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Abstract
Hydroxyapatite (HAp) coatings were prepared on Ti6Al4V substrate by electrodeposition
method from electrolyte solution containing Ca(NO3)2, NH4H2PO4 and NaNO3. The results
show that the HAp coatings were single phase crystals of HAp. Scanning electron microscope
(SEM) images present that HAp/Ti6Al4V have flake shapes which arrange to form like-coral
agglomerates. In vitro test of the Ti6Al4V and HAp/Ti6Al4V in simulated body fluid (SBF)
solution was investigated with different immersion times. pH of SBF solution decreased and the
mass of materials increased. SEM images prove the formation of apatite on the surface of
Ti6Al4V and HAp/Ti6Al4V. The corrosion current density during immersion time of substrate
is always higher than the one of HAp/Ti6Al4V because the deposited HAp can protect well for
the substrate.
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1. Introduction

In humans and mammals, hydroxyapatite (HAp,
Ca10(PO4)6(OH)2) is the main component of bone and teeth.
Synthetic HAp has similar chemical composition, crystal
structure and high biocompatibility as the natural bone tissue
[1, 2]. It has bioactive and high biocompatibility with cells,
tissues and can create direct bonding with immature bone.
The result is the quick regeneration of bone. Thus HAp is
used as a popular material for bone and tooth implants in the
biomaterial field. However, the mechanical strength of HAp is
too low to be used in any load-bearing applications. For

exploiting the biocompatibility of HAp in the fabrication of
bone and tooth implants it was coated on metal or alloy: Ti,
316L stainless steel, CoCrMoNi, TiN, TiO2, Ti6Al4V etc.
HAp coatings can be synthesized by many different methods
such as: electrophoretic deposition [3, 4], plasma spraying
[5, 6], sol-gel [7, 8], biomimetic deposition [9] and electro-
deposition [1, 9, 10]. Among the above methods, electro-
deposition is one of the most promising methods to synthesize
thin HAp coatings.

Ti6Al4V is a common metallic alloy which has found
many uses as biomaterials in the human body. It has been
increasingly preferred in the biomedical arena with cardio-
vascular, dental and orthopedic applications because of their
properties. Titanium (Ti) and its alloy (Ti6Al4V) are metallic
materials commonly employed as orthopedic implants
because of their high strength (compared with polymeric
materials) and high toughness (compared with ceramic
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materials) [11]. However, metallic materials are susceptible to
corrosive attack by body fluids. Problems such as release of
inflammatory mediators might cause adverse effects to the
surrounding tissues [12]. Moreover, metallic surfaces are in
general not adequately bioactive. Therefore, to improve
osteo-integration with bone tissues, many researchers syn-
thesized HAp coatings on the surface of metals or alloys.
Some studies indicated that HAp coatings on substrates have
good biocompatibility when they were immersed in simulated
body fluid(SBF) solution and HAp coatings on substrates are
bioactive materials for biomedical applications [13–16].

In this work we electrodeposited HAp coatings on
Ti6Al4V with the variation of scanning potential range and
scan number. Then electrochemical behaviors of Ti6Al4V
and HAp/Ti6Al4V materials were investigated in SBF
solution.

2. Materials and methods

2.1. Materials

The HAp coatings were electrodeposited on Ti6Al4V bio-
metallic alloy with the elemental compositions given in
table 1. A coupon of Ti6Al4V (1.5×1×0.2 cm3) was used
as a cathode (working electrode) for the experiments. Prior to
electrodeposition, the cathode was polished with SiC papers
(ranging from P320 to P1200 grit), followed by ultrasonic
rinsing in distilled water for 15 min and then dried at room
temperature. The electrode working area was 1 cm2.

The chemicals were used for the experiments: calcium
nitrate tetrahydrate (Ca(NO3)2·4H2O, M=236.15 g mol−1,
99% pure), ammonium dihydrogen phosphate (NH4H2PO4,
M=115.03 g mol−1, pure 99%) and sodium nitrate (NaNO3,
M=84.99 g mol−1, 99% pure) were imported from China.

2.2. Electrodeposition

The electrolyte solution contained 30 mM Ca(NO3)2, 18 mM
NH4H2PO4 and 60 mM NaNO3 with the ratio of Ca/P being
1.67 dissolved in distilled water. The presence of NaNO3 in
the electrolyte solution increases the ionic strength of the
electrolyte and for potentially exploiting the electrochemical
reduction of -NO3 ions which contributes to generate OH−

[17, 18]. The pH of the electrolyte solution was 4.4.
HAp coatings were synthesized in a cell containing 80 ml

of the above electrolyte solution with three electrodes: the
working electrode was a Ti6Al4V sheet; a Pt foil was used as
counter electrode (anode) and a Hg/Hg2Cl2/KCl (SCE)
electrode was used as reference. The deposition temperature
was adjusted at 50 °C by a thermostat (VELP, Italia).

The electrodeposition was carried out using an Autolab
with different synthesis conditions: scanning potential ranges:
0 to −1.8; 0 to −1.9; 0 to −2.0; 0 to −2.2 and 0 to −2.5 V/
SCE; scan numbers: 1, 3, 5, 7 and 10 scans. HAp coatings
were lightly rinsed by distilled water. Then they were dried at
the room temperature.

2.3. Coating characterization

Molecular structure of HAp coating was determined by
Fourier transform infrared spectroscopy (FTIR 6700, Nicolet)
using KBr pellet technique at room temperature, in the range
from 400 to 4000 cm−1 with 16 cm−1 resolution and 16 scans
signal average. HAp coatings were lightly separated from the
substrate and the phase structure of HAp coatings were
characterized by x-ray diffraction (XRD) (Siemen D5005
Bruker-Germany, Cu-Kα radiation (λ=1.5406 Å)), operated
at 40 kV and 30 mA, with step angle of 0.030° s−1 and in a 2θ
degree range of 20°–50°. The average crystallite size along c-
direction of electrodeposited HAp was calculated from (002)
reflection in XRD pattern, using Scherrer’s equation:

l
q

=D
B

0.9

cos
, 1( )

where D (nm) is crystallite size, λ (nm) is the wavelength of
the radiation, θ (rad) is the diffraction angle and B is the full-
width at half-maximum of the peak along (002) direction

Surface morphology of HAp coatings before and after
immersion in the SBF solution were examined using a Hitachi
S-4800 scanning electron microscope (SEM). HAp coating
thickness was determined following ISO 4288-1998 standard
by the Alpha-Step IQ equipment (KLA-Tencor-USA). The
coating thickness is the average value of five measurements.

2.4. In vitro test

A liter of the SBF solution was prepared by dissolution of
chemicals in distilled water (table 2). The pH of the SBF
solution was adjusted to 7.4 by 1M HCl solution and the
temperature was maintained at 37 °C by water bath [19–21].

Ti6Al4V and HAp/Ti6Al4V materials were limited to
1 cm2 of active area and they were immersed in Falcon tubes
containing 40 ml of the SBF solution at 37 °C in a water bath
for 1, 5, 7, 11, 14 and 21 days. The electrochemical behavior
of the materials was tested by Autolab equipment with a three

Table 1. Elemental content of Ti6Al4V alloy.

Element Ti Al V C Fe
Content (%) 89.63 6.04 4.11 0.05 0.17

Table 2. Chemical composition of the SBF solution.

Compound Content (g l−1)

NaCl 8.00
KCl 0.40
CaCl2 0.18
NaHCO3 0.35
Na2HPO4·2H2O 0.48
MgCl2·6H2O 0.10
KH2PO4 0.06
MgSO4·7H2O 0.10
Glucose 1.00
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electrodes cell. The above materials were used as working
electrode, a saturated calomel electrode (SCE) as a reference
electrode and Pt foil as a counter electrode.

The working electrode was polarized in the potential
range of ±10 mV around its open circuit potential (OCP) with
a scan rate of 1 mV s−1. From polarization curves ΔE, ΔI
values were determined. The polarization resistance Rp and
the corrosion current density icorr were calculated from
equations

=
D
D

R
E

i
, 2p ( )

=i
B

R
, 3corr

p
( )

the B values were determined from the Tafel slopes of i–E
curves in the potential range OCP±100 mV with a scan rate
of 1 mV s−1 by using equation

=
+

B
b b

b b2.3
, 4a c

a c

| |
( | | )

( )

where ba is the value of the anodic Tafel slope and |bc| is the
absolute value of the cathodic Tafel slope. We obtain
B=0.014 26 and 0.0119 corresponding to Ti6Al4V and
HAp/Ti6Al4V.

3. Results and discussions

3.1. The cathodic polarization curve of Ti6Al4V

Figure 1 shows the cathodic polarization curve of Ti6Al4V
substrate in the above electrolyte at the scanning potential
range from 0 to −2.5 V/SCE with a scan rate of 5 mV s−1 at
50 °C. The cathodic polarization curve has similar shape and
consistent with the reported results [16, 21]. In this scanning
range there is reduction of O2, -H PO ,2 4

-HPO4
2 and H2O to

create -PO4
3 and OH−. The OH− and -PO4

3 react with Ca2+

ions to form HAp coatings on the cathode according to the

chemical reaction

+ + + - -10Ca 6PO 2OH Ca PO OH . 52
4
3

10 4 6 2( ) ( ) ( )

Beside, different compounds of Ca and P are results of
following reactions:

+ + + 

⋅

+ - -4Ca HPO 2PO 2.5H O Ca H PO

2.5H O, octacalcium phosphate, OCP ,

6

2
4
2

4
3

2 4 4 3

2

( )

( )
( )

+ +  ⋅+ -Ca HPO 2.5H O CaHPO 2.5H O,
dicalcium dihydrogen phosphate, DCPD . 7

2
4
2

2 4 2

( ) ( )

3.2. Effect of scanning potential range

Based on the analysis of the cathodic polarization curve, HAp
coating was electrodeposited in the electrolyte solution
(pH=4.4) with different scanning potential ranges: from 0 to
−1.8; 0 to −1.9; 0 to −2.0; 0 to −2.2 and 0 to −2.5 V/SCE
during 5 scans with a scan rate of 5 mV s−1, at 50 °C.

FTIR spectra of HAp synthesized on the surface of
Ti6Al4V with different scanning potential ranges are pre-
sented in figure 2. All of the spectra show the characteristic
bands of -PO4

3 group (asymmetric stretching vibration of P–
O bond at 1030 cm−1; asymmetric O–P–O bending mode at
560 cm−1). Absorption peaks at 3460 and 610 cm−1 usually
assigned to the O–H stretching vibration in hydroxyapatite
were not clearly distinguished on these spectra. This can be
explained by the non-stoichiometry of the apatite phase, with
a deficiency in calcium and hydroxide groups. Water bands
were visible by a large band in the range 3460 cm−1 (O–H
stretching from water molecules) and by the H–O–H bending
band at 1630 cm−1. Beside, the presence of peak in the region
around 1380 cm−1 can be assigned to the vibration modes of

Figure 1. The cathodic polarization curve of Ti6Al4V electrode in
the electrolyte solution: 30 mM Ca(NO3)2, 18 mM NH4H2PO4 and
60 mM NaNO3. Figure 2. FTIR spectra of HAp synthesized on Ti6Al4V with the

different scanning potential ranges (a) 0 to −1.8 (b) 0 to −1.9 (c) 0
to −2.0 (d) 0 to −2.2 and (e) 0 to −2.5.

3
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-CO .3
2 The occurrence of -CO3

2 may be due to the reaction
of atmospheric CO2 with OH− ions, hence the content of

-CO3
2 ions is rather low [16].
Figure 3 presents the XRD diffraction patterns of HAp

synthesized on the surface of Ti6Al4V in 2θ of 20°–50°. The
XRD patterns only exhibit the hydroxyapatite phase (denoted
* in figure 3). The typical peaks are found at 2θ≈26° and
32° corresponding to (002) and (211) planes.

The HAp crystal diameter calculated from the Scherrer
equation shows that the crystals have nano-size (89–106 nm).
The crystal diameter changes not much when the potential
range changes from 0 to −1.8 V/SCE to 0 to −2.0 V/SCE.
However, with the larger potential range the crystal diameter
increases significantly (table 3). It can be explained as fol-
lowing: with the large potential range, much OH−, -PO4

3

ions were generated leading to the large formation of HAp;
the HAp particles concentrated to form larger particles.

The SEM images of HAp coatings on Ti6Al4V were
shown in figure 4. The results show that with the different
potential ranges, the surface morphology does not change. All
of the samples, the substrates were covered completely by
HAp coatings. At low magnification the crystals of HAp have
coral-like shape. At high magnification, SEM images clearly
show that HAp crystals have flake-like shape to form coarse
granular agglomerates.

Table 4 showed the thickness of HAp coatings synthe-
sized with different potential ranges. The coating thickness
increases and reaches a maximum value at 7.91 μm (the
potential range 0 to −2.0 V/SCE, respectively). When the
potential range was larger, the thickness of HAp coatings

decreases. The coating thickness is 4.68 μm with the potential
range from 0 to −2.5 V/SCE. The decrease of the coating
thickness can be explained as following: with the large
scanning potential range, the further increase in the amount of
OH− and -PO4

3 ions on the electrode surface, leading to their
diffusion from the electrode surface into the solution and
these ions combined with Ca2+ to form HAp in the solution.
Simultaneously, with the large cathode potential, the reduc-
tion of water is promoted, thus the hydrogen bubbles are
created on the electrode surface that may reduce adhesion
ability of HAp coatings with Ti6Al4V substrate. So the sui-
table potential range is 0 to −2.0 V/SCE.

3.3. Effect of scan number

Deposition time affects the thickness and surface morphology
of HAp coatings. We electrodeposited HAp coatings in the
potential range 0 to −2.0 V/SCE with the change of scan
number: 1, 3, 5, 7 and 10 scans with constant scan rate
(5 mV s−1). SEM images of the HAp coatings on the surface
of Ti6Al4V are shown in figure 5. With different scan num-
ber, the morphology of HAp coatings is various. It is
explained as following: with change of scan number, OH−,

-PO4
3 ions are differently formed and they affect the for-

mation and crystallization of HAp.
Table 5 presents the HAp coating thickness synthesized

with the different scan numbers. The coating thickness
increases and reaches the maximum value after 5 scans. The
scan number increases continually, the thickness of HAp
coatings decreases due to peeling of HAp coatings. Therefore,
5 scans was chosen to synthesize HAp coatings on Ti6Al4V
by electrodeposition method. In the next parts, we synthesized
HAp/Ti6Al4V at condition: the potential range from 0 to
−2.0 V/SCE; 5 scans; 5 mV s−1 at 50 °C to investigate
in vitro test.

3.4. In vitro test

The electrochemical behaviors of Ti6Al4V and HAp/
Ti6Al4V materials in the SBF solution were also investigated.

3.4.1. The variation of pH solution. Figure 6 shows the
pH values of the SBF solutions containing Ti6Al4V and
HAp/Ti6Al4V materials with different immersion times at
37 °C. The pH value of the SBF solution before soaking is
7.4. The pH of the SBF solutions decreased during the
immersion time. Moreover, the pH of SBF solution
containing HAp/Ti6Al4V decreases more strongly in
comparison with Ti6Al4V substrate. It can be
hypothesized that HAp as nucleation promotes the
formation of apatite. The formation of apatite consumed
OH- leading to the reduction of pH solution, the pH solution

Figure 3. XRD patterns of HAp synthesized on Ti6Al4V with the
different scanning potential ranges (a) 0 to −1.8 (b) 0 to −1.9 (c) 0
to −2.0 (d) 0 to −2.2 and (e) 0 to −2.5.

Table 3. The crystal diameter of HAp electrodeposited with the different potential ranges.

Potential range (V/SCE) 0 to −1.8 0 to −1.9 0 to −2.0 0 to −2.2 0 to −2.5
Crystal diameter (nm) 89 89 90 106 106

4
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Figure 4. SEM images of HAp/Ti6Al4V synthesized with the different potential ranges: (a) 0 to −1.8, (b) 0 to −1.9, (c) 0 to −2.0, (d) 0 to
−2.2 and (e) 0 to −2.5 V/SCE.

Table 4. The thickness of HAp coatings synthesized with the different potential ranges.

The potential range (V/SCE) 0 to −1.8 0 to −1.9 0 to −2.0 0 to −2.2 0 to −2.5
The thickness (μm) 4.9±0.3 6.0±0.2 7.9±0.2 5.98±0.3 4.7±0.4

Figure 5. SEM images of HAp coatings with the different scan numbers: (a) 1; (b) 3; (c) 5; (d) 7 and (e) 10 scans.

Table 5. The thickness of HAp coatings synthesized with the different scan numbers.

The scan number 1 3 5 7 10
The thickness (μm) 2.0±0.2 5.5±0.2 7.9±0.2 6.4±0.3 5.3±0.4

5
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containing HAp/Ti6Al4V decreases strongly during
immersion time. This result shows that the formation of
apatite was significant. After 21 immersion days in the SBF

solution, the pH value of the solution immersed HAp/
Ti6Al4V was 6.16.

3.4.2. Variation of mass. The mass variation of Ti6Al4V and
HAp/Ti6Al4V materials with different immersion times is
displayed in figure 7. The mass of Ti6Al4V substrate during
immersion time changed not much. After 21 immersion days
in the SBF solution, the mass of Ti6Al4V is 0.08 mg cm−2.
With HAp/Ti6Al4V, the mass of material increased during
the immersion process. After 21 immersion days the mass
variation of HAp/Ti6Al4V is 1.99 mg cm−2. It is clear that
the formation of apatite crystals on the surface of material
increased significantly. These results are confirmed by the
SEM images (figures 8 and 9).

3.4.3. The SEM images. Figures 8 and 9 display SEM
images of Ti6Al4V and HAp/Ti6Al4V materials before and
after immersion in the SBF solution with different times. The
SEM image of the Ti6Al4V sample after 21 immersion days in
the SBF solution observed the formation of apatite crystals.
However apatite crystals do not cover substrate fully (figure 8).

HAp coatings on Ti6Al4V have flake-like shape to form
coarse granular agglomerates before immersed in the SBF
solution. After immersion in SBF solution, morphology has
clear change. It shows the formation of apatite crystals on the
surface of HAp/Ti6Al4V. The apatite crystals are observed
with cylinder shape and clump to form groups with cactus
shape. Specially, with the sample immersed during 21 days in
the SBF solution, apatite crystals grew up to form a thicker
block on the surface of material. The results about the
formation of apatite crystals are suitable with decrease of
pH and increase of sample mass in the immersion process.
These materials exhibit good biocompatibility in the SBF
solution.

3.4.4. Polarization measurements. Variation of parameters
Ecorr, icorr, Rp according to immersion time was calculated
from polarization potential measurements results of Ti6Al4V
and HAp/Ti6Al4V materials in the SBF solution (table 6).
The variation of icorr as well as Rp is not following a rule,
these values fluctuate at different immersion times. After 1
immersed day in SBF solution, polarization resistance Rp of
HAp/Ti6Al4V is much higher than that of Ti6Al4V (60.7

Figure 6. The pH value of SBF solution immersed Ti6Al4V and
HAp/Ti6Al4V materials versus different immersion times at 37 oC.

Figure 7. The mass variation of Ti6Al4V and HAp/Ti6Al4V versus
different immersion times in the SBF solution.

Figure 8. SEM images of Ti6Al4V before and after 21 immersion days in the SBF solution.

6
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and 11.4 kΩ, respectively). This result shows that HAp
coatings are capable to protect the substrate. The increase or
the decrease of Rp shows the formation or the dissolution of
HAp in the SBF solution. Generally, during immersion times
the corrosion current density of substrate is higher than the
one of sample covered by HAp coatings. The polarization
resistance of substrate is lower than that of substrate covered
by HAp. These results could indicate that the HAp coatings
protect the substrate.

4. Conclusion

HAp coatings have been successfully synthesized on the sur-
face of Ti6Al4V by the electrodeposition method via a simple
technique. The analysis results show that the HAp coatings
were single phase crystals of HAp. HAp coatings have flake-

like shape to form coarse granular agglomerates. The in vitro
test with Ti6Al4V and HAp/Ti6Al4V in the SBF solution
were realized with different immersion times. SEM images
showed the formation of apatite on the surface of Ti6Al4V and
HAp/Ti6Al4V during the immersion time in the SBF solution.
The apatite crystals had a cactus-like shape and covered fully
the surface of HAp/Ti6Al4V material after 21 immersion days.
The electrochemical behavior of Ti6Al4V and HAp/Ti6Al4V
in the SBF solution shows the formation of apatite and HAp
coatings behave as substrate protective layer.
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