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In this paper, I present and discuss findings from a research study the aim of which is to investigate 

the activity of proving as constituted in a Cypriot classroom for 12 year old students. Through 

Cultural-Historical Activity Theory (CHAT), the influence of research literature, curriculum 

prescriptions, the students and critically the teacher are documented. The evolution of objects, in 

particular the aims of the teacher, and other components in the activity systems are traced. 

Perceiving the mathematics classroom as a nested activity within educational context levels, this 

paper considers the role of the broader social context in which this classroom is situated.  
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Theoretical framework 

It is now acknowledged that proof and proving should become part of students’ experiences 

throughout their schooling (Hanna, 2000; Stylianides, 2007; Yackel & Hanna, 2003). It is also 

argued that argumentation, explanation and justification provide a foundation for further work on 

developing deductive reasoning and the transition to a more formal mathematical study in which 

proof and proving are central (Yackel & Hanna, 2003). But what is meant by proof and proving? 

Mathematical argumentation is a discursive activity based on reasoning that supports or disproves 

an assertion and includes the exploration process, the formulation of hypotheses and conjectures, 

explaining and justifying the steps towards the outcome and the proof of the statement. Thus, proof 

is at the core of mathematical argumentation, as a justification, an explanation and a valid argument. 

Research has responded to the need to conceptualize proof and proving in such a way that it can be 

applied not only to older students but also to those in elementary school (Stylianides, 2007). The 

challenge remains however to understand how proof and proving is shaped by the practices in the 

mathematics classroom. This is in accordance with Herbst and Balacheff (2009), who argue that the 

focus should not only be on proof as the culminating stage of mathematical activity, but also on the 

proving process and how this is shaped by the classroom environment. Thus, in understanding how 

proving is constituted in the classroom, a wider network of ideas is required as these ideas no doubt 

have an impact on how proof in the narrow sense is constituted.  

To address this issue, I refer to pre-proving, that aspect of mathematical reasoning that might 

nurture proving. What are the roots of proving? The purpose of this study is to investigate proof and 

proving in the naturalistic setting of the classroom and the way the structuring resources of the 

classroom’s setting shape this process. Instances of students proving statements have been 

identified in this classroom community but instances where the argument was not in the conceptual 

reach of the classroom have also been identified. However, this study also points to those aspects of 

reasoning that appear to have the qualities of proving, even though they may not be proving in 

themselves. That is, analyses of video-recorded whole class discussions show how processes of 

explaining and exploring are key sub-systems within the central activity of proving as they provide 

a key pathway, which often includes defining. Thus, pre-proving refers to those elements that direct 
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mathematical reasoning towards the ultimate goal of formal proving, namely exploring, explaining, 

justifying and defining. This study considers mathematical explanation an act of communication, 

the purpose of which is to clarify aspects of one’s mathematical thinking that might not be apparent 

to others (Yackel & Cobb, 1996). Justification is “the discourse of an individual who aims to 

establish for somebody else the validity of a statement” (Balacheff, 1988, p. 2). There is insufficient 

scope in this short paper to consider in detail these various levels and so this specific study focuses 

on the way the activity of the mathematics classroom (micro context) is influenced and dependent 

upon wider educational context (macro context). This is in accordance with Balacheff (2009) who 

argues that among the important pieces in trying to understand the nature and role of proof in a 

mathematics class is describing the general usage of the word proof in these contexts and the 

demands this usage imposes in the classroom.          

CHAT based underpinnings 

As this study is exploring the various forces that impact on the activity of proving, Cultural 

Historical Activity Theory (CHAT) is being employed as a descriptive and analytical tool alongside 

collaborative task design (a means of gaining access to the teacher’s objectives), to capture the 

interaction of different levels, such as the actions of teachers, students and the wider field as 

evidenced in curricula and research documentation. The analysis and discussion in this paper draws 

upon the following CHAT perspectives: (i) the object of the activity and (ii) the notion of 

contradictions. Initially, the unit of analysis in CHAT is an activity, a “coherent, stable, relatively 

long-term endeavor directed to an articulated or identifiable goal or object” (Rochelle, 1998, p. 84). 

Engeström (1987) introduced the activity system, a general model of human activity that embodies 

the idea that both individual and social levels interlink at the same time. Jaworski and Potari (2009) 

argue that the activity system is a micro context within broader macro context levels. Thus, the 

activity of a mathematics classroom is influenced and dependent upon the structure and 

organization of the school and the Ministry of Education as wider educational contexts. The object 

of a collective activity is something that is constantly in transition and under construction. It has 

both a material entity and is socially constructed and its formation and transformation depends on 

the motivation and actions of the subject indicating that it proves challenging to define it.  

Among the basic principles of CHAT is the notion of contradictions. Contradictions are imbalances, 

ruptures and problems that occur within and between components of the activity system, between 

different developmental phases of a single activity, or between different activities. These systemic 

tensions lead to four levels of contradictions (Engeström, 1987). Contradictions are important 

because they may lead to transformations and expansions of the system and thus become tools for 

supporting motivation and learning. That is, contradictions do not serve as points of failure or 

problems that need to be fixed. “Rather than ending points, contradictions are starting places” (Foot, 

2014, p.337). This paper focuses on tertiary contradictions that appear between the object and the 

culturally advanced form of the central activity, a clash between the micro and macro level. 

Compared with other studies investigating tertiary contradictions, this study takes a rather different 

approach in discussing the tertiary contradiction that has emerged within this particular activity 

system. That is, the collaborative task approach assisted in exposing the teacher’s object. Even 

though introducing a new mediational tool resulted in new actions being brought into the activity, 



 

 

this did not affect the object of proving as a cultural historical activity system. Thus, when 

elaborating on tertiary contradictions, this discussion focuses on a possible clash between the micro 

and macro level of this activity system, due to a differentiated object. 

Data collection and analysis 

This study was conducted in a Year 6 classroom in a public primary school in Cyprus. This 

mainstream school is considered to be a dynamic school; it actively encourages teachers and 

students in engaging at a deeper level with the educational experience. Apart from the researcher, 

the participants were the teacher, a Deputy Principal at the school who endorses the integration of 

technology in teaching mathematics, and voluntarily agreed to take part in the research, and 22 

students (11–12 years old) of mixed abilities. Even though using computers was part of the 

classroom’s routine, the students were not familiar with Dynamic Geometry Environments (DGEs). 

The data collection process was undertaken in three phases. Phase I aimed at identifying the system 

level and the teacher level, by employing documentary analysis and semi-structured interview. The 

system level, which remained the same throughout the study, in the broader sense, refers to the 

policy statements, curriculum, textbooks, research about proof and proving. The official 

documentation was analyzed so as to collect information concerning the role of proving in primary 

education, the objectives for teaching and learning geometry, the geometrical tasks illustrated as 

important for developing geometric thinking and understanding, the approaches the ICT offers in 

facilitating the teaching and learning of school geometry. The teacher level refers to the teacher’s 

attitudes and perceptions concerning the role of proof in the curriculum and in the mathematics 

classroom, compared with what the teacher actually does in the everyday mathematics classroom.  

The interview with the teacher aimed at exploring the teacher’s beliefs and views regarding the 

nature of mathematics, the nature of teaching mathematics and the nature of learning mathematics. 

The main research focus of Phase II was to map the current situation of the classroom. The data 

collection process included video data from the classroom observations and field notes from the 

informal discussions with the teacher. My involvement in the classroom could be described as 

moderate participation. In Phase III, the researcher collaborated with the teacher to design DGE-

based tasks as a means to gain access to the teacher’s objectives. The tasks were the research 

vehicle, the window for generating data rather than any kind of curriculum intervention. The 

research instruments were classroom observation, informal discussions with the teacher and the 

DGE-based tasks. In Phase III, I had an active role in the classroom. My involvement was related 

with answering questions related with the tools the DGE provided, which the students had to use in 

order to explore the tasks, and asking probes. Each phase of data collection was distinct as it 

corresponded to specific purposes. At the same time, themes of interest, emerging from the ongoing 

analysis of each phase, also informed the design, implementation and analysis of the subsequent 

phases. The content of the curriculum covered during the classroom observations was the area of 

triangles, and the circumference and the area of circle.  

The overall process of analysis of the collected data was one of progressive focusing. According to 

Stake (1981, p.1), progressive focusing is “accomplished in multiple stages: first observation of the 

site, then further inquiry, beginning to focus on relevant issues, and then seeking to explain”. The 

systematization of the classroom data led to the evolution of two broad activities: (i) the activity of 



 

 

exploration including the exploration of mathematical situations, exploration for supporting 

mathematical connections (between the content of mathematics, with which the students are 

engaged, with parts of mathematics that they would be taught in secondary school or that were 

taught either recently or in the past, as well as between classes of problems) and exploration of the 

DGE and (ii) the activity of explanation which focuses on clarifying aspects of one’s mathematical 

thinking to others, and sometimes justifying for them the validity of a statement. These activities 

were then interpreted through the lens of CHAT, by generating the activity systems of both 

exploration and explanation. Analysis of the classroom data revealed that the activity of explanation 

unfolded and expanded around mathematical definitions and defining as activity. What is the 

connection between definitions and explanation? Definitions are conventions that require no 

explanation. However, the teacher wanted reference to the attributes that involved properties. That 

is, the move from a definition involving only perception to a definition that involved properties 

needed explaining. The situation of the classroom regarding proving activity was further scrutinized 

by contrasting the outcome of the activity with the social context in which it emerged.  Instances of 

both congruence and diversion existed between the micro and macro level. 

What is the object of developing proving in the classroom? 

It has been illustrated that pre-proving activity is closely connected with exploration and 

explanation. Correspondingly, the object of developing proving in the classroom is related with 

these notions. The object has multiple manifestations for the participants engaged in the activity. 

Exploration is related with the pre-proving activity when information is revealed through the 

immediate feedback students get from the manipulation of objects. For instance, on a blank DGE 

window, the teacher asked the students to find the area of triangles. The students had the 

opportunity to explore this mathematical situation on a DGE and decide for themselves which tools 

should be utilized that would assist them in finding the area of the triangles.  

Additionally, explanation entails a process where mathematical definitions are being formulated. 

The students cannot rely only on perception as a definition in this particular classroom is considered 

more what a concept really is rather than a description of how a concept is used. For instance, the 

question “What is the altitude in a triangle?” directed the classroom towards formulating the 

definition of the altitude in a triangle.  Explanation also entails a process where the 

sociomathematical norms are being negotiated. For instance, the first lesson where the students 

were introduced to the area of mathematics related with circle, was initiated by a question. 

Teacher: What is circle? 

Student: It is a shape that does not have sides or angles. 

Teacher: I draw a circle according to this definition. (The teacher draws a non-regular 

shape with curved lines.) 

Student: This is not a circle. 

Teacher: We said that in mathematics our definitions must be accurate.  

Students are expected to use precise mathematical language when communicating their ideas as 

well as when writing coherent geometrical explanations, clarifying aspects of their mathematical 



 

 

thinking to others, as well as justifying for them the validity of a statement. For instance, following 

the classroom discussion on defining circle, the teacher asked students to determine whether several 

shapes illustrated on the whiteboard were circles. 

Teacher: Is this a circle? 

Student: No.  

Teacher: I do not accept your answer. Why? 

Student: There … on the right ... the other shapes are not circles because their center does 

not have the same distance from their circumference. 

As proofs begin with an accepted set of definitions and axioms, it can be argued that ultimately all 

proofs depend on the underlying definitions and the earlier results derived from these definitions. 

Thus, understanding and explaining these definitions is a prerequisite when approaching a proof. 

For instance, after the class reached a conclusion regarding the mathematical formula for the 

circumference of circle and made hypotheses concerning the mathematical formula for the area of 

circle, the teacher gave each pair a circle divided in either 8 or 10 pizza pieces, commenting that 

they could use the pizza slices to explore the area of circle.  

Student: We finished. Can we tell you? Radius times half the circumference. It’s a 

rectangle thus the length is the radius and the width is half the circumference 

because it’s half.  

In addition, making forward connections provides more information and knowledge about the 

axiomatic system in which the classroom community is working. Forward connections also 

strengthen the formulated definitions. For instance, after the class explored the number of altitudes 

in a triangle, the teacher made the following comment: 

Teacher: This is what I was trying to achieve. All the altitudes pass … this is not part of our 

curriculum but part of the mathematics curriculum of secondary school, but it’s 

good for you to know because it helps you. A triangle has three altitudes. Form 

each vertex I can construct an altitude to the opposite side. 

Consideration of the aforementioned manifestations of the object leads to the conclusion that the 

object of the central system of pre-proving activity is related with exploration that leads to 

explaining and justifying for a specific part of the mathematics curriculum. Nevertheless, the object 

is simultaneously hindered due to the dichotomies, tensions and conflicts. At a first glance, this 

object seems to be clear and distinct. However, this object is multifaceted. The teacher on one hand 

understands the importance of providing enjoyable exploring opportunities that keep students’ 

motivation and interest to engage with the problem. As a result, the teacher provides opportunities 

that can be approached by the students in their own way. On the other hand, students, through the 

exploration of these opportunities are expected to reach those conclusions regarding triangles and 

circles as pre-determined by the teacher. The two poles of the object lead to a constant struggle in 

the teacher’s everyday practice. The teacher, due to this multifaceted object, is faced with the play 

paradox (Hoyles & Noss, 1992) as well as the planning paradox (Ainley, Pratt, & Hansen; 2006). 

As a result, teacher would at times decide to close down an exploration opportunity. For instance, 



 

 

after exploring the circumference and area of circle, the teacher, asked the students to find a 

relationship that related the circumference and the area of the circle. Soon after that she asked them 

to prove mathematically that the ratio area/circumference of a circle is r/2.  In a similar way, the 

object of the activity of explaining as part of pre-proving is multifaceted. The object for the teacher 

is twofold: explaining mathematical procedures and explaining related with ‘proving’. On one hand, 

the teacher’s object is related with engaging students in formulating definitions (of concepts and 

formulas) in the same way that mathematicians do. In order for these definitions to become operable 

for the students, they need to focus on the properties required. Thus, this process includes a 

continuous interplay between the concept image and the concept definition, promoting the 

characteristics of definitions and making the distinction between ‘ordinary’ and mathematical 

definitions. Even though the above facilitate the justification of statements, a tension within the 

object arises. That is, ensuring that the classroom engages in the construction of stipulated 

definitions and that these definitions are not just descriptive for the students seems to be competing 

with moving to justification based on these definitions. Furthermore, even though the teacher is 

embracing this object, she is simultaneously faced with the play and planning paradoxes, 

influencing the way she intervenes while this process of explaining and justifying develops in the 

classroom. If the students’ argumentation leads to a discussion that diverts from the teacher’s 

object, the teacher may decide not to take advantage the opportunity that arises, for further engaging 

students in explaining and justifying.   

Identifying points of contradiction 

Tertiary contradictions appear between the object of activity in a central activity and the ‘culturally 

more advanced’ activities. Analysis of the micro activity system as a classroom which is nested 

within the system level such as the institutional level in which the school is part of, as well as the 

cultural-historical level which is involved with the available research literature results into 

identification of a tertiary contradiction due to a differentiated object. The two poles of the object of 

the central activity of the classroom related with pre-proving activity will unavoidably clash with 

the object of pre-proving activity as identified in the system level. Initially, a contradiction between 

the classroom level and the institutional level resides in the fact that there is no clear identification 

of an object related to proving. That is, analysis of the official documentation indicates a general 

object of mathematical activity that is not necessarily in accordance with the object of the teacher 

related to pre-proving activity. To be more precise, the information collected from the official 

documentation points to low level of expectation with regards to exploration and investigation in 

problem solving in Year 6. Analysis of the report of the official documentation shows that proof 

and proving is not being acknowledged as a key criterion, nor mentioned in the mathematics 

curriculum. Furthermore, explaining and justifying points to an explanation being given by 

providing the mathematical operations used to find the answer and the justification being provided 

by using the definition. Adding to the above, there is no formal requirement regarding definitions. 

Definitions as approached by the official documentation are descriptive and extracted. This is not in 

accordance with the teacher’s practice where definitions play a vital role. One may argue that a 

consideration of the educational objectives, as pre-determined by the mathematics curriculum, leads 

to the conclusion that the outcome of the teacher’s practice is the one intended by these objectives. 



 

 

However, in order for this to be achieved, the pre-proving activity is narrowed down. Thus, for 

instance, providing answers based on definitions and properties of shapes clashes with providing 

explanations based on the conceptual aspects of the definitions and the shapes. In a similar way, this 

tertiary contradiction concerns the cultural-historical level as well. Even though at a first glance the 

teacher’s objects seem to be in line with the established research literature related with proving, the 

dilemmas the teacher needs to confront, as well as the ambiguity of the notion of proving existing at 

the institutional level, clash with the cultural-historical level.  

Discussion and conclusions 

A consideration of the above rationally points to the inference that the advanced form of the central 

activity object is not yet the dominant form of the activity. Thus, it can be argued that a first step 

towards a unification of these activities should be the resolution of the tension that exists within the 

macro system. Would providing a mathematics curriculum, which defines its object concerning 

proving and defining activity by incorporating crucial elements from the research literature, lead to 

a desired outcome?   

The discussion regarding tertiary contradictions reveals the value of this concept in understanding 

systems of activity. By identifying the manifestation of contradictions through the materialized 

tensions, a holistic view of the phenomenon under investigation emerges. It is accepted that not all 

emergent contradictions can be resolved simultaneously. While a resolution exists for some 

contradictions, others are suppressed. That is, the contradiction on the teacher’s object is continually 

present, surfaces in the teacher’s everyday practice in various forms and is foundational to the other 

levels of contradiction. However, since this contradiction remains, the discussion should be 

centered on the means that the teacher can turn to for a possible and fruitful resolution of the 

contradictions that emerge in the other levels. Elaboration of the emergent tertiary contradictions 

leads to asking whether a possible balance between the macro level would be an aid in the 

resolution of the tensions manifested as contradictions in the micro level. Due to the way the 

aforementioned forces impact on the classroom activity, providing a straightforward answer is not 

an easy task. Undoubtedly, as it has been exemplified, proof and proving might be encouraged in all 

school levels. This indicates that exemplification of the role of proof, explanation, exploration and 

definitions might be included in the mathematics curriculum and the relevant curriculum material.  

Perhaps, a clear connection between the aforementioned would relieve, to an extent, the teacher 

from paradoxes. That is, knowing that the above aspects of mathematical reasoning might not be 

necessarily competing with each other and may be the way for a resolution of the play and planning 

paradoxes, as the purpose and utility underlining the task design would not clash with the object of 

the central activity system (Ainley et al., 2006).  

Adding to the above, the fact that the official documentation is implemented in the classroom by the 

teacher points once again to the crucial role of the teacher. Specifically, the above findings further 

highlight the role of the teacher’s knowledge about proof in mathematics teaching. Keeping in mind 

the findings of this study related with definition construction as part of pre-proving activity, it is 

important to consider essentially that the types, the characteristics and functions of mathematical 

definitions should be taken into account when understanding and describing the mathematical 



 

 

knowledge for teaching when engaging students in proving activity. Would this element of 

knowledge enable mathematics teaching to support desirable student learning outcomes in the 

domain of proof and in mathematics more broadly?  
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