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Introduction

In this paper, we propose a method to take advantage of any prior spatial information previously obtained for an image to get a hierarchical segmentation of this image that emphasizes its regions of interest, allowing us to get more details in the designated regions of interest of an image while still preserving its strong structural information. It is an extended version of the conference paper [START_REF] Fehri | Prior-based hierarchical segmentation highlighting structures of interest[END_REF].

Image segmentation has been shown to be inherently a multi-scale problem [START_REF] Guigues | Scale-sets image analysis[END_REF]. That is why hierarchical segmentation has become a major trend in image segmentation and most top-performance segmentation techniques [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] [START_REF] Pont-Tuset | Multiscale combinatorial grouping for image segmentation and object proposal generation[END_REF] [START_REF] Ren | Image segmentation by cascaded region agglomeration[END_REF] [26] [START_REF] Wei | Superpixel hierarchy[END_REF] [START_REF] Vargas-Muñoz | An iterative spanning forest framework for superpixel segmentation[END_REF] fall into this category: hierarchical segmentation does not output a single partition of the image pixels into sets but instead a single multi-scale structure that aims at capturing relevant objects at all scales. Research on this topic is still vivid as differential area profiles [START_REF] Ouzounis | Differential area profiles: decomposition properties and eflcient computation[END_REF], robust segmentation of high-dimensional data [START_REF] Gueguen | Local mutual information for dissimilarity-based image segmentation[END_REF] as well as theoretical aspects regarding the concept of partition lattice [START_REF] Serra | Tutorial on connective morphology. Selected Topics in Signal Processing[END_REF] [START_REF] Ronse | Ordering partial partitions for image segmentation and filtering: Merging, creating and inflating blocks[END_REF] and optimal partition in a hierarchy [START_REF] Kiran | Ground truth energies for hierarchies of segmentations[END_REF] [20] [47]. This paper addresses the problem of developing a hierarchical segmentation algorithm that focuses on certain predetermined zones of the image. The hierarchical aspect also allows us, for tasks previously described, to very simply tune the level of details wanted depending on the application.

Generally, one can use complementary hierarchies to extract pertinent regions in images for given tasks. The idea is then to structure the information present in the image in various controlled ways and use the resulting characterization for segmentation or classification tasks. This information can be complex and is analyzed with discriminative hierarchies regarding the image local content, that is supposed to be distributed homogeneously in the spatial domain. To go further, we show in this paper how to treat images whose content is not homogeneously distributed in the spatial domain, and how to take advantage of any prior information over the regions of interests in the images. This way, we can make use of various exogenous spatial information sources to direct the hierarchical segmentation construction. Such information can take numerous forms, as illustrated in Figure 1. Indeed, significant developments have been made over the last decades in learning-based recognition methods for various tasks [START_REF] Oquab | Is object localization for free?-weakly-supervised learning with convolutional neural networks[END_REF] [22] [START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF]. A variety of sources and modalities have emerged as well, with for example depth sensors [START_REF] Fankhauser | Kinect v2 for mobile robot navigation: Evaluation and modeling[END_REF] or multispectral and hyperspectral cameras [START_REF] Chang | Hyperspectral imaging: techniques for spectral detection and classification[END_REF], and provide additional information that can be useful for segmentation. Having a versatile hierarchical segmentation method that can take into account such information during its construction process thus appears to be very interesting. In this regard, our work joins an important research point that consists in designing approaches to incorporate prior knowledge in the segmentation, as shape prior on level sets [START_REF] Chan | Level set based shape prior segmentation[END_REF], star-shape prior by graph-cut [START_REF] Veksler | Star shape prior for graph-cut image segmentation[END_REF], use of a shape prior hierarchical characterization obtained with deep learning [START_REF] Chen | Deep learning shape priors for object segmentation[END_REF], or related work making use of stochastic watershed to perform targeted image segmentation [START_REF] Malmberg | Exact evaluation of targeted stochastic watershed cuts[END_REF].

The stochastic watershed (SWS) consists in an evaluation of an image contours strength by estimating the probability for a contour to appear in the output segmentation when randomly drawing markers in a classical watershed transformation. Building upon the SWS model [3] [26], we propose a method to take advantage of any prior spatial information previously obtained on an image to get a hierarchical segmentation of this image that emphasizes its regions of interest. This allows us to get more details in the designated regions of interest of an image while still preserving its strong structural information. Indeed, we note that such hierarchical clusterings are useful to understand scenes as they enlarge the information support in a controlled way, and hence bring out significant salient features. It has been shown that the SWS model is versatile as multiple construction types can be thought of, the markers we use can be punctual or non-punctual and the number of markers we draw can be changed. In this paper, we go a step further by slightly modifying the SWS model: using a probability density function governing the markers distribution that depends on a spatial exogenous information is a simple yet powerful way to have a very task-adjustable hierarchical segmentation method.

Potential applications are numerous. When having a limited storage capacity (for very large images for example), this would allow us to keep details in the regions of interest as a priority. Similarly, in situations of transmission with limited bandwidth, one could first transmit the important information of the image: the details of the face for a video-call, the pitch and the players for a soccer game and so on. One could also use such a tool as a preprocessing one, for example to focus on an individual from one camera view to the next one in video surveillance tasks. Finally, from an artistic point of view, the result is interesting and similar to a combination of focus and cartoon effects. Some of these examples are illustrated in this paper.

The remainder of the paper is organized as follows. Section 2 explains how we construct and use graphbased hierarchical segmentation. Then Section 3 specifies how we use prior information on the image to obtain hierarchies with regionalized fineness. Several examples of applications of this method are described in Section 4. Finally, conclusions and perspectives are presented in Section 5.

Hierarchies and partitions 2.1 Graph-based hierarchical segmentation

Obtaining a suitable segmentation directly from an image is very difficult. This is why hierarchies are often used to organize and propose interesting contours by valuating them. In this section, we explain how to construct and use graph-based hierarchical segmentations.

For each image, let us suppose that a fine partition is produced by an initial segmentation (for instance a set of superpixels [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF] [24] [START_REF] Vargas-Muñoz | An iterative spanning forest framework for superpixel segmentation[END_REF], the basins produced by a classical watershed algorithm [START_REF] Meyer | Morphological segmentation[END_REF], or a segmentation into individual pixels/flat zones) and contains all contours making sense in the image. We define a dissimilarity measure between adjacent tiles of this fine partition. One can then see the image as a graph, the region adjacency graph (RAG), in which each node represents a tile of the partition; an edge links two nodes if the corresponding regions are neighbors in the image; the weight of the edge is equal to the dissimilarity between these regions. Working on the RAG is much more efficient than working on the image, as there are far less nodes in the RAG than there are pixels in the image. However, this includes a cost regarding the precision of the results.

Formally, we denote this graph G = (V, E, W), where V corresponds to the image domain or set of pixels/fine regions, E ⊂ V × V is the set of edges linking neighbour regions, W : E → R + is the dissimilarity measure usually based on local gradient information (or color or texture), for instance W(i, j) ∝ |I(v i ) -I(v j )| with I : V → R representing the image intensity. Note that this dissimilarity measure ultimately has an important impact on the obtained segmentations, and must thus be chosen carefully [START_REF] Perret | Evaluation of hierarchical watersheds[END_REF].

The edge linking the nodes p and q is designated by epq. A path is a sequence of nodes and edges: an example of a path linking the nodes p and s is the set {p, e pt , t, e ts , s}. A connected graph is a graph where each pair of nodes is connected by a path. A cycle is a path whose extremities coincide. A tree is a connected graph without cycle. A spanning tree is a tree containing all nodes. A minimum spanning tree (MST) of a graph G, hereafter called MST(G), is a spanning tree with minimal possible weight (the weight of a tree being equal to the sum of the weights of its edges), obtained for example using the Jarník's algorithm [START_REF] Jarník | O jistém problému minimálním[END_REF] (later rediscovered by Prim, and thus often also known as the Prim's algorithm [START_REF] Prim | Shortest connection networks and some generalizations[END_REF]). A forest is a collection of trees. A partition π of a set V is a collection of subsets of V, such that the whole set V is the disjoint union of the subsets in the partition, i.e., π

= {R 1 , R 2 , . . . , R k }, such that ∀i, R i ⊆ V ; ∀i ≠ j, R i ∩ R j = ∅ ; ⋃︀ k i R i = V.
Cutting all edges of the MST(G) having a valuation superior to a threshold λ leads to a minimum spanning forest (MSF) F(G, λ), i.e. to a partition of the graph. Note that the obtained partition is the same that one would have obtained by cutting edges superior to λ directly on G [START_REF] Najman | Playing with kruskal: algorithms for morphological trees in edge-weighted graphs[END_REF]. Since working on the MST(G) is less costly and provides similar results regarding graph-based segmentation, we work only with the MST(G) in the remainder of this paper.

So cutting edges by decreasing valuations gives an indexed hierarchy of partitions (H, λ), with H a hierarchy of partitions i.e. a chain of nested partitions H = {π 0 , π 1 , . . . , πn|∀j, k, 0 ≤ j ≤ k ≤ n ⇒ π j ⊑ π k }, with πn the single-region partition and π 0 the finest partition on the image, and λ : H → R + being a stratification index verifying λ(π) < λ(π ′ ) for two nested partitions π ⊂ π ′ . This increasing map allows us to value each contour according to the level of the hierarchy for which it disappears: this is the saliency of the contour, and we consider that the higher the saliency, the stronger the contour. For a given hierarchy, the image in which each contour takes as value its saliency is called Ultrametric Contour Map (UCM) [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF]. It is also referred to as a saliency map in the literature [START_REF] Cousty | Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts[END_REF] [START_REF] Cousty | Hierarchical segmentations with graphs: quasi-flat zones, minimum spanning trees, and saliency maps[END_REF]. Representing a hierarchy by its UCM is an easy way to get an idea of its effect because thresholding an UCM always provides a set of closed curves and so a partition. In this paper, for better visibility, we represent UCM with inverted contrast.

To get a partition for a given hierarchy, there are several possibilities:

-simply thresholding the highest saliency values, -marking some nodes as important ones and then computing a partition accordingly, which is known as marker-based segmentation [START_REF] Meyer | Minimum spanning forests for morphological segmentation[END_REF], -smartly editing the graph by finding the partition that minimizes an energy function [START_REF] Guigues | Scale-sets image analysis[END_REF] [20] [START_REF] Xu | Hierarchical image simplification and segmentation based on mumford-shah-salient level line selection[END_REF].

In a complementary approach, we argue that the quality of the obtained partitions highly depends on the dissimilarity that we use, and thus that changing the dissimilarity can lead to more suitable partitions [START_REF] Fehri | Automatic selection of stochastic watershed hierarchies[END_REF]. Indeed, if the dissimilarity reflects only a local contrast as in the hierarchy issued by the RAG, the most salient regions in the image are the small contrasted ones. So instead of departing from a simple and rough dissimilarity such as contrast and then use a sophisticated technique to get a good partition out of it, one can also try to obtain a more informative dissimilarity adapted to the content of the image such that the simplest methods are sufficient to compute interesting partitions. This way, the aforementioned techniques lead to segmentations better suited for further exploitation. How can we construct more pertinent and informative dissimilarities? One possible way to do so is by using stochastic watershed hierarchies, that we hereby introduce.

Stochastic watershed hierarchies

The stochastic watershed (SWS), introduced in [3] on a simulation basis and extended with a graph-based approach in [START_REF] Meyer | Stochastic watershed hierarchies[END_REF], is a versatile tool to construct hierarchies. The seminal idea is to perform marker-based segmentation multiple times with random markers and weight each edge of the MST by its frequency of appearance in the resulting segmentations.

Indeed, by spreading markers on the RAG G, one can construct a segmentation as a MSF F(G) in which each tree takes root in a marked node. Marker-based segmentation directly on the MST is possible: one must then cut, for each pair of markers, the highest edge on the path linking them (its value corresponding to the ultrametric distance between these marked nodes). Furthermore, there is a domain of variation in which each marker can move while still leading to the same final segmentation. More details are provided in Figure 2.

Let us then consider on the MST an edge e st of weight ω st and compute its probability to be cut. We cut all edges of the MST with a weight superior or equal to ω st , producing two trees Ts and T t with roots s and t. If at least one marker falls within the domain Rs of Ts nodes and at least one marker falls within the domain R t of T t nodes, then e st will be cut in the final segmentation. Let µ(R) denote the number of random markers falling in a region R. We want to attribute to e st the following probability value:

P[(µ(Rs) ≥ 1) ∧ (µ(R t ) ≥ 1)] = 1 -P[(µ(Rs) = 0) ∨ (µ(R t ) = 0)] = 1 -P(µ(Rs) = 0) -P(µ(R t ) = 0) + P(µ(Rs ∪ R t ) = 0). (1) 
If markers are spread following a Poisson distribution, then for a region R:

P(µ(R) = 0) = exp -Γ(R) , (2) 
with Γ(R) being the expected value (mean value) of the number of markers falling in R. The probability thus becomes:

P(µ(Rs) ≥ 1 ∧ µ(R t ) ≥ 1) = 1 -exp -Γ(Rs) -exp -Γ(Rt) + exp -Γ(Rs∪Rt) . (3) 
When the Poisson distribution has an homogeneous density 𝛾, the expected value of the number of markers falling in R can be expressed as:

Γ(R) = area(R)𝛾. (4) 
But when the Poisson distribution has a non-uniform density 𝛾, its expression becomes:

Γ(R) = ∫︁ (x,y)∈R 𝛾(x, y) dxdy. (5) 
Thus, the output of the SWS algorithm depends on the MST (structure and edges valuations) and the probabilistic law governing markers distribution. Furthermore, SWS hierarchies can be chained, leading to a wide exploratory space that can be used in a segmentation workflow [START_REF] Fehri | Automatic selection of stochastic watershed hierarchies[END_REF].

Because of its versatility and good performance, SWS represents a method of choice for introducing prior information into a segmentation workflow. Indeed, when having a prior information about the image, it is possible to use it in order to have more details in some parts rather than others.

Hierarchies highlighthing structures of interest using prior information 3.1 Hierarchy with Regionalized Fineness (HRF)

In the original SWS, a uniform distribution of markers is used (whatever size or form they may have). In order to have stronger contours in a specific region of the image, we adapt the model so that more markers are spread in this region.

Let E be an object or class of interest, for example E = "face of a person", and I be the studied image. We denote by θ E the probability density function (PDF) associated with E obtained separately, and defined on the domain D of I, and by PM(I, θ E ) the associated probabilistic map, in which each pixel p(x, y) of I takes as value θ E (x, y), its probability to be part of E. Such a PDF can be obtained using any of the numerous methods from various scientific fields to spatially characterize an image, as illustrated in Figure 1. Given such information on the position of an event in an image, we obtain a hierarchical segmentation focused on this region by modulating the distribution of markers. We call this structure a Hierarchy with Regionalized Fineness (HRF), as it features more details within the region of interest. We compute it by modifying the law governing the distribution of markers in the SWS algorithm, for it to take into account the spatial information provided by the PDF associated with the object of interest. If 𝛾 is a density defined on D to distribute markers (uniform or not), we set θ E 𝛾 as a new density, thus favoring the emergence of contours within the regions of interest.

Considering a region R of the image, and taking as a new density θ E 𝛾 to direct the distribution of markers within the region of interest, the mean number of markers falling within R becomes:

Γ E (R) = ∫︁ (x,y)∈R θ E (x, y)𝛾(x, y) dxdy . ( 6 
)
Brought to you by | provisional account Unauthenticated Download Date | 1/7/20 11:34 AM Furthermore, since the number of markers falling within each region has an influence on the new edge weights that are computed, it is interesting to control this number of markers to constrain the edge weights to lie within a reasonable value range and thus avoid numerical issues (with values becoming too small for example). This is possible by modifying this model. If we want N markers to fall in average within the domain D, we can thus work with a slightly modified density, by multiplying the density by N and dividing it by the expected value of the number of markers falling in D:

γ = N Γ(D) 𝛾 . (7) 
Furthermore, this approach can be easily extended to the case where we want to take advantage of information from multiple sources. Indeed, if θ E1 and θ E2 are the PDF associated with two events E 1 and E 2 , we can for example combine those two sources by using as a new density (θ E1 × θ E2 )𝛾. This corresponds to a new event {E 1 AND E 2 }.

Methodology

In this section, we present the steps to compute a HRF for an event E given a probabilistic map PM(I, θ E ) providing spatial prior information on an image I:

1. compute a fine partition π 0 of the image, define a dissimilarity measure between adjacent regions and the RAG G, as illustrated in Figures 3(a)(b)(c), 2. compute MST(G), and a new probabilistic map ̃︁ PM(π 0 , I, θ E ) with each region of the fine partition π 0 taking as a new value the mean value of PM(I, θ E ) in each region, as shown in Figures 3(d)(e)(f), 3. compute new values of edges using the method described in Section 3.1, where for each region R i of π 0 , Γ(R i ) corresponds to the mean value taken by pixels of the region R i in ̃︁ PM(π 0 , I, θ E ). Note that this approach allows a highly efficient implementation using dynamic programming on graphs. The resulting hierarchy retains more details in the region of interest, while still capturing the important structures of the image, as one can see on an example in Figures 3(g Making use of multiple sources is also very simple and consists in fusing the probability maps in a controlled way, depending on the objective. It will be illustrated in Figure 6.

Modulating the HRF depending on the pairs of regions considered

If we want to favor certain contours to the detriment of others, we can modulate the density of markers in each region by taking into account the strength of the contour separating them but also the relative position of both regions. We use the same example and notations as in Section 3.1, and thus modulate the distribution of markers relatively to Rs, R t and their frontier. For example, to stress the strength of the gradient separating both regions we can locally spread markers following the distribution χ(Rs , R t )𝛾, with χ(Rs , R t ) = ω st . This corresponds to the classical volume-based SWS [START_REF] Vachier | Extinction value: a new measurement of persistence[END_REF], which allows to obtain a hierarchy that takes into account both surfaces of regions and contrast between them. To go further, one can use any prior information in a similar way. Indeed, while using prior information to influence the output of the segmentation workflow, one might also want to choose whether the relevant information to emphasize in resulting segmentations is the foreground, the background or the transitions between them.

For example, having more details in the transition regions between background and foreground allows us to have more precision where the limit between foreground and background is actually unclear. As a matter of fact, the prior information often only provides rough positions of the foreground object with blurry contours, and such a process would allow to get precise contours of this object from the image.

Let us consider this case and define for each couple of regions (Rs , R t ) a suitable χ(Rs , R t ). We then want χ(Rs , R t ) to be low if Rs and R t both are in the background or the foreground, and high if Rs is the background and R t in the foreground (or the opposite). We use:

γ = χ𝛾, with χ(Rs , R t ) = max(m(Rs), m(R t ))(1 -min(m(Rs), m(R t ))) 0.01 + σ(Rs)σ(R t ) , (8) 
m(R) (resp. σ(R)) being the normalized mean (resp. normalized standard deviation) of pixels values in the region R of PM(I). Thus the number of markers spread will be higher when the contrast between adjacent regions is high (numerator term) and when these regions are coherent (denominator term). Then for each edge, its new probability to be cut is:

P[(µ(Rs) ≥ 1) ∧ (µ(R t ) ≥ 1)] = 1 -exp -χ(Rs ,Rt)Γ(Rs) -exp -χ(Rs ,Rt)Γ(Rt) + exp -χ(Rs ,Rt)Γ(Rs∪Rt) (9) 
In the spirit of [8] [2], this mechanism provides us with a way to "realign" the hierarchy with respect to the relevant prior information to get more details where the information is blurry. Similar adaptations can be thought of to emphasize details of background or foreground regions. In the following, we illustrate the methodology with some application examples. 

Application examples 4.1 Scalable transmission favoring regions of interest

Let us consider a situation where one emitter wants to transmit an image through a channel with a limited bandwidth, e.g. for a videoconference call. In such a case, the more important information to transmit are details on the face of the person on the image. Besides, we nowadays have highly efficient face detectors, using for example Haar-wavelets as features in a learning-based vision approach [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF]. Considering that for an input image, the face can be easily detected, we can use this information to produce a hierarchical segmentation of the image that accentuates the details around the face while giving a good sketch of the image elsewhere. Depending on the bandwidth available, we can then choose the level of the hierarchy to select and obtain the associated partition to transmit, ensuring us to convey the face with as much details as possible. Some results are presented in Figure 4, with notably a comparison between a classical volume-based SWS UCM and a volume-based HRF UCM.

The same method can also be used for artistic purposes. For example, when taking as prior the result of a blur detector [START_REF] Su | Blurred image region detection and classification[END_REF], we can accentuate the focus effect wanted by the photograph and turn it into a cartoon effect as well -see Figure 5 for an illustration of the results. 

Building a HRF using different sources

One can as well build hierarchies obtained with prior information coming from multiple sources. Let us consider for example a RGB-D image in which a person is present. A face detection algorithm can be used to localize the face of the person in the image. Using this information, one can then extract the particular depth at which the face of the person (and thus the person in most cases) is present in the depth image. One thus obtains two probability maps: one associated with the face of the person, that we denote PM F , the other translating the depth at which the person is, that we denote PM D . Combining these two probability maps by multiplying them (which corresponds to the logical operator AND) then leads to a new probability map PM AND(F,D) that highlights the whole body of the person with a particular emphasis on his face, as one can see in Figure 6.

The HRF H AND(F,D) built using PM AND(F,D) better captures the pertinent information than the two HRF H F and H D built using the two probability maps separately, as illustrated in Figure 7 6(b), 6(f) and 6(j) that the hair of the person appear sooner in the latter than in the two former, while still retaining details regarding the depth at which the person is, such as the structure of the t-shirt or the legs. 

Weakly-supervised HRF

In the same spirit, various methods now exist to automatically roughly localize the principal object in an image. We inspire ourselves from [START_REF] Oquab | Is object localization for free?-weakly-supervised learning with convolutional neural networks[END_REF] to do so. Using a deep convolutional neural network (CNN) classifier VGG19 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] trained on the 1000 classes of the ImageNet database [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF], we first determine what is the main class in the image. Note that this CNN takes as input only images of size 224 × 224 pixels. Once it is known, we can then, by rescaling the image by a factor s ∈ {0.5, 0.7, 1.0, 1.4, 2.0, 2.8} (as suggested in [START_REF] Oquab | Is object localization for free?-weakly-supervised learning with convolutional neural networks[END_REF]), compute for sub-windows of size 224 × 224 of the image the probability of appearance of the main class. By simply superimposing the results for all sub-windows, we thus obtain a probabilistic map of the main class for each rescaling factor. By max-pooling, we keep in memory the result of the scale for which the probability is the highest. The heatmap thus generated takes as value in each pixel the probability that this pixel belongs to the class of interest. This probability map can then be used to feed our algorithm. This way, we have at our disposal an automatized way to focus on the principal class in the scene with the desired level of detail.

All in all, the combination of this approach and the HRF is very interesting as it constitutes an all-in-one method to classify the image (i.e. to find the main class in the image), to localize the objects of this main class in it, and to get from it a hierarchy of segmentation in which those elements are highlighted. An overview of this method can be found in Figure 8 and an example is presented in Figure 9, for the same image as in Figure 3 from Section 3.2. 

Hierarchical co-segmentation

Another potential application is to co-segment with the same fineness level an object appearing in several different images. For example, when given a list of images of the same object taken from different perspectives/for different conditions, we can follow one of the state-of-the-art matching procedure [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] (the reader is referred to [START_REF] Zheng | Sift meets cnn: A decade survey of instance retrieval[END_REF] for a thorough evaluation of the instance retrieval methods, which is beyond the scope of this paper):

1. compute all key-points in all images, using for example the FAST algorithm [START_REF] Rosten | Machine learning for high-speed corner detection[END_REF], 2. find local descriptors at these key-points, such as SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], 3. match those key-points using a spatial coherency algorithm as RANSAC [START_REF] Fischler | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF].

Once it is done we retain these matched key-points between all images, and generate probability maps of the appearance of the matched objects using a morphological distance function to the matched key-points.

These probability maps can then feed our algorithm, resulting in a hierarchical co-segmentation that emphasizes the matched zones of the image. Some results are presented in Figures 10 and11, which speak for the interest of such an approach. In Figure 10, while the contours/details in the helicopter are not necessarily the more salient ones in each image taken separately, the matching of keypoints throughout images results in a prior image emphasizing regions inside it. The comparison of the volume-based SWS hierarchy and HRF saliency maps confirms that the details in the helicopter are much more efficiently highlighted in the latter. In the same way, in Figure 11, the details in the HRF UCM in Figures 11(i),(k) are way more focused on the kendoka (kendo practitioners) than on the comparison UCM in Figures 11(h),(j). The process thus helps us obtaining representations of images emphasizing shared objects between them, and with the desired level of detail. Note that such a method could highly benefit approaches making use of hierarchical segmentation for co-saliency detection such as [START_REF] Liu | Co-saliency detection based on hierarchical segmentation[END_REF], by producing hierarchical segmentations that already retain contours of shared objects between images, in a robust manner (since the keypoints and descriptors used are robust to image transformation, occlusions etc.). 

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Effect of the HRF highlighting transitions between foreground and background

We illustrate in this section the HRF highlighting transitions between foreground and background presented in Section 3.3. We present its effect in the weakly-supervised HRF example in Figure 12, and in the face detection example in Figure 13. One can notice that insisting on the transition between background and foregroud helps to better delineate the contours corresponding to these transitions in both examples. In Figure 13(j), we thus observe how the hands and face of the character emerge first. Similarly, in Figure 12(e)(f), we see that the car structure emerges in early levels of the hierarchy, whereas we do not obtain such a result otherwise. 

Conclusions and perspectives

In this paper we have proposed a novel and efficient hierarchical segmentation algorithm that emphasizes the regions of interest in the image by using spatial exogenous information on it. The wide variety of sources for this exogenous information makes our method extremely versatile and its potential applications numerous, as shown by the examples developed in the last section. To go further, we could find a way to efficiently extend this work to videos. One could also imagine a semantic segmentation method that would go back and forth between localization algorithm and HRF to progressively refine the contours of the main objects in the image.

Figure 1 :

 1 Figure 1: A few examples of the growing number of spatial exogenous information sources: (a) RGBD image, which depth information can help to direct the segmentation process, (b) many methods provide rough localizations of classes of interests, for example here the class "People", (c) RGB Image and heatmap of the main class in the image, (d) RGB Image and output of a non-blur zones detector. How can we use such exogenous information to pilot the hierarchical segmentation process?

Figure 2 :

 2 Figure 2: a: A partition represented by an edge-weighed graph. b: A minimum spanning tree of the graph, with 2 markers in blue: the highlighted edge in blue is the highest edge on the path linking the two markers. c: The segmentation obtained when cutting this edge. d: Blue and orange domain are the domains of variation of the two markers generating the same segmentation.

Figure 3 :

 3 Figure 3: Illustration of the methodology described in Section 3.2 to generate a hierarchy with regionalized fineness. (a) Image I. (b) π 0 visualized by the mean value per region on I. (c) RAG G, superimposed on a label image with fake colors of the fine segmentation for better visualization. (d) MST(G) (same visualization as in (c)). (e) Probabilistic Map PM(I, θ E )) associated with "Bike" class. (f) ̃︁ PM(π 0 , I, θ E ). (g)(h)(i) examples of segmentations obtained with HRF -10, 100, 200 regions.

Figure 4 :

 4 Figure 4: Hierarchical segmentation of faces. (a) Original image. (b) Prior: Probabilistic map obtained thanks to a face detection algorithm. (c) Volume-based SWS Hierarchy UCM. (d) Volume-based HRF UCM with face position as prior. (e)(f)(g) Examples of segmentations obtained with HRF -10,100,1000 regions.

Figure 5 :

 5 Figure 5: Hierarchical segmentation of non-blur objects. (a) Original image. (b) Prior image obtained with non-blur zones detection algorithm. (c) Volume-based SWS Hierarchy UCM. (d) Volume-based HRF UCM with non-blur zones as prior. (e)(f)(g) Examples of segmentations obtained with HRF -10,200,2000 regions.

Figure 6 :Figure 7 :

 67 Figure 6: Example of the combination of two probability maps to get a new one that can be put as input of the HRF. We have two probability maps, θ F highlighting the face, and θ D corresponding to the specific depth at which the character is. We use (θ F × θ D )𝛾 as a new probability density function.

Figure 8 :

 8 Figure 8: Proposed workflow of weakly-supervised HRF algorithm.

Figure 9 :

 9 Figure 9: Hierarchical segmentation of the main class (class "bike") in an image with heatmap issued of a CNN-based method as input. (a) Volume-based SWS hierarchy UCM. (b) HRF UCM.

Figure 10 :Figure 11 :

 1011 Figure 10: Hierarchical co-segmentation of matched objects -example 1. (a)-(e) I 1 to I 5 . (f) All matched key-points of I 3 with other images key-points. (g) Prior for I 3 : probability map generated thanks to morphological distance function. (h) Volumebased SWS Hierarchy UCM for I 3 . (i) Volume-based HRF UCM for I 3 with matched key-points as prior. (j) Volume-based SWS Hierarchy UCM for I 4 . (k) Volume-based HRF UCM for I 4 with matched key-points as prior.

Figure 12 :Figure 13 :

 1213 Figure 12: Hierarchical segmentation of the main class in the image (class "car") highlighting transitions between background and foreground. (a) Image. (b) Heatmap of the class "car". Case 1: HRF (c) UCM. (e) 5 regions. (f) 10 regions. Case 2: Volume-based SWS (d) UCM. (g) 5 regions. (h) 10 regions.

  . One can for example note,
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