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ABSTRACT

We propose a framework for image characterization using hierarchies of segmentations.
For this purpose, we structure the space of hierarchies using the Gromov-Hausdorff dis-
tance. We propose different ways of combining hierarchies and study their properties
thanks to the GH distance. We then expose how to leverage the combinatorial space of
hierarchies to derive efficient image representations. This framework opens a path for a
controlled exploration and use of the combinatorial space of hierarchies.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Hierarchical clusterings are mathematical structures that
have proven to be useful multiscale representations for a va-
riety of tasks. In this paper, we work with hierarchies generated
upon images, namely hierarchies of segmentations. Hierarchies
of segmentations have been used extensively throughout the lit-
erature. One can cite (Arbeláez et al., 2014; Cousty et al., 2018;
Xu et al., 2016; Wei et al., 2018). Although we focus on im-
ages representations in this work, the approaches presented can
be extended to any object that can be modeled as a graph. Hi-
erarchical segmentations are interesting to characterize images
as they are able to extract the relevant information that is dis-
tributed across scales. However, there is no single hierarchy that
can capture all the desired features from an image, as these fea-
tures are dependent upon the application and the type of image.
This is why, in this paper, we propose a multi-model approach
by considering several hierarchies for each image. An interest-
ing analogy is to see each hierarchy as a filter of pure color. To
obtain the best contrast between objects of an image, one has
to choose the best color filter. For example, in an ophthalmics
image of the back of the eye, the best way to separate the retina
from the red vessels is to apply a green filter: this isolates ves-
sels and makes their subtraction from the image easier. In a sim-
ilar way, morphological hierarchies can be seen as pure geomet-
rical filters that can be combined to obtain derived hierarchies
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that can discriminate complex structures. We will expose two
ways to do so: one sequential, corresponding to chainings of
hierarchies, and one parallel, corresponding to functional com-
binations of hierarchies. In a way, we multiply the viewpoints
on an image in a controlled and understandable manner. Fur-
thermore, we propose to structure the resulting combinatorial
space of hierarchies by using the Gromov-Hausdorff (GH) dis-
tance to structure it as a metric space, as well as a visualization
tools for a better interpretability of results. Finally, we show
how one can build and use interhierarchy distance matrices as
efficient condensed features of images for various applications.
This part of the paper uses elements from previous work (Fehri
et al., 2018).

The remaining of the paper is organized as follows. Section 2
recalls the theoretical framework to obtain morphological hier-
archies within a graph-based framework, and gives some refer-
ences. In Section 3, we show how one can structure the combi-
natorial space of hierarchies as a metric space in order to study
its properties. In Sections 4 and 5, we introduce the sequen-
tial and parallel combinations of hierarchies, and make use of
the tools introduced before to study their properties. Notably,
we show how hierarchies having as support the same tree, and
differing only by the weights on the edges of this tree, can gen-
erate a new hierarchy holding the same tree as support and new
edge weights computed from the initial edge weights. Finally,
Section 6 shows the interest of interhierarchy distance matrices
as features for image characterization.

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/
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2. Morphological hierarchies

2.1. Theoretical framework
In this section, we explain to the reader how to construct

and use graph-based hierarchical segmentation, as well as re-
mind some properties of the objects we work with. For each
image, let us suppose that a fine partition is produced by an
initial segmentation (for instance a set of superpixels (Achanta
et al., 2012; Machairas et al., 2015) or the basins produced by a
classical watershed algorithm (Meyer and Beucher, 1990)) and
contains all contours making sense in the image. We define a
dissimilarity measure between adjacent tiles of this fine parti-
tion. One can then see the image as a graph, the region adja-
cency graph (RAG), in which each node represents a tile of the
partition; an edge links two nodes if the corresponding regions
are neighbors in the image; the weight of the edge is equal to
the dissimilarity between these regions. Formally, we denote
this graph G = (V,E,W), where V corresponds to the image
domain or set of pixels/fine regions, E ⊂ V × V is the set
of edges linking neighbour regions, W : E → R+ is the dis-
similarity measure usually based on local gradient information
(or color or texture), for instance W(i, j) ∝ |I(vi) − I(v j)| with
I : V → R representing the image intensity. The edge linking
the nodes p and q is designated by epq . A path is a sequence
of nodes and edges: an example of a path linking the nodes p
and s is the set {p, ept, t, ets, s}. A connected graph is a graph
where each pair of nodes is connected by a path. A cycle is a
path whose extremities coincide. A tree is a connected graph
without cycle. A spanning tree is a tree containing all nodes.
A minimum spanning tree (MST) MST (G) of a graph G is a
spanning tree with minimal possible weight (the weight of a
tree being equal to the sum of the weights of its edges), ob-
tained for example using the Prim’s algorithm (Prim, 1957). A
forest is a collection of trees. A partition P of a setV is a col-
lection of subsets ofV, such that the whole setV is the disjoint
union of the subsets in the partition, i.e., P = {R1,R2, . . . ,Rk},
such that ∀i,Ri ⊆ V ; ∀i 6= j,Ri ∩ R j = ∅ ;

⋃k
i Ri = V.

Cutting all edges of the MST (G) having a valuation superior
to a threshold λ leads to a minimum spanning forest (MSF)
F (G, λ), i.e. to a partition of the graph. Note that the ob-
tained partition is the same that one would have obtained by
cutting edges superior to λ directly on G (Najman et al., 2013).
Since working on theMST (G) is less costly and provides sim-
ilar results regarding graph-based segmentation, we work only
with theMST (G) in the sequel. So cutting edges by decreas-
ing valuations gives an indexed hierarchy of partitions (H , λ),
withH a hierarchy of partitions i.e. a chain of nested partitions
H = {P0,P1, . . . ,Pn|∀ j, k, 0 ≤ j ≤ k ≤ n ⇒ P j v Pk},
with Pn the single-region partition and P0 the finest partition on
the image, and λ : H → R+ being a stratification index that cor-
responds to the ultrametric distance defining the hierarchy and
verifying λ(P) < λ(P′) for two nested partitions P ⊂ P′. This
process is otherwise called single-linkage hierarchical cluster-
ing in the literature (Kaufman and Rousseeuw, 2009).

This increasing map allows us to value each contour accord-
ing to the level of the hierarchy for which it disappears: this
is the saliency of the contour (corresponding to the ultrametric
distance between the two regions it separates), and we consider

that the higher the saliency, the stronger the contour. For a given
hierarchy, the image in which each contour takes as value its
saliency is called Ultrametric Contour Map (UCM)(Arbelaez
et al., 2011) or saliency map (Cousty et al., 2018).

We refer to a hierarchy built on a graph with edge weights
expressing local contrast as to a trivial hierarchy. Whatever the
intended use of hierarchical representations, for example the
extraction of a segmentation out of a hierarchy (Guigues et al.,
2006; Kiran and Serra, 2014), the trivial hierarchy is usually
not the more adapted one to work with in order to obtain the
best results. It is thus interesting to look for more informa-
tive dissimilarities adapted to the content of images, so that the
simplest methods are sufficient to obtain the desired results, for
example computing interesting partitions. As these hierarchies
are defined as ultrametric distances on a set of nodes, we can
either aim at learning these ultrametrics (Wolf et al., 2017) or at
designing them in order for them to capture certain types of in-
formation. Several morphological hierarchical techniques exist
to do the latter.

2.2. A variety of morphological hierarchies

Morphological hierarchies are representations capturing in-
formation across scales with an emphasis put on shape and size
features. We hereby remind the reader of some of them known
as watershed hierarchies, while insisting on the fact that ap-
proaches and methods proposed throughout the rest of this pa-
per can be used with any type of hierarchy.

Seminal works on morphological hierarchies include the
dynamics hierarchy exhibiting contrasted regions (Grimaud,
1992) (and corresponding to the trivial hierarchy), or the area-
based and volume-based watershed hierarchies (Vachier and
Meyer, 1995) extending the dynamics hierarchy by taking into
account sizes of regions as well. The waterfall hierarchy,
first described in the context of a topographic surface flood-
ing (Beucher, 1990), has then been extended on graphs (Meyer,
2015b). The waterfall hierarchy highlights the nested structure
of the catchment basins of a topographic surface. By flood-
ing each catchment basin of a topographic surface up to the
level of its lowest pass point, a new simpler topographic surface
is produced, whose catchment basins result from the merging
of catchment basins of the initial surface. The stochastic wa-
tershed (SWS), introduced in (Angulo and Jeulin, 2007) on a
simulation basis and extended with a graph-based approach in
(Meyer, 2015a), is a versatile tool to construct hierarchies. The
seminal idea is to operate multiple times marker-based segmen-
tation with random markers and valuate each edge of the image
by its frequency of appearance in the resulting segmentations.
The same results can be obtained efficiently on graphs without
the need for simulation within the framework described in sec-
tion 2.1. The output of the SWS algorithm is a hierarchy high-
lighting specific types of regions at different scales. It is very
versatile as the type of markers spread, as long as the proba-
bilistic law governing markers distribution, can be adapted for
various tasks (Fehri et al., 2017).
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3. Structuring the combinatorial space of hierarchies

In the previous section, we reminded the reader of a versatile
framework to characterize images through numerous different
hierarchies. Furthermore, as we shall see in the next sections,
hierarchies can be combined in various ways, and we then face
an explosion of their number. Hence, we need a way to structure
the combinatorial space of hierarchies.

3.1. The Gromov-Hausdorff distance between hierarchies

3.1.1. Definition
In order to operate this structuring, one needs to define a dis-

tance between these ultrametric spaces. The Gromov-Hausdorff
distance (GH distance) (Gromov, 2007) defined between metric
spaces constitutes such a distance. By reducing this distance to
the subclass of ultrametric spaces, we can in particular quantify
the relative contributions of different hierarchical clusterings.
This distance, used intensively in several fields such as phylo-
genetics and data mining (Felsenstein, 2014), has also notably
been used in image processing as a way to estimate the similar-
ity between two points clouds (Mémoli, 2004). Let us consider
two ultrametric spaces (X1, λα) and (X2, λβ). One supposes that
we have defined two functions f : X1 → X2 and g : X2 → X1
that are maps from one space to the other. The GH-distance is
expressed as:

dGH(X1, X2) :=
1
2

min
f ,g

max(dis( f ), dis(g), dis( f , g)) (1)

With the distorsion dis( f ) and the joint distorsion dis( f , g) de-
fined as:{

dis( f ) := max(x,x′)∈X2
1
|λα(x, x′) − λβ( f (x), f (x′))|

dis( f , g) := maxx∈X1,x′∈X2 |λα(x, g(x′)) − λβ(x′, f (x))|
(2)

Intuitively, it measures how close can we get to an isometric
(distance-preserving) embedding between two metric spaces.

To determine (1) for two hierarchies defined over different
sets, one must match data points before any distance compu-
tation, which is a computationally heavy operation that leads
some authors to provide heuristics to approximate it in specific
configurations (Agarwal et al., 2015). In our case we are deal-
ing with structures that are much simpler: instead of consider-
ing objects-to-objects distances, we compute them for hierar-
chies based upon the same fine partition of an image. So the
considered metric spaces differ only by their metrics and not by
the space they cover, which means that the two distortions are
symmetrical and equal to the joint-distortion as well. Thus, the
GH distance (1) simply becomes:

dGH((X, λα), (X, λβ)) = max
x,x′∈X
|λα(x, x′) − λβ(x, x′)|. (3)

Provided with such a distance, we can quantify the rela-
tive contributions of different hierarchies built upon the same
image. It is interesting to note that a new level of image
representation naturally emerges from this approach, as illus-
trated in Fig. 1. Furthermore, this provides us with a con-
densed representation leveraging the information provided by

Fig. 1: The different image representations considered in this work: 1) The
finer level is the level of the image itself. 2) Computing a fine partition of the
image already constitutes a rougher model of it, that we can see as a region-
based representation. 3) A structuring of the regions of the fine partition as a
hierarchical segmentation. Each hierarchy is fully characterized by the set of
points that it regroups as long as by the ultrametric it defines between these
points. 4) One can structure the space of hierarchies itself into a metric space.
Doing so opens a path to study the properties of different hierarchical clustering
methods, and to evaluate to which extent they differ and are complementary.

all the different levels of these different hierarchies. Let us in-
deed consider an image I and a set of complementary hierar-
chies ((H1, λ1), . . . , (HN , λN)) built upon this image. It is then
straightforward to compute the GH distance between these hier-
archies, as they constitute ultrametric spaces upon the same set.
We take advantage of it by building the following symmetrical
distance matrix:

M(I, (H1, . . . ,HN)) =
[
dGH(λi, λ j)

]
(i, j)∈{1,...,N}2

(4)

Such a representation opens new ways to suppress redundancies
and create a restrained descriptive family of hierarchies. It also
allows to study the properties of hierarchical combinations or
visualize the effects of several different hierarchies.

3.1.2. Ultrametric Normalization
To make sense of GH distances, one must be sure that ul-

trametric values are commensurable and of the same order of
magnitude, as hierarchical clusterings may be of very different
natures. Indeed, their ultrametric values can represent different
things, as for example the surface-based (resp. volume-based)
extinction hierarchy ultrametric values are surfaces (resp. vol-
umes), and the waterfall hierarchy ultrametric values represent
stacking orders. Furthermore, hierarchies can have different
scales, as typically SWS hierarchies have their probabilistic val-
ues in the range [0, 1], whereas other types of hierarchies do
not necessarily have ultrametric values in a fixed range. This
is why, in order to properly compare and combine hierarchies,
we normalize their ultrametric values. This has the effect of
aligning them. Accordingly, we propose a way to normal-
ize these values with respect to the number of regions in each
level of the hierarchy. Let (H , λ) be an ultrametric hierarchy,
with λ : H 7→ R+ which is strictly increasing with the inclu-
sion order over H . Let us denote N = card(H), (P0, ...,PN)
the nested series of partitions associated with the hierarchy,
and (n0, ..., nN) the numbers of regions in these partitions, with
0 < n0 ≤ n1 ≤ ... ≤ nN = N. Then we take as a normalized

ultrametric, λ̃ :
{
H → [0, 1]
Pi 7→

N−ni
N

.
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3.2. Using dimensionality reductions techniques to visualize
the relative descriptive power of each hierarchy

We would like to visualize the relative contributions of differ-
ent hierarchical clustering methods constructed upon the same
points, i.e. the same regions of a fine partition. We have seen in
section 3.1.1 that in such a case, computing GH distances be-
tween hierarchies is straightforward. This appears interesting as
computing the distance between two hierarchies can give us an
idea of their relative contributions, provided that we normalize
their values first, as described in section 3.1.2.

Let us consider a set of indexed hierarchies H =

{(H1, λ1), (H2, λ2), . . . , (H|H |, λ|H |)}. In this paper, we use
two dimensionality reduction techniques: the Multidimensional
Scaling (MDS) (Borg and Groenen, 2003) and the t-distributed
stochastic neighbor embedding (t-SNE) (Maaten and Hinton,
2008). Whether it is to apply MDS or t-SNE, we start from
the symmetrical matrix D introduced in (4), filled with GH dis-
tances between pairs of hierarchies, and with size |H |×|H |.
MDS and t-SNE can then be used for different purposes. If
we have computed the interhierarchy matrices for a given im-
age, using MDS allows us to visualize the distances between
hierarchies for this image. This way, we can study their interre-
lations for this specific image, determine their complementar-
ity or redundancy, and more generally define patterns between
them. Since we are not using a Euclidean distance but a GH
one, we make use of the usual metric MDS to project distances
between hierarchies from a space of dimension |H |×|H | into
a low-dimensional space. Given a reference hierarchy (for ex-
ample the trivial hierarchy), this gives us an idea of how the
hierarchies distance themselves from one another by looking at
how they place themselves relatively to the reference hierarchy
on the resulting figure. This way, we can estimate the respec-
tive contributions of each hierarchical construction scheme. In
a complementary fashion, one may compute for several images
the same hierarchies and corresponding distance matrices, and
characterize images this way, which will be the topic of section
6. We then make use of t-SNE to project such images repre-
sentations from a space of dimension |H |×|H | to a space of
dimension two or three. This way, we can estimate whether the
departure hierarchies set was discriminative enough to separate
different types of images. In the next section, we present differ-
ent ways to combine hierarchies and make use of the techniques
we introduced to study some of their properties.

4. Sequential combinations of hierarchies through chaining

4.1. Definition

In section 2 we reminded how to obtain morphological hi-
erarchies within a graph-based framework, using the following
procedure: (i) Get a fine partition FS(I) of the image I, (ii)
Construct a region adjacency graph G, (iii) Compute a min-
imum spanning tree MST of G, (iv) Using this hierarchical
structure, compute new valuations for the MST’s edges, which
leads to a new hierarchy. We now draw the reader’s attention
to the fact that departing from a tree which valuations are those
of the initial graph, one obtains a tree with identical structure
but different edge valuations. To go further, this new tree can

(a) (b)

Fig. 2: (a) Visualization using MDS of the distances between different sequen-
tial combinations of hierarchies. We note that these hierarchies do not com-
mute. (b) Convergence of chainings of surface-based SWS hierarchies.

then be used as a departure point for a similar construction but
based upon different criteria and parameters. More specifically,
at the end of step 3, we have obtained a MST with valuations
W0. After step 4, we obtain a new MST with the same struc-
ture but different valuations W1. This process can be iterated as
much as desired, so that it takes in entry a MST with valuations
Wk and outputs a MST with the same structure and with valu-
ations Wk+1. We call this process chaining or composition of
hierarchies, and denote H2 ◦ H1 a chaining of a hierarchy H1
followed by a hierarchyH2, andH (n) = H ◦ . . . ◦ H︸         ︷︷         ︸

n times

. It can be

seen as a form of sequential combination, as in such a process,
each hierarchy is built starting from the preceding one. Note
that one can iterate the same hierarchy several times, but also
chain different hierarchies. When chaining hierarchies, we nor-
malize the ultrametric values at each step in the way that was
described in section 3.1.2, as it permits to align them.

4.2. Analysis

In this section, we want to study the properties of such chain-
ings, and notably determine whether they: (i) commute, i.e. do
we have H1 ◦ H2 = H2 ◦ H1?, (ii) converge, i.e. are there hi-
erarchies H , for which limn→+∞ dGH(H (n),H (n+1)) = 0? Note
that for (ii) this is actually the definition of a Cauchy series,
but since the ultrametric spaces we work with are bounded, it is
equivalent to show that a series is Cauchy or convergent in the
Gromov-Hausdorff sense. Since we have now at our disposal a
distance between hierarchies, we can address these questions.
For better visualization, we make use of multidimensional scal-
ing (MDS) to project the metric space of hierarchies equipped
with the GH distance into a subspace of dimension two, as ex-
plained in section 3.2. We can then visualize the effect of the
chaining of several types of hierarchies on the same plot, in or-
der to have an idea of the effect of each one. For illustration
purposes, we rely on the example image in Fig. 1, but results
presented were consistent on many examples.

4.2.1. Commutation
In order to test if hierarchies commute, we generate some

hierarchies for a given image, compute the distances between
them and use MDS to visualize the output. It appears that none
of the hierarchical schemes that we have tested commute. We
illustrate this in Fig. 2(a) for different chainings.
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4.2.2. Convergence
We also want to know whether convergence properties are

observable when chaining hierarchical clusterings. For exam-
ple, starting from the image and fine segmentation presented in
Fig. 1, we compute the GH-distance between successive chain-
ings of surface-based SWS hierarchies: we observe that this
distance is decreasing until reaching zero, as illustrated in Fig.
2(b). This property has been observed for all hierarchies (intro-
duced in section 2.2) when they are being chained: hierarchical
chainings seem to converge toward fixed points in the hierar-
chical space, i.e. to given hierarchical organizations of all the
regions of the fine partition. Furthermore, these fixed points
differ depending on the type of hierarchy that is being chained.
Formal proofs are required to confirm the validity of these re-
sults, which is beyond the scope of this paper.

5. Parallel combinations of hierarchies

5.1. Definition

In section 4, we have presented sequential combinations of
hierarchies, corresponding to successive hierarchical construc-
tions, for which each hierarchy was built starting from the pre-
ceding one. In this section, we study parallel combinations of
hierarchies that are obtained by functional combinations of the
ultrametrics describing different hierarchies.

5.2. General case

When considering two hierarchies (H1, λ1) and (H2, λ2),
their ultrametrics induce a distance between any two points p, q
of the graph, respectively λ1(p, q) and λ2(p, q). We can then
choose any function ⊕ : R2 → R to obtain a new dissimilarity
⊕(λ1, λ2). We alternatively will also write λ1 ⊕ λ2 in the fol-
lowing. However, in the general case, this new dissimilarity
will no longer be an ultrametric. To obtain an ultrametric from
⊕(λ1, λ2), one can thus compute the subdominant ultrametric
⊕(λ1, λ2) associated with this dissimilarity, namely the largest
ultrametric distance below it. The exploration of the hierarchi-
cal space with such processes has notably been studied in (Maia
et al., 2017), with infimum, supremum and linear combinations
of hierarchies. For example, we can in particular consider the
supremum or infimum of hierarchies. We remind the reader
that an order relation over the set of hierarchies is: H1 < H2
can be read “H1 is finer thanH2”, and means thatH1 has more
regions than H2 at each level. The infimum of two hierarchies
H1 andH2 is writtenH1∧H2 or INF(H1,H2) and is defined by
its ultrametric being the supremum of the ultrametrics of both
hierarchies λ = λ1 ∨ λ2. Indeed, if ⊕ = ∨, we have:

∀(p, q, r),
{
λ1(p, q) ≤ λ1(p, r) ∨ λ1(r, q)
λ2(p, q) ≤ λ2(p, r) ∨ λ2(r, q) (5)

Then, λ1 ∨ λ2(p, q) = λ1(p, q) ∨ λ2(p, q)

≤ [λ1(p, r) ∨ λ1(r, q)] ∨ [λ2(p, r) ∨ λ2(r, q)]
≤ [λ1(p, r) ∨ λ2(p, r)] ∨ [λ1(r, q) ∨ λ2(r, q)]

Thus the commutativity and associativity of ∨ operator make
the computation of the associated ultrametric easy: we just

have to assign to each edge the valuation λ1 ∨ λ2. However,

in most cases for a function ⊕ :
{

R2 → R
(λ1, λ2) 7→ ⊕(λ1, λ2) , we

have:
λ1 ⊕ λ2(p, q) = λ1(p, q)⊕ λ2(p, q)

≤ [λ1(p, r) ∨ λ1(r, q)]⊕[λ2(p, r) ∨ λ2(r, q)],
and as the function ⊕ is not necessarily distributive with
respect to the function ∨, we cannot obtain an ultrametric
by simply computing λ1 ⊕ λ2, and must instead compute the
subdominant ultrametric λ1 ⊕ λ2. In particular and for example,
the supremum of two hierarchiesH1 andH2 is writtenH1∨H2
or SUP(H1,H2), and is the smallest hierarchy larger than H1
andH2. Its ultrametric is λ = λ1 ∧ λ2 6= λ1 ∧ λ2 .

5.3. Simpler parallel combinations between hierarchies built
upon the same MST

In our work, we are in a particular situation, as we often build
different hierarchies upon the same initial tree. Indeed, starting
from a MST of the RAG G associated with a fine partition
of the image, we generate a new set of valuations on this tree.
The resulting ultrametric is the one induced by this MST, and
for any pair p, q of nodes of the graphs, its value is equal to
the maximal weight of edges on the unique path linking p to
q in the MST. In such circumstances, one can easily combine
two hierarchies (H1, λ1), (H2, λ2) for a combination function ⊕
verifying a given property, as we shall see hereafter. First, we
remind the reader of the path optimality property characterizing
any MST.

Theorem 1 (Path optimality (Hu, 1961)). A spanning tree
MST = (V,EMST ) of a graph G = (V,E,W) is a minimum
spanning tree if and only if it satisfies the following inequality:

∀ek,l /∈ EMST ,∀ei, j ∈ ß,Wk,l ≥ Wi, j, (6)

where ß is the unique path from node k to node l in theMST .
Stated otherwise, if an edge epq does not belong to theMST ,
then the weight Wpq is superior or equal to the weight of all
edges belonging on the path connecting p and q in theMST .

We can now expose a theorem ensuring us a fast parallel
combination of hierarchies built upon the same MST in most
cases.

Theorem 2. Let us consider two edge-weighted graphs G1 =

(V,E,W1) and G2 = (V,E,W2) defined over the same set of
nodes. Let us also suppose that their respective MST:MST 1 =

(V,EMST ,W1) and MST 2 = (V,EMST ,W2) have the same
structure, i.e. the same nodes and edges but different edge
weights. Let ⊕ be a function such that:

∀(x1, x2, y1, y2) ∈ R4
+, (x1 ≤ x2) and (y1 ≤ y2)
⇒ ⊕(x1, y1) ≤ ⊕(x2, y2) (7)

Then the tree T1,2 = (V,EMST ,⊕(W1,W2)) is a MST of the
graph G1,2 = (V,E,⊕(W1,W2)).

Proof. Let epq be any edge of G1/G2 (they share the same set
of edges, but not the same edge weights). By path optimality
(cf. theorem 1), ∀est ∈ ßMST (p, q) : W1

st ≤ W1
pq and W2

st ≤
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W2
pq. Thus, if ⊕ verifies (7), we have: ∀est ∈ ßMST (p, q) :
⊕(W1

st,W
2
st) ≤ ⊕(W1

pq,W
2
pq) Thus by path optimality, the tree

T1,2 = (V,EMST ,⊕(W1,W2)) is a MST of the graph G1,2 =

(V,E,⊕(W1,W2)).

Corollary 2.1. Let us consider two hierarchies (H1, λ1),
(H2, λ2) defined over the same graph G = (V,E,W), and con-
structed upon two MST sharing the same structure MST 1 =

(V,EMST ,W1) andMST 2 = (V,EMST ,W2). Then theorem
2 ensures us that for any function ⊕ verifying (7), the MST of
G1,2 = (V,E,⊕(λ1, λ2)) is T1,2 = (V,EMST ,⊕(W1,W2)).

Thus, when combining hierarchies with a function ⊕ verify-
ing (7), one can simply apply this function to edge weights of
both MST and directly infer the subdominant ultrametric asso-
ciated with this combination:
∀epq ∈ EMST ,⊕(λ1, λ2)(p, q) = ⊕(λ1, λ2)(p, q)
∀epq /∈ EMST ,⊕(λ1, λ2)(p, q) =∨

{Wst, est ∈ ßpq ⊂T1,2 = (V,EMST ,⊕(W1,W2))}
(8)

This procedure is less computationally costly than the one con-
sisting in computing the function ⊕ over all edges of the two
complete graphs and extracting the subdominant ultrametric
consequently, as in (Maia et al., 2017). Note that the condi-
tion given by (7) is verified by many two-variables functions
of particular interest: the supremum, infimum, any linear com-
bination with positive coefficients, as well as the logical oper-
ators AND and OR between probabilistic variables. To sum
up, our approach consists in choosing a MST from the initial
graph and then working with its structure to generate new hi-
erarchies. Combining hierarchies is then often straightforward,
and we can easily obtain structurings of the image translating
complex yet understandable properties of it. We now present
some of these possible combinations.

5.4. Different possible parallel combinations

Different possible parallel combinations of hierarchies are
listed in table 1.

5.4.1. Supremum, infimum, and mean
Since we are generating different hierarchies starting from

the same MST, and since the SUP, INF and MEAN functions
verify (7) of theorem 2, we can simply compute these functions
on the MST and infer the subdominant ultrametrics from them.
Note that the same property applies to any linear combination
(with positive coefficients) of hierarchies.

5.4.2. Logical operators of probabilistic ultrametrics
As we have noted it in previous sections, hierarchies have

a discriminative power that allows us to discriminate contours
in a controlled way. Among the possible hierarchies, the SWS
model presents a versatility that makes it extremely interesting
for the characterization of scenes or images. In addition, it pro-
vides to each contour of the fine partition a probability value.
This facilitates their combinations as well as their interpreta-
tion. In this specific case when ultrametric values correspond
to probabilities, new possible combinations can be considered

Table 1: Top: Supremum, infimum and mean of ultrametrics. Bottom: Proba-
bilistic combinations of ultrametrics.

Type of combination Associated ultrametric
INF ((H1, λ1), (H2, λ2)) SUP(λ1, λ2)
SUP ((H1, λ1), (H2, λ2)) INF(λ1, λ2)
MEAN ((H1, λ1), (H2, λ2)) 1

2 (λ1 + λ2)

AND ((H1, λ1), (H2, λ2)) λ1 × λ2

OR ((H1, λ1), (H2, λ2)) λ1 + λ2 − (λ1 × λ2)
NOT ((H , λ)) 1 − λ

through the effect of the boolean operators AND and OR be-
tween two ultrametrics associated with two probabilistic events.
Their expressions for two input ultrametrics are given in table
1, supposing that the two events are independent. It appears
that the two-variable functions that allow for their computation
verify (7) of theorem 2, and we are thus provided with an ef-
ficient way to compute them when combining two hierarchies
that share the same MST. Note that the NOT operator does not
verify this property, and we are thus replaced in the general case
of section 5.2 to compute the subdominant ultrametric for it.
Using and combining probabilistic hierarchies is interesting for
several reasons. First, it is a way to regroup different types of
experiments in an homogeneous set of representations and ho-
mogeneous measures. Furthermore, starting from a large and
homogeneous set of SWS hierarchies, one can combine them
in an understandable manner. For instance, the AND and OR
of two hierarchies have straightforward effects. Furthermore,
this opens an exploration path for potentially complex combi-
nations using binary logical expressions. We can indeed use all
boolean operators and this way build hierarchies combining di-
verse characteristics, in a way that is more understandable and
refined than with the SUP/INF combinations, and more inter-
pretable than linear combinations such as the mean.

6. Image characterization using distances between hierar-
chies

6.1. A structured richness of representations

As we have seen, we can generate at will various multi-level
representations of the images highlighting various types of re-
gions having given properties (e.g. elongation, surfaces equilib-
rium, contrast). An additional layer of complexity can be added
via the possibility to combine hierarchies to obtain new ones.
Each hierarchy then expresses certain particular images charac-
teristics. To use the analogy of colors, each hierarchy is a black
and white image resulting from the passage of a color image
through a colored filter. Multiplying these filters makes it pos-
sible to obtain many black and white images that characterize
the distribution of colors in the image. Finally, each hierarchy
provided with its ultrametric is a metric space. The GH distance
measures the distance between such metric spaces. This is why,
as we have seen in section 3, the space of hierarchies provided
with the GH distance can itself be structured as a metric space.
We argue that the wealth of controlled understandable options
to generate hierarchies, as long as the possibility to measure
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their relative specific descriptive power, can lead to powerful
image features.

6.2. A condensed and descriptive image feature

Once provided with a family of hierarchies, one can wonder
if there are ways to use the different information they provide
to characterize images. The usual approach to do so it to ex-
tract information at various levels of the hierarchies (Farabet
et al., 2012), which often requires a hard parameter-tuning. Fur-
thermore, it obliterates the interesting property that hierarchical
segmentations are more informative than flat segmentations as
they capture simultaneously cluster structures at all levels of
granularity. Instead, we propose to make use of the GH inter-
hierarchy distance matrix, introduced in (4) of section 3.1.1,
as a feature capturing the relative specific descriptive power of
several hierarchies applied on the same image. This is a con-
densed representation leveraging the information provided by
all the different levels of these different hierarchies. Since this
matrix is symmetrical, we retain for each image its upper trian-
gular part only. This constitutes a descriptor of the image for
which we only had to specify the high-level parameters govern-
ing the hierarchies generation. We note that a similar approach
has been already explored for comparison of Brain Networks in
(Lee et al., 2011), and that it can be linked with persistent-based
descriptors (Li et al., 2014).

6.3. Experimental results: Dead leaves process classification

In a first experiment (Fehri et al., 2018), we highlight the dis-
criminative power of the unsupervised hierarchical features we
introduced, as long as their understandability. In the spirit of
(Yan and Zhou, 2017), we want to test if these features cap-
ture pertinent information leading to a quicker understanding
of the images. To do so, we consider a classification problem
on a set of simulated images from different dead leaves pro-
cess (Jeulin, 1997; Matheron, 1975), namely five classes with
100 images each with different primary grains: circles, crosses,
flowers, horizontal and vertical lines. In a dead leaves model,
two dimensional textured surfaces (which are called “leaves” or
“primary grains”) are sampled from a shape and size distribu-
tion and then placed on the image plane at random positions,
occluding one another to produce an image. It is well-known
that such a model creates images which share many properties
with natural images such as scale invariance and other statis-
tical properties (Pitkow, 2010). For each of these images, we
compute the following hierarchies: trivial, surface-based SWS
hierarchies with structuring elements of various sizes and forms
(cross, circle, diagonals, horizontal and vertical lines), as long
as logical combinations AND and OR of these SWS hierar-
chies. Then we generate for each of these images the inter-
hierarchy distance matrices of (4).

We can then use these matrices as features in a classical
classification pipeline using a linear support vector machines
(SVM) to classify images of each class. We notice that the sys-
tem can learn with very few examples how to discriminate prop-
erly these five classes. For comparison, we conduct the same
experiment using a Convolutional Neural Network (CNN) with

(a) (b) (c) (d) (e)

(f) Linear SVM on proposed fea-
tures

(g) CNN1 on proposed features

Fig. 3: (a)-(e) False-color representation of simulated images by dead leaves
model with different primary grains. (f)-(g) Accuracy vs the number of images
in the training set for 25 repetitions.

(a) t-SNE (b) L1-SVM (c) L1-SVM

Fig. 4: (a) We notice that the classes “Flowers” and “Horizontal Lines” are not
well separated (b)These two distances between hierarchies provide a geometri-
cal understanding of the images content. Projecting along these features does
indeed separate these classes efficiently. (c) The same can be done for example
for the classes “Flowers” and “Vertical Lines”

a two-layers architecture 1 without image augmentation for a
fair comparison. In Fig. 3(f)(g) are represented for both exper-
iments the evolutions of the average F-score with respect to the
percentage of images used in the training set. In the first exper-
iment (using the distance matrices as features), we notice that
using only 5% of them (so 25 images out of 500) already leads
to a 85% F-score over the remaining images, and that this fig-
ure quickly goes up. In the CNN experiment, the number of re-
quired training images to get to the same results is significantly
larger (≈ 225). It is thus as if, on the contrary to CNN that have
a black-box behavior, our approach shows what is often referred
to as an “aha moment”, i.e. a moment of sudden realization and
comprehension (Yan and Zhou, 2017). This translates a form
of understanding of the content of the image, which is corrobo-
rated by the study of the importance of which specific interhier-
archy distances were the more useful to discriminate between
two types of classes. For example, discriminating between hori-
zontal and vertical lines will mainly be due to dGH(Hsur f−VertS E ,
Hsur f−HorizS E), while discriminating between crosses and cir-
cles will mainly be due to dGH(Hsur f−CrossS E , Hsur f−HexS E). A
visualization of the quality of the features space thus generated

1(12 Conv + 12 Conv + MaxPolling(3 × 3) + Dropout(0.3) ) + (24 filters
+ 24 filters + MaxPolling(3 × 3)+ Dropout(.5) ) + FullyCon64 + Dropout (.5)
+ SoftMax. Categorical cross-entropy as loss function and adaptive gradient
(Adagrad) as optimizer.
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can be found in Fig. 4(a), where we project the features in a
space of two dimensions using the t-SNE algorithm (Maaten
and Hinton, 2008). Furthermore, using the variable selection
method L1-SVM (Zhu et al., 2004), we can isolate the more dis-
criminative distances for two specific classes to separate. For
example, the t-SNE visualization in Fig. 4(a) shows us that
discriminating between the classes “Flowers” and “Horizontal
Lines” is not straightforward. The more discriminative variable
between these two classes is the distance between Hsur f−VertS E

and HAND(sur f−VertS E,sur f−HexS E): this is a geometrical interpre-
tation of the image content, as they respectively capture straight
lines and lines with a protuberance (i.e. flowers). Projecting the
distances features onto the subspace of the two more discrimi-
native variables properly separates these two classes, as can be
seen in Fig. 4(b).

7. Conclusion

In this paper, we have introduced a coherent framework to
analyze and characterize images using a multi-model hierarchi-
cal approach. In particular, combinations of hierarchies allow
us for a rich and structured exploration of image properties.
This combinatorial space has been structured and some of its
properties studied thanks to the use of the Gromov-Hausdorff
distance, and we have seen how interhierarchy distance ma-
trices can be used as efficient and condensed image represen-
tations. To go further, a more detailed and formal study of
combinations of hierarchies could be conducted, and the use
of other possible distances between metric spaces considered.
Among all possible combinations, the logical combinations of
SWS hierarchies seem the most interesting to study further, as
they pave the way to complex yet understandable combinations
using binary logical expressions. Finally, one may use the in-
terhierarchy distance matrices as features to do unsupervised
characterization of an image space, to permit a qualitative un-
derstanding of their content, and to detect anomalies.
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