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Stability analysis of piecewise affine discrete-time systems*

Leonardo B. Groff Giorgio Valmorbida João M. Gomes da Silva Jr.

Abstract— This paper presents an implicit model
for piecewise affine functions as the interconnection
of a linear function and ramp nonlinearities. We
show how to verify positive-definiteness of piecewise
quadratic functions by exploiting sector properties of
the ramp function. These properties are characterized
by a set of identities instead of the usual sector
inequalities adopted in the study of Lurie systems.
Based on this setup, we then formulate conditions
for stability of discrete-time piecewise systems using
piecewise quadratic Lyapunov functions in terms of
linear matrix inequalities. The results are illustrated
in numerical examples.

I. Introduction

Models for Piecewise Affine (PWA) systems have been
proposed to study engineered systems such as nonlinear
circuits [1], [2] and hybrid systems, where simple piece-
wise affine nonlinearities may lead to complex behavior.
In the context of control systems early studies trace back
to [3] where an explicit representation was introduced.
Moreover, static nonlinearities such as saturation or de-
adzone can also be studied in this framework since these
functions are indeed piecewise affine.

Another example of practical interest of piecewise
affine, continuous, functions in discrete-time systems
appears in the context of Receding Horizon Optimal
Control [4] in which multi-parametric linear or quadra-
tic programs can be solved offline to obtain piecewise
control laws together with its partition on the state
space, thus resulting a PWA closed loop system. These
piecewise continuous functions are referred to as explicit
Model Predictive Control. The control strategies based
on explicit MPC have the advantage of avoiding online
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solution of Quadratic Programs. On the other hand,
their implementation demands the solution to a location
problem for gain selection. Although efficient strategies
for the point location problem based on binary tree
searches have been proposed [5] (see also the review in
[6]), this is still a bottleneck of the approach.

Stability of PWA systems has been studied with Lya-
punov inequalities. Early theorems have proposed the use
of simple quadratic functions as Lyapunov function (LF)
candidates. Refinements of these sufficient conditions
have been proposed by considering piecewise quadratic
LF [7], [8]. In the context of explicit MPC, piecewise
affine LF has been studied in [9] and in the context of
conewise linear systems, in [10]. A drawback of the results
using a different quadratic function defined for each set in
the partition appears when assessing the decrease of the
LF during a transition. Indeed, one needs to evaluate and
enumerate all the possible transitions between partitions.

In this paper we present an implicit representation of
PWA functions. Based on the use of ramp functions,
the proposed representation allows to avoid some shor-
tcomings of the explicit representations. In particular,
by adopting the proposed representation one can easily
parametrize continuous piecewise quadratic Lyapunov
functions by considering a generalized quadratic form
involving ramp functions. Moreover it is possible to assess
the stability of PWA systems by evaluating Lyapunov in-
equalities through linear matrix inequalities (LMI) tests.

This paper is organized as follows: Section II presents
the proposed implicit representation for PWA functions
that rely on ramp functions. Section III characterizes
ramp function properties in terms of quadratic identities
and inequalities and presents conditions for verifying
positivity of piecewise quadratic forms. In Section IV
we apply the positivity verification to devise conditions
for stability of discrete-time PWA systems using PWQ
Lyapunov functions. Finally we illustrate the obtained
results in numerical examples in Section V and present
concluding remarks and perspectives in Section VI.

Notation Let Rn×m denote the set of matrices with
real coefficients of dimension n by m. Let M(i,j)

denote the element in the (i, j) entry of matrix
M , define Dn =

{
M ∈ Rn×n |M(i,j) = 0, i 6= j

}
,

Sn =
{
M ∈ Rn×n |M = M>

}
, and Pn×m ={

M ∈ Rn×m |M(i,j) ≥ 0,∀i, j
}

. For M ∈ Rn×n we
define He(M) := M + M>. For Ω ⊆ R, 1Ω is the
indicator function of the set Ω, that is 1Ω(θ) = 1 if
θ ∈ Ω, and 1Ω(θ) = 0 if θ ∈ Ωc, with Ωc = R \ Ω.



The function sat[µ,µ] : Rm → Rm denotes the decentra-
lized asymmetric saturation function, of which the i-th
element is defined by

sat[µ,µ]i(θ) :=


µi if θi < µi

θi if µi ≤ θi ≤ µi
µi if θi > µi

,

where θi is the i-th element of vector θ.

II. Implicit Representation of Continuous
PWA Functions

Consider the mapping f : Rn → Rnf defined by

f(x) = F1x+ F2φ(y(x)) (1a)

y(x) = F3x+ F4φ(y(x)) + f5 (1b)

where x ∈ Rn, y ∈ Rny , F1 ∈ Rnf×n, F2 ∈ Rnf×ny ,
F3 ∈ Rny×n, F4 ∈ Rny×ny , f5 ∈ Rny , and the vector
function φ : Rny → Rny , which is defined elementwise by
the ramp function given by

φi(y) = r(yi) :=

{
0 if yi < 0
yi if yi ≥ 0

, i = 1, . . . , ny. (2)

We use (1)-(2) as a model for continuous PWA functi-
ons thus avoiding the explicit definition of partitions and
the corresponding affine functions, as in the standard
PWA function representation [3], i.e.

f(x) = Aix+ bi ∀x ∈ Γi. (3)

Note that with (1)-(2), it is the vector function φ(y(x))
and the regions where its arguments are not negative
that implicitly define the PWA partition of Rn. Also,
thanks to the continuity of φ we have that f(x) is
continuous. Below, we illustrate the representation (1)
with two examples.
Example 1 Consider (1) with

n = 2, ny = 3, nf = 1
F1 =

[
0 0

]
, F2 =

[
1 1 1

]
,

F3 =

 1 0
−1 0
0 1

 , F4 =

 0 0 0
0 0 0
−1 −1 0

 , f5 = 03×1.

(4)

The corresponding partition of R2 in this case is given
by the following sets

Γ1 = {x ∈ R2|φ1(y(x)) ≥ 0, φ2(y(x)) = φ3(y(x)) = 0}
Γ2 = {x ∈ R2|φ2(y(x)) > 0, φ1(y(x)) = φ3(y(x)) = 0}
Γ3 = {x ∈ R2|φ3(y(x)) > 0},

and is depicted in Figure 1. An explicit equivalent repre-
sentation for f(x) as in (3) is given by

f(x)=


x1 if x∈Γ1 ={x ∈ R2|x1 ≥ 0;x2 ≤ x1}
−x1 if x∈Γ2 ={x ∈ R2|x1 < 0;x2 ≤ −x1}
x2 if x∈Γ3 ={x ∈ R2|x2 > 0;−x2 < x1 < x2}.

(5)

x1

x2

Γ3

Γ1Γ2

Fig. 1: Partition of R2 for f(x) defined in (5).

Example 2 Given a matrix K ∈ Rnf×n, and vectors µ ∈
Rnf and µ ∈ Rnf , the PWA function f(x) = sat[µ,µ](Kx)
can be expressed in form (1) with matrices

F1 = K, F2 =
[
−Inf Inf

]
F3 =

[
K
−K

]
, F4 = 0ny×ny f5 =

[
−µ
µ

]
.

(6)

For instance, with n = 2, nf = 1, K =
[
−1 1

]
, µ = −1

and µ = 2 we obtain the following partition of R2 in
terms of φ

Γ1 = {x ∈ R2|φ2(y(x)) > 0}
Γ2 = {x ∈ R2|φ1(y(x)) = φ2(y(x)) = 0}
Γ3 = {x ∈ R2|φ1(y(x)) > 0},

which is depicted in Figure 2. An explicit representation
for f(x) is given by

f(x) =


−1 if x ∈ Γ1 = {x ∈ R2|Kx < −1}
Kx if x ∈ Γ2 = {x ∈ R2| − 1 ≤ Kx ≤ 2}
2 if x ∈ Γ3 = {x ∈ R2|2 < Kx}.

In this paper we use (1) as a model to study stability
of discrete-time PWA systems. The main feature of (1)
that will be exploited in the formulation of stability
conditions in terms of Lyapunov inequalities is the sector
properties of the ramp function. These sector properties
will be key to obtain numerically tractable conditions for
the verification of piecewise quadratic inequalities. The
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Fig. 2: Partition of R2 for f(x) defined in (6).



implicit representation also simplifies the analysis since
the partitions and possible transitions between sets of
the partition do not have to be explicitly accounted for
in the Lyapunov inequalities.

Moreover, handling uncertainties in the partition in-
duced by (1) can be simpler than with an explicit
representation since these uncertainties can be cast as
uncertainty on the matrices F3, F4, and f5, which can
be described by matrix sets such as polytopic or norm-
bounded ones [11].

A. Conditions for well-posedness

Below we provide a condition for the well-posedness
of the implicit equation (1b) for all x ∈ Rn, that is, a
solution to

f̃(y(x)) = y(x)− F4φ(y(x)) = F3x+ f5. (7)

In [12, Proposition 2] it is shown that a locally Lip-
schitz function f̃(y(x)) of which the Jacobian satisfies
Jy f̃(y) ∈ M ⊂ Rny×ny for almost all y ∈ Rny where
M is a compact, convex set, with each of its elements
non-singular, implies that there exists a unique globally
Lipschitz function y(ξ) satisfying f̃(y) = ξ. Such a result
is used in [12] to obtain a condition for the well-posedness
of an algebraic loop involving saturation and deadzone
functions.

Using the definition of the ramp function in (2), we
have that the Jacobian with respect to y of f̃ in (7) is
given by Jy f̃(y) = (I − F4∆) with ∆ ∈ D̄ = {∆ ∈
Dn|∆(i,i) ∈ {0, 1}}, which is a compact and convex set.
Thus, following [12, Proposition 2] a unique solution
to (7) exists if (I − F4∆) is non-singular for all ∆ ∈
D = {∆ ∈ Dn|∆(i,i) ∈ [0, 1]}. A condition for the well-
posedness is then cast as an LMI constraint (see [13],
[12]) as in the proposition below.

Proposition 1 ([12, Proposition 1]): If there exist a
matrix W ∈ Dny such that −2W + WF4 + F>4 W < 0
then (I − F4∆)−1 exists ∀∆ ∈ D.

In the following, we will assume that the condition for
well-posedness of (7) of above Proposition 1 holds.

Note that in Example 1 above, (7) has an explicit
solution thanks to the structure of F4 in (4). Indeed,
one obtains y1 and y2 directly from the term F3x, giving
y1 = x1 and y2 = −x1, which are used to obtain
y3 = r(y1)− r(y2). Similarly, for Example 2 the solution
to equation (7) is explicit since F4 = 0, it is then
straightforward to compute f(x) using y = F3x+ f5.

III. Preliminary Results

A. Sector Properties of Ramp Functions

Several results to verify the positivity of generalized
quadratic forms involving sector bounded nonlinearities
rely on sector inequalities that hold either globally or
locally [14], [15]. In the following, we introduce properties
of ramp functions (2), which are given by sector identities
rather than sector inequalities. These identities will be

instrumental to verify the positivity of generalized qua-
dratic forms containing ramp functions.

Lemma 1: The ramp function r satisfies the identity

r(θ)(r(θ)− θ) = 0. (8)
Proof: If θ < 0, we have r(θ) = 0. If θ ≥ 0 we have

that (r(θ)− θ) = 0, thus (8) follows.
Lemma 2: The ramp function r satisfies the identity

θ − (r(θ)− r(−θ)) = 0. (9)
Proof: If θ < 0, we have r(θ) = 0 and r(−θ) = −θ.

Thus, for θ < 0, θ − r(θ) + r(−θ) = θ − 0 − θ = 0. If
θ > 0 we have r(θ) = θ and r(−θ) = 0, thus, for θ > 0,
θ − r(θ) + r(−θ) = θ − θ + 0 = 0.
Remark 1: Note that the identities in (8)-(9) also hold

if r is replaced by any function of the class

ρ(Ω, θ) = 1Ω(θ)θ (10)

where Ω ∈ {I ⊆ R|θ ∈ I,−θ /∈ I} (for instance the
ramp function is obtained with Ω = [0,∞), i.e. r(θ) =
ρ([0,∞) , θ) and r(−θ) = ρ((−∞, 0) ,−θ) ). Indeed,

ρ(Ω, θ) (ρ(Ω, θ)− θ) = 1Ω(θ)θ (1Ω(θ)θ − θ)
= 1Ω(θ)θ (1Ωc(θ)θ) = 0

generalizing (8). We also have

θ − (ρ(Ω, θ)− ρ(Ωc,−θ)) = θ − (1Ω(θ)θ − (−1)1Ωc(θ)θ)
= θ − (θ) = 0,

thus generalizing (9). y
Following the above remark, even though (8) is an iden-
tity, this relation is valid for a larger class of functions
which includes the ramp function. To exclude other
functions in this class, we have to include a set of
inequalities that hold only for ramp functions, that is
only for (10) with Ω = [0,∞). This set of inequalities is
the following

r(θ) ≥ 0 (11a)

r(−θ) ≥ 0 (11b)

r(θ)r(η) ≥ 0 (11c)

r(θ)r(−η) ≥ 0 (11d)

r(−θ)r(−η) ≥ 0. (11e)

Using the definition of φ in (2) and the identities rela-
ted to the ramp function in the above lemmas element-
wise in φ we obtain the lemmas below.

Lemma 3: For any T1 ∈ Dny the function φ defined
in (2) satisfies the identity

s1(T1, φ(y), y) := φ>(y)T1(φ(y)− y) = 0. (12)

∀y ∈ Rny .
Lemma 4: For any vector ζ ∈ Rnζ and R ∈ Rnζ×ny

the function φ defined in (2) satisfies the identity

s2(R, ζ, φ(y), y) := ζ>R(y − (φ(y)− φ(−y)) = 0. (13)

∀y ∈ Rny .
And finally, using the inequalities in (11), we obtain

the lemma below.



Lemma 5: For any matrix M ∈ P(1+2ny)×(1+2ny) the
function φ in (2) satisfies the inequality

s3(M,φ(y)) :=

 1
φ(y)
φ(−y)

>M
 1

φ(y)
φ(−y)

 ≥ 0. (14)

∀y ∈ Rny .

B. Conditions for Positivity of Extended Quadratic
Forms

In this section we use the above lemmas to set con-
ditions to verify the positivity of generalized quadratic
forms of the type

h(x)=


1
x

φ(y(x))
φ(−y(x))


>

H


1
x

φ(y(x))
φ(−y(x))

=χ(x)>Hχ(x).

(15)
Proposition 2: Given a generalized quadratic form

h(x) as in (15), if there exist matrices T1 ∈ Dny , T2 ∈
Dny , R ∈ R1+n+2ny×ny , M ∈ P(1+2ny)×(1+2ny) such that

h(x) + s1(T1, φ(y(x)), y(x)) + s1(T2, φ(−y(x)),−y(x))

+ s2(R,χ, φ(y(x)), y(x))− s3(M,φ(y(x))) ≥ 0 (16)

then
h(x) ≥ 0 ∀x ∈ Rn. (17)

Proof: From Lemmas 3 and 4, which hold for all
y(x), and from (16) it follows that

h(x) ≥ s3(M,φ(y(x))) ∀x ∈ Rn.

Then, using Lemma 5 we obtain

h(x) ≥ 0 ∀x ∈ Rn.

Setting conditions to verify the non-negativity of a ge-
neralized quadratic form as (15) by solving the inequa-
lity (16) makes possible to solve Lyapunov inequalities
related to the positivity of piecewise quadratic functions.
These inequalities are studied in the next section. More-
over if matrix H has an affine dependence on unknown
variables, the inequality (16) can be cast as an LMI,
therefore yielding constraints of a semi-definite program,
which can be solved with freely available optimization
software [16]. In this case, the general LMI corresponding
to (16) is presented in the appendix.

IV. Stability Analysis of PWA Systems With
PWQ Lyapunov Functions

In this section we apply the results for the verification
of non-negativity of generalized quadratic forms presen-
ted in the previous section to study stability of discrete-
time systems defined by the implicit representation of
piecewise affine functions given in (1).

Consider discrete time systems of the form

x+ = f(x), (18)

where x ∈ Rn is the state at instant k ∈ N, f(x) is
defined by matrices Fi as in (1) and x+ is the value of
the state at the instant k + 1. From (1b) we have y+ =
F3x

+ + F4φ(y+) + f5. We assume that f(0) = 0, i.e.
the origin is an equilibrium point.

Remark 2: If F2 has full column rank f(0) = 0 implies
φ(y(0)) = 0, and the equation (1b) thus become y = f5.
Since φ(y) = 0, this last relation imposes that f5i ≤ 0,
i = 1, . . . ny. y

Several results in the literature have studied the class
of PWA systems using the explicit representation or al-
ternatives as detailed in [17]. Regarding stability analysis
of (18), piecewise quadratic Lyapunov functions have
been considered and the resulting inequalities often re-
quire a first evaluation of the possible transitions between
sets of the partitions when casting the inequality related
to the decrease of the function [8], [10], [18].

Here we propose a continuous Piecewise quadratic
Lyapunov function which is a generalized quadratic form
on x and the function φ(y(x)) thus not requiring an
explicit quadratic form in each set of the partition nor
enumerating all the possible transitions. We consider
Lyapunov candidate functions V : Rn → R≥0, V (0) = 0
given by

V (x) =

[
x

φ(y(x))

]>
P

[
x

φ(y(x))

]
. (19)

To obtain a quadratic bound for function V (x), let
P1 ∈ Rn×n, P2 ∈ Rn×ny and P3 ∈ Rny×ny such that

P =

[
P1 P2

P>2 P3

]
.

We have

V (x) ≤ ‖P1‖ ‖x‖2 + 2 ‖P2‖ ‖x‖ ‖φ‖+ ‖P3‖ ‖φ‖2 . (20)

To obtain an upper-bound for ‖φ‖ in terms of ‖x‖ let
y := y − f5 and use (1b) to obtain

y = F3x+ F4φ(y + f5).

Since, from Remark 2, f5i ≤ 0, i = 1, . . . , ny, we
have r(yi + f5i) = δiyi with δi ∈ [0, 1]. Note that
in case f5i > 0 for some i then it is not possible to
obtain r(yi + f5i) = δiyi with δi ∈ [0, 1]. We thus have
φ(y+f5) = ∆y for ∆ ∈ D (using the notation introduced
in Subsection II-A). From the well-posedness assumption,
(I − F4∆) is invertible for all ∆ ∈ D, thus we obtain
y = (I − F4∆)−1F3x and

φ(y) = φ(y + f5) = ∆y = ∆(I − F4∆)−1F3x,

which gives

‖φ(y)‖ ≤
(

max
∆∈D

∥∥∆(I − F4∆)−1F3

∥∥) ‖x‖ = σ ‖x‖ .

From (20) we have V (x) ≤ ε2(P ) ‖x‖2, with

ε2(P ) = ‖P1‖+ 2σ ‖P2‖+ σ2 ‖P3‖ . (21)



The theorem below presents condition for the global
stability of the origin of (18) using (19) as a Lyapunov
function candidate.

Theorem 1: If there exist P ∈ S(n+ny)×(n+ny), matri-
ces matrices T1 ∈ Dny , T2 ∈ Dny , R1 ∈ R1+n+2ny×ny ,
M1 ∈ P(1+2ny)×(1+2ny) and a positive scalar ε such that

(V (x)− εx>x) + s1(T1, φ(y(x)), y(x))

+ s1(T2, φ(−y(x)),−y(x)) + s2(R1, χ, φ(y(x)), y(x))

− s3(M1, φ(y(x))) ≥ 0 (22)

and matrices T3 ∈ D2ny , T4 ∈ D2ny , R2 ∈ R1+n+4ny×2ny ,
M2 ∈ P(1+4ny)×(1+4ny) and a scalar η ∈ (0, 1) such that

− (V (x+)− (1− η)V (x)) + s1(T3, φ(ỹ), ỹ)

+ s1(T4, φ(−ỹ),−ỹ) + s2(R2, χ̃, φ(ỹ), ỹ)

− s3(M2, φ(ỹ)) ≥ 0 (23)

with χ̃=
[
1 x> φ(ỹ)> φ(−ỹ)>

]>
and ỹ=

[
y> y+>]>

then the origin of (18) is exponentially stable.
Proof: Following Proposition 2 we respectively have

that if (22) and (23) hold then

ε1x
>x ≤ V (x)

V (x+) ≤ (1− η)V (x).

From (19) and (21) we have that V (x) ≤ ε2x
>x. Then

one obtains ‖x(k)‖ ≤ ε3e
δk‖x(0)‖ with ε3 = ( ε2ε1 )

1
2 , δ =

ln(
√

1− η).
Note that (22) and (23) can be cast in form (16) with

appropriate functions h(x), that depend affinely on the
elements of P . Thus, they can be expressed as an LMI
on the decision variables P , Ti, i = 1, ...4, Mj and Rj ,
j = 1, 2 (see Appendix).

V. Numerical Examples

In this section, we illustrate the results of Theorem 1
with two numerical examples. In the first, we demon-
strate the global stability of a piecewise linear system,
and in the second one, we analyze the global stability of
a system subject to actuator saturation.
Example I. Consider a piecewise linear system given
by (18) with

F1 =

[
0.5 0.1
−1 0.5

]
F2 = κ

[
1 1 1
0 0 0

]
and F3, F4 and f5 as in (4).

Applying Theorem 1, we can show that the system
is globally stable for κ = 0.41, and (19) is a Lyapunov
function for the system with

P =


−2.9402 0.6029 1.2960 −1.7078 −7.7380
0.6029 1.7008 1.6769 −2.9945 −2.9163
1.2960 1.6769 10.3397 9.0159 9.2738
−1.7078 −2.9945 9.0159 13.8520 11.8024
−7.7380 −2.9163 9.2738 11.8024 14.5700

.
Note that the matrix P is not positive definite. Indeed
this is not imposed by the conditions in Theorem 1.
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Fig. 3: System trajectory and Lyapunov function level
sets for Example I.

However, since (22) holds we have that the Lyapunov
function is guaranteed to be positive definite. A tra-
jectory of the system is shown in Figure 3, along with
the level sets of the decreasing Lyapunov function. For
comparison, the dual problem presented in [8, Section
II] demonstrate that there does not exist a quadratic
Lyapunov function, that is V (x) = x>P1x, with P1 ∈
Rn×n, that certifies the stability for κ ≥ 0.357.

Example II. Consider the following system subject
to asymmetric actuator saturation inspired from [19,
Section V.A] and considering a model obtained by dis-
cretizing the corresponding linearized system with a
sampling period of 100ms,

x+ = Ax+Bsat[−1,15](Kx)

where

A =

[
0.9464 0.0957
−0.9568 0.9033

]
, B =

[
0.0049
0.0959

]
,

K =
[
9.9000 0.4950

]
.

Using (6) we have that the right hand side of the above
system is written as (18) with f(x) defined by

F1 = A+BK, F2 =
[
−B B

]
and F3, F4 and f5 as in (6).

A solution to the inequalities in Theorem 1, shows
that the system is globally stable and (19) is a Lyapunov
function for the system with

P =


0.1372 0.1684 −0.0030 −0.0241
0.1684 1.0349 −0.0241 0.0668
−0.0030 −0.0241 0.1042 −0.0073
−0.0241 0.0668 −0.0073 0.0934

.
Figure 4, depicts a trajectory of the system that enters

level sets of decreasing values of the obtained Lyapunov
function. The proposed framework clearly shows that one
can directly obtain asymmetric Lyapunov functions.
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Fig. 4: System trajectory and Lyapunov function level
sets for Example II.

VI. Conclusion and future work

We have presented an implicit representation for PWA
functions and have used it as a model for piecewise affine
discrete time systems. We also presented a condition for
an algebraic equation to be well posed thus guaranteeing
that the implicit function is well defined. Such an implicit
representation simplifies the analysis of continuous pie-
cewise affine systems since casting Lyapunov inequalities
using PWQ Lyapunov functions does not require enume-
rating all possible transitions between partitions (as e.g.
in [8]) and the stability tests require the verification of
only two linear matrix inequalities.

The solution to the inequalities, which are given by
generalized quadratic forms rely on the characterization
of a set of nonlinearities by using sector identities and a
set of inequalities that apply only to this function, being
less conservative than generic sector bounded conditions.

We are now investigating how to approach the local
(regional) stability case and the synthesis of stabilizing
PWA control laws. Future work also includes the propo-
sition of stability conditions for continuous-time systems.

Appendix

A. LMI in Proposition 2

The inequality (16) in Proposition 2 can be verified by
solving the LMI in (24).
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