T̃

0

E
[
Zcall0

]
dt = σS0N (d1 (0, T, S0,K)) .

The proof for the second expression in (3.17) is analogous.

3.2 The butterfly option
In this Section, we focus on a butterfly option – a non-trivial case for which we will show that
Theorem 2.6 applies. Note that the delta of such an option does change sign (see Figure 1) and
thus, the simple arguments of Proposition 3.3 do not hold. The butterfly option payoff, price and
delta are respectively defined by:

Φbutterfly(s) = (s− (K + a))+ + (s− (K − a))+ − 2(s−K)+, (3.18)

vbutterflyT,K,a (t, St) = vcallT,K+a(t, St) + vcallT,K−a(t, St)− 2 vcallT,K(t, St), (3.19)

δbutterfly(t, St) := ∆t(St) =
∂vbutterflyT,K,a (t, s)

∂s

∣∣∣∣∣
s=St

(3.20)

= N (d1 (t, T, St,K + a)) +N (d1 (t, T, St,K − a))− 2N (d1(t, T, St,K)) ,

for a given strike K > 0 and parameter a > 0. Note that we now make the maturity and strike
parameters appear explicitly in the notation for the call option price vcallT,K .
To fix ideas, we plot in Figure 1 the delta of a call, put and butterfly option where S0 = K =
100, a = K

2 , T = 1, t = T
5 , r = 0.1, σ = 0.3. Observe that (as expected) while the call and put deltas

have a constant sign, the delta of the butterfly takes values of both signs.
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Figure 1: Derivatives of a call, put and butterfly option prices with respect to the variable price S.

The aim of this Section will be to show that Assumptions 2.1, 2.2, and 2.3 are satisfied for such
a butterfly option. Since δbutterfly changes its sign and the absolute value function g has a singular
point at zero, we will need to study the behavior of δbutterfly around zero in order to check that
Assumption 2.3 is verified. Although the computations we are going to perform are specific to the
butterfly payoff, we believe that the same arguments can be used to check Assumptions 2.1, 2.2 and
2.3 for more general payoffs, such as the ones we are going to consider in our numerical experiments
in Section 3.3.

Theorem 3.4. Assumptions 2.1, 2.2, 2.3 hold true in the butterfly case for η = 1, any p > 2 and
ν = 1

2

(
1 ∧ T−T̃

T̃ (1+A)

)
for any A > 0. Therefore, Theorem 2.6 applies.

The proof of Theorem 3.4 relies on a set of technical results, that we collect in the following Section.

3.2.1 Technical results required in the proof of Theorem 3.4

Notice that we can rewrite the butterfly delta as (see (3.10))

∆t(St) = δt (d1(t, T, St,K)) . (3.21)

Lemma 3.5. Let µ ∈ R, σ ∈ R∗ and Z be a standard normal r.v. Then for every A > 0, there
exists z0(A) > 0 s.t.

∀ 0 < z < z0(A), P (N (µ+ σZ) < z) ≤ z
1

(1+A)σ2 .

The proof of Lemma 3.5 is postponed to Appendix A.3.

Lemma 3.6. Denote s ∈ (0,∞)→ pt (s) the density function of St defined in (3.1). Then

∀s ∈ (0,∞), pt (s) :=
e−

(log(s)−(log(S0)+(r−σ2/2)t))
2

2σ2t

sσ
√
t
√

2π
≤ pt :=

e(σ
2−r)t

S0σ
√
t
√

2π
∈ L1([0, T̃ ]). (3.22)

Proof. For t ∈ (0, T̃ ], the derivative of pt is

p′t (s) =
1

σ
√
t
√

2πs2
e−

(log(s/S0)−(r−σ2/2)t)
2

2σ2t

[
− log (s/S0)− (r − σ2/2)t

σ2t
− 1

]
, s ∈ (0,∞).
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It is easy to check that the density has a single maximum, located at s0(t) := S0e
(r−3σ2/2)t where

p′t(s0(t)) = 0. Therefore,

pt := pt (s0(t)) =
e−

(−σ2t)
2

2σ2t

S0e(r−3σ2/2)tσ
√
t
√

2π
=

e(σ
2−r)t

S0σ
√
t
√

2π
∈ L1([0, T̃ ]).

The rather lenghtly proofs of the following two Propositions are postponed to Appendix A.4 and
A.5.

Proposition 3.7. For every t ∈ [0, T̃ ],

1. The function Ht defined in (3.11) has exactly two zeros denoted α(t), β(t) s.t. t → α(t) and
t→ β(t)are C∞ ([0, T )) and α(t) < 0 < β(t).

2. The function Γt : s ∈ (0,∞)→ ∆′t(s) has two zeros denoted α̃(t), β̃(t) given by

α̃(t) = Ke
σα(t)

√
T−t−

(
r+σ2

2

)
(T−t)

, β̃(t) = Ke
σβ(t)

√
T−t−

(
r+σ2

2

)
(T−t)

. (3.23)

In particular, t→ α̃(t) and t→ β̃(t) ∈ C∞ ([0, T )).

3. The delta of the butterfly option s ∈ (0,∞)→ ∆t(s) is increasing for s ∈ (0, α̃(t))∪
(
β̃(t),∞

)
,

decreasing for s ∈
(
α̃(t), β̃(t)

)
and has a unique zero denoted γ(t). Furthermore, t→ γ(t) ∈

C∞ ([0, T )) is bounded by

∀t ∈ [0, T ), α̃(t) < Ke
−
(
r+σ2

2

)
(T−t)

< γ(t) < β̃(t). (3.24)

Remark 3.8 (Geometric butterfly option). The geometric butterfly option corresponds to the pur-
chase of two calls with strike Ke−a and Kea (a > 0) and the sale of two puts with strike K. In
other words, K is the geometric mean of Ke−a and Kea while for a plain butterfly option, it is
the arithmetic mean. For the geometric butterfly option, we can obtain an explicit formula for the
unique zero of the delta

∆geom
t (T,K, a) = N

(
d1(t, T, St,K) + Ã(t)

)
+N

(
d1(t, T, St,K)− B̃(t)

)
− 2N (d1(t, T, St,K)) ,

Ã(t) = B̃(t) = a
σ
√
T−t , which is now given by γ(t) = Ke

−
(
r+σ2

2

)
(T−t). Unfortunately, for the more

realistic case of the arithmetic butterfly option (3.18), we do not have such an explicit expression
for the zero of the delta function; but the estimates provided in Proposition 3.7 will be sufficient
for the remaining part of our analysis.

Proposition 3.9. For every t ∈ [0, T̃ ], denote V(t) the neighborhood of γ(t) defined by V(t) =

(γ(t)− ε(t), γ(t) + ε(t)) where ε(t) :=
(
γ(t)−α̃(t)

2

)
∧
(
β̃(t)−γ(t)

2

)
, and denote χt the density function

of the random variable ∆t(St). Then, χt is bounded on W(t) := ∆t (V(t)), more precisely:

∀y ∈ W(t), χt(y) ≤ C(t) <∞,

where C ∈ L1([0, T̃ ]).
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Note that Proposition 3.9 provides an upper bound for the density of the random variable ∆t(St)
(related to the nested expectation problem via E[f(X,Y )|X] = e−rUσSU∆U (SU ), see Proposition
3.1 for notations) only on the bounded interval ∆t (V(t)). Unfortunately, this won’t be enough
to justify Assumption 2.3: in the butterfly option case, additional contributions to the “small”
probability P (dist(Ef (X), D) ≤ z) will also come from the left and right tails of the function s 7→
∆t(s), which tend to zero exponentially fast as s → 0 and s → ∞, see Figure 1. In the proof of
Theorem 3.4, we precisely have to take care of this fact. As a result, the estimate we obtain on the
probability P (dist(Ef (X), D) ≤ z) is of order zν with ν < 1, which is worse than what we would
obtain if we knew that the random variable dist(Ef (X), D) had a bounded density around zero.

3.2.2 Proof of Theorem 3.4

B Since g(x) = |x| and g′(x) = sgn(x), g has only one singular point d1 = 0 and Assumption 2.1
holds true with η = 1.

B We now check Assumption 2.2. Recall that f is defined in (3.6), that St = S0e

(
r−σ22

)
t+σ
√
tZ̃ and

S̃t = Ste

(
r−σ22

)
(T−t)+σ

√
T−tY , where Z̃ ∼ N (0, 1), Y ∼ N (0, 1), U ∼ U([0, T̃ ]) are independent.

First, notice that e−rT√
T−U ≤

e−rT√
T−T̃

and Φ(s) = (s− (K + a))+ + (s− (K− a))+− 2(s−K)+ ∈ [0, a].

Therefore, we get

|f(X,Y )| ≤ 2
e−rT√
T − T̃

a|Y |.

and Assumption 2.2 is obviously fulfilled for any positive p.
B Let us now deal with Assumption 2.3. From (3.3)-(3.5)-(3.20), we have Ef (X) = e−rUSUσ∆U (SU ).
Therefore, dist(Ef (X), D) = |Ef (X)| = e−rUSUσ |∆U (SU )|. Since

P
(
e−rUσSU |∆U (SU )| < z

)
≤ P

(
σSU |∆U (SU )| < zerT̃ /σ

)
, (3.25)

it is sufficient to study (writing z instead of erT̃ z/σ) P (SU |∆U (SU )| < z) . We have

P (SU |∆U (SU )| < z) ≤ P
(
SU <

√
z
)

+ P
(
|∆U (SU )| <

√
z
)

≤ 1

T̃

∫ T̃

0

∫ √z
0

pt (s) dsdt+ P
(
|∆U (SU )| <

√
z
)
,

and by Lemma 3.6

1

T̃

∫ T̃

0

∫ √z
0

pt (s) dsdt ≤
√
z

T̃

∫ T̃

0

e(σ
2−r)t

S0σ
√
t
√

2π
dt ≤ 2e|σ

2−r|T̃√
T̃ S0σ

√
2π

√
z. (3.26)

Furthermore, defining the sets S1(t) := (0, α̃(t)), S2(t) :=
(
α̃(t), β̃(t)

)
, S3(t) :=

(
β̃(t),∞

)
one has

P
(
|∆U (SU )| <

√
z
)

= P
(
∆U (SU ) <

√
z, SU ∈ S1(U)

)
+ P

(
|∆U (SU )| <

√
z, SU ∈ S2(U)

)
+ P

(
−∆U (SU ) <

√
z, SU ∈ S3(U)

)
=: p1 + p2 + p3.

Estimate of the second term p2. Taking
√
z < min

t∈[0,T̃ ]

{∣∣∣∆t

(
γ(t) + β̃(t)−γ(t)

2

)∣∣∣ ∧ ∣∣∣∆t

(
γ(t)− γ(t)−α̃(t)

2

)∣∣∣} :=

√
z2, using {|∆t(St)| <

√
z, St ∈ S2(t)} ⊂ {St ∈ V(t)} and Proposition 3.9, we get

p2 =
1

T̃

∫ T̃

0

P
(
|∆t(St)| <

√
z, St ∈ S2(t)

)
dt
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≤ 1

T̃

∫ T̃

0

∫ √z
−
√
z

χt(y)dydt ≤

(
2

T̃

∫ T̃

0

C(t)dt

)
√
z. (3.27)

Estimate of the first term p1. Recall (3.10) and (3.21), so that ∆t(St) = δt (d1(t, T, St,K)). Using
(3.13), we have :

N (y −B(t))

N (y +A(t))
∼

y→−∞

exp
(
− (y−B(t))2

2

)
exp

(
− (y+A(t))2

2

) y +A(t)

y −B(t)

∼
y→−∞

exp

(
1

2
(A(t) +B(t)) (2y −B(t) +A(t))

)
−−−−−→
y→−∞

0,

N (y)

N (y +A(t))
∼

y→−∞
exp

(
A(t)

2
(2y +A(t))

)
−−−−−→
y→−∞

0.

Consequently, δt(y) ∼
y→−∞

N (y +A(t)) and using that ∀t ∈ [0, T̃ ], N (y+A(t)) > N (y), we deduce

the existence of θ1 < 0 s.t. :

t ∈ [0, T̃ ], y < θ1 =⇒ δt(y) >
1

2
N (y).

W.l.o.g. we can assume that θ1 < inft∈[0,T̃ ] α̃(t), possibly taking a smaller θ1. Set
√
z1 :=

mint∈[0,T̃ ] δt (θ1) . Combining the estimate above yields (for
√
z ≤ √z1)

{∆U (SU ) = δU (d1(U, T, SU ,K)) <
√
z, SU ∈ S1(U)} ⊂

{
1

2
N (d1(U, T, SU ,K)) <

√
z

}
,

i.e. p1 ≤ P (N (d1(U, T, SU ,K)) < 2
√
z). Furthermore, noticing that d1(U, T, SU ,K)|U ∼ N

(
µU , σ

2
U

)
where :

µ :=
log
(
S0

K

)
+ rT + σ2

(
T/2− T̃

)
σ
√
T

< µU :=
log
(
S0

K

)
+
(
r + σ2/2

)
T − σ2U

σ
√
T − U

< µ̄ :=
log
(
S0

K

)
+
(
r + σ2/2

)
T

σ
√
T − T̃

,

0 < σU :=

√
U

T − U
< σT̃ :=

√
T̃

T − T̃
<∞,

we obtain:

P
(
N (d1(U, T, SU ,K)) < 2

√
z
)

= P
(
N (µU + σUN) < 2

√
z,N > 0

)
+ P

(
N (µU + σUN) < 2

√
z,N < 0

)
≤ P

(
N (µ− σT̃N) < 2

√
z,N > 0

)
+ P

(
N (µ+ σT̃N) < 2

√
z,N < 0

)
≤ 2P

(
N (µ+ σT̃N) < 2

√
z
)
,

with N ∼ N (0, 1) ⊥ U . Hence, from Lemma 3.5 we obtain that for every A > 0, there exists
z0,1 > 0 s.t. :

∀0 < z < z0,1 ∧ z1, p1 ≤ 2
1+ 1

(1+A)σ2
T̃ z

1

2(1+A)σ2
T̃ = 2

1+ T−T̃
T̃ (1+A) z

T−T̃
2T̃ (1+A) . (3.28)

Estimate of the third term p3. Using the identity N (y) + N (−y) = 1, the function −δt can be
written as

−δt(y) = N (−y −A(t)) +N (−y +B(t))− 2N (−y) .

Note that we now have

N (−y −A(t))

N (−y +B(t))
∼

y→+∞
exp

(
1

2
(A(t) +B(t)) (−2y −A(t) +B(t))

)
−−−−−→
y→+∞

0,
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N (−y)

N (−y +B(t))
∼

y→+∞
exp

(
1

2
B(t) (−2y +B(t))

)
−−−−−→
y→+∞

0.

Hence, there exists θ3 > 0 such that ∀y > θ3, −δt(y) > 1
2N (−y +B(t)) > 1

2N (−y) > 0. We can
assume w.l.o.g. that θ3 > supt∈[0,T̃ ] β̃(t) and set

√
z3 := mint∈[0,T̃ ]−δt (θ3) . Then, with similar

arguments to the analysis of the term p1 above, we get (for z < z3)

p3 = P
(
−δU (d1(U, T, SU ,K)) <

√
z, SU ∈ S3(U)

)
≤ P

(
N (−d1(U, T, SU ,K)) < 2

√
z
)

= P
(
N (−µU − σUN) < 2

√
z
)
≤ 2P

(
N (−µ̄+ σT̃N) < 2

√
z
)
.

Therefore, owing to Lemma 3.5, for any A > 0 there exists z0,3 > 0 such that

∀0 < z < z0,3 ∧ z3, p3 ≤ 2
1+ T−T̃

T̃ (1+A) z
T−T̃

2T̃ (1+A) . (3.29)

Finally, putting estimates (3.26), (3.27), (3.28) and (3.29) together, we obtain an upper bound for
(3.25): defining z̄ := (z0,1 ∧ z1 ∧ z2 ∧ z3 ∧ z0,3) erT̃ /σ, we conclude that for every 0 < z < z̄∧1 := z0,

P (|Ef (X)| < z) ≤

(
2

T̃

∫ T̃

0

C(t)dt+
2e|σ

2−r|T̃√
T̃ S0σ

√
2π

)(
z

σe−rT̃

) 1
2

+ 2
2+ T−T̃

T̃ (1+A)

(
z

σe−rT̃

) T−T̃
2T̃ (1+A)

≤ Kνz
ν

for ν as in the statement of the Theorem. Assumption 2.3 is therefore proved, and the proof of
Theorem 3.4 follows.

3.3 Numerical experiments
In this Section, we test and compare numerically the antithetic ML estimator (2.3), the non-
antithetic ML estimator (2.8), the NMC estimator (2.2) and the upper and lower bounds (2.19) for
the estimation of the initial margin correction (3.5) in different situations: a single call/ put/ but-
terfly option, and several portfolios containing different combinations of butterfly options. In order
to evaluate the MSE of the different estimators, we will make use of the available closed formulas
Icall and Iput (3.17) in the single call and put cases. Unfortunately, we do not possess analogous
formulae for the expectation Ibutterfly associated to the butterfly option, or to butterfly option
portfolios. In this case, since we still have an explicit expression for the conditional expectation
Ef (X) (based on (3.20)), we can construct a benchmark value by applying an intensive standard
Monte-Carlo method to evaluate E [g(Ef (X))] = E [|Ef (X)|].

3.3.1 The nested estimators

We estimate the mean-squared errors (denoted respectivelyMSEML,MSEML2 andMSENMC) with
1

nMSE

∑nMSE

j=1

(
Îj − I

)2

, where (Îj)1≤j≤nMSE
are independent copies of the respective estimator and

nMSE = 200. We will denote the related computational complexities CML, CML2 and CNMC.
In order to achieve MSE = O(ε2) for ε > 0, Theorem 2.6, Propositions 2.9 and 2.8 provide the

following optimal choices of parameters for each estimator.

Construction of the antithetic ML estimator. The optimal ML estimator obtained in Theo-
rem 2.6 depends on some problem-specific parameters ν, η, p. In our application to IM computation
presented in Section 3, we can take η = 1, p arbitrary large and ν = 1

2

(
1 ∧ T−T̃

T̃ (1+A)

)
for any A > 0.
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If T̃ < T/2, then T−T̃
T̃

> 1, and choosing A = 1
2

(
T−T̃
T̃
− 1
)
we get T−T̃

T̃ (1+A)
> 1. As a conse-

quence, ν = 1
2 . Since 1 + (p−2)ν

4(p+ν) ∧
η
2 →

9
8 as p ↑ +∞, following Theorem 2.6 we choose the outer

Monte-Carlo samples Ml as
Ml = M02−

9
8 l.

If T̃ ≥ T/2, then T−T̃
T̃ (1+A)

< 1 for any A > 0, yielding ν = T−T̃
2T̃ (1+A)

. Since 1 + (p−2)ν
4(p+ν) ∧

η
2 →

1 + T−T̃
8T̃ (1+A)

as p ↑ +∞, again following Theorem 2.6 we can choose

Ml = M02
−
(

1+ T−T̃
8T̃ (1+A)

)
l
, A > 0.

For such choices ofMl, the overall computational complexity isCML =
∑L
l=0 nlMl = 1−2−(L+1)ν/4

1−2−ν/4
M0n0

where ν = 1
2 if T̃ < T

2 and ν = T−T̃
2T̃ (1+A)

if T̃ ≥ T
2 . In our experiments, we will consider options

with maturity T = 1 and set T̃ = 252−5
252 T (1 week before the maturity, 252 trading days in a year)

and A = 0.05. As a consequence, we have T̃ ≥ T
2 and ν = T−T̃

2T̃ (1+A)
.

Construction of the two other estimators. The NMC estimator (2.2) only depends on the
two sample sizes N and M ; its complexity is CNMC = MN . The non-antithetic ML estimator
ML2 is fixed by Propositions 2.9: recall that we make the choice M̃l = M̃02−l, which implies
that the product ñlM̃l = ñ0M̃0 is independent of l. The resulting computational complexity is
CML2 = ñ0M̃0(L̃+ 1).

We fix the model parameters r = 0.1, σ = 0.3 in (3.1) and consider four different Portfolios
A,B, C,D, described below. To estimate a reference value for I, we use an unbiased Monte-Carlo
estimation of E [g(Ef (X))] (recall that Ef (X) is explicit in the examples below) with nMC = 5×107

samples, and provide the associated 95%-confidence interval. Denote Φ(s,K, a) = (s− (K−a))+ +
(s+ (K + a))+ − 2(s−K)+ the butterfly option payoff with strikes K − a, K, and K + a.

Portfolio A. We consider one butterfly option with payoff Φ(s, 100, 50), and set S0 = 90. Here
IA = E

[
g(Ebutterflyf (X))

]
is worth 10.720± 0.002.

Portfolio B. We choose Portfolio A, but now with S0 = 30, which implies S0 � K = 100 and
therefore the resulting samples will be far from the singularity of g with high probability (see Figure
2). Here IB = 0.998± 5 ∗ 10−4.

Portfolio C. We choose a more diversified portfolio, made of a linear combination of five different
butterfly options. The final payoff is of the form
2Φ(s, 10, 1) + 2Φ(s, 20, 2) + 2Φ(s, 40, 4) + Φ(s, 50, 5) + 1.5Φ(s, 80, 8). In Figure 3 one can observe
that the Portfolio delta, as a function of s, now has several zeros (playing the role of singularities
for g(z) = |z|). We set S0 = 20 (close to the singularities) and get IC = 0.507±0.0002 as a reference
value.

Portfolio D. We choose Portfolio C, but now setting S0 = 100 (further away from the singularities
of the option’s delta, see Figure 3 again). Here ID = 1.263± 0.0004.
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(a) t = 0.1T (b) t = 0.5T (c) t = 0.9T

Figure 2: Functions s→ 0.1∆t(s) and s→ pt(s) for the Portfolios A,B and different values of t.

(a) t = 0.1T (b) t = 0.5T (c) t = 0.9T

Figure 3: Functions s→ ∆t(s) and s→ pt(s) for the Portfolios C,D and different values of t.

In Figures 2 and 3 we plot the Portfolio delta (as a function of s) for different times t, together
with the probability density function of St, denoted pt. Note that in Figure 2, we have rescaled
the delta so to fit all the functions on the same graph. Observing the support of pt, we see that in
Portfolios A and C there is a high probability that ∆t(St) will change sign, as opposed to Portfolios
B and D.

In Figure 4, we plot the MSE’s of the different estimators in terms of their respective com-
putational costs, on a log-log plot. We have to fix their (free) parameters: (M,N) for the NMC
estimator, (M0, n0, L) for the ML estimator and

(
M̃0, ñ0, L̃

)
for the ML2 estimator. Recall from

the analysis above that CML = 1−2−(L+1)ν/4

1−2−ν/4
M0n0, CML2 = ñ0M̃0(L̃+ 1) and CNMC = MN . For a

fixed value of the cost C (here ranging from 5 × 105 to 1 × 106), we look for values of M,M0, M̃0

on a grid of evenly spaced values between 103 and 104 and for values of L, L̃ in {2, 3, 4, 5} that
minimize the estimated MSE. We fix the corresponding parameters N,n0, ñ0 using the identities

N =
C

M
, n0 =

(1− 2−ν/4)C

(1− 2−(L+1)ν/4)M0
, ñ0 =

C

(L̃+ 1)M̃0

.
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(a) Portfolio A (b) Portfolio B

(c) Portfolio C (d) Portfolio D

Figure 4: log (MSE) against log of the computational cost for the Portfolios A,B, C,D. ML stands
for the antithetic Multi-level estimator (2.3), ML2 for the non-antithetic ML estimator (2.8), and
NMC for the plain nested estimator (2.2).

We observe that the antithetic ML estimator gives the best results in terms of size of the MSE
for a fixed cost C for the Portfolios A, C and D, for which we have singularities in the delta. We
retrieve a slope close to −1 for the ML estimator, whereas the other estimators show a slightly
smaller slope (in absolute value), which is in line with the theoretical results. On the other side,
recall that Portfolio B was constructed in such a way that the probability of hitting the zeros of the
delta function is very small, so that the function g essentialy does not introduce any bias. In this
case, the three estimators provide similar results (and the antithetic estimator ML actually does
not display the best results anymore): the use of a multilevel estimator in this setting does not
seem to provide concrete advantage with respect to a plain nested MC procedure. In all the other
situations, the antithetic MLMC estimator has the best performance.

3.3.2 Non-nested lower and upper estimators

With reference to the notation of Section 2.3 and Proposition 3.1, we have to evaluate the regression
coefficients (2.16) and (2.17) with respect to X = (U,Z) ∈ R2. To do so, we choose as a projection
basis the tensor product of (first-kind) Chebychev polynomials Ti and Hermite polynomials Hi,
precisely: we set LX,kX := LU,kU ⊗ LZ,kZ for kU ≥ 0 and kZ ≥ 0, where

kX := kU × kZ , LU,kU := span
(
Ti(U/T̃ ) : 0 ≤ i ≤ kU

)
, LZ,kZ := span (Hi(Z) : 0 ≤ i ≤ kZ) ,
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where the polynomials Ti and Hi are defined by

T0(x) = 1, T1(x) = x, ∀i ≥ 1, Ti+1(x) = 2xTi(x)− Ti−1(x),

H0(x) = 1, H1(x) = x, ∀i ≥ 1, Hi+1(x) = xHi(x)− iHi−1(x).

Choosing such smooth basis functions is motivated by the intuition that, in the present setting,
Ef (X) is a reasonably smooth function of X. For every 0 ≤ ju ≤ kU and 0 ≤ jz ≤ kZ , we solve the
least-squares problems introduced in Section 2.3, the first one being

(l∗jujz ) = argmin
ljujz ∈ R,

0 ≤ ju ≤ kU , 0 ≤ jz ≤ kZ

1

N

N∑
i=1

f(X̃i, Ỹi)−
∑

0≤ju≤kU ,0≤jz≤kZ

ljujzTju(Ũi/T̃ )Hjz (Z̃i)

2

.

For the construction of the random variable ε∗d, we use the same kind of basis for X, that is
LX,dX = LU,dU ⊗ LZ,dZ (possibly with different values of dU ≥ 0, dZ ≥ 0), and choose as an
approximation space for Y the space LY,dY = span (Hi(Y ) : 0 ≤ i ≤ dY ), dY ≥ 0. For every
0 ≤ au ≤ dU , 0 ≤ az ≤ dZ and 0 ≤ by ≤ dY , we have to solve the least-squares problem

(u∗auazby ) = argmin
uauazby ∈ R, 0 ≤ au ≤ dU ,
0 ≤ az ≤ dZ , 0 < by ≤ dY

1

N

N∑
i=1

(
f(X̃i, Ỹi)−

∑
0 ≤ au ≤ dU ,
0 ≤ az ≤ dZ ,
0 < by ≤ dY

uauazbyTau(Ũi/T̃ )Haz

(
Z̃i

)
Hby

(
Ỹi

))2

,

where we have used the zero-mean property Hby (Ỹ ) − E
[
Hby (Ỹ )

]
= 1by 6=0Hby (Ỹ ) following from

the orthogonality of the Hermite polynomials with respect to the Gaussian measure [AS64, 22.2.15,
p.775 ], which means that we can restrict the sum to 0 < by ≤ dY .

To construct the upper and lower biased estimators, we generateN independent copies
(
X̃i, Ỹi

)
1≤i≤N

of

(X,Y ) in order to solve both least-squares problems above, and define the regression functions ϕ∗k
and ε∗d from (2.18). Once these functions are fixed, we generate another sample of Ñ independent
copies of (X,Y ) and estimate the left and right expectations in (2.19) with a standard Monte Carlo
procedure.

Impact and choice thereof of the polynomial degrees. In Table 1, we list the resulting
values of the lower/upper bounds together with their 95% confidence interval, for different choices
of the polynomial degrees (kU , kZ) and (dU , dZ , dY ). We have run the algorithm on call and put
options with parameters S0 = K = 100, T = 1, r = 0.1, σ = 0.3. In Table 2, we provide the
corresponding lower/upper bounds obtained for Portfolios A and C.

(kU , kZ) Call Put (dU , dZ , dY ) Call Put
(1, 1) 20.52± 0.033 9.415± 0.014 (1, 1, 1) 22.963± 0.028 11.066± 0.012
(2, 2) 20.551± 0.033 9.421± 0.014 (2, 2, 2) 22.461± 0.012 10.969± 0.006
(3, 3) 20.551± 0.033 9.396± 0.014 (3, 3, 3) 21.104± 0.009 10.177± 0.005
(4, 4) 20.554± 0.033 9.424± 0.015 (4, 4, 4) 20.909± 0.01 9.924± 0.005
(5, 5) 20.535± 0.073 9.409± 0.032 (5, 5, 5) 20.883± 0.01 9.859± 0.006
(6, 6) 20.548± 0.033 9.429± 0.015 (6, 6, 6) 20.874± 0.02 9.797± 0.009

Table 1: Lower/upper bounds for the values of Icall = 20.567 and Iput = 9.433. The sample sizes
are N = 105, Ñ = 5× 106.

28



(kU , kZ) Portfolio A Portfolio C (dU , dZ , dY ) Portfolio A Portfolio C
(6, 6) 10.686± 0.036 0.467± 0.004 (6, 6, 6) 11.695± 0.013 1.424± 0.003
(7, 7) 10.689± 0.036 0.495± 0.004 (7, 7, 7) 11.342± 0.038 1.415± 0.005
(8, 8) 10.702± 0.036 0.498± 0.004 (8, 8, 8) 11.207± 0.017 1.383± 0.004
(9, 9) 10.707± 0.036 0.503± 0.004 (9, 9, 9) 11.142± 0.04 1.375± 0.007

Table 2: Lower/upper bounds for the values of IA = 10.720±0.002 and IC = 0.507±0.0002. Sample
sizes are N = 106, Ñ = 2× 106.

Notice that an automatic choice of the degrees (kU , kZ) and (dU , dZ , dY ) could be done through
a cross-validation procedure so that the out-of-sample regression error is minimized, see [GKKW02,
Chapter 8] and [FHT08, Chapter 8] for instance. A minimal out-of-sample regression error (a.k.a. gen-
eralization error) should intuitively give the best bounds. Here, since we evaluate both bounds at
once, we can also make a choice based on the difference between their values: we choose polyno-
mial degrees (kU , kZ) and (dU , dZ , dY ) such that the distance between the two estimated bounds
is minimized. In Table 1, this would correspond to the highest degree dU = dZ = dY = 6 for the
upper bound; the lower bound does not seem to be very sensitive to the value of kU , kZ and is well
estimated already with kU = kZ = 1. Using the reference explicit values of Icall and Iput, we can
see that the results are overall very accurate; when kU = kZ = dU = dZ = dY = 6, the relative
error between the two bounds is 20.874−20.548

20.567 = 1.6% for the call option and 9.797−9.429
9.433 = 3.9% for

the put option. In Table 2, we observe a similar behaviour for Portfolio A; here the relative error
for the higher tested degree is 11.142−10.707

10.720 = 4.0%. Note that we had to do use higher polynomial
degrees and larger sample size N than in Table 1 in order to obtain comparable relative errors,
which we can attribute to the more singular behavior of this portfolio. For Portfolio C (containing
even more singularities), we see that the two bounds are still quite far from each other; notably,
while the lower bounds provide accurate results, the upper bounds remain relatively far from the
true value. Obtaining tighter bounds in this case would require higher values for N , Ñ and the
polynomial degrees.

4 Conclusion
For the evaluation of E [g(E [f(X,Y )|X])] with a piece-wise C1 function g, we have designed an
antithetic Multi-Level Monte-Carlo estimator and lower/upper biased non-nested Monte-Carlo es-
timators. Theoretical results support the convergence of all these estimators (Theorem 2.6 and
Theorem 2.11). Globally, our numerical experiments show better performance of the antithetic
MLMC estimator compared to the non-antithetic one and to a plain nested Monte-Carlo estimator
(as expected). The lower/upper bounds can be implemented using empirical regression methods,
and this leads to a scheme for “sandwiching” the quantity of interest, provided that the conditional
expectation x 7→ E [f(X,Y )|X = x] can be efficiently approximated over a space of basis functions.

A Technical proofs

A.1 Proof of Proposition 2.8 on the complexity of the NMC estimator

First notice that by independence, E
[
ÎM,N

]
= E

[
g
(

1
N

∑N
j=1 f (X,Yj)

)]
and by Proposition 2.4

there exists a positive constant κ s.t.

∀N ≥ 1,
∣∣∣E [ÎM,N − g (Ef (X))

]∣∣∣ ≤ κ

N
1
2 (1+

(p−1)ν
p+ν ∧η)

.
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By Lemma 2.14, applying (2.20), we have that the identity

g
(
Êf,N (X)

)
= g (Ef (X)) + δEN (X)

∫ 1

0

(
g′ (Ef (X) + λδEN (X))

)
dλ

holds on the set Ef (X) /∈ {d1, . . . , dθ} with probability one by Assumption 2.3. Whence, we have :

E
[
g
(
Êf,N (X)

)2
]
≤ 2

(
E
[
g (Ef (X))

2
]

+ ||g′||2∞E
[
(δEN (X))

2
])
≤ 2

(
E
[
g (Ef (X))

2
]

+ ||g′||2∞
C2
p

N

)
,

using Lemma 2.13. By independence, we get the following estimate for the variance :

Var
(
ÎM,N

)
=

1

M
Var

(
g
(
Êf,N (X)

))
≤ 1

M
E
[
g
(
Êf,N (X)

)2
]
≤ 2

M

(
E
[
g (Ef (X))

2
]

+ ||g′||2∞
C2
p

N

)
.

Finally, by the bias-variance decomposition of MSENMC, we get :

MSENMC ≤ CNMC

(
1

N(1+
(p−1)ν
p+ν ∧η)

+
1

MN
+

1

M

)
,

where CNMC = κ2 ∨
(

2E
[
g (Ef (X))

2
])
∨
(
2||g′||2∞C2

p

)
. The statement on the complexity of the

NMC estimator finally follows from the fact that the computational cost is of order O(MN).

A.2 Proof of Proposition 2.9 on the complexity of the Multi level esti-
mator ML2

Since g is Lipschitz continuous, proceeding as in the proof of Proposition 2.8, there exists a constant
Cp > 0 such that

E
[(
g(Ẑ)− g(Ẑ1)

)2
]
≤ ||g′||2∞E

(δẐ2 − δẐ1

2

)2
 ≤ ||g′||2∞C2

p

nl
.

Now noticing that the variance at level l for the estimator (2.8) is given by

Vl = Var

g
 1

nl

nl∑
j=1

f (X,Yj)

− g
 1

nl−1

nl−1∑
j=1

f (X,Yj)

 = Var
(
g(Ẑ)− g(Ẑ1)

)
,

we conclude as in the Proof of Theorem 2.6, now using the estimate Vl ≤ Cn−1
l for a positive

constant C and the case β = γ in [Gil15, Theorem 1].

A.3 Proof of Lemma 3.5
Since N (.) is increasing on R, we have P (N (µ+ σZ) < z) = N

(
N−1(z)−µ

σ

)
for every z > 0. For

given A > 0, define σ′ := (1 +A/2)1/2σ and note that, owing to (3.13)),

N
(
N−1(z)−µ

σ

)
N
(
N−1(z)

σ′

) ∼
z→0

σ

σ′

exp

(
− 1

2

(
N−1(z)−µ

σ

)2
)

exp

(
− 1

2

(
N−1(z)

σ′

)2
) 1

1− µ
N−1(z)

∼
z→0

σ

σ′
exp

(
−1

2

(
σ
′ − σ
σσ′

N−1 (z)− µ

σ

)(
σ
′
+ σ

σσ′
N−1 (z)− µ

σ

))
.
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Then, using σ′ > σ > 0 and N−1 (z) −−−−→
z→0+

−∞, we obtain
N
(
N−1(z)−µ

σ

)
N
(
N−1(z)

σ
′

) −−−−→
z→0+

0. Hence, there

exists λ0(A) > 0 s.t. for every 0 < z < λ0(A) :

N
(
N−1 (z)− µ

σ

)
< N

(
N−1 (z)

σ′

)
.

Now, using the fact for every z ∈ (0, 1
2 ], N−1(z) ≤ 0, we have that for every z ∈ (0, 2−(1+A)σ2

],

N
(
N−1 (z)

σ′

)
≤ z

1
(1+A)σ2 ⇐⇒ N−1 (z)

σ′
≤ N−1

(
z

1
(1+A)σ2

)
≤ 0 ⇐⇒

(
N−1 (z)

σ′

)2

≥
(
N−1

(
z

1
(1+A)σ2

))2

.

Now using the asymptotic expansion for the inverse c.d.f. of the standard normal distribution (see
[Dom03]),

(
N−1 (z)

)2 ∼
z→0+

log

(
1

2πz2

)
− log

(
log

(
1

2πz2

))
∼

z→0+
−2 log (z) ,

the following limit holds:(
N−1(z)
σ′

)2

(
N−1

(
z

1
(1+A)σ2

))2 −−−−→
z→0+

1
1

(1+A)σ2 (σ′)
2 =

1 +A

1 +A/2
> 1.

We have just shown that there exists λ1(A) > 0 s.t. for every 0 < z < λ1(A), one has
(
N−1(z)
σ′

)2

≥(
N−1

(
z

1
(1+A)σ2

))2

. Finally, choosing z0(A) := λ0(A) ∧ λ1(A) ∧ 2
− 1

(1+A)σ2 , we obtained the an-
nounced claim.

A.4 Proof of Proposition 3.7
B Let us justify point 1. For notational simplicity, we omit the dependence with respect to t of the
functions A and B. Taking the derivative of Ht yields

H ′t(x) = −Ae−A
2

2 e−Ax +Be−
B2

2 eBx.

Now

H ′t(x) = 0⇐⇒ x = x0(t) :=
log
(
A
B

)
A+B

− 1

2
(A−B) , (A.1)

H ′t(x) > 0 for x > x0(t) and H ′t(x) < 0 for x < x0(t). Recall that A > B > 0. Using Ht(x) −−−−−→
x→±∞

+∞, Ht is decreasing on (−∞, x0(t)) and increasing on (x0(t),+∞). Furthermore, let us show that

Ht (x0(t)) = e−A
log(AB )
A+B −

AB
2 + eB

log(AB )
A+B −

AB
2 − 2 < 0.

Let us define y := A
B > 1 so that Ht (x0(t)) = e−

AB
2

(
e−

y log(y)
1+y + e

log(y)
1+y − 2

)
:= e−

AB
2 (h(y)− 2).

Since e
−AB

2 < 1, it is now sufficient to prove that

∀y > 1, h(y) < 2.
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Set g(y) := y log(y)
1+y so that h(y) = 1+y

e
y log(y)

1+y

= 1+y
eg(y)

. A direct computation yields g′(y) = log(y)

(1+y)2
+

1
(1+y) and h′(y) = e−g(y) (1− (1 + y) g′(y)) = − log(y)e−g(y)

(1+y) < 0 for y > 1. Hence h is continuous
and decreasing on (1,∞), thus strictly upper bounded by h (1) = 2, which is the announced claim.

Now using the intermediate value theorem, there exist only two roots α(t), β(t) ∈ R of Ht.
Summing up, we have :

α(t) < x0(t) < β(t), Ht (α(t)) = Ht (β(t)) = 0.

Using Ht(0) = e−
A2

2 + e−
B2

2 − 2 < 0, we finally get:

α(t) < 0 < β(t). (A.2)

Let us now prove that α ∈ C∞ ([0, T )) (similar arguments can be used for β). Note that H which
is C∞ can be defined for negative t as well, say on (−η, T ) with η > 0 and we keep writing H for
this extended defintion. The roots α and β are also well defined on (−η, T ). Now let t1 ∈ (−η, T )
and using ∀t ∈ (−η, T ) , x0(t) 6= α(t), we have:

H (t1, α (t1)) = 0,
∂H

∂x
(t1, α (t1)) = −A (t1) e−

A(t1)2

2 e−A(t1)α(t1) +B (t1) e−
B(t1)2

2 eB(t1)α(t1) 6= 0.

Using the implicit function theorem (see Thereom 10.2.2 in [Die90]), there exist neighborhoods Ut1
and Uα(t1) of t1 and α (t1), a function χ : Ut1 → Uα(t1) of class C∞ s.t.

∀t ∈ Ut1 , H (t, χ(t)) = 0.

Hence α (t1) = χ (t1) and α is C∞ at t1 (for every t1 ∈ (−η, T )), so that α ∈ C∞ ((−η, T )) and
consequently α ∈ C∞ ([0, T )).
BWe now prove point 2. Let us denote d1 (t, s) instead of d1 (t, T, s,K). Notice that ∀t ∈ [0, T ), s ∈

(0,∞)→ d1 (t, s) =
log( sK )+

(
r+σ2

2

)
(T−t)

σ
√
T−t is increasing and:

x = d1 (t, s)⇐⇒ s = Ke
σ
√
T−tx−

(
r+σ2

2

)
(T−t)

,

Γt(St) := ∆′t(St)
(3.21)

= δ′t (d1(t, T, St,K))
1

Stσ
√
T − t

.
(A.3)

In view of the relation (3.12) (i.e.
√

2πδ′t(x) = e−
y2

2 Ht(x)), the zeros α(t), β(t) of Ht(.) transfer
to those of δ′t(d1(t, .)) (and thus Γt(.)) via (A.3). This leads to the announced expression (3.23)
of two zeros α̃(t), β̃(t) for Γt(.). The time-smoothness of α(t), β(t) is clearly transferred to that of
t→ α̃(t), β̃(t).
B Finally, let us prove point 3. The function x→ δt(x) is increasing on (−∞, α(t))∪ (β(t),∞) and
decreasing on (α(t), β(t)) since Ht is positive on (−∞, α(t)) ∪ (β(t),∞), negative on (α(t), β(t))
and has two unique zeros α(t), β(t). Using that s→ d1 (t, s) is an increasing function and by (3.21),
we conclude that s → ∆t(s) is increasing on (0, α̃(t)) ∪

(
β̃(t),∞

)
and decreasing on

(
α̃(t), β̃(t)

)
.

Noticing that, ∀t ∈ [0, T ), ∆t(s) −−−−→
s→0+

0 and ∆t(s) −−−−−→
s→+∞

0, by the intermediate value theorem,

there exists a unique function t ∈ [0, T )→ γ(t) s.t.:

∀t ∈ [0, T ), α̃(t) < γ(t) < β̃(t), ∆t (γ(t)) = 0.

Also, using the monotonicity of N , the definitions (3.9) and δt(0) = ∆t

(
Ke
−
(
r+σ2

2

)
(T−t)

)
=

N (A(t))−N (B(t)) > 0, we obtain:

∀t ∈ [0, T ), α̃(t) < Ke
−
(
r+σ2

2

)
(T−t)

< γ(t).

It remains to justify that t → γ(t) ∈ C∞ ([0, T )): this can be done using the implicit function
theorem, exactly as we have done for point 1.

32



A.5 Proof of Proposition 3.9
By Proposition 3.7, s ∈ V(t)→ ∆t (s) is decreasing and takes its values inW(t), hence we can define
∆−1
t (the inverse function of ∆t(.)) and ∆t is a C1- diffeomorphism from V(t) to W(t). Keeping

on with the notation pt used in Lemma 3.6, the density χt restricted to W(t) is defined as:

∀t ∈ [0, T ), ∀y ∈ W(t), χt(y) =
pt (s)

|∆′t (s)|

∣∣∣∣
s=∆−1

t (y)

,

where for the sake of clarity we write d1(t, s) instead of d1(t, T, s,K) and (see (A.3) and (3.12))

|∆′t (s)| = e−
d1(t,s)2

2

sσ
√
T − t

√
2π
|Ht (d1 (t, s))| .

Proposition 3.7 gives us all information about the sign and the variation of Ht(.). Combining the
previous remark and the fact that s → d1(t, s) is increasing on (0,∞), we easily deduce that for
t ∈ [0, T̃ ] the function s→ |Ht(d1(t, s))| is increasing on (α̃(t), x̃0(t)) and decreasing on

(
x̃0(t), β̃(t)

)
where x̃0(t) := Ke

σ
√
T−tx0(t)−

(
r+σ2

2

)
(T−t). Consequently,

∀s ∈ V(t), |Ht (d1 (t, s))| ≥ |Ht (d1 (t, γ(t) + ε(t)))| ∧ |Ht (d1 (t, γ(t)− ε(t)))| := C1(t).

Observe that on [0, T̃ ], C1(.) is continuous and positive because of the choice of ε(t).

Furthermore, using that s ∈ (0,∞)→ e−
d1(t,s)2

2 is increasing on
(

0,Ke−(r+σ2

2 )(T−t)
)
, decreasing

on
(
Ke−(r+σ2

2 )(T−t),∞
)
and the inequality 1/(s

√
T − t) ≥ 1/(

√
T (γ(t) + ε(t))) on V(t), we have:

∀s ∈ V(t),
e−

d1(t,s)2

2

sσ
√
T − t

√
2π
≥ e−

d1(t,γ(t)+ε(t))2

2 ∧ e−
d1(t,γ(t)−ε(t))2

2

√
T (γ(t) + ε(t))σ

√
2π

:= C2(t).

It is clear that C2(.) is also continuous and positive on [0, T̃ ]. Owing to Lemma 3.6, we finally
obtain the following upper bound for χt :

∀y ∈ W(t), χt(y) ≤ e(σ
2−r)t

S0σ
√

2π
√
t

1

C1(t)C2(t)
:= C(t).

Summing up, we have shown that the function C(.) is bounded by 1/
√
t up to a constant. Therefore,

C(.) is in L1([0, T̃ ]), and this concludes the proof.
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