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Abstract: Multitype bin packing is a natural extension of the classical bin packing with
applications to shipping using climate-controlled containers and plain dry containers. In
transportation and other logistics applications there may be significant uncertainty with respect
to the exact quantities of different variants of products (or item types) that may need to be
shipped at the time when the containers and packaging are procured. In the current paper
we model the problem as a robust two-stage two-item type bin packing problem. In the first
stage bins of different types are acquired (e.g., reefer containers and dry containers). In the
second stage the items are packed into bins. The bins that are secured in the first phase must
allow for all of the items to be packed in the “worst-case” demand scenario. We first develop
an algorithm for the robust two-stage two-item type bin packing problem with general item-
number uncertainty sets and certain box uncertainty sets for item sizes (or equivalently two
item sizes). We then consider the special case of identical (or unit) item sizes. In this special
case we develop closed-form solutions for the optimal solution. Our closed-form solution reveals
that it is optimal to use a number of multipurpose bins that is linear in the number of items.
This is in contrast with solutions of the online and offline deterministic version of our problem
that use at most one multipurpose bin. Finally, we consider computational methods that are
efficient in practice for a generalization with unit item sizes but with an arbitrary number of

item and bin types and arbitrary compatibility structures. Copyright ©2019 IFAC

1. INTRODUCTION

Consider a two-stage problem in which there are demands
for two types of items and these have to be packed using
three types of bins; a bin type designated for each type of
item and an additional multipurpose type of bin that can
be used to pack both types of items. The bins are acquired
before the demands, accordingly the quantities of the items
n = (ny,ng) are realized and become known. The objective
is to minimize the costs while being able to meet every
possible demand n in a (compact) set of possible scenarios
N of the item demands. Some of our results may apply in
particular to the case of finite uncertainty sets /. This case
includes the standard bin packing problem setting where
the numbers of bins are natural numbers. Without loss
of generality we assume that the type-1 bin cost is 1 unit
and that «, 8 are the costs of type-2 bins and multipurpose
(type-3) bins, respectively, satisfying 1 <a < 8 <1+ a.

The two-item type bin packing problem is introduced
in Goldberg and Karhi [2017]. It is motivated by two types
of items to be transported with different climate control
settings. In Figure 1 there are two types of items — ones
that must be refrigerated above the freezing point and
ones that need to be transported frozen. Then the three

container types are a refrigerated containers set to the
corresponding temperatures of refrigerating, freezing, and
a multi-temperature container that can simultaneously
transport items with different temperature requirements
(see for example Tassou et al. [2009]). Each bin type has
a different cost and it is expected that more versatile
bin types would cost more than ones that can contain
only a few item types. In Goldberg and Karhi [2017]
the online two-size two-item type problem is considered.
A tight (optimal) absolute competitive ratio of 1.618 is
proved for this problem. The bin packing problem is closely
related to machine scheduling where similar multipurpose
machines and machine compatibility restrictions have been
extensively studied; see for example Azar et al. [1995],
Shabtay and Karhi [2012], Karhi and Shabtay [2014].

Robust optimization is a useful mathematical modeling
framework that aims to determine solutions that are im-
mune to uncertainty while addressing issues of computa-
tional tractability; see Ben-Tal et al. [2009], Bertsimas and
Sim [2003]. This modeling approach is also useful in cases
where the uncertainty is not easily described or estimated
by any particular probability distribution. In such cases,
the number of items of each type may be defined by



Item Type Bin Type

P

Fig. 1. Two item types and three bin types illustrated
for shipping of medicine and vaccines that require
refrigeration and freezing, respectively.

a given uncertainty set. The type of uncertainty set is
typically a box, given by an interval for each (independent)
input parameter, budgeted uncertainty (which restricts
not only the deviation of each parameter independently
but also the total deviation), or an ellipsoid. Bougeret
et al. [2018] recently consider several variants of robust
machine scheduling with different scheduling objectives
(in the absence of multipurpose machines) in the robust
optimization framework. Computational techniques such
as branch-and-price algorithms are considered for a robust
bin packing problem, in which item sizes are subject to
uncertainty (or job processing times), in Song et al. [2018].

Multi-stage (also known as adjustable) robust optimiza-
tion is an especially challenging setting in which the un-
certainty is realized and decisions are made over two or
more stages. The challenge remains also in the case of
robust two-stage linear programs that are proven to be
NP-hard [Ben-Tal et al., 2004]. In the following we consider
particular two-stage robust formulations motivated by the
container shipping application of multitype bin packing
that has been introduced by Goldberg and Karhi [2017].
Multitype bin packing is extended to a two stage problem
where the bins are ordered in the first stage and the items
are produced and must be assigned to compatible bins in
the second stage. The number of items of each type is
subject to uncertainty in the first stage when the bins are
ordered. For example, the uncertainty may be associated
with the uncertain demand that each particular product
variant faces before it is realized in the second stage.

2. A GENERAL ROBUST TWO-STAGE TWO-TYPE
PROBLEM

In the general two-type problem, the number of bins of
each type, as well as possibly the item sizes, are defined
within given uncertainty sets. Suppose an arbitrary item
number uncertainty set AN/ C R2. Then, in the most
general case for each m € AN, an uncertainty set is
defined for the item sizes A(n) C RT“”. The two-stage

robust multipurpose bin packing problem is stated in the
following.

Two-Stage Two-Type Robust Bin Packing
Given uncertainty (scenario) set A/ for the number
of items of each type, and for each n € N, item
size uncertainty set A(n), determine the number
of designated type-1 and type-2 bins yi,y2 € N,
respectively, and number of multipurpose bins y3 €
N so that the cost of bins needed to store all of the
items in the worst case scenario, y; + ays + Bys is
minimized.

We focus on the particular case of a bin packing problem
with two item types and item size sets A; and As for type 1
and type 2 items, respectively. Accordingly A(n) = A; x
As for all n € N. We also model unit-size situations in
which uncertainty sets are defined only for the number of
items and the set A(n) is a singleton. A key observation
is that the problem with hyper-cube item-size uncertainty
(for each item type) reduces to a two-size problem. It is
summarized in the following proposition.

Observation 1. Suppose a 2-type bin packing problem
with uncertain item numbers n = (ny,n2) € AN and
item sizes in hypercube sets A; and As for type 1 and
type 2 items, respectively. Then, the robust bin packing
problem reduces to a two-size uncertain item number
bin packing problem with sizes: a1 = maxge4, ||a|| and
as = Max.eca, ||al|-

In the following two sections we focus on the problem
where each item type has a distinct size and then on
the unit size case. Efficient algorithmic and closed-form
results, respetively, are developed for these two settings.
In Section 5 we consider computational solution schemes
in a general setting with an arbitrary number of item types
and type-compatibility structure with unit-item sizes and
variable bin sizes for different bin types.

3. ROBUST TWO-STAGE TWO-SIZE TWO-TYPE
PROBLEM

Now consider the two-item size case where type 1 items
have size a; and type 2 items have size as # a;. The
formulation (1) accounts for different item sizes in multi-
purpose bins using the set of all possible two-size feasible
packing pattern set P. For each p € P and i = 1,2,
z;(p) denotes the number of items of type i placed in a
multipurpose bin by a (feasible) packing pattern p. For
each i = 1,2, y; denotes the number of designated bins of
type ¢ used, and x(n); the number of items of type i packed
into a bin a type ¢ for n € N. Note that although there
may be exponentially many patterns (even with a con-
stant number of item sizes) this formulation has a tighter
linear programming relaxation compared with a compact
assignment-based formulation of bin packing. Letting A,
denote the decision variable indicating how many bins of
a pattern p € P are opened then y3 = ZpG'P Ap. Finally,
the two-size robust two-stage integer program is given by
the pattern based formulation



Z=min y; +ay + 8 Z Ap (1a)
peEP
14 .
s.t. x(n); < | ¥ VneN,i=1,2
(1b)
Z zi(p)Ap > ni —x(n); VYneN,i=12.
pEP
(1c)
0 < x(n); < ny, YneN,i=1,2
(1d)
Ap €N peP
y; €N. j=1,2,3
Let us define
R rneax {n1 +na}, ny'®* = rrlezg}\}[( ni,
and ny'®* = max ns.
neN

For fixed numbers of designated bins, given by a pair
of values, x1 and x5, a sequence of two-size problems
can be solved to determine the number of multipurpose
bins needed in the worst case scenario. To this end, let
93(n1,n2) denote the minimum number of bins required
to pack ni,n9 items of type 1 and type 2, respectively,
in multipurpose bins. Then, the cost of a feasible solution
given that x,,xo are packed in designated bins of type 1
and 2, respectively, is given by

+ 5%%{3!3(”1 —Z1,M2 — T2)}.

Note that A in this expression can be effectiyely replaced
by a subset of nondominated scenarios N C N. In
particular, 7 € A implies that for all n € A either 7y > ny
or fig > ny. Conversely, n € N is said to dominate n € N'
if n > n. Let f(z1,22) denote f(z1,z2) with A replaced by
N. So, given this set a straightforward algorithm is given
by

fay,2). (2)

max
2

ZA = min
z1=0,...,n"** z2=0,....,n

The subset of nondominated solutions can be computed in
output-polynomial time Bokler et al. [2017]. The following
proposition establishes the correctness and a running time
complexity bound of the straightforward algorithm given
by 2 in the case that the uncertainty (scenario set) A is
either finite or polyhedral.

Proposition 1. Suppose that N is either a finite or polyhe-
dral set. Then, the algorithm given by (2) outputs z4 = z*,
an optimal solution for (1), with a time complexity bound

of O(nr®*ngax | V| lognlog?® V).

Proof. The algorithm enumerates for i = 1,2 all possible
values of x; in {0,...,nM*}. For each value of (z1,x2),
f(x1,x2) evaluates the cost of opening z; and xs type 1
and type 2, respectively, designated bins, and the number
of multipurpose bins required to maintain feasibility in the
worst case nondominated scenario (in the set AV). In either
case that A is finite or polyhedral, then the set N is finite
(in the case that A is polyhedral then N is a subset of the
finite set of extreme points of N). The standard two-size
problem is solved by the algorithm in McCormick et al.

[2001] whose complexity is O(log nlog® V), then the overall
running time complexity of thls straightforward algorithm
is O(nPaxnga || lognlog?V). O

Note that the proof of the proposition in the case that N
is polyhedral relies on the fact that N is a subset of the
extreme points of A/, which is a finite set. Further, the set
of nondominated points A/ can be significantly smaller in
cardinality than the set of extreme points of A.

4. UNIT SIZE ITEMS

In the unit size case we can formulate the problem as a
robust mathematical program

2" =min  y1 + ayz + Bys (3a)
st. z(n)y +x(n)iz =n; VneN,i=1,2

(3b)
x(n)i < Vy; YneN,i=1,2

(3¢)
z(n)13 +x(n)23z < Vys YneN

(3d)

yj,:vijéN 1=1,2,7=1,2,3.
Here, for j = 1,2,3, y; is the number of bins of type j
that are procured. For ¢ = 1,2 and j = 1,2,3, z(n);; is
the number of items of type i assigned to bin type j in
demand scenario n = (n1,ns), where n; is the demand for
item type 3.
Let y3 = th
given by

-‘ — 11 and consider the function f : R — R

=] )
=(1 -8y + amaX{ [n;ax-‘ , [n%;ax-‘ + y1}
+(6-a) [”H .

Lemma 1. Suppose that y* is optimal for (3).
Then, z* = yi + oy + Byz = f(y7)-

Proof. The fact that y* is feasible for (3), and in partic-

max «
— Y-

If B > «, then over all y that are feasible for (3), a pair

max .
Vv —‘ —Y1-
To see this, suppose for the sake of contradiction that y* is

max

qﬁmﬂﬁn@ﬁmd£:>P?ﬂgy?Tmmygz[%/Wi

Fn) =1+ (B — a)ys +amaXH

ular that it satisfies (3d), implies that y% >

(y5,y3) that minimizes f(y}) must have y§ <

yi i=1
y} + 1. Letting ' be defined by ¢y} = ¢y3+1 i=2
ys; —1 i=3,

evidently y’ satisfies (3c)-(3d) and is therefore also feasible
for (3). Further, the fact that 8 > « implies that y{ +ay)+
Bys < z*, thereby establishing a contradiction. Then, fea-
sibility, in particular the fact that y* satisfies (3c) for ¢ = 2,

implies that y5; = max { (?W yi — 3, [@1 — y§}
Otherwise, if § = «a then
£+ﬁ:mwﬂﬁﬂ*ﬁj%*

—‘}, and y* must be



optimal since y5 + y3 is the minimum number of bins
required to store the type 2 items. O

The following proposition establishes that an optimal so-
lution and optimal solution value are given by closed-form
solutions. Note that we may assume 1 < § without loss
of generality (otherwise we may use only multipurpose or
designated bins, respectively), in addition to the assump-
tion in Section 1 that 1 < a < g <1+ a.

Proposition 2. Suppose that 1 < 8 < a+ 1. The optimal
objective value of (3) is attained with some y* such that

m

yi =[]~ sz
nmax n1'2113.X nliIlaX
= 1 — — —
o (5] - []) e ]
+ N nmax
7|
Proof. Following Lemma 1 the optimal objective value

of (3) is given by the minimum of f over the integers.
Note that the function f is continuosly differentiable over

o011 =[5 ]) o (P51 =[5 oo).

1) ) = 1-8 <

For " c |:O { ln'xx—l "n2v
0 It follows that is decreasing over the interval

o1~ 7).

Fo o (1251 - 5
it follows that dd—gl(yl) =1—-p+a > 0. It follows that
f is increasing over ((@W — ["QVM—‘ 7oo). Thus, yi =
["?,axw — [n;‘“fa"" € argming, > f(y1). Since y; € NC Ry
it must also be that y} € argminy, ey f(y1). O

—‘ Further, the optimal objective value

—‘ ,oo), by our assumption on 3

It follows that in the unit size case only the three scenarios
corresponding to n'**, ng*** and n™** need to be consid-
ered. This also applies to infinite uncertainty sets A/ such
as in the following example.

Ezample 1. Consider an example where A is an ellipsoid

N={neR®| bini +b3n3 =r>ni,ny >0}

We have that n"®* = r/by, ni®* = r/bs. Further, for
(n1,mn2) € N we have ny = \/7’2 — b¥n?/by. ™3 is given
by the maximum of ny + ny = ny + \/r2 — b3n?/by. Let
g(n1) = n1 + /12 — bn?/by. Its maximum is attained
as ny that satisfies ¢’(n1) = 1 — ny/(ba/r?2 — b3n?) =
0. So, n1 = /b3r2/(1+b3b?), and n™> = g(ny) =
g(1/b3r2/(1 + b2b?)). In particular, for a circle (by = by =
1) this gives n; = ny = r/v/2, and solving the problem for
the circle-uncertainty set reduces to solving the problem
with a set of three scenarios {(r,0), (0,7), (r/v2,7/v/2)}
(although there are points of the circle that are not
convex combinations of these 3 points). Then, z* =

8 (2181 - &) + @+ 1 ([4&] - 11).

Interestingly, in the robust two-stage problem the number
of multipurpose bins that are acquired in an optimal solu-
tion depends on the number of items and the uncertainty
set. In sharp contrast, in the offline deterministic unit-size

problem as well as online two-size problems that are de-
scribed in Goldberg and Karhi [2017], (optimal) solutions
use at most one multipurpose bin (when 8 > ).

5. ARBITRARY NUMBER OF BIN TYPES WITH
UNIT ITEM SIZES AND VARIABLE-SIZE BINS

In this section we generalize the unit-item size problem
by considering an arbitrary number of item types and bin
types. We are given as data for the problem a set of item
types S and a set of bin types T. Each item type ¢ € S
can only fit in a given subset T'(i) C T of bins types.
We also note S(j) the item types that can fit into bin j.
Each bin of type j € T" may contain up to V; items, and
its cost is ¢;. The problem is to determine the number
of bins of each type that must be ordered such that all
possible realizations of the demand n € N C RISl can
be satisfied at a minimum cost. We suppose that N is
bounded from above, otherwise there may not exist any
finite number of bins that can satisfy all possible demands
n € N. We model this problem as a mixed-integer linear
program (MILP), which may contain an infinite number
of variables and constraints,

2" =min Z Cjyj (4a)
jeM
s.t. Z I(TL)U = MN; Vi € S,Tl € N
JET(3)
(4b)
Z z(n)i; < Vjy; VieT,neN
Jjes()
(4¢)
y; €N jeT
z(n);; >0 ieS,jeT,neN.

Here for each j € T, y; is a decision variable that rep-
resents the number of bins of type j that are ordered.
x;; is the number of items of type ¢ € S that are stored
in a bin of type j € T. Constraints (4b) ensure that for
each demand scenario n € N and for each item type i, its
demand n; is fully assigned to some bin. Constraints (4c)
ensure that the capacity of a bins is not exceeded in any
scenario. Note that this problem generalizes notoriously
hard (strongly NP-hard) weighted set cover and set parti-
tioning problems; see for example Barnhart et al. [1996].

As discussed in Section 3, the notion of dominance can
be used to consider a potentially small subset of set N.
Dominance may not suffice to make problem (4) tractable.
To this end, we develop computational schemes that are
efficient in practice. In particular, methods are proposed
for iteratively generating certain critical subsets of demand

vectors N C .
5.1 Iterative methods

As in the case of the two-item type problem, we expect that
a small subset of N’ may suffice to determine an optimal
decision variable vector y. Accordingly, we now introduce
an iterative algorithm that at each iteration solves the
problem (4) with only a subset A0 of all possible demand
scenarios to obtain a solution y* € NITI. Then, the iterative
algorithm solves another separation problem, described



below, to check if there is a demand scenario n* € N for
which no feasible assignment of the items to the ordered
bins corresponding to y* can be found (a violated demand
scenario). If such a violated scenario n* € N exists, then
n* is appended to the set A and an iteration is repeated.
Otherwise, the problem is solved. This method is referred
to as a row and column generation (RCG) algorithm, as
each iteration adds variables z(n*),;, for all ¢ € S and
j € T, and associated constraints (4b)-(4c) to problem (4).

A variant of the general RCG method is a row genera-
tion (RG) algorithm. RG solves the problem in the y-
space (initially with an empty set of the some of the
constraints of formulation (4)), and at each iteration a
cut violated by the current solution y* is appended to the
formulation. These two algorithms have been previously
introduced for two-stage robust optimization in Ayoub and
Poss. [2016] and Zeng and Zhao [2013]. We now propose
how to determine a violated demand scenario n* € A and
corresponding cut at each iteration where (4) is solved,
with A replaced by some N° C N .

For a given solution y* € NI”I and demand scenario
n € N, the ordered bins corresponding to y* can satisfy
the demand vector n if and only if the following problem
has a zero optimal objective value,

min Z Q; (5a)
€S
s.t. a; + Z Tij > Ny VieS (5b)
JET(3)
Z zij < Vy; VjeT (5¢)
1€5(7)
rz>0,aa>0

By linear programming duality, the optimal solution of
problem (5) has the same objective value as the dual
problem,

max Z nim; — p;Viys (6a)
€S

s.t. T — My S 0 Vi € S, VJ € T(Z) (Gb)
r < 1 VieS (GC)
m,u > 0.

Thus, to check if a given solution y* can cover all demand
vectors in N, we can solve problem (6) individually for
every demand n € N. It may be possible only if N is
finite. Alternatively, n € AN can be incorporated in the
formulation as a vector of decision variables, resulting in
a (nonconvex) quadratic program in the decision variables
n,m, and p,

w* = max Znim — 1 Viyj (7a)
€S
st m—p; <0 Vie S,VjeT(i) (7b)
T <1 vieS (7c)
nenN (7d)
m,pu > 0.

Let n*,7*, u* denote an optimal solution to (7).

Lemma 2. A bin vector y € NITl is feasible for (4) if and

only if
= nin:

€S

,uj Jy] <0. (8)

Proof. If Y nin} — w;Vjy; < 0, then it implies that the
€S

optimal objective value of (6) is non-positive for all n € N.

Then, y is feasible for (4) together with some z(n) > 0,

for each n € N. Otherwise w* > 0, implying that n* is a

scenario in which, for all z(n*), y is infeasible for (4). O

If w* > 0, then n* is used a violated scenario for
RCG (to be appended to the formulation) while (8) is a
violated valid inequality that can be used with RG. The
finite convergence of both methods is established by the
following proposition.

Proposition 3. Algorithms RG and RCG converge in a
finite number of iterations.

Proof. Following Lemma 2, each iteration either accepts
a solution y* (of (4) with A° in place of N) or rejects it
because w* > 0, in which case either the inequality (8), or
the set of variables and constraints associated to violated
scenario n* (RCG), are appended to the formulation. In
either case, the previous solution y* is no longer feasible
for the problem. Then, note that a solution y that is
optimal to (4) (together with some z) must satisfy for
each j € T, y; < maxpen ||n]|;. Hence, at most a finite
number of candidate solutions y* is enumerated by each
of the algorithms. O

5.2 Budgeted uncertainty set

Quadratic program (7) is nonconvex and accordingly it
is hard to solve exactly in general. For some polytopes,
problem (7) can be reformulated as a MILP that may be
tractable to solve in practice. This is the case, for instance,
when considering the following polytope

Np = {nenss ‘ e fo1)s ST

oz <T
i€S

where 7; represents the nominal demand for item type i,
n; the maximum possible deviation of the demand from
n;, and I' > 0 is a parameter that controls the desired
level of protection or immunity. The quadratic objective
function (7a) can be rewritten in this case as

Z(nz+nzz) —u;Viy; = an—i—Zmzlm 15 Viy;

€S €S €S
(9)

where only the second term is (bilinear) quadratic. One
readily verifies (see for example Ayoub and Poss. [2016]
for details) that there exists an optimal solution to (7)
with ' = AN, for integer T', that satisfies z € {0,1}5].
Therefore, we can linearize the product z;7;, for each i € S,
by introducing auxiliary variable n; and the constraints

n; < 2, n; < 7, n; > m + 2 — L

Notice that Nr satisfies
Nr € Nrgq (10)

Further, for integer I' the number of nondominated ex-
treme points of Nt is equal to the number of subsets of S of
cardinality I". Thus, the number of non-dominated extreme
points of ANt is the binomial coefficient (ls I) In particular,
if ' =0, or I = |S], then A contains one nondominated
extreme point, either @ or 7 + 7, respectively.



r 0 1 2 3 4 5 6 7 8 9 10

Cost 77.5 108.8 1189 1264 1321 136.7 139.8 141.9 144 145 145.6
Time RCG (s) 0.9 2.6 3.2 4.6 3.2 3.1 2.7 2.2 2.7 1.7 0.7
Iterations RCG 2.0 4.0 4.4 4.7 4.4 4.2 3.7 3.2 3.1 2.9 2.0
Time RG (s) 6.4 12.8 12.5 11.6 10.4 9 7.6 7.2 6.7 6.1 6.2
Iterations RG 11.6 13.4 13 12.2 11.2 10.9 10.1 12.2 10 10.2 10.9

Table 1. Numerical comparison of RG and RCG on randomly generated instances.

5.3 Numerical experiments

In our numerical experiments we considered randomly
generated instances given the parameters cpin > 0, Cnax >
Cminy Vmin > 0, Vinax > Viin and p € (0,1). For each
bin type j € T we draw its cost ¢; and its size Vj,
uniformly from the intervals [emin, Cmax] and [Vinin, Vinax),
respectively. For every item type ¢ € S, it is set to be in
S(j), for each j € T, with a probability p. We consider
a demand uncertainty polytope N, generating 7; and 7;
uniformly from an intervals [Timin, Tmax) a0d [imin, Pmax],
respectively, for parameters Tomin, Tmaxs Mmins Pmax-

Table 1 reports average numerical results obtained for 10
instances generated for the parameter values |S| = 10,
|T‘ = 15, cmin = 1, Cmax = 10, Vinin = 1, Vinax = 10,
p = 0.5, Tmin = 1,lmax = 1()7”A7fmirl = 177¢Lmax = 10. We
solved the instance for all possible values of I'. It can be
observed that, following the inclusion (10), the objective
value of the optimal solution increases in I". The results of
Table 1 indicate, unsurprisingly, that the extreme cases
I' =0 and ' = 10 are easiest to solve. It can also
be observed that the solution time of the RG method
exceeds that of the RCG method. It can be expected
since the RCG algorithm appends more information to the
master problem (violated scenarios including both rows
and columns) at each iteration, compared with the RG
algorithm that may append only violated cuts.

6. ONGOING AND FUTURE WORK

In the current paper we considered the robust two-stage
bin packing problem focusing on the uncertainty of the
number of items of different item types. For the special
case of unit item sizes we proved closed-form solutions for
the optimal solutions. These closed-form solutions provide
insight and show that a large number of multipurpose bins
is used to address the uncertainty compared to the deter-
ministic case in which at most a single multipurpose bin
is used. We developed an algorithm for the two size model
for polyhedral or finite item number uncertainty (scenario)
sets. The algorithm that we propose is polynomial in the
number of items. In future work we are considering algo-
rithms that scale logarithmically in the number of items
and linearly in the number of nondominated scenarios. We
also plan to extend the row and column generation scheme
developed for arbitrary type compatibility structures for
an even more general setting with arbitrary item sizes.
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