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Abstract 26 

Coastal lagoons deliver a wide range of valuable ecosystem goods 27 

and services. These ecosystems, that are often maintained by direct or 28 

indirect groundwater supplies, are collectively known as groundwater 29 

dependent ecosystems (GDEs). The importance of groundwater 30 

supplies is greatly exacerbated in coastal Mediterranean regions 31 

where the lack of surface water and the over-development of 32 

anthropogenic activities critically threaten the sustainability of 33 

coastal GDEs and associated ecosystem services.  34 

Yet, coastal GDEs do not benefit from a legal or managerial 35 

recognition to take into account their specificity.  Particular attention 36 

should be paid to the characterization of environmental and 37 

ecological water requirements. The hydrogeological knowledge 38 

about the management and behavior of coastal aquifers and GDEs 39 

must be strengthened. These investigations must be supplemented by 40 

a stronger assessment of potential contaminations to develop local 41 

land-uses and human activities according to the groundwater 42 

vulnerability. The quantitative management of water resources must 43 

also be better supervised and/or more constrained in order to ensure 44 

the water needs necessary to maintain coastal GDEs.  45 

The transdisciplinary approach between hydrogeology, hydrology, 46 

social sciences and law is essential to fully understand the socio-47 

economic and environmental complexity of coastal GDEs. Priority 48 

must now be given to the development of an appropriate definition of 49 

coastal GDEs, based on a consensus between scientists and lawyers. 50 

It is a necessary first step to develop and implement specific 51 
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protective legislation and to define an appropriate management scale. 52 

The investment and collaboration of local water users, stakeholders 53 

and decision-makers need to be strengthened through actions to favor 54 

exchanges and discussions. All water resources in the coastal areas 55 

should be managed collectively and strategically, in order to 56 

maximize use efficiency, reduce water use conflicts and avoid over-57 

exploitation. It is important to continue to raise public awareness of 58 

coastal aquifers at the regional level and to integrate their 59 

specificities into coastal zone management strategies and plans. In 60 

the global context of unprecedented anthropogenic pressures, hydro-61 

food crises and climate change, environmental protection and 62 

preservation of coastal GDEs represents a major challenge for the 63 

sustainable socio-economic and environmental development of 64 

Mediterranean coastal zones. 65 

 66 
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Introduction 106 

Coastal lagoons cover about 13% of the coastlines from arid to 107 

humid environments (Kjerfve, 1994). Being transitional areas from 108 

land to sea, the water balance of coastal lagoons is resulting from 109 

both terrestrial (fresh groundwater and surface water) and marine 110 

water influences. This dual influence allows the development of 111 

specific ecosystems that provide a wide range of ecosystem goods 112 

and services (Newton et al., 2014; 2018). Over the past few decades, 113 

several studies have highlighted the importance of groundwater in 114 

maintaining the physico-chemical conditions of these sensitive 115 

ecosystems. Coastal lagoons and surrounding wetlands may then 116 

constitute "groundwater-dependent ecosystems" (GDEs) (Krogulec, 117 

2016; Menció et al., 2017) and are referred in the document as 118 

"coastal GDEs".  119 

The importance of groundwater is further exacerbated in regions 120 

suffering from water stress, when surface water is chronically 121 

unavailable. Groundwater inputs support or compensate for surface 122 

water inputs and play a vital role in maintaining coastal GDEs. This 123 

problem is encountered in a majority of coastal regions with an arid 124 

or semi-arid Mediterranean climate (Fig. 1) (Köppen, 1936) such as 125 

the Mediterranean basin (European Union –EU- and non-EU 126 

countries) but also on the southwestern coasts of Australia, Chile and 127 

the State of California (United States) and on the southern coast of 128 

South Africa. In these regions, referred to throughout this document 129 

as "Mediterranean regions", the lack of surface water is combined 130 

with a high anthropogenic pressure (UNEP/MAP, 2012). Population 131 

growth proceed together with the development and expansion of 132 
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human activities, such as urbanization, agriculture, tourism and 133 

industrial activities (Lotze et al., 2006). Increasing human water 134 

needs often lead to overexploitation of aquifers and/or degradation of 135 

groundwater quality, which present a risk both to the well-being of 136 

human activities and to the freshwater needs of coastal GDEs.  137 

These degradations are expected to be worsen under the effects of 138 

climate change. Climatic disturbance in terms of increasing 139 

temperatures (Bille et al., 2009; Hallegatte et al., 2009), global 140 

hydrological cycle (IPCC, 2014) and sea level rise (FitzGerald et al., 141 

2008; Carrasco et al., 2016; Benjamin et al., 2017) should greatly 142 

affect the groundwater and coastal GDEs. This is true not only for the 143 

Mediterranean basin, considered as a Hot Spot of climate change, but 144 

also for all the Mediterranean regions.  145 

Since the 1990s and the Rio de Janeiro Earth Summit, the 146 

conservation, the maintenance of potentialities and the improvement 147 

of the ecological status of the coastal water bodies constitute a major 148 

concern. Nowadays, a first statement can be made on the progress 149 

and limitations of groundwater management strategies and 150 

consideration given to coastal GDEs in coastal Mediterranean 151 

regions. To this aim, this review proposes to: 152 

- Expose the specificities of coastal GDEs and the key role of 153 

groundwater in their sustainable development 154 

- Highlight the vulnerability of coastal GDEs to the socio-economic 155 

development and climate conditions of Mediterranean regions 156 
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- Revise the consideration given to GDEs and particularly to coastal 157 

GDEs in the management policies of Mediterranean regions and 158 

discuss their implication for the sustainability of coastal GDEs.  159 

1. Specificities and importance of coastal GDEs 160 

1.1. The wide diversity and essential functions of 161 

coastal GDEs  162 

GDEs are defined as “ecosystems that require access to 163 

groundwater on a permanent or intermittent basis to meet all or 164 

some of their water requirement so as to maintain their communities 165 

of plants and animals, ecological processes and ecosystem services” 166 

(Richardson et al., 2011). This definition clearly expresses the crucial 167 

role of groundwater in the functioning of GDEs. However, the 168 

multitude of processes and services grouped under the terms 169 

“ecological processes” and “ecosystem services” does not necessarily 170 

make it possible to understand all the specificities and complexity 171 

inherent to certain types of GDEs, such as coastal GDEs. The Table 1 172 

summarizes the morphologic and hydrological characteristics, the 173 

hydrological knowledge and the protection and conservation status of 174 

14 of the most studied lagoons present in Mediterranean regions 175 

subject to Mediterranean climate (Fig. 1) (Newton et al., 2018; Pérez-176 

Ruzafa and Marcos, 2008).  177 

The coastal GDEs are distinguished by their diversity, making 178 

each of them a special case. This diversity is expressed on several 179 

levels. From a morphological point of view, water bodies of coastal 180 

GDEs are separated from the sea/ocean by a barrier, connected at 181 
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least intermittently to the ocean by one or more restricted inlets 182 

(Kjerfve, 1994). According to the most widely used classification, 183 

these coastal lagoons can be classified into three categories including 184 

(i) choked, (ii) restricted and (iii) leaky lagoons Kjerfve (1994). 185 

These categories reflect the importance of interactions between 186 

coastal lagoons and seawater. Choked lagoon are connected to the 187 

sea by a single or few narrow and shallow entrances, resulting in 188 

delayed and dampened tidal oscillation or low water exchange with 189 

the open sea. Leaky lagoons are connected by many entrances to the 190 

adjacent sea and are therefore characterized by almost unimpaired 191 

water exchange. The stretch of coastal lagoon can greatly vary, from 192 

<0.01 km² to more than 10 000 km², as is the size of the hydrological 193 

watersheds, without an obvious proportionality relationship between 194 

the two (Table 1). If the mean depth can also vary, coastal lagoons 195 

still remain shallow water environments, generally characterized by 196 

shallow mean depth (< 2m) (Table 1).  197 

Although rainfall, pounding of surface flows or flooding are an 198 

important source of water for most of coastal GDEs, groundwater 199 

plays also a role in many coastal wetlands (Le Maitre et al., 1999). 200 

Coastal GDEs can be completely dependent on groundwater 201 

discharge, whilst others may have limited dependence, such as only 202 

under dry conditions (Howe et al. 2007). Thus, depending on the 203 

hydrologic balance, water bodies of coastal GDEs could vary from 204 

coastal fresh-water lake to a hypersaline lagoon.  205 

The fauna and flora that make up coastal GDEs are also very 206 

diverse. The type of vegetation and wildlife is mainly defined by the 207 

salinity of the water and the moisture level of the environment 208 
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(permanent, semi-permanent or ephemeral wetlands) but also the 209 

location and climate. Several thousand plant species grow in coastal 210 

wetlands such as reeds, grasses and shrubs (Frieswyk and Zedler, 211 

2007; Lemein et al., 2017; Ramírez G. and Álvarez F., 2017). 212 

Hundreds of animal species can also be listed, including fish, reptiles, 213 

mammals, frogs and birds. The degree of dependence of wildlife on 214 

coastal GDEs ranges from those who need wetlands for part of their 215 

life cycle to those who are totally dependent on them.    216 

The environmental importance of coastal GDEs is greatly recognized 217 

for most of them, as evidenced by the establishment of various 218 

protection or conservation status (Table1). Because of their relatively 219 

low flushing rates, the important availability of nutrients allows high 220 

rates of primary production (phytoplankton and aquatic plants) 221 

thereby supporting high rate of secondary production (fisheries 222 

nurseries) compared to other aquatic ecosystems (Nixon 1995). 223 

Coastal GDEs contribute to the overall productivity of coastal waters 224 

by supporting a variety of habitats, including salt marshes, seagrasses 225 

or mangroves. These habitats host specific and sensitive ecosystems 226 

and provide a rich support for biodiversity, including vital habitats 227 

for many fish, shellfish and bivalves (Basset et al., 2013). They 228 

constitute also refuge from predation, nursery and feeding habitats 229 

for estuarine, marines and terrestrial species (Heck and Thoman, 230 

1984; Harris et al., 2004). Many coastal GDEs support a variety of 231 

migratory water bird and shore bird species. Some birds depend on 232 

coastal GDEs almost totally for breeding, nesting, feeding, or shelter 233 

during their annual cycles. The main migratory birds utilizing the 234 

coastal GDEs are ducks, shorebirds, gulls, terns and flamingos. 235 
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 236 

1.2. Ecosystem services and coastal GDEs 237 

Coastal GDEs harbor a large part of the human population that 238 

depends directly on these ecosystems (Willaert, 2014) and provide 239 

not only livelihoods but also numerous benefits to human health and 240 

welfare (Newton et al., 2014, 2018). Coastal GDEs have therefore a 241 

socio-economic interest which makes them complex social-242 

ecological systems (Newton et al., 2014; Wit et al., 2017). Since the 243 

1970s, and more particularly in the 2000s, the concept of “ecosystem 244 

services” has attempted to express the complex relationship between 245 

human communities, their environment and the non-human living 246 

beings to which they are linked (Sartre et al., 2014). The “ecosystem 247 

services” can be defined as the full range of benefits that humans 248 

derive from the functioning of ecosystems. Ecosystem services 249 

include 4 major types of services (Blanchart et al., 2017):  250 

- Provisioning services: correspond to direct products provided 251 

or produced by ecosystems such as water, food, construction 252 

materials, 253 

- Regulating services: include benefits from regulation of 254 

ecosystem processes such as carbon storage, climate 255 

regulation, flood and erosion protection, 256 

- Cultural services: include nonmaterial benefits from 257 

ecosystems such as recreation, aesthetic or educational 258 

benefits, 259 
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- Supporting services: are related to necessary factors for 260 

producing ecosystem services (photosynthesis, nutrient 261 

cycle, refuge areas…). 262 

Ecosystem services are linked to the ecological structure and 263 

functions of the environment. In coastal GDEs, many ecosystem 264 

services are derived or supported by the presence of groundwater 265 

inflow because of its role in regulating the hydrology of wetlands and 266 

lagoons (UNEP-MAP, UNESCO-IHP, 2015). One of the main 267 

ecosystem services provided by coastal GDEs is related to 268 

provisioning services (livestock, fishing, aquaculture) (UNEP-MAP, 269 

UNESCO-IHP, 2015). Coastal GDEs are highly productive and food 270 

provisioning can often be key for regional economy (Newton et al., 271 

2014). For example, the Ria Formosa in Portugal provided up to 90% 272 

of the national production of clams (Newton et al., 2003). Coastal 273 

GDEs also have a very important place in the hydrological cycle. 274 

They contribute to water flow regulation and control and therefore 275 

help to flood protection.  They also participate to water retention, 276 

quality (salinity regulation) and purification. Finally, cultural 277 

services, e.g. cultural heritage, tourism or aesthetics are also very 278 

profitable for several coastal GDEs. In some specific case, such as 279 

the Venice lagoon (Italy), cultural services can exceed 5.108 280 

euros/year (Newton et al., 2018).  281 

The various protection and/or conservation status applied to 282 

coastal GDEs (Table 1) does not necessarily involve a high level of 283 

knowledge of the hydrosystems’ behavior. For a large majority, the 284 

role and the dependence on groundwater is largely under studied, 285 

even if it is suspected (Table 1). Very few coastal lagoons have a 286 
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sufficient level of knowledge to understand their level of dependence 287 

to groundwater (Table 1) and then developed sustainable 288 

methods/policies to ensure their conservation. Moreover, even in the 289 

case of good knowledge of hydrological functioning and 290 

establishment of a conservation/protection status, it does not seem to 291 

guarantee the good state of these environments (Leruste et al., 2019; 292 

Leterme et al., 2015). The lack of hydrological knowledge then 293 

appears to be as much a problem as the lack of specific protection 294 

status adapted to the particular cases of the GDES. 295 

1.3. Understanding the dependence on groundwater 296 

supplies 297 

Under natural conditions, without pumping, fresh groundwater flows 298 

from recharge to discharge areas (Fig. 2). Local groundwater flow is 299 

mostly near the surface and over short distances, i.e. from a higher 300 

elevation recharge area to an adjacent discharge area. In this case, the 301 

discharge of the aquifer (Fig. 2) occurs as diffuse outflow, as for 302 

coastal GDEs. Coastal GDEs are thus relying on the surface 303 

expression of groundwater (Richardson et al., 2011). On a larger 304 

scale, over long distances, groundwater flow is preferentially at 305 

greater depths and fresh groundwater meets salt marine water at 306 

depth in the transition zone. The discharge of groundwater is 307 

composed by two processes: i) the discharge of fresh groundwater 308 

(fresh submarine groundwater discharge, FSGD) toward the sea and 309 

the discharge of saline groundwater (recirculated submarine 310 

groundwater discharge, RSGD) (Fig. 2). Groundwater supplies to 311 

coastal GDEs can originate from one or several aquifer formations of 312 
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variable nature and extension (Table 1). This dependence on 313 

groundwater can be variable, ranging from partial and infrequent 314 

dependence (seasonal or episodic) to total, continual dependence 315 

(Hatton and Evans, 1998). 316 

Groundwater and surface water are the most often characterized by 317 

strong interactions (Fig. 2). These interactions result in groundwater 318 

discharge to the river (groundwater discharge, Fig. 2) or, conversely, 319 

in aquifer recharge through river and lake water infiltration (Fig. 2). 320 

Rivers and streams that flow all year (perennially flowing) are often 321 

groundwater dependent because a significant proportion of their daily 322 

flow is supported by the groundwater flow discharging into the river 323 

course (Acuña et al., 2005; Bonada and Resh, 2013; Datry et al., 324 

2014). Groundwater is particularly important in arid and semi-arid 325 

regions and in case of extended dry periods, during which 326 

evaporation markedly exceeds precipitation and surface water is 327 

scarce or even disappeared (Eamus et al., 2006). Both groundwater 328 

and surface water flow toward the lagoon, which constitute the last 329 

collector of the watershed (Fig. 2). The discharge of groundwater 330 

toward coastal GDEs can be either directly into the wetland or 331 

indirectly via the river (Fig. 2). 332 

For a long time, groundwater studies in coastal areas focused mainly 333 

on seawater intrusion impacting coastal aquifers.  The groundwater 334 

has only recently been recognized as important contributors to 335 

hydrological and biogeochemical budgets of coastal environments 336 

such as coastal GDEs (Table 1) (Johannes, 1980; Burnett et al., 2001, 337 

2006; Slomp and Van Cappellen, 2004; Moore, 2006, 2010; Rodellas 338 

et al., 2015; Luo and Jiao, 2016; Malta et al., 2017; Correa et al., 339 



15 
 

2019; David et al., 2019). The presence of groundwater drives the 340 

evolution, persistence and resilience of coastal GDEs and their 341 

ecosystems on at least two aspects including i) physical 342 

characteristics, such as the quantity, location, timing, frequency and 343 

duration of groundwater supply (Jolly et al., 2008; Rodríguez‐344 

Rodríguez et al., 2008; Bertrand et al., 2012, 2014) and ii) chemical 345 

characteristics (Burnett et al., 2006; Moore, 2010), such as water 346 

quality (Ganguli et al., 2012), salinity (Menció et al., 2017), nutrient 347 

concentrations (Szymczycha et al., 2012; Ji et al., 2013; Rodellas et 348 

al., 2015; Hugman et al., 2017) and temperature (Brown et al., 2007; 349 

Richardson et al., 2011). Although recognized as essential, the 350 

characterization of coastal hydrosystems’ behavior still remains 351 

under studied in many cases (Table 1) due to the important 352 

monitoring and financial resources required to improve their 353 

understanding.  354 

1.4.  Groundwater dependence monitoring  355 

The “Groundwater dependence” clearly expresses that the prolonged 356 

absence of groundwater as well as its quality degradation have a 357 

negative impact on the growth, health, composition, structure and 358 

function of the ecosystem. Potential threats to groundwater inflow 359 

toward the coastal GDEs can be assessed through the study of the 360 

groundwater flow paths, the spatial and temporal variability of 361 

groundwater discharge and surface/ground water interactions (Kløve 362 

et al., 2011). Yet, the groundwater dependence of coastal GDEs 363 

remains still difficult to characterize. This difficulty is exacerbated by 364 

the thinness of the unsaturated zone, i.e. the thickness of the soil 365 

between the soil surface and the top of the saturated zone, which 366 
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allows important mixing between surface and ground waters. 367 

Differentiating and quantifying the contribution of these end-368 

members is highly complex. A wide range of methodologies have 369 

been developed to improve the understanding of coastal GDEs 370 

(Sophocleous, 2002; Kalbus et al., 2006; Howe et al., 2007). First of 371 

all, the monitoring of groundwater levels and the establishment of 372 

piezometric map are often the first steps to highlight the groundwater 373 

dependence of coastal GDEs (Sena and Teresa Condesso de Melo, 374 

2012). Then, in the particular case of coastal GDEs, the two main 375 

approaches commonly used to assess surface/ground water 376 

interaction are i) temperature, geochemical and isotopic tracers 377 

(Dimova et al., 2017; Duque et al., 2016; Mudge et al., 2008; Sadat-378 

Noori et al., 2016; Sánchez-Martos et al., 2014; Santos et al., 2008; 379 

Schubert et al., 2011) and ii) numerical modeling (De Pascalis et al., 380 

2009; Martínez-Alvarez et al., 2011; Sena and Condesso de Melo, 381 

2012; Read et al., 2014; Menció et al., 2017). Less common 382 

approaches, such as geophysical method can also be carried out to 383 

obtain information on the spatial scales and dynamics of the fresh 384 

water–seawater interface, the rates of coastal groundwater exchange 385 

and the total fresh water discharge (Dimova et al., 2012).  386 

2. Dominant human and climatic stressors on 387 

groundwater and consequences for coastal 388 

GDEs in Mediterranean regions 389 

Although essential, coastal GDEs are one of the most threatened 390 

ecosystems in the world. Human activities are exerting increasing 391 

pressure on these sensitive systems or on the resources on which they 392 
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depend, such as groundwater. Water withdrawal, drying, pollution, 393 

habitat destruction or overexploitation constitute the main causes of 394 

their degradation (Millennium Ecosystem Assessment, 2005). More 395 

than 50% of wetlands have disappeared during the 20th century in 396 

some regions of Australia and Europe (Millennium Ecosystem 397 

Assessment, 2005). Only in the Mediterranean basin, national or sub-398 

national datasets suggest a probable loss of 50% of its wetlands 399 

(Perennou et al., 2012). In the specific case of coastal wetlands, 400 

global losses are estimated at between 64 % to 71% during the 20th 401 

century (Gardner et al., 2015).  402 

The characteristic overdevelopment of coastal Mediterranean regions 403 

has already led, for several decades, to a significant pressure on 404 

groundwater resources. The growing drinking, industrial or 405 

agricultural water requirements tend to the overexploitation of the 406 

coastal aquifers. Coastal aquifers are threatened by both horizontal 407 

exchanges with seawater and vertical infiltrations of pollutants. The 408 

development of human activities often constitutes an important 409 

source of pollutants and groundwater can constitute an important 410 

vector of pollution towards the coastal GDEs (Moore, 2006).  411 

2.1. The harmful human overdevelopment of coastal 412 

Mediterranean regions 413 

The strong and increasing urbanization as well as fast growing 414 

demography represent the two main pressures. For example, in 415 

Australia, more than 85% of the population is living within 50km of 416 

the sea. The population density of Australian’s coastal areas 417 

increased by 14% between 2001 and 2009, from 3.75 hab/km² to 4.27 418 
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hab/km² (Fig. 3a). A very important difference is observed for the 419 

urban, coastal population. The population density measured in 420 

coastal capital cities is 94 times higher than the average population 421 

density of coastal areas (Fig. 3a).  422 

In the Mediterranean basin, the coastal population grew from 95 423 

million in 1979 to 143 million in 2000 and could reach 174 million 424 

by 2025 (UNEP/MAP, 2012) (Table 1). In the Mediterranean basin’ 425 

population, France is the 3rd most populated country (after Turkey 426 

and Egypt) (UNEP/MAP, 2012) and allows for a good observation of 427 

the attractiveness of the Mediterranean coastline (Insee/SOeS, 2009). 428 

Indeed, among the 3 French coasts (Mediterranean, Atlantic and 429 

Channel coasts), the Mediterranean coast is clearly distinguished by a 430 

rapid population growth (Fig. 4) (Insee/SOeS, 2009). Between 1960 431 

and 2010, the French Mediterranean coast recorded the highest 432 

population increase with 56%, although it is the least extensive 433 

coastline (Fig. 4). The highest growth of population rate is recorded 434 

in the Mediterranean island of Corsica, with an annual increase of 435 

1.3% between 2006 and 2010. The coastal municipalities accounting 436 

for 80% of the Corsican population and 30% of the urbanization is 437 

concentrated within 1 km of the shoreline (SDAGE, 2015).  438 

In USA, California tops the coastal populations chart. Currently, of 439 

the total population of 39.6 million in California, 69% is living in 440 

coastal areas (U.S. Census Bureau, 2019) and 95% is living in urban 441 

areas.  Coastal population density is 3 times higher than the state’ 442 

population density (Fig. 3b). In less than 60 years, coastal population 443 

density went up by a factor of 2.5, from 135.6 hab/km² in 1960 to 444 

278.4 hab/km² in 2017 (U.S. Census Bureau, 2019) (Fig. 3b). In the 445 
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major coastal cities, such as San Francisco and Los Angeles, 446 

population density exceeds several thousand inhabitants per km². In 447 

2018, population density was 7003 hab/km² and 3230 hab/km² 448 

respectively. 449 

This demographic growth is accompanied by a very fast development 450 

of urban infrastructure. In the Mediterranean basin, the urbanization 451 

increased from 54% in 1970 to 66% in 2010 (Table 1) and the urban 452 

coastal population could increase by 33 million between 2000 and 453 

2025 (UNEP/MAP, 2012). The South and the East Mediterranean 454 

countries (Non-EU countries) are urbanizing more rapidly than the 455 

rest of the world. These that were essentially rural countries, with 456 

average urbanization of 41% in 1970, will become urban countries, 457 

with 66% urbanization by 2025 (UNEP/MAP, 2012). This tendency 458 

is also observed in Australia. Peri-urban and rural cadastral parcels 459 

are progressively replaced by urban areas leading to an increased 460 

artificialization of coastal areas (Clark and Johnston, 2017).  461 

2.2.  Perturbations induced by groundwater 462 

degradation  463 

2.2.1. Reduction of groundwater inputs and coastal 464 

GDEs dewatering  465 

The modification of fresh groundwater flowing to the lagoons 466 

disrupts the fragile balance of the coastal GDEs' ecosystems. As 467 

surface water is limited and increasingly affected by pollution and 468 

eutrophication, the exploitation of groundwater from coastal aquifers 469 

as a source of freshwater has become more intense (Bocanegra et al., 470 

2013; Liu et al., 2017). The number of groundwater abstraction 471 
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infrastructures have drastically increased. This process is the one 472 

most frequently exacerbated by unsuitable water resource 473 

management plans and/or poor control of water extraction facilities. 474 

Unregulated but also illegal pumping draws a high and unreasoned 475 

amount of water which is uncountable in the water management 476 

policies and leads to groundwater depletion and reduce river, spring 477 

and wetland flows. The progressive lowering of the groundwater 478 

level reduces or removes the connections between the aquifer and the 479 

coastal GDEs. As a result, aquatic vegetation in these transitional 480 

wetlands is gradually being replaced by terrestrial vegetation. This 481 

process leads to the drying, reduction and disappearance of coastal 482 

GDEs. In the worst case, changes in the structure and the functioning 483 

of the ecosystem (Balasuriya, 2018; Pérez-Ruzafa et al., 2019) results 484 

in a partial or total loss of ecosystem services provided by coastal 485 

GDEs. 486 

Anthropogenic activities require a growing demand for space for 487 

agricultural production, housing or industrial land use. The land gain 488 

can be achieved by the conversion of natural lands or by partially or 489 

totally draining wetlands (El-Asmar et al., 2013). The construction of 490 

artificial drainage network in order to control the humidity is an old 491 

and relatively common practice (Gerakis and Kalburtji, 1998; 492 

Avramidis et al., 2014). These practices are highly constraining for 493 

the hydrosystems. They drastically alter the natural flow of surface 494 

groundwater and greatly affect the coastal GDEs, which are relying 495 

on the surface expression of groundwater.  496 

Changes in land use can have a significant impact on aquifer 497 

recharge processes and thus on fresh groundwater supplies to coastal 498 
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GDEs. . Infiltration is increasing with the proportion of bare soil and 499 

evapotranspiration’s patterns are conditioned by the type and the 500 

stages of crops development. Soil compaction by urbanization or 501 

intensive agriculture may reduce the infiltration and enhance the 502 

surface runoff (van den Akker and Soane, 2005; Gregory et al., 2006; 503 

Nawaz et al., 2013). In addition, the urban pavement of the shore (El-504 

Asmar et al., 2013) makes the soil impermeable and drastically 505 

reduces infiltration and recharge into the aquifer. 40% of the 46,000 506 

km of Mediterranean coast were already artificialized in 2000 and it 507 

is expected to exceed 50% by 2025 (AViTeM, 2018). 508 

If groundwater extraction is clearly the main threat in coastal 509 

Mediterranean regions, it is important to underline that increasing 510 

groundwater flow is also problematic. Some activities, such as 511 

irrigation, terracing, land-clearing or managed artificial recharge of 512 

aquifers, can appreciably increase the permeability of upper soils and 513 

then lead to the increase of the aquifer recharge (Baudron et al., 514 

2014). In urban areas, tap water leaks can also constitute a significant 515 

source of groundwater recharge (Minnig et al., 2018; Vystavna et al., 516 

2019).   The flow of fresh water to the coastal GDEs can therefore be 517 

significantly increased. The physical and chemical disturbances can 518 

disturb and modify bio-community structure of the coastal GDEs. 519 

2.2.2.  The role of groundwater as a vector of pollution  520 

Coastal GDEs often represent the last collector of water and their 521 

quality degradation results, and reflects human activities over the 522 

watershed. Anthropogenic activities such as the demographic, 523 

economic, industrial and commercial development often introduce 524 
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new potential contamination sources (Appelo and Postma, 2005) 525 

which infiltrate towards the aquifer.  526 

In the coastal Mediterranean regions, the main problem is related to 527 

the sewage inputs. The fast growing of urbanization is not always 528 

accompanied by the development of sewage infrastructures that 529 

results in less efficient treatment of urban wastewater and sewer leaks 530 

(Michael et al., 2013). In the Mediterranean basin, almost 40% of 531 

coastal settlements with more than 2000 inhabitants do not have any 532 

wastewater treatment plant (UNEP/MAP, 2012). This problem is 533 

especially exacerbated on the southern Mediterranean basin due to 534 

the rapid growth of many coastal cities and towns. In addition, 535 

coastal Mediterranean regions are privileged tourism destinations 536 

(UNEP/MAP, 2012). The touristic flow picks lead to higher rates of 537 

sewage inputs in urban sewerage networks that are often aged and 538 

failing. Wastewater and associated pollutants from domestic and 539 

industrial sources consequently infiltrate towards the aquifer or 540 

through the interaction between groundwater and river water 541 

(McCance et al., 2018; Erostate et al., 2019; Koelmans et al., 2019; 542 

Vystavna et al., 2019). Nitrogen pollutants, phosphorus, but also 543 

organic compounds and heavy metals are the most frequent 544 

contaminant affecting the groundwater resources (Wakida and 545 

Lerner, 2005; Petrie et al., 2015; Xu et al., 2019). The second main 546 

source of groundwater quality degradation is the agricultural activity. 547 

The excess of nutrients from fertilizers (nitrogen and phosphorus), 548 

pesticides, emerging compounds and, less frequently,  pathogenic 549 

microorganisms related to agricultural activities contribute to the 550 
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degradation of both ground and surface water quality (Symonds et 551 

al., 2018; Xin et al., 2019).  552 

Once infiltrated, the pollutants follow the groundwater flow and can 553 

migrate to coastal GDEs (Rapaglia, 2005; Knee and Paytan, 2011; 554 

Jimenez- Martinez et al., 2016; David et al., 2019). According to the 555 

temporal dynamic of the aquifer, groundwater can represent a direct 556 

short and/or long term vector of pollution for coastal GDEs. 557 

Groundwater with short residence times (a few years) into the aquifer 558 

will rapidly flow towards the lagoons, carrying pollutants along its 559 

way. In case of groundwater with long residence time (several 560 

decades) and if no remediation process occurs, pollutants can be 561 

accumulated into the aquifer for several decades. The currently 562 

observed groundwater contamination can therefore be the result of 563 

the legacy of pollution related to human activities previously 564 

developed over the watershed (Erostate et al., 2018). This 565 

groundwater archiving capacity allows the storage of pollutants that 566 

will reach the coastal GDEs in the future. 567 

Once the pollutants are in the coastal GDEs, prolonged groundwater 568 

residence times favor the accumulation of pollutants in water but also 569 

in aquatic organisms. The progressive accumulation of pollutants, 570 

especially heavy metals, along the food chain can pose serious 571 

human health issues and greatly impact economical profit by 572 

deteriorating ecosystems services such as aquaculture and fisheries. 573 

The most frequent impact of exceed in nutrients, sediments and 574 

organic maters is the eutrophication which can lead to important 575 

degradation or loss of seagrass beds, community structure and 576 

biodiversity (National Research Council, 2000; Pasqualini et al., 577 
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2017). More than 400 coastal areas have been identified worldwide 578 

as experiencing some form of eutrophication (Selman et al., 2008).  579 

2.2.3. Impacts of climate change on aquifer recharge 580 

and implications for coastal GDEs 581 

Important changes regarding the aquifer recharge in terms of timing, 582 

duration and magnitude (McCallum et al., 2010; Hiscock et al., 2012; 583 

Taylor et al., 2013) as well as the storage and the quality of 584 

groundwater are expected in a context of climate variability. These 585 

modifications will be more pronounced in arid regions and especially 586 

in the Mediterranean basin, considered as a Hot Spot of climate 587 

change (IPCC, 2014). By the middle to the end of the century, the 588 

southern European regions as well as Australia are expected to suffer 589 

from increasing arid conditions with longer and more frequent 590 

droughts (Stigter et al., 2014) due to the increase in the temperature 591 

(Ducci and Tranfaglia, 2008; McCallum et al., 2010), in 592 

evapotranspiration (Hiscock et al., 2012), modification of seasonal 593 

patterns of precipitation (Polemio and Casarano, 2008; Stigter et al., 594 

2009; Barron et al., 2011) and of average effective infiltration (Ducci 595 

and Tranfaglia, 2008). An amplification in the frequency and 596 

intensity of drought is also expected in the southern Mediterranean 597 

basin, such as in Morocco (Stigter et al., 2014).  598 

The results of predictive models to assess the impact of the climate 599 

change on aquifer recharge are often highly variable. The main 600 

tendency highlights a decrease in the groundwater recharge in 601 

Mediterranean regions, leading to a significant loss of groundwater 602 

resources (IPCC, 2007; Barron et al., 2011). In the Mediterranean 603 

basin, the decrease of the recharge can reach 30% to up to 80% 604 
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(Ducci and Tranfaglia, 2008; Döll, 2009; Moseki, 2017). 605 

Modification in coastal aquifer recharge as well as the expected sea 606 

level rise (Hertig and Jacobeit, 2008; Somot et al., 2008; Mastrandrea 607 

and Luers, 2012) can lead to the inland migration of the mixing zone 608 

between fresh and saline water .  609 

Climate change will exacerbate existing pressures rather than bring a 610 

new set of threats. With the water requirements that are projected to 611 

increase under a drier climate, severe water shortages can occur. The 612 

outflow into the coastal GDEs can be strongly reduced by the end of 613 

the century which could accelerate their drying up. Groundwater 614 

degradation by salinization could also greatly affect the physico-615 

chemical conditions and thus the ecosystem balance of the GDEs 616 

lagoons. In response to these treats, a decrease in groundwater 617 

abstraction and an appropriate management appear as the principal 618 

way to ensure the preservation and sustainability of coastal GDEs 619 

(Candela et al., 2009; Stigter et al., 2014).  620 

There may be exceptions to this general trend at the local level. In 621 

some cases, the modification of rainfall patterns and/or land uses 622 

modification can favor the recharge of the aquifer and improve the 623 

groundwater quality (Cartwright and Simmonds, 2008; Crosbie et al., 624 

2010; Santoni et al., 2018). For example, in the Murray-Darling 625 

Basin in Australia, the clearing of the native vegetation is likely to 626 

favor the infiltration and increase the recharge of 5% for future 627 

climate around 2030 (Crosbie et al., 2010). If land-clearing could 628 

favor the recharge, the strong alteration of the hydrological cycle by 629 

vegetation cutting also has strong negative aspects which should be 630 

underlined. Among others things, land-clearing can increase runoff 631 
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and streamflow, favor soil erosion, massive drainage of natural 632 

nutrients and salinization of soils and waters (Koivusalo et al., 2006; 633 

Cowie et al., 2007; Peña-Arancibia et al., 2012; Kaushal et al., 2018; 634 

Cheng and Yu, 2019). The consequences of these practices are often 635 

irreversible. Yet, for watersheds severely degraded by salinization, 636 

this increase in recharge could help the dilution and potentially 637 

improve quality of groundwater (Cartwright and Simmonds, 2008).  638 

The existence of local specificities shows the importance of 639 

establishing adaptive case-by-case water management strategies. 640 

Water resource management requires the definition of appropriate 641 

management scale which makes it possible to manage the 642 

hydrosystem as a whole, taking into account the complexity of 643 

interactions between water bodies but also between humans and their 644 

environment.  645 

3. Management strategies and current 646 

considerations for coastal GDEs  647 

3.1. From international environmental 648 

awareness to Integrated Water Resource 649 

Management 650 

The definition and establishment of water resources management 651 

strategies and policies result from an awareness of environmental 652 

issues initiated in the 1970s, with in particular the Stockholm Earth 653 

Summit in 1972 (Fig. 5a). This ecological awakening then continued 654 

in the 1980s with a collective awareness of the existence of pollution 655 

and harmful disruption on a global scale. It is in this context that the 656 
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Bruntland Report define for the first time in 1987 the concept of 657 

“sustainable development”: “The sustainable development is 658 

development that meets the needs of the present without 659 

compromising the ability of future generations to meet their own 660 

needs”. This report requires the management of water resources as a 661 

common heritage and lays the foundations for integrated natural 662 

resource management. Only 5 years later, the Rio Earth Summit 663 

marked a turning point in the sustainable management of water 664 

resources with the “rediscovery” of the concept of Integrated Water 665 

Resource Management (IWRM) (Petit, 2006) and Integrated Coastal 666 

Zone Management (ICZM) (Deboudt, 2005).  667 

These two concepts, which appeared in the 1970s (Deboudt, 2005; 668 

Petit, 2006), were then highlighted in the 1990s through the media 669 

coverage of the Rio Earth Summit and became a key concept in the 670 

2000s thanks to the launch of the concept of sustainable development 671 

on the international political scene. In 2000, the Global Water 672 

Partnership, an international network created to advance governance 673 

and management of water resources, published its first’s report on 674 

IWRM and clearly define the concept as a “process which promotes 675 

the coordinated development and management of water, land and 676 

related resources, in order to maximize the resultant economic and 677 

social welfare in an equitable manner without compromising the 678 

sustainability of vital ecosystems” (GWP, 2000). The IWRM was 679 

and remains widely promoted by many international organizations or 680 

donor agencies (Rahaman and Varis, 2005; Biswas, 2008), as a 681 

strategic approach to water management (Meublat and Le Lourd, 682 

2001). The Johannesburg Earth Summit in 2002 even recommended 683 
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its implementation in all countries by 2005. This summit also insists 684 

on the establishment of ICZM. Sharing the same precepts as IWRM, 685 

ICZM is nevertheless committed to taking into account the specific 686 

risks associated with water on the coast (Morel et al., 2004). ICZM is 687 

developing rapidly, particularly in Europe, thanks to its 688 

institutionalization and recommendation of the Council and the 689 

European Parliament in 2002 (Ghézali, 2009). Although coastal 690 

GDEs are in theory elements in their own right in integrated 691 

management strategies, they are still too often forgotten and do not 692 

benefit from legal or managerial recognition to take their specificity 693 

into account (Cizel, 2017). 694 

3.2. Integrated groundwater management 695 

without specific regards for coastal GDEs  696 

Since the 2000s, we have seen an acceleration of sustainable resource 697 

management measures at the global, regional and national levels 698 

(Fig. 5a). GDEs have been partially propagated in water management 699 

policies developed over the past two decades, that recognize a link 700 

between groundwater and surface water. Some countries or group of 701 

countries particularly vulnerable to shortage of water and repeated 702 

severe droughts e.g. Australia, countries of the EU, the United-States 703 

(California) and South Africa, have yet incorporated specific 704 

reference to general GDEs into the legislation. Even if the protection 705 

of GDEs is included under water management policies, the 706 

implementation of an appropriate management policy is often lacking 707 

(Rohde et al., 2017).  708 
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Countries of the EU and Australia are the first to have included 709 

GDEs in their legislative framework (Rohde et al., 2017). The French 710 

model of water management by Water Agencies (created by the law 711 

of 1964) and the Australian model, derived from the experience of 712 

the Murray Darling Basin (Murray Darling Basin Authority created 713 

in 1987) are often considered as a reference model in terms of river 714 

basin management (GWP/RIOB, 2009; Brun and Lasserre, 2018). 715 

Legislative framework and groundwater managerial strategies set up 716 

by the EU and Australia however have shortcomings that undermine 717 

their effectiveness in protecting the resource (Fig. 6).  718 

Australia provides the most comprehensive groundwater governance 719 

(Ross, 2016). As early as 1994, the agreement of the Council of 720 

Australian Governments (COAG) (Fig.5c) required the development 721 

of a comprehensive system of water allocations and rights to ensure 722 

better, more sustainable water management. The water reform 723 

program initiated by the COAG agreements was then updated in 724 

2004 by developing a new National Water Initiative (NWI) (Fig. 5c). 725 

The NWI - currently signed by all states and territories - has been 726 

recognized as the national blueprint for water sector reform to 727 

improve the state of industry and provide long-term environmental 728 

benefits (Willett, 2009). The annually adjustable water entitlements 729 

and related water market provide a great flexibility and a better 730 

adaptability to the state of the resource (Ross, 2016). However, 731 

monitoring of groundwater quality is limited (except for drinking 732 

water) and is often carried out on a short-term basis without 733 

consistent national program (Geoscience Australia, 2010). In Europe, 734 

on the other hand, both the quantitative and qualitative aspects 735 
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benefit theoretically from an equivalent level of attention.  The 736 

legislative framework implemented by the Water Framework 737 

Directive of 2000 (WFD) (Fig. 5b) provides thus the most 738 

comprehensive groundwater protection (European Commission, 739 

2008; Ross, 2016). Member states are required to preserved the 740 

groundwater quantity and quality based on threshold values 741 

established to prevent any significant diminution of the ecological or 742 

chemical quality of surface water nor in any significant damage to 743 

terrestrial ecosystems which depend directly on the groundwater 744 

body (European Directive 2000/60/CE). The degree of freedom given 745 

to the member states to define groundwater and GDEs management 746 

plans and the wide disparity between them can yet reduce the 747 

enforcement of EU recommendations (Liefferink et al., 2011). While 748 

some countries are considered as models for their efficiency in water 749 

management, such as France, Spain or Germany (Rahaman and 750 

Varis, 2005) (Fig. 5b, c), others are experiencing significant delays in 751 

the transposition of the EU recommendations (Ghiotti, 2011). In EU 752 

frameworks, an important point of divergence is the concept of 753 

“water bodies” that supports the WFD. This concept requires precise 754 

identification, delimitation and definition. However, the scientific 755 

knowledge is often incomplete or inaccurate and fails to provide the 756 

appropriate level of precision (Bartout, 2015). The lack of knowledge 757 

represents a significant bias for the definition of priority actions and 758 

the implementation of effective public policies to achieve the good 759 

qualitative and quantitative status set by the European 760 

recommendations (Maillet, 2015). 761 
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These two management models, one based on strong qualitative 762 

regulation of the resource (Australia) and the other on the monitoring 763 

of threshold values (EU), lead to significant disparities in GDEs 764 

management. In Australia, management decisions are based on an 765 

ongoing monitoring and research which help to establish an adaptive 766 

GDEs management (Richardson et al., 2011; Rohde et al., 2017). The 767 

great adaptability of annual water allocation allows a better 768 

consideration to the vulnerability of GDEs, particularly in a case of 769 

severe drought. However, the poor water quality monitoring exposes 770 

lagoons to high risks of undetected contamination. Efforts made for 771 

the qualitative management of the water resource clearly need to be 772 

completed and reinforced by an improvement of groundwater quality 773 

management to ensure the preservation of GDEs (Ross, 2016). In 774 

EU, monitoring threshold values allows a better understanding and 775 

thus, a better prevention of qualitative and quantitative degradation 776 

risks for GDEs. The groundwater allocation is often included in river 777 

basin plans of member states but the adaptability of water 778 

withdrawals, particularly in the event of drought, can lack reactivity 779 

and damage the GDEs (Sommer et al., 2013; Stein et al., 2016). To 780 

really benefit from the European directives, particular attention must 781 

be paid to their concrete application in all member countries. In 782 

addition, the concept of “water bodies” must be better defined in 783 

order to enable the implementation of truly effective public policies. 784 

In the particular case of coastal lagoons, considered by the WFD as 785 

“transitional water bodies”, the lack of knowledge and data in the 786 

early 2000s has triggered the development of monitoring networks 787 

implementation. Indeed, the monitoring programs developed for 788 
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freshwater ecosystems are not relevant for coastal GDEs. These 789 

transition environments are subject to many influences that induce a 790 

large variation in physical parameters, including salinity. The 791 

consideration of biological indicators and the evaluation of shifts in 792 

the species presence on coastal ecosystems has emerged as a valid 793 

strategy to characterize ecological status (Delpech et al., 2010; Pérez-794 

Domínguez et al., 2012). This approach, followed in the same way by 795 

several EU countries, has led to the creation of indicators validated 796 

by the EU to improve the assessment of the status of transitional 797 

water bodies in the North-East Atlantic (Le Pape et al., 2015). For the 798 

Mediterranean region, this work has yet to be completed. Currently, 799 

only Greece, Italy and France have developed classification tools, but 800 

further developments are still needed to properly assess the 801 

ecological status of coastal lagoons (Le Pape et al., 2015).  802 

Even if the groundwater resource management plans help to manage 803 

GDEs, specifics on GDEs management are often lacking (Rohde et 804 

al., 2017). Coastal GDEs form part of a continuum between 805 

continental and marine ecosystems and share common 806 

characteristics, species and ecological functions (Pérez-Ruzafa et al., 807 

2010). Inland and coastal waters must be managed as a whole and 808 

coordination at river basin and coastal sea levels is required (Pérez-809 

Ruzafa and Marcos, 2008). The IWRM is generally focused on the 810 

inland watersheds but likely neglects coastal specificity. Conversely, 811 

ICZM focuses exceptionally on coastal areas. However, the coastal 812 

area rarely extends to the entire watershed, which influences the 813 

quality and quantity of water resources that reach the coast. The link 814 

between IWRM and ICZM appears essential to respect the physical, 815 
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ecological and social continuum of watersheds and their coastal 816 

zones. 817 

3.3. Limitations of the project-based approach 818 

The IWRM does not automatically lead to the sustainability of 819 

resource uses, although it is a prerequisite (Aubin, 2007). The 820 

project-based approach, often applied in environmental protection, 821 

makes it difficult to develop a coherent policy. Encouraged by 822 

cooperation projects, several countries have tried to initiate the 823 

IWRM (Garnaud and Rochette, 2012). This is particularly the case in 824 

non-EU countries, such as Morocco and Algeria (Vecchio and 825 

Barone, 2018). The coastal GDEs of Nador (Morocco) (Fig. 5b) 826 

constitutes a representative example (Garnaud and Rochette, 2012).  827 

Since the 1970s, coastal development has been announced as a 828 

priority by the Moroccan government, but there is no national public 829 

policy for coastal areas. The growing development exerts a strong 830 

pressure on the coastal GDEs, classified as RAMSAR site (Nakhli, 831 

2010). The Nador lagoon is thus the subject of a succession of 832 

projects (Fig. 5b) whose objective is to establish a sustainable 833 

management of this area (Garnaud and Rochette, 2012). To be 834 

"sustainable", resource management must yet be both based on 835 

previous actions and forward-looking. Most often, projects follow 836 

one another, without taking into account previous results. The 837 

standardized procedures proposed by donors do not sufficiently take 838 

into account the specificities of the territories. The multiplicity of 839 

projects is often counterproductive and compromises the 840 

effectiveness of this environmental development assistance. The 841 
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succession of projects without convincing results ends up reducing 842 

the mobilization of local actors and users. This generally too short-843 

term approach limits the involvement and appropriation of target 844 

actors. This problem of appropriation is in addition to the problem of 845 

the limited funding period, which threatens the sustainability of the 846 

actions undertaken (Garnaud and Rochette, 2012). By the end, 847 

Morocco's commitment to Integrated Coastal Zone Management 848 

(advocated by the - too short - Cap Nador project, from 2006 to 849 

2008) finally found little support in these international collaborations 850 

(Garnaud and Rochette, 2012).       851 

4. Better global understanding for a better 852 

management of GDEs  853 

Due to their complexity, the development of management 854 

strategies adapted to coastal GDEs is particularly complex 855 

because it requires a strong transdisciplinary approach. Scientists 856 

in the technical sciences (at least hydrology, ecology, 857 

hydrogeology, oceanography) need to develop collaborative 858 

approach between them but also with social and legal scientists. 859 

Although difficult and slow to implement, this transdisciplinary 860 

approach has two major advantages. Firstly, it allows scientists to 861 

question their own discipline, in particular by putting into 862 

perspective the relevance of their own concepts and methods. 863 

Then, the development and construction of common methods and 864 

concepts results from a shared reflection. These new concepts are 865 

thus more relevant because they come from a collaboration work 866 
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and not from the interweaving of specificities borrowed from 867 

each discipline. 868 

4.1. Improving the understanding of GDEs 869 

The improvement of GDEs’ management inevitably involves an 870 

increasing knowledge of their hydrogeological and ecological 871 

condition and processes (IAH, 2016). This information is the most 872 

often unavailable and gaps at the intersection of groundwater 873 

hydrology and ecology do not facilitate the study of GDEs 874 

(Tomlinson, 2011). These gaps are even more important in the case 875 

of coastal GDEs which require collaboration between terrestrial 876 

hydrology and marine sciences - two epistemic communities that are 877 

not necessarily, or very rarely, used to working together. In addition, 878 

the implementation of the necessary monitoring systems to improve 879 

the understanding of GDEs is often financially and technically 880 

expensive and/or difficult to implement (Bowmer, 2003; Roll and 881 

Halden, 2016). Improving the management of coastal GDEs 882 

inevitably requires the management and understanding of hydraulic 883 

processes throughout the water cycle (fresh and salt water).  884 

To overcome the lack of knowledge about GDEs, EU countries and 885 

Australian Government and the scientific community have been 886 

working together to establish practical guides. These “GDE practical 887 

guides” can in theory assist state agencies in the identification and 888 

management of GDEs for water management plans (Clifton et al., 889 

2007; Richardson et al., 2011; Hinsby et al., 2015). They offer a 890 

range of methods for determining ecosystem reliance to groundwater 891 

and help water managers conducting the necessary technical 892 
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investigations and monitoring protocols to define ecological water 893 

requirements for GDEs. In practice, these often complex guides seek 894 

data keys to understand all types of systems but each GDE is an 895 

individual case, having specific characteristics and behavior that 896 

prohibit any generalization of diagnoses and solutions. The 897 

identification of appropriate study tools requires significant scientific 898 

support and the evaluation and monitoring of the relevance of the 899 

tools used is yet another debate.  900 

Generally, the improving of knowledge depends on the strategic and 901 

economic interest of GDEs, assessed by the costs and benefits related 902 

to their protection (Millennium Ecosystem Assessment, 2005). The 903 

"ecosystem services approach" of the United Nations Millennium 904 

Ecosystem Assessment Project thus recommend to complete the 905 

technical approach of GDEs by a relevant assessment of the GDEs’ 906 

valuation and relationship between ecosystems and human well-907 

being. While the evaluation of ecosystem services tends to highlight 908 

man's dependence on his environment, this economist approach to 909 

nature raises two concerns. Firstly, this new way of thinking about 910 

nature conservation places nature at the service of mankind (Dufour 911 

et al., 2016). GDEs are then considered as providers of valuable 912 

goods and services. The diversity and complexity of the relationship 913 

between humans and nature cannot be summarized as a monetary 914 

evaluation exercise (Sartre et al., 2014). Moreover, human societies 915 

had already understood the importance of coastal GDEs and how to 916 

benefit from them well before the concept of "ecosystem services" 917 

was adopted. Secondly, the economic assessment of GDEs requires a 918 

clear definition of the benefits of these ecosystem services including 919 
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direct (fish and plant production, water storage and purification…) 920 

and indirect values (cultural, aesthetic, social reasons…) to the 921 

human population (IAH, 2016). Estimating the economic values of 922 

ecosystem services is far from easy. Recreation and tourism are the 923 

most easily quantifiable services, firstly because the direct revenue 924 

they generate are easily quantifiable but also because they receive 925 

special attention due to the attractiveness of coastal GDEs (Rolfe and 926 

Dyack, 2011; Clara et al., 2018). On the other hand, essential services 927 

such as protection against erosion, climate regulation or pollution 928 

control are neglected, largely underestimated and/or under-studied 929 

due to the lack of available data (Barbier et al., 2011) 930 

4.2. Determining the appropriate management 931 

scale 932 

The watershed is considered as the most environmentally and 933 

politically relevant management unit. This watershed-based approach 934 

can contribute to reinforce the lack of consideration given to 935 

“hidden” groundwater resources, while they are essential to establish 936 

an integrated management of GDEs. An appropriate management 937 

scale is a necessary first-step for the sustainable management of 938 

supporting aquifers and of the coastal GDEs (Bertrand et al., 2014; 939 

Vieillard-Coffre, 2001).  940 

Firstly, surface and ground water are not constrained by the same 941 

geological boundaries. The hydrogeological and hydrological 942 

watershed do not necessarily (or rarely) overlap (Affeltranger and 943 

Lasserre, 2003). The extension of an aquifer and the drained 944 

groundwater can extend well out of the boundaries defined by the 945 
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hydrological basin. Human activities developed outside the 946 

hydrological basin can impact qualitatively and/or quantitatively the 947 

groundwater resources flowing within the basin and/or hydraulically 948 

connected. A significant water supply-demand gap can therefore be 949 

induced. A broader consideration of a "water-supply area" would 950 

allow a better assessment of the water resources actually available. 951 

This approach would ensure a better allocation of water between 952 

human and ecosystem needs.  953 

Surface and groundwater have very different flow dynamics. 954 

Groundwater flow takes on average several years, even centuries, 955 

compared to a few days or a few weeks for river water (Fetter, 2018). 956 

The capacity of recharge and renew is much longer. Their inertial 957 

behavior supports their capacity to accumulate the pollutants and to 958 

record the degradation caused by human activities over several 959 

decades (section 3.2.2.). The positive or negative effects of the land 960 

use planning made over the hydrological basin can take several 961 

decades or even centuries before being noticeable on groundwater 962 

quality and quantity (Boulton, 2005). The notion of sustainability 963 

preached by IWRM can then be strongly questioned if the 964 

groundwater dynamics are not enough understood and/or not 965 

considered by management strategies.  966 

The existing hydraulic exchanges between the different water bodies 967 

and the vertical linkages are not always fully appreciated (Boulton, 968 

2000). Part of the problem relates to the difficulties of assessing 969 

groundwater volumes, recharge rates and sources but also to the low 970 

recognition of the linkages between groundwater and many surface 971 

water ecosystems (Boulton, 2005). The qualitative and quantitative 972 
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status of a water body has an impact - positive or negative - on all the 973 

water bodies connected. It is then important to understand the 974 

existing relationships between the aquifer and all the other water 975 

bodies, which means neighboring aquifers, fresh surface water and 976 

brackish surface water.  977 

More and more water resources managers are becoming familiar with 978 

the necessity of considering large spatial areas to establish a relevant 979 

water management (Boulton, 2005). Even if their perceptions of 980 

hydrologic interactions are often restricted to lateral and longitudinal 981 

flows (Pringle, 2003), the importance of vertical connectivity is 982 

slowly being appreciated (Boulton, 2000). A greater consideration of 983 

the ecological processes that support the proper functioning of the 984 

GDEs is being given. The study of the “proper functioning areas” of 985 

GDEs would define the extension of the surrounding area that 986 

supports the ecological processes that ensure the sustainability and 987 

resilience of the wetland (Chambaud and Simonnot, 2018). It would 988 

take into account all the factors that contribute to the functioning of 989 

the GDE, i.e. water qualitative and quantitative supply, but also 990 

animal species for which all or part of the life cycle occurs near the 991 

GDE and the connectivity of the GDE with other biodiversity 992 

reservoirs, animal and plant populations.  993 

4.3. Partnership, appropriation and relevant 994 

definition of coastal GDEs  995 

The efforts required to establish effective multi-scale governance are 996 

not often sufficient to ensure the sustainable management of 997 

groundwater and GDEs (Molle et al., 2007) (Fig. 7). Several 998 
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shortcomings already mentioned above, partially explain these 999 

difficulties (Fig. 7). The development of regional guidelines based on 1000 

too approximate or minimalist knowledge of GDEs, inevitably leads 1001 

to inconsistencies in management strategies at the local level. Coastal 1002 

GDEs often suffer from incomplete, inappropriate or even 1003 

contradictory definitions. Scientific definitions are sometimes in 1004 

conflict with legal definitions and make the recognition and 1005 

conservation of these environments more complex (Cizel and Groupe 1006 

d’histoire des zones humides 2010; Cizel, 2017). Coastal GDEs are 1007 

often recognized and grouped into the large family of wetlands. A 1008 

simplification that does not take into account their specificity, 1009 

consisting of a wetland, a water body and an aquifer, all hydraulically 1010 

connected, which must be recognized and managed as an inseparable 1011 

whole. Improving the definition of coastal GDEs is essential both to 1012 

better understand and to delimit them, but also to develop and to 1013 

apply specific and appropriate protective legislative acts. 1014 

While the advancement of scientific knowledge and its better 1015 

consideration at the regional level could be a way to improve the 1016 

management of GDEs, a large part of the solution also seems to come 1017 

from the local level. At the local scale, collaboration between water 1018 

stakeholders for integrated resource management can be complicated 1019 

(Chanya et al., 2014; Mostert, 2003). The initial appropriation by 1020 

state entities (Water Agencies or Basin Organizations) of the 1021 

recommendations formulated by regional and national institutions 1022 

often appears insufficient for the local implementation of adapted and 1023 

sustainable management strategies (Fig. 7). A real appropriation of 1024 

existing regulations on coastal GDEs by all local stakeholders, 1025 
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decision-makers and actors in the territory appears essential for the 1026 

preparation of relevant planning or development documents and the 1027 

implementation of appropriate action programs. The elements 1028 

required to define the challenges and perspectives related to GDEs 1029 

must not be a local adaptation of regional recommendations but 1030 

rather a collective elaboration by all the actors concerned. Efforts 1031 

must be made to develop a framework for effective public 1032 

participation at six levels: information, education, consultation, 1033 

involvement, collaboration and capacity building (Das et al., 2019). 1034 

Coastal aquifers are particularly vulnerable to water users conflicts 1035 

(Zepeda Quintana et al., 2018). All water users want to be able to 1036 

benefit from the quality and quantity of water resources they need. 1037 

No user can be abandoned in favor of another, nor can the need for 1038 

environmental waters. Environmental water needs cannot be 1039 

forgotten and must be taken into account in management strategies.  1040 

Sustainable water management thus requires water demand 1041 

management, which must be achieved through agreements and 1042 

collaboration at an appropriate scale. The establishment of a strong 1043 

collaborative processes appears as the only way to guarantee the 1044 

essential groundwater supply to coastal GDEs and their sustainability 1045 

(Boulton, 2005). The management of coastal GDEs must take into 1046 

account its hydrological basin as well as its territorial water 1047 

management unit and all territorial units important for its 1048 

management, i.e. tourist unit, geographical unit, air of influence of 1049 

neighboring cities or migratory bird management (Mermet and 1050 

Treyer, 2001)...  1051 
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Conclusion  1052 

Nowadays, coastal Mediterranean regions suffer from an over-1053 

development of anthropogenic activities which strongly impact the 1054 

groundwater resources and depending coastal GDEs. Although some 1055 

Mediterranean regions have included the protection of GDEs in their 1056 

water management policies, the implementation of an appropriate 1057 

intergraded and collaborative management is often lacking and 1058 

coastal GDEs do not benefit from a particular status due to their 1059 

complexity.  1060 

The preservation of coastal GDEs is subject to the stability over time 1061 

of fresh water supplies (ground and surface water) in sufficient 1062 

quantity and quality. However, the determination of the qualitative 1063 

and quantitative needs of coastal GDEs is difficult to evaluate and 1064 

each coastal GDE is a unique case. Particular attention should 1065 

therefore be paid to the characterization of environmental and 1066 

ecological water requirements. The hydrogeological knowledge 1067 

about the management and behavior of coastal aquifers and GDEs 1068 

must be strengthened. Hydrogeology must be considered as an 1069 

integral component of the coastal GDEs and not a sub-discipline of 1070 

hydrology, as is too often the case at present. The inventory and 1071 

characterization of coastal GDEs must be improved through in-depth 1072 

systemic approaches. To this end, the coupling of hydrogeochemical 1073 

and geophysical techniques, which are inexpensive, seem to 1074 

constitute a relevant strategy. These investigations must be 1075 

supplemented by the identification and evolution of the sources of 1076 

contamination present in the catchment areas. In order to better 1077 

understand the role of groundwater as a vector of pollution, particular 1078 
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attention should be paid to the identification of the main groundwater 1079 

discharge areas and the assessment of contaminant flows and loads. 1080 

The systematic mapping of groundwater vulnerability in the coastal 1081 

areas must be promoted, using methods accounting for both the 1082 

intrinsic and specific vulnerability of groundwater. This kind of data 1083 

must help to develop land-uses and human activities according to the 1084 

groundwater vulnerability. Finally, in the case of effective 1085 

degradation processes, restoration plans should be considered. A 1086 

reflection must be carried out for the definition of relevant indicators 1087 

of the ecological coastal GDEs status. For these environments subject 1088 

to high variabilities, particularly in terms of salinity, there is a 1089 

necessity of developing sensitive indicators for monitoring ecological 1090 

status. Biological indicators seem to be helpful but needs to be 1091 

further and widely developed.  1092 

From a qualitative point of view, the estimation of groundwater 1093 

withdrawals is often very approximate because of the poor 1094 

knowledge of the extraction points.  It seems essential to carry out an 1095 

exhaustive inventory of wells and boreholes in the coastal GDE 1096 

watershed. The implementation of retroactive measures for reporting 1097 

private wells would also allow a better knowledge of the existing 1098 

structures, which are currently not recorded. Regularly monitored 1099 

water quotas for private individuals could also be helpful for the 1100 

qualitative management of the resource.  1101 

At present, the lack of an appropriate definition for coastal GDEs is a 1102 

huge problem. Lack of discussion and consensus between lawyers 1103 

and scientists does not facilitate the establishment of management 1104 

strategies. To be efficient, this definition needs to be the result of a 1105 



44 
 

joint reflection between several disciplines. As showed in this 1106 

synthesis, the transdisciplinary approach between hydrogeology, 1107 

hydrology, social sciences and law is essential to fully understand the 1108 

socio-economic and environmental complexity of coastal GDEs. The 1109 

inventory of coastal GDEs characteristics could help to establish a 1110 

complete and relevant definition of coastal GDEs. In addition to 1111 

involve several discipline, thoughts about coastal GDEs definition 1112 

need to be based on the mobilization of scientist, lawyers but also 1113 

water users and stakeholders. Information, appropriation and 1114 

collaboration are clearly strategic, interdependent points to be 1115 

developed. Local water users and managers must feel concerned by 1116 

the problems related to coastal GDEs to build appropriate and 1117 

sustainable management plans. Without this process, all possible 1118 

efforts can be taken, but their chances of achieving successful results 1119 

will remain low. The creation of permanent mechanisms such as 1120 

water user groups or groundwater forums could be useful. These 1121 

moments of exchange and discussion would also allow managers and 1122 

decision-makers to better understand the role and benefits of coastal 1123 

GDEs. Indeed, evaluation of the ecosystem services is essential for 1124 

valuing the coastal GDEs and decision makers at many levels are 1125 

unaware of the connection between wetland condition and the 1126 

provision of wetland services and consequent benefits for people.  1127 

All water resources in the coastal areas should be managed 1128 

collectively and strategically, in order to maximize use efficiency, 1129 

reduce water use conflicts and avoid over-exploitation. In other 1130 

words, the management strategy must consider the lagoon water 1131 

body, the surrounding wetland and groundwater as an inseparable set 1132 
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of communicating vessels whose nature of exchanges is subject to 1133 

temporal and spatial variations. In the global context of 1134 

unprecedented anthropogenic pressures, hydro-food crises and 1135 

climate change, the consideration given to coastal GDEs represents a 1136 

key issue for the socio-economic and environmental sustainable 1137 

development of many coastal Mediterranean areas. Integrated water 1138 

management strategies that consider environmental needs on an equal 1139 

footing with socio-economic constraints within the coastal 1140 

hydrosystem need to be improved. The ICZM is the management 1141 

strategy that most considers water resources in the coastal zone and 1142 

refers to coastal aquifers as such and specifies a monitoring 1143 

requirement. However, despite the growing consideration for coastal 1144 

aquifers, there are still gaps. It is important to continue to raise public 1145 

awareness of coastal aquifers at the regional level and to integrate 1146 

their specificities into coastal zone management strategies and plans. 1147 

Collaboration between states or countries, sharing of knowledge and 1148 

technology facilitated by the creation of exchange material could also 1149 

contribute to improving the integration of coastal aquifers into local 1150 

guidelines and policies.  1151 

These practical suggestions could help for improving the 1152 

management of coastal aquifers and coastal GDEs. In this way, 1153 

groundwater and coastal water GDEs could really benefit from the 1154 

optimal environmental conditions required to ensure their 1155 

sustainability.  1156 

 1157 

 1158 
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Table 2: Demographic trends and rate of urbanization in the 2321 
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 Lagoons Countries Characteristics Conservation and protection 

status 

Hydrosystem behavior and groundwater 

dependence 

References 

   Surface 

(km²) 

Mean 

depth 

(m) 

Main aquifer formation(s) Hydrological 

watershed 

(km²) 

 Strongly suspected Demonstrated  

1 Mar menor Spain, 

South-East 

135 4.5 5 aquifers: 

Detrital deposits 

Sandston 

Limestone 

Sandy limestone and conglomerate 

Marble 

1200 Ramsar site 

Special bird habitat  

Regional park 

Site of Community importance  

Specially protected area of  

Mediterranean importance 
 

 Studied and 

relatively well 

known 

De Pascalis et al., 

2012; Baudron et al., 

2014; Velasco et al., 

2018; Alcolea et al., 

2019 

2 Thau France, 

South-Est 

75 4 Karstified limestone 280 Special bird habitats 

Natura 2000 

Water Framework Directive site  

 Studied but lack 

of data to 

understand the 

global behavior  

Tournoud et al., 

2006; Fleury et al., 

2007; Stieglitz et al., 

2013; Loiseau et al., 

2014; La Jeunesse et 

al., 2016 
 

3 Biguglia France,  

Corsica 

island 

14 1.2 Detrital deposits 182 Ramsar site 

Nature Reserve 

Special bird habitats  

Natura 2000 

Water Framework Directive site 

 

 Studied and 

relatively well 

known 

Lafabrie et al., 2013; 

Erostate et al., 2018; 

Jaunat et al., 2018;  

Erostate et al., 2019; 

Leruste et al., 2019 
 

4 Venice Italy,  

North-East 

550 1.5 Detrital deposits 1800 Ramsar site  

Natura 2000 

Special bird habitat 

 Largely studied 

and relatively 

well known 

Ravera, 2000; 

Ferrarin et al., 2008; 

Rapaglia et al., 2010; 

Da Lio et al., 2013; 

Mayer et al., 2014 
 

5 Varano Italy,  

South-East 

65 3.5 2 main aquifers: 

Detrital deposits 

 

300  Under-documented  Ferrarin et al., 2010; 

Roselli et al., 2013; 

Fabbrocini et al., 

2017 
 

6 Messolonghi 

central 

lagoon 

Greece,  

North-West 

80 0.8 2 main aquifers: 

Limestone and breccia  

Detrital deposits 

1979 Ramsar site 

National Park 

Important Bird Area 

Natura 2000  
 

Under-documented  Alexakis, 2011; 

Karageorgis et al., 

2012; Stamatis et al., 

2013 

7 Korba Tunisia, 

plain of Cap 

Bon 

3.1 1 Detrital deposits 

 

27 Ramsar site 

Important Bird Area 

 

Under-documented  Kouzana et al., 2010; 

Zghibi et al., 2013; 

Slama and Bouhlila, 

2017 



8 Bizerta Tunisia 128 8 Detrital deposits 

 

380 Ramsar site 

UNESCO-MAB Reserve 

Under-documented  Bouzourra et al., 

2015; PNUE-PAM, 

UNESCO-PHI, 2017 
 

9 Nador Marocco,  

Nord-Est 

115 5 2 mains aquifers:  

Detrital deposits 

 

? Ramsar site 

Nature Reserve 

Site of biological and ecological 

interest 
 

Groundwater contribution 

known but under-studied 

 Maanan et al., 2015; 

Mohamed et al., 

2017; Aknaf et al., 

2018 

10 Coorong Australia, 

South-East 

140 1.8 Limestone 

Sands 

6 Ramsar site  

National Park 

 Studied and well 

known 

Haese et al., 2008; 

Richardson et al., 

2011; Leterme et al., 

2015 
 

11 Langebaan  South Africa 40 3 Detrital deposits and calcrete 

 

? Ramsar site 

National Parks 
 

Under-documented  Flemming, 1977 

12 El Yali Chile 115 0.5 Detrital deposits ? Ramsar site  

National reserve 

 

Groundwater contribution 

known but under-documented 

 Dussaillant et al., 

2009; Vidal-Abarca 

et al., 2011 
 

13 San Diego  California 

(U.S.A) 

42 5 Detrital deposits 146 National Wildlife Refuge Under-documented  Delgadillo-Hinojosa 

et al., 2008 
 

14 Malibu  California 

(U.S.A) 

0.05 ? Detrital deposits 280  Groundwater contribution 

known but under-documented 

 Dimova et al., 2017; 

Hoover et al., 2017 

 



Mediterranean basin  1970 2000 2010 2025 

Whole population (millions) 276 412 466 529 

Coastal population (millions) 95 143 - 174 

Urbanisation rate (%) 54 - 66 - 

 






