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I. Introduction

Models for Piecewise Affine (PWA) systems have been proposed to study engineered systems such as nonlinear circuits [START_REF] Kahlert | The complete canonical piecewise-linear representation. I. the geometry of the domain space[END_REF], [START_REF] Julian | High-level canonical piecewise linear representation using a simplicial partition[END_REF] and hybrid systems, where simple piecewise affine nonlinearities may lead to complex behavior. In the context of control systems early studies trace back to [START_REF] Sontag | Nonlinear regulation: The piecewise linear approach[END_REF] where an explicit representation was introduced. Moreover, static nonlinearities such as saturation or deadzone can also be studied in this framework since these functions are indeed piecewise affine.

Another example of practical interest of piecewise affine, continuous, functions in discrete-time systems appears in the context of Receding Horizon Optimal Control [START_REF] Bemporad | The explicit linear quadratic regulator for constrained systems[END_REF] in which multi-parametric linear or quadratic programs can be solved offline to obtain piecewise control laws together with its partition on the state space, thus resulting a PWA closed loop system. These piecewise continuous functions are referred to as explicit Model Predictive Control. The control strategies based on explicit MPC have the advantage of avoiding online solution of Quadratic Programs. On the other hand, their implementation demands the solution to a location problem for gain selection. Although efficient strategies for the point location problem based on binary tree searches have been proposed [START_REF] Tøndel | Evaluation of piecewise affine control via binary search tree[END_REF] (see also the review in [START_REF] Alessio | A Survey on Explicit Model Predictive Control[END_REF]), this is still a bottleneck of the approach.

Stability of PWA systems has been studied with Lyapunov inequalities. Early theorems have proposed the use of simple quadratic functions as Lyapunov function (LF) candidates. Refinements of these sufficient conditions have been proposed by considering piecewise quadratic LF [START_REF] Johansson | Computation of piecewise quadratic Lyapunov functions for hybrid systems[END_REF], [START_REF] Feng | Stability analysis of piecewise discrete-time linear systems[END_REF]. In the context of explicit MPC, piecewise affine LF has been studied in [START_REF] Ferrari-Trecate | Analysis of discrete-time piecewise affine and hybrid systems[END_REF] and in the context of conewise linear systems, in [START_REF] Iervolino | Cone-copositive piecewise quadratic Lyapunov functions for conewise linear systems[END_REF]. A drawback of the results using a different quadratic function defined for each set in the partition appears when assessing the decrease of the LF during a transition. Indeed, one needs to evaluate and enumerate all the possible transitions between partitions.

In this paper we present an implicit representation of PWA functions. Based on the use of ramp functions, the proposed representation allows to avoid some shortcomings of the explicit representations. In particular, by adopting the proposed representation one can easily parametrize continuous piecewise quadratic Lyapunov functions by considering a generalized quadratic form involving ramp functions. Moreover it is possible to assess the stability of PWA systems by evaluating Lyapunov inequalities through linear matrix inequalities (LMI) tests.

This paper is organized as follows: Section II presents the proposed implicit representation for PWA functions that rely on ramp functions. Section III characterizes ramp function properties in terms of quadratic identities and inequalities and presents conditions for verifying positivity of piecewise quadratic forms. In Section IV we apply the positivity verification to devise conditions for stability of discrete-time PWA systems using PWQ Lyapunov functions. Finally we illustrate the obtained results in numerical examples in Section V and present concluding remarks and perspectives in Section VI.

Notation Let R n×m denote the set of matrices with real coefficients of dimension n by m. Let M (i,j) denote the element in the (i, j) entry of matrix M , define

D n = M ∈ R n×n | M (i,j) = 0, i = j , S n = M ∈ R n×n | M = M , and P n×m = M ∈ R n×m | M (i,j) ≥ 0, ∀i, j . For M ∈ R n×n we define He(M ) := M + M . For Ω ⊆ R, 1 Ω is the indicator function of the set Ω, that is 1 Ω (θ) = 1 if θ ∈ Ω, and 1 Ω (θ) = 0 if θ ∈ Ω c , with Ω c = R \ Ω.
The function sat [µ,µ] : R m → R m denotes the decentralized asymmetric saturation function, of which the i-th element is defined by

sat [µ,µ]i (θ) :=      µ i if θ i < µ i θ i if µ i ≤ θ i ≤ µ i µ i if θ i > µ i
, where θ i is the i-th element of vector θ.

II. Implicit Representation of Continuous

PWA Functions Consider the mapping f : R n → R n f defined by

f (x) = F 1 x + F 2 φ(y(x)) (1a) y(x) = F 3 x + F 4 φ(y(x)) + f 5 (1b)
where

x ∈ R n , y ∈ R ny , F 1 ∈ R n f ×n , F 2 ∈ R n f ×ny , F 3 ∈ R ny×n , F 4 ∈ R ny×ny , f 5 ∈ R ny
, and the vector function φ : R ny → R ny , which is defined elementwise by the ramp function given by

φ i (y) = r(y i ) := 0 if y i < 0 y i if y i ≥ 0 , i = 1, . . . , n y . ( 2 
)
We use ( 1)-( 2) as a model for continuous PWA functions thus avoiding the explicit definition of partitions and the corresponding affine functions, as in the standard PWA function representation [START_REF] Sontag | Nonlinear regulation: The piecewise linear approach[END_REF], i.e.

f (x) = A i x + b i ∀x ∈ Γ i . (3) 
Note that with (1)-(2), it is the vector function φ(y(x)) and the regions where its arguments are not negative that implicitly define the PWA partition of R n . Also, thanks to the continuity of φ we have that f (x) is continuous. Below, we illustrate the representation [START_REF] Kahlert | The complete canonical piecewise-linear representation. I. the geometry of the domain space[END_REF] with two examples. Example 1 Consider (1) with

n = 2, n y = 3, n f = 1 F 1 = 0 0 , F 2 = 1 1 1 , F 3 =   1 0 -1 0 0 1   , F 4 =   0 0 0 0 0 0 -1 -1 0   , f 5 = 0 3×1 . (4) 
The corresponding partition of R 2 in this case is given by the following sets

Γ 1 = {x ∈ R 2 |φ 1 (y(x)) ≥ 0, φ 2 (y(x)) = φ 3 (y(x)) = 0} Γ 2 = {x ∈ R 2 |φ 2 (y(x)) > 0, φ 1 (y(x)) = φ 3 (y(x)) = 0} Γ 3 = {x ∈ R 2 |φ 3 (y(x)) > 0},
and is depicted in Figure 1. An explicit equivalent representation for f (x) as in ( 3) is given by

f (x) =      x 1 if x ∈ Γ 1 = {x ∈ R 2 |x 1 ≥ 0; x 2 ≤ x 1 } -x 1 if x ∈ Γ 2 = {x ∈ R 2 |x 1 < 0; x 2 ≤ -x 1 } x 2 if x ∈ Γ 3 = {x ∈ R 2 |x 2 > 0; -x 2 < x 1 < x 2 }. (5) 
x 1

x 2 Γ 3 Γ 1 Γ 2 Fig. 1: Partition of R 2 for f (x) defined in (5). Example 2 Given a matrix K ∈ R n f ×n , and vectors µ ∈ R n f and µ ∈ R n f , the PWA function f (x) = sat [µ,µ] (Kx)
can be expressed in form [START_REF] Kahlert | The complete canonical piecewise-linear representation. I. the geometry of the domain space[END_REF] with matrices

F 1 = K, F 2 = -I n f I n f F 3 = K -K , F 4 = 0 ny×ny f 5 = -µ µ . (6) 
For instance, with n = 2,

n f = 1, K = -1 1 , µ = -1
and µ = 2 we obtain the following partition of R 2 in terms of φ

Γ 1 = {x ∈ R 2 |φ 2 (y(x)) > 0} Γ 2 = {x ∈ R 2 |φ 1 (y(x)) = φ 2 (y(x)) = 0} Γ 3 = {x ∈ R 2 |φ 1 (y(x)) > 0},
which is depicted in Figure 2. An explicit representation for f (x) is given by

f (x) =        -1 if x ∈ Γ 1 = {x ∈ R 2 |Kx < -1} Kx if x ∈ Γ 2 = {x ∈ R 2 | -1 ≤ Kx ≤ 2} 2 if x ∈ Γ 3 = {x ∈ R 2 |2 < Kx}.
In this paper we use (1) as a model to study stability of discrete-time PWA systems. The main feature of (1) that will be exploited in the formulation of stability conditions in terms of Lyapunov inequalities is the sector properties of the ramp function. These sector properties will be key to obtain numerically tractable conditions for the verification of piecewise quadratic inequalities. The [START_REF] Alessio | A Survey on Explicit Model Predictive Control[END_REF]. implicit representation also simplifies the analysis since the partitions and possible transitions between sets of the partition do not have to be explicitly accounted for in the Lyapunov inequalities.

x 1 x 2 Γ 2 Γ 3 Γ 1 Fig. 2: Partition of R 2 for f (x) defined in
Moreover, handling uncertainties in the partition induced by [START_REF] Kahlert | The complete canonical piecewise-linear representation. I. the geometry of the domain space[END_REF] can be simpler than with an explicit representation since these uncertainties can be cast as uncertainty on the matrices F 3 , F 4 , and f 5 , which can be described by matrix sets such as polytopic or normbounded ones [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF].

A. Conditions for well-posedness

Below we provide a condition for the well-posedness of the implicit equation (1b) for all x ∈ R n , that is, a solution to

f (y(x)) = y(x) -F 4 φ(y(x)) = F 3 x + f 5 . (7) 
In [START_REF] Zaccarian | A common framework for antiwindup, bumpless transfer and reliable designs[END_REF]Proposition 2] it is shown that a locally Lipschitz function f (y(x)) of which the Jacobian satisfies J y f (y) ∈ M ⊂ R ny×ny for almost all y ∈ R ny where M is a compact, convex set, with each of its elements non-singular, implies that there exists a unique globally Lipschitz function y(ξ) satisfying f (y) = ξ. Such a result is used in [START_REF] Zaccarian | A common framework for antiwindup, bumpless transfer and reliable designs[END_REF] to obtain a condition for the well-posedness of an algebraic loop involving saturation and deadzone functions.

Using the definition of the ramp function in (2), we have that the Jacobian with respect to y of f in ( 7) is given by

J y f (y) = (I -F 4 ∆) with ∆ ∈ D = {∆ ∈ D n |∆ (i,i) ∈ {0, 1}}
, which is a compact and convex set. Thus, following [12, Proposition 2] a unique solution to [START_REF] Johansson | Computation of piecewise quadratic Lyapunov functions for hybrid systems[END_REF] 

exists if (I -F 4 ∆) is non-singular for all ∆ ∈ D = {∆ ∈ D n |∆ (i,i) ∈ [0, 1]}.
A condition for the wellposedness is then cast as an LMI constraint (see [START_REF] Valmorbida | Regional analysis of slope-restricted Lurie systems[END_REF], [START_REF] Zaccarian | A common framework for antiwindup, bumpless transfer and reliable designs[END_REF]) as in the proposition below.

Proposition 1 ([12, Proposition 1]):

If there exist a matrix W ∈ D ny such that -2W + W F 4 + F 4 W < 0 then (I -F 4 ∆) -1 exists ∀∆ ∈ D.
In the following, we will assume that the condition for well-posedness of (7) of above Proposition 1 holds.

Note that in Example 1 above, ( 7) has an explicit solution thanks to the structure of F 4 in (4). Indeed, one obtains y 1 and y 2 directly from the term F 3 x, giving y 1 = x 1 and y 2 = -x 1 , which are used to obtain y 3 = r(y 1 ) -r(y 2 ). Similarly, for Example 2 the solution to equation ( 7) is explicit since F 4 = 0, it is then straightforward to compute f (x) using y = F 3 x + f 5 .

III. Preliminary Results

A. Sector Properties of Ramp Functions

Several results to verify the positivity of generalized quadratic forms involving sector bounded nonlinearities rely on sector inequalities that hold either globally or locally [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF], [START_REF] Zaccarian | Modern anti-windup synthesis: control augmentation for actuator saturation[END_REF]. In the following, we introduce properties of ramp functions [START_REF] Julian | High-level canonical piecewise linear representation using a simplicial partition[END_REF], which are given by sector identities rather than sector inequalities. These identities will be instrumental to verify the positivity of generalized quadratic forms containing ramp functions.

Lemma 1: The ramp function r satisfies the identity r(θ)(r(θ) -θ) = 0. (8) Proof: If θ < 0, we have r(θ) = 0. If θ ≥ 0 we have that (r(θ) -θ) = 0, thus (8) follows.

Lemma 2: The ramp function r satisfies the identity θ -(r(θ) -r(-θ)) = 0. (9) Proof: If θ < 0, we have r(θ) = 0 and r(-θ) = -θ. Thus, for θ < 0, θ -r(θ) + r(-θ) = θ -0 -θ = 0. If θ > 0 we have r(θ) = θ and r(-θ) = 0, thus, for θ > 0, θ -r(θ) + r(-θ) = θ -θ + 0 = 0.

Remark 1: Note that the identities in ( 8)-( 9) also hold if r is replaced by any function of the class

ρ(Ω, θ) = 1 Ω (θ)θ ( 10 
)
where Ω ∈ {I ⊆ R|θ ∈ I, -θ / ∈ I} (for instance the ramp function is obtained with Ω

= [0, ∞), i.e. r(θ) = ρ([0, ∞) , θ) and r(-θ) = ρ((-∞, 0) , -θ) ). Indeed, ρ(Ω, θ) (ρ(Ω, θ) -θ) = 1 Ω (θ)θ (1 Ω (θ)θ -θ) = 1 Ω (θ)θ (1 Ω c (θ)θ) = 0
generalizing [START_REF] Feng | Stability analysis of piecewise discrete-time linear systems[END_REF]. We also have

θ -(ρ(Ω, θ) -ρ(Ω c ,-θ)) = θ -(1 Ω (θ)θ -(-1)1 Ω c (θ)θ) = θ -(θ) = 0,
thus generalizing [START_REF] Ferrari-Trecate | Analysis of discrete-time piecewise affine and hybrid systems[END_REF]. Following the above remark, even though ( 8) is an identity, this relation is valid for a larger class of functions which includes the ramp function. To exclude other functions in this class, we have to include a set of inequalities that hold only for ramp functions, that is only for [START_REF] Iervolino | Cone-copositive piecewise quadratic Lyapunov functions for conewise linear systems[END_REF] with Ω = [0, ∞). This set of inequalities is the following

r(θ) ≥ 0 (11a) r(-θ) ≥ 0 (11b) r(θ)r(η) ≥ 0 (11c) r(θ)r(-η) ≥ 0 (11d) r(-θ)r(-η) ≥ 0. ( 11e 
)
Using the definition of φ in (2) and the identities related to the ramp function in the above lemmas elementwise in φ we obtain the lemmas below.

Lemma 3: For any T 1 ∈ D ny the function φ defined in (2) satisfies the identity

s 1 (T 1 , φ(y), y) := φ (y)T 1 (φ(y) -y) = 0. ( 12 
)
∀y ∈ R ny . And finally, using the inequalities in [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF], we obtain the lemma below.

Lemma 5: For any matrix M ∈ P (1+2ny)×(1+2ny) the function φ in (2) satisfies the inequality

s 3 (M, φ(y)) :=   1 φ(y) φ(-y)   M   1 φ(y) φ(-y)   ≥ 0. (14)
∀y ∈ R ny .

B. Conditions for Positivity of Extended Quadratic Forms

In this section we use the above lemmas to set conditions to verify the positivity of generalized quadratic forms of the type

h(x) =     1 x φ(y(x)) φ(-y(x))     H     1 x φ(y(x)) φ(-y(x))     = χ(x) Hχ(x).
(15) Proposition 2: Given a generalized quadratic form h(x) as in [START_REF] Zaccarian | Modern anti-windup synthesis: control augmentation for actuator saturation[END_REF], if there exist matrices

T 1 ∈ D ny , T 2 ∈ D ny , R ∈ R 1+n+2ny×ny , M ∈ P (1+2ny)×(1+2ny) such that h(x) + s 1 (T 1 , φ(y(x)), y(x)) + s 1 (T 2 , φ(-y(x)), -y(x)) + s 2 (R, χ, φ(y(x)), y(x)) -s 3 (M, φ(y(x))) ≥ 0 (16) then h(x) ≥ 0 ∀x ∈ R n . (17) 
Proof: From Lemmas 3 and 4, which hold for all y(x), and from ( 16) it follows that h(x) ≥ s 3 (M, φ(y(x))) ∀x ∈ R n .

Then, using Lemma 5 we obtain

h(x) ≥ 0 ∀x ∈ R n .
Setting conditions to verify the non-negativity of a generalized quadratic form as [START_REF] Zaccarian | Modern anti-windup synthesis: control augmentation for actuator saturation[END_REF] by solving the inequality ( 16) makes possible to solve Lyapunov inequalities related to the positivity of piecewise quadratic functions. These inequalities are studied in the next section. Moreover if matrix H has an affine dependence on unknown variables, the inequality ( 16) can be cast as an LMI, therefore yielding constraints of a semi-definite program, which can be solved with freely available optimization software [START_REF] Löfberg | Yalmip: A toolbox for modeling and optimization on matlab[END_REF]. In this case, the general LMI corresponding to [START_REF] Löfberg | Yalmip: A toolbox for modeling and optimization on matlab[END_REF] is presented in the appendix.

IV. Stability Analysis of PWA Systems With

PWQ Lyapunov Functions In this section we apply the results for the verification of non-negativity of generalized quadratic forms presented in the previous section to study stability of discretetime systems defined by the implicit representation of piecewise affine functions given in [START_REF] Kahlert | The complete canonical piecewise-linear representation. I. the geometry of the domain space[END_REF].

Consider discrete time systems of the form

x + = f (x), (18) 
where x ∈ R n is the state at instant k ∈ N, f (x) is defined by matrices F i as in ( 1) and x + is the value of the state at the instant k + 1. From (1b) we have y + = F 3 x + + F 4 φ(y + ) + f 5 . We assume that f (0) = 0, i.e. the origin is an equilibrium point. Remark 2: If F 2 has full column rank f (0) = 0 implies φ(y(0)) = 0, and the equation (1b) thus become y = f 5 . Since φ(y) = 0, this last relation imposes that f 5i ≤ 0, i = 1, . . . n y .

Several results in the literature have studied the class of PWA systems using the explicit representation or alternatives as detailed in [START_REF] Heemels | Equivalence of hybrid dynamical models[END_REF]. Regarding stability analysis of ( 18), piecewise quadratic Lyapunov functions have been considered and the resulting inequalities often require a first evaluation of the possible transitions between sets of the partitions when casting the inequality related to the decrease of the function [START_REF] Feng | Stability analysis of piecewise discrete-time linear systems[END_REF], [START_REF] Iervolino | Cone-copositive piecewise quadratic Lyapunov functions for conewise linear systems[END_REF], [START_REF] Hovd | Relaxing PWQ Lyapunov stability criteria for PWA systems[END_REF].

Here we propose a continuous Piecewise quadratic Lyapunov function which is a generalized quadratic form on x and the function φ(y(x)) thus not requiring an explicit quadratic form in each set of the partition nor enumerating all the possible transitions. We consider Lyapunov candidate functions V : R n → R ≥ 0, V (0) = 0 given by

V (x) = x φ(y(x)) P x φ(y(x)) . (19) 
To obtain a quadratic bound for function V (x), let P 1 ∈ R n×n , P 2 ∈ R n×ny and P 3 ∈ R ny×ny such that P = P 1 P 2 P 2 P 3 .

We have

V (x) ≤ P 1 x 2 + 2 P 2 x φ + P 3 φ 2 . ( 20 
)
To obtain an upper-bound for φ in terms of x let y := y -f 5 and use (1b) to obtain

y = F 3 x + F 4 φ(y + f 5 ). Since, from Remark 2, f 5i ≤ 0, i = 1, . . . , n y , we have r(y i + f 5i ) = δ i y i with δ i ∈ [0, 1]. Note that in case f 5i > 0 for some i then it is not possible to obtain r(y i + f 5i ) = δ i y i with δ i ∈ [0, 1]
. We thus have φ(y +f 5 ) = ∆y for ∆ ∈ D (using the notation introduced in Subsection II-A). From the well-posedness assumption, (I -F 4 ∆) is invertible for all ∆ ∈ D, thus we obtain y = (I -F 4 ∆) -1 F 3 x and

φ(y) = φ(y + f 5 ) = ∆y = ∆(I -F 4 ∆) -1 F 3 x, which gives φ(y) ≤ max ∆∈D ∆(I -F 4 ∆) -1 F 3 x = σ x .
From (20) we have V (x) ≤ 2 (P ) x2 , with

The theorem below presents condition for the global stability of the origin of ( 18) using [START_REF] Drummond | Generalized absolute stability using Lyapunov functions with relaxed positivity conditions[END_REF] as a Lyapunov function candidate.

Theorem 1: If there exist P ∈ S (n+ny)×(n+ny) , matrices matrices T 1 ∈ D ny , T 2 ∈ D ny , R 1 ∈ R 1+n+2ny×ny , M 1 ∈ P (1+2ny)×(1+2ny) and a positive scalar such that (V (x) -x x) + s 1 (T 1 , φ(y(x)), y(x))

+ s 1 (T 2 , φ(-y(x)), -y(x)) + s 2 (R 1 , χ, φ(y(x)), y(x)) -s 3 (M 1 , φ(y(x))) ≥ 0 (22) and matrices T 3 ∈ D 2ny , T 4 ∈ D 2ny , R 2 ∈ R 1+n+4ny×2ny , M 2 ∈ P (1+4ny)×(1+4ny) and a scalar η ∈ (0, 1) such that ỹ) and ỹ = y y + then the origin of ( 18) is exponentially stable.

-(V (x + ) -(1 -η)V (x)) + s 1 (T 3 , φ(ỹ), ỹ) + s 1 (T 4 , φ(-ỹ), -ỹ) + s 2 (R 2 , χ, φ(ỹ), ỹ) -s 3 (M 2 , φ(ỹ)) ≥ 0 (23) with χ = 1 x φ(ỹ) φ(-
Proof: Following Proposition 2 we respectively have that if ( 22) and (23) hold then

1 x x ≤ V (x) V (x + ) ≤ (1 -η)V (x).
From ( 19) and ( 21) we have that V (x) ≤ 2 x x. Then one obtains x(k) ≤ 3 e δk x(0) with 3 = ( 21 ) 22) and ( 23) can be cast in form [START_REF] Löfberg | Yalmip: A toolbox for modeling and optimization on matlab[END_REF] with appropriate functions h(x), that depend affinely on the elements of P . Thus, they can be expressed as an LMI on the decision variables P , T i , i = 1, ...4, M j and R j , j = 1, 2 (see Appendix).

1 2 , δ = ln( √ 1 -η). Note that (

V. Numerical Examples

In this section, we illustrate the results of Theorem 1 with two numerical examples. In the first, we demonstrate the global stability of a piecewise linear system, and in the second one, we analyze the global stability of a system subject to actuator saturation. Example I. Consider a piecewise linear system given by [START_REF] Hovd | Relaxing PWQ Lyapunov stability criteria for PWA systems[END_REF] with

F 1 = 0.5 0.1 -1 0.5 F 2 = κ 1 1 1 0 0 0
and F 3 , F 4 and f 5 as in [START_REF] Bemporad | The explicit linear quadratic regulator for constrained systems[END_REF].

Applying Theorem 1, we can show that the system is globally stable for κ = 0.41, and ( 19) is a Lyapunov function for the system with Note that the matrix P is not positive definite. Indeed this is not imposed by the conditions in Theorem 1. However, since (22) holds we have that the Lyapunov function is guaranteed to be positive definite. A trajectory of the system is shown in Figure 3, along with the level sets of the decreasing Lyapunov function. For comparison, the dual problem presented in [8, Section II] demonstrate that there does not exist a quadratic Lyapunov function, that is V (x) = x P 1 x, with P 1 ∈ R n×n , that certifies the stability for κ ≥ 0.357.

P =       -2.
Example II. Consider the following system subject to asymmetric actuator saturation inspired from [19, Section V.A] and considering a model obtained by discretizing the corresponding linearized system with a sampling period of 100ms,

x + = Ax + Bsat [-1,15] (Kx) 
where A = 0.9464 0.0957 -0.9568 0.9033 , B = 0.0049 0.0959 , K = 9.9000 0.4950 .

Using [START_REF] Alessio | A Survey on Explicit Model Predictive Control[END_REF] we have that the right hand side of the above system is written as [START_REF] Hovd | Relaxing PWQ Lyapunov stability criteria for PWA systems[END_REF] with f (x) defined by

F 1 = A + BK, F 2 = -B B
and F 3 , F 4 and f 5 as in [START_REF] Alessio | A Survey on Explicit Model Predictive Control[END_REF].

A solution to the inequalities in Theorem 1, shows that the system is globally stable and [START_REF] Drummond | Generalized absolute stability using Lyapunov functions with relaxed positivity conditions[END_REF] 

VI. Conclusion and future work

We have presented an implicit representation for PWA functions and have used it as a model for piecewise affine discrete time systems. We also presented a condition for an algebraic equation to be well posed thus guaranteeing that the implicit function is well defined. Such an implicit representation simplifies the analysis of continuous piecewise affine systems since casting Lyapunov inequalities using PWQ Lyapunov functions does not require enumerating all possible transitions between partitions (as e.g. in [START_REF] Feng | Stability analysis of piecewise discrete-time linear systems[END_REF]) and the stability tests require the verification of only two linear matrix inequalities.

The solution to the inequalities, which are given by generalized quadratic forms rely on the characterization of a set of nonlinearities by using sector identities and a set of inequalities that apply only to this function, being less conservative than generic sector bounded conditions.

We are now investigating how to approach the local (regional) stability case and the synthesis of stabilizing PWA control laws. Future work also includes the proposition of stability conditions for continuous-time systems. 
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 23 Fig. 3: System trajectory and Lyapunov function level sets for Example I.
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 4 Figure 4, depicts a trajectory of the system that enters level sets of decreasing values of the obtained Lyapunov function. The proposed framework clearly shows that one can directly obtain asymmetric Lyapunov functions.
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 24 Fig. 4: System trajectory and Lyapunov function level sets for Example II.
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(P ) = P 1 + 2σ P 2 + σ 2 P

. (21)
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Appendix

A. LMI in Proposition 2

The inequality [START_REF] Löfberg | Yalmip: A toolbox for modeling and optimization on matlab[END_REF] in Proposition 2 can be verified by solving the LMI in (24).