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Abstract. Drug delivery systems were developed from coralline hydroxyapatite (HAp) and 

biodegradable polylactic acid (PLA). Gentamicin (GM) was loaded in either directly to PLA 

(PLAGM) or in HAp microspheres. Drug loaded HAp was used to make thin film composites 

(PLAHApGM). Dissolution studies were carried out in phosphate buffered saline (PBS). The 

release profiles suggested that HAp particles improved drug stabilization and availability as well 

controlled the release rate. The release also displays a steady state release. In vitro studies in human 

Adipose Derived Stem Cells (hADSCs) showed substantial quantities of cells adhering to 

hydroxyapatite containing composites. The results suggested that the systems could be tailored to 

release different clinical active substances for a wide range of biomedical applications. 

Introduction 

Tissue engineering and advanced medical technologies have been very effective tools to 

improve the quality of human life. The benefits of bioceramic materials used for the repair and 

reconstruction of disease or damage afflicted areas of the musculoskeletal system have been broadly 

implemented [1]. During the last two decades the development of bioceramic composites capable of 

releasing clinical active materials by reproducible and predictable kinetics has been a clinical and 

scientific endeavour. Drug release systems have been proved to provide outstanding alternative to 

conventional clinical therapies. The advancement in both science and biomaterial design and 

engineering, more sophisticated therapeutic agent release systems have been developed with 

improved capabilities and performances for the treatment of resilient diseases such as 

musculoskeletal disorders and bone related diseases. There are also possibilities to develop drug 

release systems with more efficiency and rational drug delivery platforms featuring up-to-the-

minute technological capabilities [2]. Drug delivery technology presents an interesting 

interdisciplinary challenge for pharmaceutical, chemical engineering, biomaterials and medical 

communities [3]. In general, a biomaterial that will act as a drug carrier must have the ability to 

incorporate a drug, to retain it in a specific site, and to deliver it progressively with time to the 

surrounding tissues. Furthermore, it would be advantageous if the material is injectable or 

alternatively coatable on an implant and most importantly a biodegradable [4] 

Usage of biodegradable materials in designing drug release devices addresses these 

challenges by providing outstanding capability of performing localized and controlled delivery of 

drugs at different parts of the host body. Biodegradable polymer films loaded with gentamicin have 

been developed to serve as “coatings” for fracture fixation devices and prevent implant-associated 

 doi:10.4028/www.scientific.net/



infections [5]. The use of biodegradable polymer films is advantageous due to its propensity to 

uptake and release antibiotics, as a consequence of its degradability. Although their drug release 

rates are high, they could be tailored to form biocomposites with different biodegradability rates by 

incorporating other materials. Biodegradable polymer-bioceramic composites suits this hypothesis a 

great deal because of the bioactive nature of ceramic materials, specifically calcium phosphate 

based materials, which promotes bone tissue growth. Incorporation of bioceramics derived from 

coral in the polymer will improve not only controlled drug release but also bioactivity and tissue 

regeneration, especially in orthopaedic and maxillofacial applications. 

This research is aimed at developing and testing gentamicin (due to its widely used for the 

treatment of bacterial infection)  loaded hydroxyapatite particles (HAp) within thin film polylactic 

acid (PLA) biocomposites as slow drug delivery devices for the treatment of bone and implant-

related infections. 

Experimental 

Materials. Coral skeleton samples were obtained from the Great Barrier Reef shoreline, QLD 

Australia. Gentamicin sulfate, Clodronate (Dichloromethylenediphosphonic acid disodium salt), 

Chloroform diammonium hydrogen phosphate (NH4)2HPO4, 98%), and sodium hypochlorite 

(NaClO), were obtained from Sigma Aldrich, Castle Hill, Australia. 

Methods. Coralline materials were hydrothermally converted to hydroxyapatite based on the 

procedures described in [6, 7]. Drug loading and in-vitro drug release from PLAHAp composites 

followed the procedures described in [6, 8]. Bioceramic composites were produced by solution 

casting method. Briefly, the film composites were loaded with 10 % (w/w) and the release was 

studied in buffer solutions at physiological conditions. Drug release study from PLA thin film 

composites was conducted under SINK conditions in phosphate buffered saline (PBS) ((0.1 M, 

Na3N 0.1%, pH 7.4) at 37 ± 0.1 °C) for gentamicin and in Tris-HCl buffer ((0.1 M, pH 7.4) at 37 ± 

0.1 
o
C) for clodronate (because PBS will interfere with 

31
P quantification) in a temperature 

controlled water bath shaker running at constant speed of 100 rpm. Each sampling time had its own 

independent samples under the same conditions and experiments were respectively terminated after 

sampling. Gentamicin concentrations in the solution were determined by Cary 100 UV-Vis 

spectrophotometer (Agilent Technologies, Victoria, Australia, Cary Series UV-Vis 

Spectrophotometer) at the maximum absorbance of gentamicin-o-phthaldialdehyde complex, λmax = 

332 nm, using procedures described in [5, 9]. Ophthaldialdehyde reagent was prepared by 

dissolving 2.5 g ophthaldialdehyde in 62.5 mL methanol and adding with 3 mL 2-

hydroxyethylmercaptan to 560 mL 0.04 M sodium borate in distilled water. 2 mL gentamicin 

solution, 2 mL o-phthaldialdehyde reagent were reacted for 45 min at room temperature. The 

absorbance, which corresponds to the gentamicin concentration, was then measured at 332 nm. 

Stem Cell attachment. Adult hADSCs tissue culture was conducted under asceptic sterile 

conditions in a class II laminar flow hood (Clyde-Apac BH2000 series). hADSCs were cultured till 

sub-confluence at  5x10
4
 cells/cm

2
 T25 culture flask (Nunc) in D-MEM Glutmax/F12 (Gibco) with

10% FBS (Invitrogen) and incubated at 37
o 

C at 5% CO2. Subsequently cells were passaged and

diluted to for the seeding density 1x10
4
 cells/cm to be placed on PLA and PLAGM for 10 days for

continual growth and adherence test. Non-adherent cells are eliminated by replacing the media 

every 2 days for normal cellular growth. At 10 days media was decanted, cells washed in PBS, 

fixed in 4% formalin, washed in di-ionized water (dH2O) and dehydrated for SEM. 

Results and Discussion 

Drug release from PLA and PLA-HAp composite is not only due to PLA degradation but also 

the diffusion of the drug entrapped into the polymer matrix, which plays an important role 

depending on the extension of the experiments. Fig.1 shows drug release profiles composed of five 

stages for PLAGM and PLAHApGM thin film composites. It is possible to appreciate different 

shapes of the release curves depending on the type of drugs and release medium. The release time 



was also enough to appreciate significant de gradation of the polymer matrix as shown in Fig. 2. The 
assessment of kinetic release from drng delive1y devices provides the confidence to predict the 
release behaviour before the release systems are realized. The release kinetic study was assessed by 
model dependent method. Based on number of kinetic models available in literature, the selected 
model described the overall release of drng from the dosage fonns. 
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Figure 1: Release profile of gentamicin from PLAGM and PLAHApGM thin films 

In the release profiles of drngs from degradable polymer matrix the most sustained release paii is 
by degradation of the polymer matrix. Table 1 shows time range of each release stage for 
gentamicin (these values ai·e an approximation considering the shape of the release profiles, the 
final time of one stage occurs with the initial time of the next one). Each stage time goes with the 



assumptions that the dmg is homogeneously distributed in the matrix and therefore homogeneously 
release of the drngs from the matl'ix. 

Table 1: Specific time frames for different release stages and their numerical values for gentamicin 
(Five stages) 
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Figure 2: SEM picture of gentamicin loaded PLAGM and PLAHApGM before and after three 
weeks of drng release in PBS revealing degraded m01phologies. 

Table 1: Modelled dissolution characteristics of the mean dissolution profile 
Model Model expression PLAGM PLAHApGM 

Korsmeyer-Peppas F = ktn r2 0.992 0.962 
n 0.282 1.315 

The release of gentamicin from these devices seem to follow semi-empirical equation describe 
by Korsmeyer-Peppas model. Neve1theless, the 'n' coefficient obtained for PLAGM and 
PLAHApGM (Table 2), indicates that somehow a number of different mechanisms might control 
the release. Thus, the release of gentamicin contained from PLA matrix seems to be mainly 
contrnlled by diffusion whereas for PLAHApGM is possibly mixture of diffusion, super case II 
mechanism and possible combination of other mechanisms of trnnsp01t which control drng release. 

Fig. 3 presents SEM pictures showing in vitro studies using stem cell investigations. The 
m01phology and attachment of (hADSC) seeded on PLA thin film composites. The results show 
high density of cellular attachment on hydroxyapatite containing composites such as PLAHAp and 
PLAHApGM samples but none on PLA and PLAGM (not shown) composites. PLA has an alkyl 



pendant group (CHr) in its backbone, which makes the polymer more hydrophobie, and tends to 
denaturalize proteins responsible for cell binding and adhesion, while hydroxyapatite is 
osteoconductive material. Gentamicin has NH2- group, which with CH3- on the polymer backbone 
reduce any chance for protein binding on the surface. This was evident because these samples (PLA 
and PLGM) do not show any cell on their surfaces. 
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Figure 3: SEM pictures of stem cell cultured PLA thin film composites for 10 days, showing 
attachment and morphology of cells. 

Figure 4: SEM picture of cell cultured samples coated with polylysine a) PLA b) PLAGM 



In order to confirm the lack of protein adsorption on the surface of PLA and PLAGM 

samples, we coated them with poly-L-lysine (Sigma Aldrich, Australia) as an attachment factor to 

enhance the electrostatic interaction between negatively charged ions of the cell membrane and 

positively-charged ions of the culture surface by increasing the number of positively-charged sites 

available for cell binding. The results suggest that cells were able to attach on the PLA and PLAGM 

surfaces after coating in less than 24 hours (Fig. 4). 

Conclusions 

Controlled drugs release successfully achieved for gentamicin containing composites with 

defined dissolution kinetics. This in-vitro study shows the potential of PLA-bioceramic film 

composites as effective local drug delivery devices for biomedical applications. In addition, they 

can generally be used in surgery to prevent infections caused by bacterial.  
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