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Deadlock Analysis of Wait-Notify Coordination

Deadlock analysis of concurrent programs that contain coordination primitives (wait, notify and notifyAll) is notoriously challenging. Not only these primitives affect the scheduling of processes, but also notifications unmatched by a corresponding wait are silently lost. We design a behavioral type system for a core calculus featuring shared objects and Java-like coordination primitives. The type system is based on a simple language of object protocols -called usages -to determine whether objects are used reliably, so as to guarantee deadlock freedom.

Introduction

Locks and condition variables [START_REF] Hoare | Monitors: An operating system structuring concept[END_REF] are established mechanisms for process coordination that are found, in one form or another, in most programming languages. Java provides synchronized blocks for enforcing exclusive access to shared objects and wait, notify and notifyAll primitives to coordinate the threads using them: a thread performing a wait operation on an object releases the lock on that object and is suspended; a notify operation performed on an object awakens a thread suspended on it, if there is one; notifyAll is similar to notify, except that it awakens all suspended threads. Writing correct concurrent programs using these primitives is notoriously difficult. For example, a thread may block indefinitely if it attempts to lock an object that is permanently owned by a different thread or if it suspends waiting for a notification that is never sent.

We see an instance of non-trivial concurrent Java program in Figure 1, which models a coordination problem whereby a single consumer retrieves items from two producers. Each producer repeatedly generates and stores a new item into a buffer (line 5), notifies the consumer that the item is available (line 6) and waits until the consumer has received the item (line 7). At each iteration, the consumer waits for an item from each buffer (lines 12 and 15) and notifies the corresponding producer that the item has been processed (lines 14 and 17). The main thread of the program forks the producers (lines 25-26) and then runs as the consumer (line 27). In this example, the fact that producers and consumer use the two buffers in mutual exclusion is guaranteed by the syntactic structure of the code, since all accesses to x and y occur within synchronized blocks. However, understanding whether the three threads coordinate correctly so as to realize the desired continuous flow of information is not as obvious. This difficulty is largely due to the ephemeral nature of notifications: a notification sent to a shared object has an effect only if there is another thread waiting to be notified on that object. Otherwise, the notification is lost, with likely undesired implications. For example, suppose to change the program in Figure 1 so that the synchronized blocks now in the main method (lines 23-24) are moved into the consumer method, each protecting accesses to the corresponding buffer. This change would give producer and consumer a visually appealing symmetric structure, but the correctness of the program would be fatally compromised. Now a producer could lock x before the consumer and notify x at a time when the consumer is not yet waiting for a notification. Eventually, the consumer would block waiting for a notification on x that will never arrive, leading to a deadlock. The contribution of this paper is a behavioral type system ensuring that welltyped programs using shared objects and coordination primitives are deadlock free. The type system combines two features inspired by previous works on the static analysis of concurrent programs. First, we use a formulation of the typing rule for parallel compositions akin to that found in linear logic interpretations of session types [START_REF] Wadler | Propositions as sessions[END_REF][START_REF] Caires | Linear logic propositions as session types[END_REF]. Unlike these works, where session endpoints are linear resources, here we apply the typing rule in a setting with shared (hence, nonlinear) objects. Second, we rely on behavioral types -called usages -to make sure that objects are used reliably, ruling out deadlocks due to missing notifications. Kobayashi [START_REF] Kobayashi | Type-based information flow analysis for the pi-calculus[END_REF] has already studied a type system based on usages for the deadlock analysis of pi-calculus processes. He shows how to reduce usage reliability to a reachability problem in a Petri net. As is, this reduction does not apply to our setting because the encoding of usages with coordination primitives requires the use of Petri nets with inhibitor arcs [START_REF] Busi | Analysis issues in petri nets with inhibitor arcs[END_REF].

The rest of the paper is structured as follows. Section 2 presents a core calculus of concurrent programs featuring threads, shared objects and coordination primitives. Section 3 defines types, usages and the key notion of reliability. Typing rules and properties of well-typed programs are given in Section 4. Section 5 discusses related work in more detail and Section 6 concludes. Because of space limitations, proofs and the handling of the notifyAll primitive are found in the appendix, which is not formally part of the submission.

Language Syntax and Semantics

We define a core language of concurrent programs featuring threads, shared objects and a minimal set of coordination primitives inspired to those of Java. We formalize our language as a process calculus comprising standard constructs (termination, conditional behavior, object creation, parallel composition, recursion) in which actions represent coordination primitives on objects. Instead of providing a synchronized construct to enforce mutually exclusive access to a shared object, we use explicit acquire and release operations on the object.

Formally, our calculus makes use of a countable set of variables and object names, ranged over by x, y, z, and a set of procedure names, ranged over by A. A program is a pair D, P , where D is a finite set of procedure definitions of the form A(x) = P A , with x and P A respectively being the formal parameters and the body of A. In a program D, P we say that P is the main process. Hereafter we write α for possibly empty, finite sequences α 1 , . . . , α n of various entities. The syntax of processes, expressions and actions is given in Table 1.

Expressions comprise integer literals, variables and object names, and an unspecified set of operators op such as +, ≤, and so forth. Expressions are evaluated by means of a total function • such that x = x.

The process done performs no action. The process π.P performs the action π and continues as P . The conditional process if e then P else Q behaves as P if e = 0 or else as Q. The process new x in P creates a new object x with scope P . The process fork{P }Q forks P and continues as Q. Finally, A(e) denotes the invocation of the process corresponding to A with actual parameters e.

An action is either acq(x), which acquires the lock on x, or rel(x), which releases the lock on x, or wait(x), meaning that the process unlocks x and suspends waiting for a notification, or notify(x) that notifies a process waiting on x, if there 

Action π ::= acq(x) (acquire) | rel(x) (release) | wait(x) (wait) | wait(x, n) (waiting) † | notify(x) (notify)
is any. Objects are reentrant and can be locked multiple times by the same process. The prefix wait(x, n) is a runtime version of wait(x) that keeps track of the number of times (n) x has been locked before wait(x) was performed. User programs are not supposed to contain wait(x, n) prefixes. We write acq(x) n .P in place of acq(x) • • • acq(x).P where there are n subsequent acquisitions of x.

To define the operational semantics of a program we make use of an infinite set of process identifiers, ranged over by t and s, and states, which are pairs of the form H P made of a heap H and a process pool P. Heaps are finite maps from object names to pairs of the form t, n where t identifies the process that has locked x and n is the number of times x has been acquired. We allow t to be the distinguished name • and n to be 0 when x is unlocked. Process pools are finite maps from process identifiers to processes and represent the set of processes running at a given time. In the following we occasionally write H as {x i : t i , n i } i∈I and P as {t i : P i } i∈I . We also write H, H for the union of H and H when dom(H) ∩ dom(H ) = ∅. Similarly for P, P .

The operational semantics of a program D, P is determined by the transition relation -→ D defined in Table 2 applied to the initial state ∅ main : P . To reduce clutter, for each rule we only show those parts of the heap and of the process pool that are affected by the rule. For example, the verbose version of [r-done] is H t : done, P -→ D H P. Rules [r-acq-*] and [r-rel-*] model the acquisition and release of a lock. There are two versions of each rule to account for the fact that locks are reentrant and can be acquired multiple times. Rule [r-wait] models a process that unlocks an object x and suspends waiting for a notification on it. The number n of acquisitions is stored in the runtime prefix wait(x, n) so that, by the time the process is awoken by a notification, it re-acquires x the appropriate number of times. Rules [r-nfy-*] model notifications. The two rules differ depending on whether or not there exists a process that is waiting for such x : •, 0 t : acq(x).P -→D x : t, 1 t : P [r-acq -2] x : t, n t : acq(x).P -→D x : t, n + 1 t : P x : t, 1 t : rel(x).P -→D x : •, 0 t :

P [r-rel-2]
x : t, n + 2 t : rel(x).P -→D x : t, n + 1 t : P x : t, n t : wait(x).P -→D x : •, 0 t : wait(x, n).P [r-nfy-1] t : wait(x, n).P, s : notify(x).Q -→D t : acq(x) n .P, s : notification. In [r-nfy-1], one waiting process is awoken and guarded by the appropriate number of acquisitions. In [r-nfy-2], the side condition wait(x) / ∈ P means that P does not contain a process of the form t : wait(x, n).P , implying that no process is currently suspended waiting for a notification on x. In this case, the notification is simply lost. Rules [r-done], [r-if-*], [r-fork], [r-new] and [r-call] model terminated processes, conditional processes, forks, object creation and procedure calls as expected. Notice that [r-fork] has an implicit assumption stating that the name s of the process being created is fresh. This is because the composition P, P is well defined only provided that dom(P) ∩ dom(P ) = ∅. Similarly, rule [r-new] implicitly assumes that the object x being created is fresh.

Q [r-
We write =⇒ D for the reflexive, transitive closure of -→ D and H P -→ D if there exist no H and P such that H P -→ D H P . With this notation in place, we formalize the property that we aim to ensure with the type system: Definition 1 (deadlock-free program). We say that D, P is deadlock free if ∅ main : P =⇒ D H P -→ D implies H = {x i : •, 0} i∈I and P = ∅.

In words, a program is deadlock free if every maximal, finite computation starting from the initial state -in which the heap is empty and there is only one running process main : P -ends in a state in which all the objects in the heap are unlocked and all processes have terminated.

We conclude the section showing how to model the producer-consumer coordination program of Figure 1 in our calculus.

Example 1 (multiple-producers/single-consumer coordination). We model the program in Figure 1 by means of the following procedure definitions, which make use of two objects x and y to coordinate producer and consumer: Main = new x in new y in acq(x).acq(y).fork{P(x)} fork{P(y)} C(x, y) P(x) = acq(x).notify(x).wait(x).rel(x).P(x) C(x, y) = wait(x).notify(x).wait(y).notify(y).C(x, y) Table 3. Syntax of types and usages.

Type

T ::

= int | n • U Usage U ::= 0 | κ.U | U | V | U + V | α | µα.U Usage prefix κ ::= acq | rel | wait | waiting | notify
The overall structure of these procedures matches quite closely that of the correspondings methods in Figure 1. Let us discuss the differences. First of all, in the calculus we focus on coordination primitives. All other operations performed on objects -notably, Put and Get in Figure 1 -that do not affect coordination are not modeled explicitly. Second, we model while loops using recursion. Third, we model synchronized blocks in Figure 1 as (matching) pairs of acquire-release operations on objects. Notice that the consumer never performs explicit releases, for x and y are always released by wait(x) and wait(y). This corresponds to the fact that, in Figure 1, the whole code of the consumer runs within a block that synchronizes on x and y.

It is worth noting that, even after all the background noise that is present in Figure 1 has been removed, understanding whether the program deadlocks is not trivial. As anticipated in the introduction, the most critical aspect is determining whether x and y are always notified at a time when there is a process waiting to be awoken.

Types and Usages

Our type system rules out deadlocks using two orthogonal mechanisms. The first one makes sure that well-typed programs do not contain cycles of parallel processes linked by shared objects. This mechanism suffices to avoid circular waits, but does not guarantee that each process suspended on a wait operation is awoken by a notification. To rule out these situations, we also associate each shared object with a simple protocol description, called usage, that specifies the operations performed by processes on it. Then, we make sure that usages are reliable, namely that each wait operation is matched by (at least) one notification. The rest of this section is devoted to the formal definition of types, usages and related notions, leading to the formalization of reliability. The description of the actual typing rules is deferred to Section 4.

The syntax of types and usages is shown in Table 3. A type is either int, denoting an integer value, or an object type n•U where n is a natural number called counter and U is a usage. The counter indicates the number of times the object has been acquired. The usage describes the combined operations performed by processes on the object. The usage 0 describes an object on which no operations are performed. The usage κ.U describes an object that is used to perform the operation κ and then according to U . Usage prefixes acq, rel , wait, waiting and notify are in direct correspondence with the actions in Table 1. In particular, waiting is a "runtime version" of wait and describes an object on which the wait operation has been performed and is waiting to be notified. Usages of user programs are not supposed to contain the waiting prefix. The usage U | V describes an object that is used by concurrent processes according to U and V , whereas the usage U + V describes an object that is used either according to U or to V . Terms of the form µα.U and α are used to describe recursive usages.

We adopt standard conventions concerning (recursive) usages: we assume contractiveness, namely that, in a usage µα.U , the variable α occurring in U is always guarded by a usage prefix; we identify usages modulo (un)folding of recursions; we omit trailing 0's.

To illustrate usages before describing the typing rules, consider the process fork{acq(x).rel(x)} acq(y).acq(x).rel(x).rel(y) which uses two objects x and y. Notice that x is acquired by two concurrent subprocesses and that, in one case, this acquisition is nested within the acquisition and release of y. The operations performed on x are described by the usage acq.rel | acq.rel whereas those performed on y are described by the usage acq.rel .

In the following, we restrict our attention to well-formed usages in which every release corresponds to a former acquire and there can only be wait and notify operations in between them. In particular, we forbid usages that nest acquire operations. To accommodate reentrance, namely the possibility that the same object is aquired more than once, we use the information given by the counter. We keep the notion of well-formed usage informal since it is not essential in the following.

We now proceed to define a series of auxiliary notions related to types and usages and that play key roles in the type system and the proofs of its soundness. To begin with, we formalize a predicate on usages that allows us to identify those objects on which there is no process waiting for a notification: Definition 2 (wait-free usage). Let wf(•) be the least predicate on usages defined by the axioms and rules below:

wf(0) wf(acq.U ) wf(U ) wf(V ) wf(U | V ) wf(U + V )
Note that wf(U + V ) holds regardless of U and V because the usage U + V describes an object on which a process behaves according to either U or V , but the process has not committed to any such behavior yet. Hence, the process cannot be waiting for a notification on the object.

Next, we define a reduction relation describing the evolution of the type of an object as the object is used by processes. As we have anticipated earlier, the effect of operations depends on whether and how many times the object has been locked. For this reason, the reduction relation we are about to define concerns types and not just usages.

Definition 3 (type reduction).

Let ≡ be the least congruence on usages containing commutativity and associativity of | with identity 0, commutativity, associativity, and idempotency of +. The reduction relation T T is the least 

0 • acq.U | V 1 • U | V [u-acq-2] n + 1 • U n + 2 • U [u-rel-1] 1 • rel .U | V 0 • U | V [u-rel-2] n + 2 • U n + 1 • U [u-wait] n + 1 • wait.U | V 0 • waiting.U | V [u-choice] n • (U + U ) | V n • U | V [u-nfy-1] n + 1 • waiting.U | notify.U | V n + 1 • acq.U | U | V [u-nfy-2] wf(V ) n + 1 • notify.U | V n + 1 • U | V [u-cong] U ≡ U n • U n • V V ≡ V n • U n • V
relation defined by the axioms and rules in Table 4. As usual, we write * for the reflexive and transitive closure of .

Rules [u-acq-1] and [u-rel-1] model the acquisition and the release of an object; in the first case, the object must be unlocked (the counter is 0) whereas, in the second case, the object must have been locked exactly once. Rules [u-acq-2] and [u-rel-2] model nested acquisitions and releases on an object. These rules simply change the counter to reflect the actual number of (nested) acquisitions and do not correspond to an actual prefix in the usage. Rule [u-wait] models a wait operation performed on an object: the counter is set to 0 and the wait prefix is replaced by waiting, indicating that the object has been unlocked waiting for a notification. This makes it possible for another process to acquire the object and eventually notify the one who waits. Rules [u-nfy-1] and [u-nfy-2] model notifications. In [u-nfy-1], the notification occurs at a time when there is indeed another process that is waiting to be notified. In this case, the waiting process attempts to acquire the object. In [u-nfy-2], the notification occurs at a time when no other process is waiting to be notified. In this case, the notification has no effect whatsoever and is lost. Finally, rule [u-choice] (in conjunction with commutativity of +) models the nondeterministic choice between two possible usages of an object and [u-cong] closes reductions under usage congruence.

Not all types are acceptable for our type system. More specifically, there are two properties that we wish to be guaranteed:

whenever there is a pending acquisition operation on a locked object, the object is eventually unlocked; whenever there is a pending wait operation on an object, the object is eventually notified.

A type that satisfies these two properties is said to be reliable:

Definition 4 (type reliability). We say that T is reliable, written rel (T), if the following conditions hold for all n, U and V :

1. T * n • acq.U | V implies n • V * 0 • V for some V , and 2. T * 0 • waiting.U | V implies 0 • V * n • notify.U | V for some U , V .
For example, it is easy to verify that 0 • acq.(wait.rel | acq.notify.rel ) is reliable whereas 0 • acq.wait.rel | acq.notify.rel is not. In the latter usage, the object may be acquired by a process that notifies the object at a time when there is no other process waiting to be notified. Eventually, the object is acquired again but the awaited notification is lost. 

(U | V ) is reliable, we derive 0 • acq.(U | V ) 1 • U | V 0 • U | waiting.notify.V ( ) 1 • notify.wait.rel .U | waiting.notify.V 1 • wait.rel .U | acq.notify.V 0 • waiting.rel .U | acq.notify.V 1 • waiting.rel .U | notify.V 1 • acq.rel .U | V 0 • acq.rel .U | waiting.notify.V 1 • rel .U | waiting.notify.V 0 • U | waiting.notify.V ( )
and observe that no other reductions are possible apart from those shown above, that the two types labelled ( ) are equal, and that both conditions of Definition 4 are satisfied for each reachable state. As we shall see in Example 3, the type 0 • acq.(U | V ) describes the behavior of the main thread of Example 1 with respect to each buffer.

Static Semantics

Type environments

The type system uses type environments, ranged over by Γ , which are finite sets of associations on variables and procedure names defined by the grammar below:

Type environment Γ ::= ∅ | x : T, Γ | A : [T], Γ
An association x : T indicates that x has type T, whereas an association A : [T] indicates that A is a procedure accepting parameters of type T.

We write dom(Γ ) for the set of variable/procedure names for which there is an association in Γ and Γ (x) for the type associated with x ∈ dom(Γ ). With an abuse of notation, we write Γ , Γ for the union of Γ and Γ when dom(Γ ) ∩ dom(Γ ) = ∅. In addition: we write live(Γ ) for the subset of dom(Γ ) of live object references on which there are pending operations, that is live(Γ

) def = {x ∈ dom(Γ ) | Γ (x) = n • U ∧ (n > 0 ∨ U ≡ 0)}; we write iszero(Γ ) if Γ (x) = 0 • U for every x ∈ dom(Γ ); we write noAct(Γ ) if live(Γ ) = ∅.
The same object may be used in different ways in different parts of a program. In order to track the combined usage of the object we inductively define two operators | and + on type environments with the same domain. Intuitively, (Γ | Γ )(x) is the type of an object that is used both as specified in Γ and also as specified in Γ whereas (Γ + Γ )(x) is the type of an object that is used either as specified in Γ or as specified in Γ . The former case happens if x is shared by two concurrent processes respectively typed by Γ and Γ . The latter case happens if x is used in different branches of a conditional process. Formally:

∅ | ∅ = ∅ x : int, Γ | x : int, Γ = x : int, (Γ | Γ ) A : [T], Γ | A : [T], Γ = A : [T], (Γ | Γ ) n • U, Γ | m • V, Γ = n + m • U | V, (Γ | Γ ) n = 0 ∨ m = 0 ∅ + ∅ = ∅ x : int, Γ + x : int, Γ = x : int, (Γ + Γ ) A : [T], Γ + A : [T], Γ = A : [T], (Γ + Γ ) n • U, Γ | n • V, Γ = n • U + V, (Γ + Γ )
Note that both | and + for environments are partial operators and that the former enforces the property that the same object cannot be owned by more than one process at any given time (at least one of the counters must be 0). It is easy to see that | on environments is commutative and associative (modulo ≡ on usages). In the following we write i=1..n Γ i in place of

Γ 1 | • • • | Γ n .
As usual for behavioral type systems, the type environment used for typing a process is an abstraction of the behavior of the process projected on the objects it uses. In particular, a live object association x : n•U in the type environment of a process means that the process uses x as specified by U , whereas an association such as x : 0 • 0 means that the process does not use x at all. To prevent circular waits between parallel processes, we forbid the existence of cycles in the corresponding type environments: Definition 5 (acyclic type environments). We say that a family {Γ } of type environments has a cycle x 1 , . . . , x n of n ≥ 2 pairwise distinct names if there exist Γ 1 , . . . ,

Γ n ∈ {Γ } such that x i ∈ live(Γ i ) ∩ live(Γ (i mod n)+1 ) for all 1 ≤ i ≤ n.
We say that {Γ } is acyclic if it has no cycle.

Typing rules for user syntax

The typing rules for the language in Section 2 are defined in Table 5 and derive three kinds of judgments. A judgment Γ e : T means that the expression e is well typed in Γ and has type T. A judgment Γ P means that the process P is well typed in Γ . In particular, P uses each object x ∈ dom(Γ ) according to the Table 5. Typing rules for user syntax.

Typing rules for (sequences of ) expressions Γ e :

T Γ = Ai : [Ti] (i=1..n) Γ , xi : Ti Pi (i=1..n) Γ P Γ ({Ai(xi) = Pi}i=1..n, P )
usage in Γ (x). Finally, a judgment Γ D, P means that the program D, P is well typed in Γ . We now describe the typing rules.

The typing rules for (sequences of) expressions are unremarkable except for the fact that, as common in substructural type systems, the unused part of the type environment cannot contain live associations, hence the premise noAct(Γ ) in [t-const] and [t-var].

Rule [t-done] states that the terminated process is well typed in an environment without live associations, because done does not perform any operation.

Rules [t-acq-1] and [t-acq-2] concern a process acq(x).P that acquires the lock on x and then continues as P . The difference between the two rules is that in [t-acq-1] the process is attempting to acquire the lock for the first time (the counter of the object is 0), whereas in [t-acq-2] the process is performing a reentrant acquisition, having already acquired the lock n + 1 times. The continuation P is typed in an environment that reflects the (possibly reentrant) acquision of x. Note that the acq action occurs in the usage of x only in the case of [t-acq-1]. As we have anticipated in Section 3, in usages we only keep track of non-reentrant acquisitions and releases.

Rules [t-rel-1] and [t-rel-2] concern a process rel(x).P . As in the case of [t-acq-*] rules, they differ depending on whether the lock is actually released ([t-rel-1]) or not ([t-rel-2]). Only in the first case the release action is noted in the usage of x. Besides that, the rules update the environment for typing the continuation P .

Rules [t-wait] and [t-notify] concern the coordination primitives. In both cases, the object must have been previously acquired (the counter is strictly positive) and the number of acquisitions does not change.

Rule [t-if] is essentially standard. Since only one of the two continuations P 1 and P 2 executes, the respective type environments Γ 1 and Γ 2 are composed using the appropriate disjunctive operator.

Rule [t-fork] types a parallel composition of two processes P 1 and P 2 . The objects used by the parallel composition are used both by P 1 and also by P 2 . For this reason, the respective type environments are combined using |. The iszero(Γ 1 ) premise enforces the property that the process P 1 being forked off does not own any lock. The last premise requires that the family {Γ 1 , Γ 2 } be acyclic, which is equivalent to checking that live(Γ 1 ) ∩ live(Γ 2 ) contains at most one element. This prevents circular waits between P 1 and P 2 as discussed earlier.

Rule [t-new] concerns the creation of a new object. The object is initially unlocked (its counter is 0) and its type must be reliable (Definition 4).

Rule [t-call] is unremarkable and types a process invocation. The only standard requirement is for the types of the arguments to match those expected in the corresponding process declaration.

The typing rule [t-program] ensures that all process names have a corresponding definition and verifies that the main process is itself well typed.

Example 3. Let us show that the Main process in Example 1 is well typed. To do that, consider the type environment

Γ = P : [0 • U ], C : [1 • V, 1 • V ]
where U and V are the usages defined in Example 2 and observe that noAct(Γ ) holds.

For the two invocations P(x) and P(y) we easily derive

(1) Γ , x : 0 • U, y : 0 • 0 x : 0 • U Γ , x : 0 • U, y : 0 • 0 P(x)
(2) Γ , x : 0 • 0, y : 0 • U y : 0 • U Γ , x : 0 • 0, y : 0 • U P(y)

using [t-var] and [t-call]. Then we have (1) 
(2)

Γ , x : 1 • V, y : 1 • V x, y : 1 • V, 1 • V Γ , x : 1 • V, y : 1 • V C(x, y) Γ , x : 1 • V, y : 1 • U | V fork{P(y)} C(x, y) Γ , x : 1 • U | V, y : 1 • U | V fork{P(x)} fork{P(y)} C(x, y) Γ , x : 1 • U | V, y : 0 • acq.(U | V ) acq(y).fork{P(x)} fork{P(y)} C(x, y) Γ , x : 0 • acq.(U | V ), y : 0 • acq.(U | V ) acq(x) • • • rel (0 • acq.(U | V )) Γ , x : 0 • acq.(U | V ) new y in • • • rel (0 • acq.(U | V ))
Γ new x in new y in acq(x).acq(y).fork{P(x)} fork{P(y)} C(x, y)

where the reliability of 0 • acq.(U | V ) has already been proved in Example 2.

In the two applications of [t-fork], the acyclicity of the involved environments is easily established since in each conclusion of ( 1) and ( 2) there is only one live association, for x and y respectively.

Typing rules for runtime syntax and states

The soundness proof of our type system follows a standard structure and includes a subject reduction result stating that typing (but not necessarily types) are preserved by reductions. Since the operational semantics of a program makes use of constructs that occur at runtime only (notably, waiting processes and states) we must extend the typing rules to these constructs before we can formulate the properties of the type system. The additional typing rules are given in Table 6.

Table 6. Typing rules for runtime syntax.

[t-waiting]

Γ , x : n • U P Γ , x : 0 • waiting.U wait(x, n).P [t-state] Γ = i∈I Γi Γi Pi (i∈I) rel (Γ (xj)) (j∈J) {Γi}i∈I acyclic Γi(xj) = n + 1, U ⇐⇒ ti = sj (i∈I,j∈J) Γ (xj) = 0 • U ⇐⇒ sj = • (j∈J)
Γ {xj : sj, nj}j∈J i∈I ti : Pi Rule [t-waiting] accounts for a process waiting for a notification, after which it will attempt to acquire the lock on x. Once x is notified and the process awakened, the process will acquire the lock n times, reflecting the state of acquisitions at the time the process performed the wait(x) operation (see [r-wait]).

The rule [t-state] for states looks more complex than it actually is. For the most part, this rule is a generalization of [t-fork] and [t-new] to an arbitrary number of concurrent processes (indexed by i ∈ I) and of objects (indexed by j ∈ J). From left to right, the premises of the rule ensure that:

each process P i is well typed in its corresponding environment Γ i ; the type of each object x j , which describes the overall usage of x j by all the processes, is reliable; the family {Γ i } i∈I of type environments is acyclic; the process t i owns the object x j if and only if the counter for x j in the type environment Γ i of P i is strictly positive. Because of the definition of | for type environments, this implies that no other process owns x j ; no process owns the object x j if and only if the counter for x j in the overall environment is zero. T T Γ , x : T Γ , x : T As usual, * denotes the reflexive, transitive closure of .

The first rule accounts for the possibility that a new object x is created. We can now formally state subject reduction, which shows that typing is preserved for any reduction of a well-typed program: Lemma 1 (subject reduction). Let Γ D, P and ∅ main : P -→ * D H P . Then Γ H P for some Γ such that Γ * Γ .

The soundness theorem states that well-typed programs are deadlock free:

Theorem 1 (soundness). If Γ (D, P ), then (D, P ) is deadlock free.

Related work

Despite the number of works on deadlock analysis of concurrent programs, only a few address coordination primitives. Below we discuss the most relevant ones. Static techniques typically employ control-flow analysis to build a dependency graph between objects and enforce its acyclicity. These techniques may adopt some heuristics to remove likely false positives, but they are necessarily conservatives. For instance, Deshmukh et al. [START_REF] Deshmukh | Symbolic modular deadlock analysis[END_REF] analyze libraries of concurrent objects looking for deadlocks that may manifest for some clients of such objects, by considering all possible aliasing between the locks involved in the objects. The technique of von Praun [START_REF] Von Praun | Detecting synchronization defects in multi-threaded object-oriented programs[END_REF] is based on the detection of particular patterns in the code, such as two threads that perform wait(x) and wait(y) in different orders, which does not necessarily lead to a deadlock. Naik et al. [START_REF] Naik | Effective static deadlock detection[END_REF] combine different static analyses that correspond to different conditions that are necessary to yield a deadlock. Their technique concerns lock acquisition and release, but not coordination primitives. Williams et al. [START_REF] Williams | Static deadlock detection for java libraries[END_REF] build a lock-order graph that describes the sequences of lock acquisitions in a library of Java classes. In particular, they consider implicit acquisitions due to wait operations, but not deadlocks caused by missed notifications. Hamin and Jacobs [START_REF] Hamin | Deadlock-free monitors[END_REF] present a refinement of separation logic to reason on locks and wait/notify coordination primitives. Their technique ensures deadlock freedom by imposing an ordering on the use of locks and by checking that each wait is matched by at least one notification. The logic allows them to address single wait operations within loops, which is something our type system is unable to handle. On the other hand, the use of a lock ordering limits the technique in presence of loops and recursion whereby blocking operations on several locks are interleaved, as in our running example (Figure 1).

Dynamic techniques perform deadlock detection by analyzing the log or scheduling of a program execution [START_REF] Agarwal | Run-time detection of potential deadlocks for programs with locks, semaphores, and condition variables[END_REF][START_REF] Joshi | An effective dynamic analysis for detecting generalized deadlocks[END_REF][START_REF] Eslamimehr | Sherlock: scalable deadlock detection for concurrent programs[END_REF]. By considering actual program runs, these techniques potentially offer better precision, at the cost of delayed deadlock detection. Agarwal and Stoller [START_REF] Agarwal | Run-time detection of potential deadlocks for programs with locks, semaphores, and condition variables[END_REF] define feasible sequences, called traces, that are consistent with the original order of events from each thread and with constraints imposed by synchronization events. By analyzing all the possible traces, they verify that a wait operation always happens before a notify operation. Joshi et al. [START_REF] Joshi | An effective dynamic analysis for detecting generalized deadlocks[END_REF] extract a simple multi-threaded program from the source code that records relevant operations for finding deadlocks. Then, they consider any possible interleavings of the simple program by means of a model checker in search of deadlocks. The technique returns both false positives (the simple program manifests a deadlock that never occurs in the source program) and false negatives (the simple program is defined by observing a single execution and the deadlock may occur in another execution). Deadlocks due to coordination primitives are not covered by the technique of Eslamimehr and Palsberg [START_REF] Eslamimehr | Sherlock: scalable deadlock detection for concurrent programs[END_REF].

Demartini et al. [START_REF] Demartini | A deadlock detection tool for concurrent java programs[END_REF] translate Java into the Promela language, for which the SPIN model checker verifies deadlock freedom. Their analysis reports all deadlock possibilities so long as the program does not exceed the maximum number of modeled objects or threads. Java Pathfinder, a well-known tool that is used to analyze execution traces, also performs model checking by translating Java to Promela [9]. When checking matches between wait and notify operations, this technique may suffer from the state-space explosion due to the number of traces to analyse.

Kobayashi and Laneve [START_REF] Kobayashi | Deadlock analysis of unbounded process networks[END_REF] present a deadlock analysis for the pi-calculus which provided the initial inspiration for this work. In fact, attempts were made to encode the language of Section 2 in the pi-calculus so as to exploit the technique of Kobayashi and Laneve. The encoding approach proved to be unsatisfactory because of the many false positives it triggered. Notably, Kobayashi and Laneve [START_REF] Kobayashi | Deadlock analysis of unbounded process networks[END_REF], following [START_REF] Kobayashi | Type-based information flow analysis for the pi-calculus[END_REF], define a notion of usage reliability which can be reduced to a reachability problem in Petri nets. However, the encoding of usages with wait-notify primitives requires the use of Petri nets with inhibitor arcs [START_REF] Busi | Analysis issues in petri nets with inhibitor arcs[END_REF], which are more expressive than standard Petri nets.

Our type system does not impose an order on the usage of locks. Rather, it adopts a typing rule for parallel threads ([t-fork]) inspired by session type systems based on linear logic [START_REF] Wadler | Propositions as sessions[END_REF][START_REF] Caires | Linear logic propositions as session types[END_REF]. The key idea is to require that, whenever two threads are combined together in a parallel composition, they can only interact through at most one object, as suggested by the structure of the cut and tensor rules in (classical) linear logic [START_REF] Girard | Linear logic[END_REF]. This approach results in a simple and expressive type system which can deal with recursive processes interleaving blocking actions on different objects (Figure 1). The downside is that [t-fork] imposes well-typed programs to exhibit a forest-like topology, ruling out some interesting programs which are in the scope of other techniques, such as those based on lams [START_REF] Kobayashi | Deadlock analysis of unbounded process networks[END_REF].

Concluding Remarks

We have described a deadlock analysis technique for concurrent programs using Java-like coordination primitives wait and notify. The technique extends also to notifyAll (Appendix D). Our technique is based on behavioral types, called usages, that may be encoded as Petri nets with inhibitor arcs [START_REF] Busi | Analysis issues in petri nets with inhibitor arcs[END_REF]. Thereby, we reduce deadlock freedom to the reachability problem in this class of Petri nets.

Our technique is unable to address programs where two threads share more than one object because of the acyclicity constraint in rule [t-fork]. A more finegrained approach for tracking object dependencies has been developed by Laneve [START_REF] Laneve | A lightweight deadlock analysis for programs with threads and reentrant locks[END_REF] and is based on lams [START_REF] Kobayashi | Deadlock analysis of unbounded process networks[END_REF]. However, this approach does not consider coordination primitives. We initially tried to combine lams and usages with coordination primitives, but the resulting type system proved to be overly restrictive with respect to recursive processes: the amount of dependencies prevented the typing of any recursive process interleaving blocking operations on two or more objects (such as the consumer in Figure 1). Whether lams and usages with coordination primitives can be reconciled is still to be determined.

Another limitation of the type system is that it assumes precise knowledge of the number of acquisitions for each shared object, to the point that types contain a counter for this purpose. However, this information is not always statically available. It may be interesting to investigate whether this limitation can be lifted by allowing a form of counter polymorphism.

Γ , x : 1 • rel .U, y : 0 • 0 rel(x).P(x) Γ , x : 1 • wait.rel .U, y : 0 • 0 wait(x).rel(x).P(x) Γ , x : 1 • notify.wait.rel .U, y : 0 • 0 notify(x).wait(x).rel(x).P(x) Γ , x : 0 • U, y : 0 • 0 acq(x).notify(x).wait(x).rel(x).P(x) for the producer, recalling that we identify recursive usages with their unfolding.

B Soundness Proofs

B.1 Subject Reduction

Given that the syntax and semantics of expressions is only partially specified, in the following we make the assumption that well-typed expressions satisfy the basic principle of type preservation under evaluation, namely that Γ e : T and e = v imply Γ v : T. Lemma 2 (substitution). The following properties hold: Proof. The first property is assumed, since syntax and semantics of expressions are only partially specified. The second property follows by a simple induction on the typing derivation and a standard weakening result whereby a type environment can be augmented by associations for integer numbers and objects with type 0 • 0.

Proposition 1. If both {Γ 1 | Γ 2 , Γ } and {Γ 1 , Γ 2 } are acylic, then so is {Γ 1 , Γ 2 , Γ }.
Proof. We prove the contrapositive of the statement, namely that if {Γ 1 , Γ 2 , Γ } has a cycle, then either {Γ 1 | Γ 2 , Γ } or {Γ 1 , Γ 2 } have one too. If the cycle is entirely within {Γ } or entirely within {Γ 1 , Γ 2 } the result is trivial. Otherwise, observe that live(Γ 1 | Γ 2 ) = live(Γ 1 )∪live(Γ 2 ) and that the length of a cycle in a family of type environments is the same as the number of environments in the family involved in the cycle. So, if the cycle goes through Γ 1 or Γ 2 , but not both, the same cycle is also found in We discuss only a few interesting cases assuming, without loss of generality, that H = {x j : s j , n j } j∈J and P = {t i : P i } i∈I . Then, from [t-state], we deduce the following facts:

{Γ 1 | Γ 2 , Γ }.
1. Γ = i∈I Γ i ; 2. Γ i P i for every i ∈ I; 3. rel (Γ (x j )) for every j ∈ J; 4. {Γ i } i∈I is acyclic; 5. Γ i (x j ) = n + 1, U iff t i = s j and Γ (x j ) = 0, U iff s j = • for all i ∈ I, j ∈ J;

[r-acq-1] Then P = t i : acq(x j ).Q, P and H = H , x j : •, 0 and P = Q, P and H = H , x j : t i , 1 for some i ∈ I and j ∈ J. From [t-state] and [t-acq-1] we deduce that there exist Γ i and U such that Γ i = Γ i , x j : 0 • acq.U and Γ i , x j : 1

• U Q. Let Γ i def = Γ i , x j : 1 • U and Γ k def = Γ k for every k ∈ I \ {i}. Let Γ def = i∈I Γ i .
Note that Γ is well defined because the fact 5 ensures that no other process owns x j . We conclude by observing that Γ Γ . [r-acq-2] Similar to the previous case, except that H = H , x j : t i , n + 1 and H = H , x j : t i , n + 2. We use fact 5 to deduce that n j = n + 1 and we use the reentrant reduction of types to increment this counter.

[r-rel-1] Then P = t i : rel(x j ).Q, P and H = H , x j : t i , 1 and P = t i : Q, P and H = H , x j : •, 0 for some i ∈ I and j ∈ J. From [t-rel-1] and the fact 5 we deduce that there exist Γ i and U such that

Γ i = Γ i , x j : 1 • rel .U and Γ i , x j : 0 • U Q. Let Γ i def = Γ i , x j : 0 • U and Γ k def = Γ k for every k ∈ I \ {i}. Let Γ def = i∈I Γ i .
We conclude by observing that Γ Γ .

[r-fork] Then P = t i : fork{P 1 }P 2 , P and P = t i : P 1 , s : P 2 , P and H = H. From [t-fork] we deduce that Γ i = Γ i1 | Γ i2 and Γ ik P ik for k = 1, 2 and iszero(Γ i1 ) and {Γ i1 , Γ i2 } is acyclic. From iszero(Γ i1 ) and the fact that s is a new thread identifier we deduce that all objects owned by t i before the reduction are still owned by t i after the reduction and that all objects not owned by t i before the reduction are not owned by s after the reduction. This suffices to deduce that the last two premises of [t-state] hold. We conclude by taking Γ def = Γ and observing that {Γ i1 , Γ i2 } ∪ {Γ k } k∈I\{i} is acyclic by Proposition 1.

[r-new] Then P = t i : new x in Q, P and P = t i : Q, P and H = H, x : •, 0 for some i ∈ I. From [t-new] we deduce that there exists U such that Γ i , x : 0 • U P and rel (0

• U ). Take Γ i def = Γ i , x : 0 • U and Γ k def = Γ i , x : 0 • 0 for every k ∈ I \ {i} and Γ def = i∈I Γ i .
We conclude by observing that Γ Γ and that {Γ k } k∈I is acyclic. Proof. Let H = {y j : s j , n j } j∈J and P = {t i : Q i } i∈I . From [t-state] we deduce that Γ = i∈I Γ i and Γ i Q i for all i ∈ I and there exist U j such that Γ (y j ) = n j • U j for all j ∈ J. Also, {Γ i } i∈I is acyclic. Using the hypotheses Γ H P : and H P -→ D and the assumption that every process name has a corresponding declaration in D we deduce that Q i = π i .P i for every i ∈ I, where π i is a synchronization primitive concerning some lock x i .

From the hypothesis that H P is well typed we deduce that all the processes in P are closed, hence for every i ∈ I there exists j ∈ J such that y j = x i . Let η : I → J be the map such that y η(i) = x i for every i ∈ I.

Using once again the hypothesis that H P -→ D we can make the following deductions:

1. if π i = acq(x i ), then s η(i) ∈ {•, t i } or else H P would reduce using either

[r-acq-1] or [r-acq-2]; 2. if π i = wait(x i ), then s η(i) = t i or else H P would reduce using [r-wait]; 3. if π i = rel(x i ), then s η(i) = t i or else H P would reduce using either [r-rel-1] or [r-rel-2]; 4. if π i = notify(x i ), then s η(i) = t i or else H P would reduce using [r-nfy-2].
From these deductions and the hypothesis that H P is well typed we can further rule out the possibility that any prefix is wait(x i ) or rel(x i ) or notify(x i ), because the type system allows these operations only when the thread performing them owns the corresponding lock x i . In summary, each π i has either the form acq(x i ) or the form wait(x i , n). Also, we may deduce x i ∈ live(Γ i ) because the process t i is performing an action on x i . Now we show that, by starting from the assumption that I = ∅, it is possible to find a cycle in {Γ i } i∈I . This, of course, contradicts the hypothesis that {Γ i } i∈I is acyclic and therefore the assumption I = ∅. To build the cycle, it suffices to show that for every i ∈ I there exists k ∈ I \ {i} such that x i ∈ live(Γ i ) ∩ live(Γ k ) and x k = x i , bearing in mind that I is finite.

We discuss three sub-cases, in which j def = η(i):

-If π i = acq(x i ), then x i is owned by a process s j = t i . Take k ∈ I such that t k = s j and observe that k = i. From rel (Γ (x i )) we know that t k must eventually perform an action rel(x i ) or wait(x i ), hence x i ∈ live(Γ k ). Furthermore, the process t k must be blocked on a prefix π k concerning an object x k different from x i , hence x i = x k . -If π i = wait(x i ) and x i is owned by a process s j = t i , then we can reason as in the previous case to find the x k with the desired properties. -If π i = wait(x i ) and x i is not owned by any process, then from [t-waiting] and rel (Γ (x i )) we deduce that Γ (

x i ) = n j • U and U ≡ wait.U 1 | U 2 and n j • U 2 * m • notify.U 3 | U 4 .
Hence there is (at least) another thread t k = t i owning a reference to x i such that Γ k (x i ) contains the subterm notify.U 3 not guarded by a wait, therefore x i ∈ live(Γ k ). We conclude observing that the process t k must be blocked on a prefix π k concerning an object x k different from x i , because x i is free.

The above arguments suffice to establish that P = ∅. All that remains to prove is that all the objects in H are unlocked. From [t-state] we deduce Γ (y j ) = n j • 0 for all j ∈ J. Then, from rel (n j • 0), we deduce n j = 0. From [t-state] we conclude s j = •.

C Partial Decidability of Reliability

In this appendix we demonstrate that the predicate rel (n, U ) is partially decidable. To this aim, we encode usages in a variant of Petri nets using inhibitor arcs and we reduce reliability to the reachability predicate in this class of nets [START_REF] Busi | Analysis issues in petri nets with inhibitor arcs[END_REF]. Below we briefly recall the definition of Petri nets with inhibitor arcs and the definition of execution of a transition. Busi [START_REF] Busi | Analysis issues in petri nets with inhibitor arcs[END_REF] gives all the details. Definition 7. A Petri net with inhibitor arcs is a tuple N = (S, T, F, I), where -S and T are finite sets of places and transitions such that S ∩ T = ∅; places and transitions are denoted by circles and boxes, respectively, in Figure 2; -F : (S × T ) ∪ (T × S) → N is the flow function (N is the set of natural numbers); -I ⊆ S × T is the inhibiting relation; inhibitor arcs are drawn in red in Figure 2.

A multiset over the set S of places is called a marking and noted by m, m , . . . . That is, markings are maps S → N. Given a marking m and a place s, we say that the place s contains m(s) tokens. The preset of a transition t, noted • t, is the marking such that • t(s) = F (s, t) and represents the tokens to be "consumed"; the postset of t, noted t • , is the marking such that t • (s) = F (t, s) and represents the tokens to be "produced". The inhibitor set of a transition t is the set •t = {s ∈ S | (s, t) ∈ I} and represents the places to be "tested for absence" of tokens.

A transition t is enabled at m if • t ⊆ m and dom(m) ∩ •t = ∅. The execution of a transition t enabled at m produces the marking m = (m \ • t) t • . This is written as m[t m .

In order to verify the reliability predicate for types n • U we will encode these pairs into Petri nets (with inhibitor arcs) and define a correspondence between the reduction and the transitions of Petri nets. Actually, we may simplify our arguments. First, we notice that the rules [u-acq-2] and [u-rel-2] of Table 4 are not relevant for reliability. This follows by the following proposition. Then, we also notice that, in the typing rules for user syntax, reliability is always checked for pairs 0 • U where U never contains the waiting prefix (this prefix is produced by the relation -rule [u-wait] -and will have a counterpart in the Petri net).

Because of the foregoing remarks, we encode a usage U (without any counter) in a Petri net with inhibitor arcs. The definition of the function PN(U ) is reported in Figure 2. We use three special places, that are called x, w x and n x . These places are dotted in the figure. Their meaning is as follows:

if m(x) ≥ 0 then the object x is unlocked, otherwise (m(x) = 0) it is locked; m(w x ) specifies the number of usages waiting to be notified; m(n x ) specifies the number of notifications that will awake waiting usages.

The map PN(U ) returns a net with an "initial place", which is the topmost one in every net. We compose nets by connecting these initial places. Below we discuss the interesting encodings:

-PN(acq.U ) is encoded by a net where a token is put into the initial place of PN(U ) if x is unlocked, e.g. the place x contains a token; no one else can lock x if PN(U ) does not release the lock (the place x always contains at most one token); -PN(rel .U ) is encoded by a net where a token is put into the x place -e.g. x is unlocked -that PN(U ) is triggered; -PN(wait.U ) is encoded by a net whose first transition releases the lock of x, puts a token into the place w x and puts a token into a place expressing that the thread is waiting to be notified -this place models the waiting prefix. When the notification arrives -e.g. n x contains a token -then the net transits into a place waiting for acquiring the lock of x -that corresponds to the acq prefix. When the lock has been acquired then PN(U ) can start; -PN(notify.U ) is encoded by a net using an inhibitor arc. This arc is used for separating the two cases of notifications awaking a waiting thread and of notifications that are skipped because there is no waiting thread. Therefore, if the place w x is empty then (inhibitor arc) PN(U ) starts and the notification is lost; otherwise a token in n x is put and PN(U ) starts; -PN(µα.U ) is defined by taking PN(U ) and adding a transition from any place labelled α to a place that triggers the initial place of PN(U ).

The initial marking of PN(U ) has a token in the initial place of the net and a token in the place labelled x. With this setup, the proof that rel (n • U ) is partially decidable is analogous to the corresponding one in [START_REF] Kobayashi | Type-based information flow analysis for the pi-calculus[END_REF].

D Extension

Below we discuss the extension of our system to an additional coordination primitive that is present in Java. The primitive is notifyAll() that awakes all the waiting threads. The formal account of this primitive consists of extending prefixes π in Section 2 with the action notifyAll() and the operational semantics with the rules (I is finite, possibly empty):

[R-NfyAll]

x : t, n + 1 i∈I t i : wait(x, n i ).P i , t : notifyAll(x).Q, P -→ D x : t, n + 1 i∈I t i : acq(x) ni .P i , t : Q, P if wait(x) / ∈ P Notice that, since I may be empty, notifyAll(x) is ephemeral, similarly to notify(x).

Correspondingly, usage prefixes are extended with notifyAll whose reductions are

[U-NfyAll] wf(V ) n + 1, i∈I waiting.U i | notifyAll .U | V n + 1, i∈I acq.U i | U | V
To account for the new notifyAll prefix, Definition 4 of reliability is extended as follows: T is reliable, written rel (T), whenever the following two conditions hold:

1. if T * n • acq.U | V then n • V * 0 • V , for some V , and 2. if T * 0 • waiting.U | V , 0 • V * n • κ.V | V for some n, V , V and κ ∈ {notify, notifyAll }.

Finally, we extend PN() to notifyAll so that PN(notifyALL(x). U )= PN(U ) wx nx and it is now possible to demonstrate that the predicate rel (T) is partially decidable as in the basic case without notifyAll().

Fig. 1 .

 1 Fig. 1. Multiple-producers/single-consumer coordination in Java.

Example 2 .

 2 Consider the type 0•acq.(U | V ) where U def = µα.acq.notify.wait.rel .α and V def = µα.wait.notify.α. To prove that 0 • acq.

1 .

 1 If Γ , x : T e : T and Γ v : T, then Γ e{v/x} : T ; 2. If Γ , x : T P and Γ v : T, then Γ P {v/x}.

  [r-call] Then P = t i : A(e), P and P = t i : Q{v/x}, P , where e = v and H = H and A(x) = Q ∈ D. From [t-state] and [t-call] we deduce that Γ i = Γ i , A : [T] and Γ i e : T. From the assumed type preservation property of well-typed expressions we deduce Γ i v : T. From the hypothesis that the program is well typed we dedice that Γ = Γ 0 | Γ 1 and Γ 0 , x : T Q. From Lemma 2 we deduce Γ 0 | Γ i Q{v/x}. We conclude by taking Γ def = Γ .B.2 SoundnessTheorem 2 (soundness). If Γ H P and H P -→ D , then P = ∅ and all the objects in H are unlocked.

Proposition 2 .

 2 Let [n] be 0 if n = 0 and be 1 if n > 0. Then n • U * n • U if and only if [n] • U * [n ] • U .

Fig. 2 .

 2 Fig. 2. The encoding of usages in Petri nets with inhibitor arcs.

Table 1 .

 1 Syntax of the language with runtime syntax marked by †.

	Expression	e ::= n	(constant)
		| x	(variable)
		| e op e	(operator)
	Process P, Q ::= done	(termination)
		| π.P	(action prefix)
		| if e then P else Q (conditional)
		| new x in P	(new object)
		| fork{P }Q	(new process)
		| A(e)	(invocation)

Table 2 .

 2 Reduction rules.

	[r-acq-1]

Table 4 .

 4 Reduction of types.

[u-acq

-1] 

  The most interesting case is when the only cycles of {Γ 1 , Γ 2 , Γ } go through both Γ 1 and Γ 2 and at least one more environment in Γ . Consider a cycle x 1 , . . . , x n where x 1 ∈ live(Γ 1 ) ∩ live(Γ 2 ). Then n ≥ 3 and we conclude that x 2 , . . . , x n is a cycle of {Γ 1 | Γ 2 , Γ }.

	Lemma 3 (subject reduction). Let Γ P . Then Γ H P for some Γ such that Γ * Γ . D, P and ∅ main : P -→ * D H
	Proof. By induction on the length of ∅	main : P -→ * D H	P . The basic
	case is obvious. For the inductive case, we decompose the computation into
	∅	main : P -→ * D H	P -→ D H	P and we reason by cases on the
	reduction rule being applied to H	P -→ D H	P .

[t-const] noAct(Γ ) Γ n : int [t-var] noAct(Γ ) Γ , x : T x : T [t-op] Γ e : int Γ e : int Γ e op e : int [t-seq]Γi ei :Ti (i=1..n) Γ1 | • • • | Γn e1, .. . , en : T1, . . . , TnTyping rules for processes Γ P[t-done] noAct(Γ ) Γ done [t-acq-1] Γ , x : 1 • U P Γ , x : 0 • acq.U acq(x).P [t-acq-2] Γ , x : n + 2 • U P Γ , x : n + 1 • U acq(x).P [t-rel-1] Γ , x : 0 • U P Γ , x : 1 • rel .U rel(x).P [t-rel-2] Γ , x : n + 1 • U P Γ , x : n + 2 • U rel(x).P [t-wait] Γ , x : n + 1 • U P Γ , x : n + 1 • wait.U wait(x).P [t-notify] Γ , x : n + 1 • U P Γ , x : n + 1 • notify.U notify(x).P [t-if] Γ e : int Γi Pi (i=1,2) Γ | (Γ1 + Γ2) if e then P1 else P2 [t-call] Γ e : T Γ , A : [T] A(e) [t-fork] Γi Pi (i=1,2) iszero(Γ1) {Γ1, Γ2} acyclic Γ1 | Γ2 fork{P1}P2 [t-new]Γ , x : 0 • U P rel (0, U )Γ new x in P Typing rule for programs Γ (D, P )[t-program]

4.4 Properties of well-typed programsAs usual, the key lemma for proving soundness of the type system is subject reduction, stating that a well-typed state reduces to well-typed state. In our case, this result guarantees the preservation of typing, but not necessarily the preservation of types. Indeed, as a program reduces and operations are performed on objects, the type of such objects changes consequently. To account for these changes, we lift reduction of types to type environments, thus: Definition 6 (environment reduction). The reduction relation for environments, noted , is the least relation such that: Γ Γ , x : T

Cosimo Laneve and Luca PadovaniA Typing derivations for producer-consumerIn this section we provide the typing derivations for the producer and consumer processes in Example 1. Using the definitions of U and V in Example 2 and that of Γ in Example 3, we deriveΓ , x : 1 • V, y : 1 • V x, y : 1 • V, 1 • V Γ , x : 1 • V, y : 1 • V C(x, y) Γ , x : 1 • V, y : 1 • notify.V notify(y).C(x, y) Γ , x : 1 • V, y : 1 • V wait(y).notify(y).C(x, y) Γ , x : 1 • notify.V, y : 1 • V notify(x).wait(y).notify(y).C(x, y) Γ , x : 1 • V, y : 1 • V wait(x).notify(x).wait(y).notify(y).C(x, y)for the consumer and Γ , x : 0 • U, y : 0 • 0 x : 0 • U Γ , x : 0 • U, y : 0 • 0 P(x)