
HAL Id: hal-02430041
https://hal.science/hal-02430041

Submitted on 7 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CNN-Based Accidental Detection in Dense Printed
Piano Scores

Kwon-Young Choi, Bertrand B. Couasnon, Yann Ricquebourg, Richard
Zanibbi

To cite this version:
Kwon-Young Choi, Bertrand B. Couasnon, Yann Ricquebourg, Richard Zanibbi. CNN-Based Acci-
dental Detection in Dense Printed Piano Scores. 15th International Conference on Document Analysis
and Recognition, Sep 2019, Sydney, Australia. �hal-02430041�

https://hal.science/hal-02430041
https://hal.archives-ouvertes.fr


CNN-Based Accidental Detection in Dense Printed Piano Scores

Kwon-Young Choi, Bertrand Coüasnon, Yann Ricquebourg
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Abstract—The recognition of mid-18th to mid-20th century
piano scores presents segmentation challenges caused by touch-
ing and broken symbols produced by imprinting techniques
and time degradation. We present a new notehead accidental
dataset containing 2955 images from dense and damaged
piano scores. We address this detection problem with very
small training samples using a simple Spatial Transformer
(ST)-based Convolutional Neural Network detector improved
through bootstrapping and contextual information, and more
powerful deep learning detectors (Faster R-CNN, R-FCN, and
SSD) with transfer-learning on the COCO dataset. We trained
all our detectors using 5 fold cross-validation and obtain
98.73% mean Average Precision (mAP) for an Intersection over
Union (IoU) threshold of 0.75 with our best detector. Our ST-
based detector obtains a slightly lower mAP of 94.81%, but
runs 40 times faster, and uses 18 times less memory.

Keywords-Optical Music Recognition; Deep Learning; Sym-
bol Detection; Data Augmentation

I. INTRODUCTION

The recognition of mid-18th to mid-20th century dense
and damaged piano scores presents unique segmentation
problems of touching and broken music symbols as shown
in Figure 2 due to their imprinting techniques and time
degradation. Segmentation and classification of music sym-
bols is an early task of the pipeline and should be highly
precise and reliable because a segmentation or classification
error could propagate and ruin the latest stages like music
notation reconstruction. The segmentation of music symbols
is the most challenging task because of the lack of previous
work/datasets to test and compare approaches. With the
introduction of recent deep learning architectures for object
detection, we can now apply an end-to-end approach to
segmentation and classification of music symbols. However,
deep learning architectures generally need a lot of annotated
training, which we do not have for old printed scores.

In this work, we consider the problem of detecting a
single accidental symbol with the a priori knowledge of the
position of the associated note head (Figure 1). We address
this task using a new Spatial Transformer-based detector that
is both small and fast, and compare this with three state-
of-the-art object detectors . Our objective is to train these
detectors with a limited number of annotated samples and
to design methods general enough to be easily adapted for
other symbols.

(a) (b) (c) (d)

Figure 1. Task definition: detector should predict the position (red box)
and class of an accidental (flat, natural, sharp or no accidental (rejection))
using raw image pixel and possibly the centroid of the note head (blue
cross).

In summary, we describe the semi-automatic generation
of ground-truth data for our task in Section III-A. We
then present two ways of tackling the problem of training
deep detectors with limited data. In Section III-B, we
use a relatively simple detector with fast inference time
but low out-of-the-box accuracy, and improve its results
using bootstrapping techniques and contextual information.
In Section III-C, we use three different state-of-the-art object
detectors to produce highly precise accidental detectors
using transfer learning. Finally, we evaluate and discuss the
various tradeoffs of speed vs accuracy for different detectors
in Section IV and Section IV-C, and conclude in Section V.

II. RELATED WORK

In this Section we review the field of OMR with a focus
on symbol detection and classification. We also present
the grammar-based DMOS system for generating docu-
ment recognition systems - we used this system to semi-
automatically generate the dataset published with this work.
Finally, we review the Spatial Transformer network and
state-of-the-art detectors for object detection.

A. Optical Music Recognition

OMR studies by [1] or [2] typically present the
OMR workflow as multiple consecutive stages: image pre-
processing, staff detection with possible removal, music
symbol segmentation/classification and finally music nota-
tion reconstruction. However, many works reorganize, merge
or remove some of these stages.

Preprocessing and Staff Line Detection: Existing work
in OMR tends to use common document pre-processing
operations. Binarization is used to isolate connected com-
ponents from the background, and often score pages are
skew-corrected and have noise removal applied. Next, staff



line detection has been performed using combinations of
filters, pixel projection profiles, run-length analysis, contour-
line tracking and graph path search. The height between two
staff lines is an important feature in OMR, and this interline
distance is estimated for later use. Recent work like [3] has
used Convolutional Neural Networks (CNNs) to do pixel-
wise classification to locate staff lines.

In this work, we use a graph-based Kalman filtering
method [4] to detect and remove staves from the original
image and is able to process broken or curved lines accu-
rately. The symbol detection methods that we present are
generally robust to remaining staff removal artifacts.

Symbol Detection: Music scores are constructed using a
lot of relatively simple shapes like lines and blobs in a com-
plex bi-dimensional structure. This fact has pushed OMR
systems to use simple extraction algorithm like graphical
primitive detection or connected components, and then use
complex adhoc rules to merge or over-segment primitives
[1]. The classification of music symbols can be done using
a variety of techniques like simple filters, template matching
or classifiers like HMM, neural network, K-NN and SVM
as presented in [5].

More recently, convolutional-based neural network detec-
tors [6] that merge the segmentation and classification steps
have been applied to a variety of dataset like the newly
annotated handwritten dataset of modern music, the MUS-
CIMA++ dataset [7] or on mensural music scores by [8].
Fully convolutional neural networks have also been used
by [9] and [10] which allows for pixel wise segmentation of
music symbols.

Reconstruction: Finally, the last step of the recognition
process is to reconstruct the music notation and validate the
structure produced. [2] shows that because of the strong
structure and graphical rules of music notation, it makes
sense to model this organization using a grammar. Most of
these methods are used at the end of the OMR pipeline, to
check the validity of the recognized music structure. One
exception is the DMOS method described in Section II-B,
where the grammar drives both the recognition and valida-
tion of the structure produced.

We believe that low-level symbol segmentation problems
caused by the density, noise or pre-processing of a music
score (see Figure 2) should not be part of the grammar for an
OMR system, as it is too complex to be modeled explicitly.
We wish to devise a method that delegates the segmentation
task to a statistical model, in our case a Convolutional
Neural Network (CNN) designed to do both segmentation
and classification. We developed our method with the goal
that it could be applied to any kind of structured document.

B. The DMOS Syntactical Method

The DMOS syntactical method was introduced by [11],
and is a general off-line method for recognizing structured
documents. The first version of the system included a

(a) Touching Symbols (b) Broken Symbols

Figure 2. Hard segmentation problems on accidentals

grammar for musical scores. DMOS uses attributed two-
dimensional grammars to define the symbolic and graphical
representation of documents, producing constituent parse
trees. The contextual information produced by the grammar
can also be used to restrict the search space of our detector,
as explained in Section III.

The hierarchical graphical structure produced, for example
a simple music note as illustrated in Figure 3, is described by
a set of rules that can search through the use of backtracking
and check the coherence of different note elements. This
ability to pinpoint inconsistencies can be used to efficiently
produce semi-annotated data by reducing the amount of
manual verification. Although the grammar is tailored to deal
with complex polyphonic orchestral scores, segmentation
had to be addressed using dedicated rules, which are difficult
to produce and maintain. This detection of music symbol is
the task we are proposing to resolve using Convolutional
Neural Network-based detectors.

(a) Stem (b) Note head (c) Accidental (d) Alignement

Figure 3. Grammar workflow. Recognized elements are red. Violet squares
are zones where recognizable elements are searched for. The construction
of a musical note starts (a) find a potential stem, (b) two possible locations
(top-right and bottom-left) are searched for a note head, (c) a potential
accidental is searched at the left of the note head, (d) an alignment check
is done between the note head and accidental.

C. Convolutional Based Object Detector

In this work, we use two different approaches to detect a
single accidental using a small labeled training sample: 1)
a novel Spatial Transformer-based network, and 2) state-of-
the-art general object detectors (Faster R-CNN, R-FCN, and
SSD) using transfer learning.

Spatial Transformer: First, we use a simple convolu-
tional neural network (CNN) architecture based on Spatial
Transformer (ST) networks proposed by [12]. The ST net-
work is composed of two stacked CNNs: a localization net-
work and a classification network. The localization network
has the task to output a 2D affine transformation for a given



input image. The Spatial Transformer Layer applies this
transformation to the input image, that will be then fed to the
classification network. In the original work of [12], the ST
was intended as an attention model and not as a localization
model. However, in our context of single symbol detection,
we view this affine transformation as an opportunity to build
a very simple music symbol detector.

Faster R-CNN: The Faster R-CNN [13] is one of the pi-
oneer object detection architectures in Deep Learning and is
now widely used in very diverse tasks. The detection process
happens in two steps. First, in a Region Proposal Network
(RPN) stage, a feature extractor (VGG-16 or resnet 101)
is used to process input images. Then, at some intermediate
layer of the feature extractor, anchor boxes are used in a slid-
ing window manner to predict class agnostic box proposals.
This RPN is trained using a multi-loss function taking into
account both localization and objectness score produced by
the RPN. Secondly, some of these proposals (usually 300)
are cropped from the feature layer used to predict them, and
the rest of the feature extractor is processed. Unlike the RPN
stage, the second stage outputs class-specific bounding boxes
refinement for each of the proposals. Finally, a similar multi-
task loss is used to optimize the second stage detection.

R-FCN: The R-FCN detector proposed by [14] is an
adaptation of the Faster R-CNN architecture designed for
even faster detection. While the Faster R-CNN avoids a
lot of computation by sharing a single network for both
RPN and full detection stages, it still needs to process each
region proposal until the end of the feature extractor. That
is why the R-FCN architecture proposes to extract region
proposals only at the last layer of the feature extractor
and therefore reduces the amount of computation for each
proposal. They also propose a position-sensitive cropping
mechanism using position-sensitive score maps in order
to retain the localization information for each proposed
region. R-FCN is much faster than the Faster R-CNN, while
maintaining comparable accuracy.

SSD: The third object detector we propose to use is the
Single Shot Detector (SSD) [15]. Unlike the Faster R-CNN
and R-FCN that use two stage predictions, the SSD archi-
tecture predicts directly class and bounding boxes of objects
from a single pass of the feature extractor. This model is
typically significantly faster than two stage detectors like
Faster R-CNN and R-FCN.

III. METHODOLOGY

In Section III-A, we propose a new dataset for detecting
accidental symbols. Using this dataset, we propose two
main approaches of producing a CNN based detector with
enough precision to be used in an OMR system: a contextual
approach in Section III-B and an end-to-end approach in
Section III-C. An overview of our different detectors is
presented in Table II along with the main experimental
conditions such as transfer learning from the COCO dataset,

Table I
DATASET PRODUCED BY THE XXX PIPELINE DRIVING A SIMPLE

CONNECTED COMPONENT BASED SEGMENTATION, A SIMPLE MUSIC
SYMBOL CLASSIFIER AND A MANUAL CHECK

No accidental (Reject) Natural Sharp Flat Total

968 968 777 242 2955

detection of a single object or multiple objects, use of
the note head centroid as an input feature and use of
bootstrapping to augment training data.

A. Dataset Construction

OMR surveys declare that the recognition of contempo-
rary printed music scores is in practice already done by state-
of-the-art OMR system. We believe that this statement does
not concern more ancient printed music of the romantic and
classical period, from around 1750 to 1950 period. These
music scores are typically produced using engraving tech-
niques that present very different graphical characteristics
and segmentation problems as opposed to scores produced
using computer software. That is why we propose a new
small dataset for single accidental detection in dense and
noisy piano scores1.

We used three different scores from the composers
Friedrich Kuhlau, Felix Mendelssohn, and Richard Wagner
edited in the 19th century. The constitution of this dataset
was semi-automated by using DMOS to analyze the layout
of the score. Using the produced structure, we were able to
extract potential locations of accidental by looking to the left
of note heads. Connected components in the location were
then classified using a simple CNN based classifier trained
on isolated printed music symbols. Finally, we manually
verified every potential accidental symbol, obtaining 2955
examples containing three accidental classes and a reject
class (for when a note has no accidental), see Table I. In
Figure 1, we show how we position our detection window,
with the target notehead on the right side, using four times
the size of the space between stafflines as estimated by
DMOS (the interline distance) as the window side length.

Given the omnipresence of the target note head, we
require that the detector localize the note head if there is
no accidental associated with it. This allows us to define
rejection using a concrete symbol detection goal, rather than
trying to detect missing accidentals in background noise.

Bootstrapping Strategies: Having a small initial num-
ber of training examples, we use a translation-based data
augmentation method, randomly moving the window fram-
ing the accidental (or note head for rejection). We propose
four different variations shown in Figure 5. The Figure
shows how we set boundaries on possible positions for
randomly located windows. The unconstrained model in
Figure 5a requires the accidental, or note head for rejection,
to always be entirely in the image. We avoid introducing the

1https://www-intuidoc.irisa.fr/en/choi accidentals/

https://www-intuidoc.irisa.fr/en/choi_accidentals/


Table II
ARCHITECTURE AND DATA USAGE FOR ACCIDENTAL DETECTORS. THE

TABLE SHOWS WHETHER DETECTORS USE TRANSFER LEARNING, CAN
DETECT MULTIPLE OBJECTS, MAKE USE OF THE ASSOCIATED

NOTEHEAD LOCATION, OR USE BOOTSTRAPPED SAMPLES. VERSION
LABELS (V1, V2, . . . ) DIFFERENTIATE DIFFERENT EXPERIMENTAL

CONDITIONS FOR THE SAME DETECTOR AND ARE REUSED IN TABLE III.

Detector Transfer Learn. Mult. Objs Note Head Bootstrap

CNN + ST v1
CNN + ST v2 4
CNN + ST v3 4
CNN + ST v4 4 4

Faster R-CNN v1 4 4
Faster R-CNN v2 4 4 4
Faster R-CNN v3 4 4 4

R-FCN 4 4
SSD 4 4

vertical displacements not present in the original data using
the vertical model in Figure 5b, where the window must be
vertically centered around the centroid of the note head. We
still allow a small range of 10 pixels of vertical variation.

The note head being a strong visual cue linked to the
accidental, we propose a third generation model called
note head (see Figure 5c) where at least half of the current
note head should always be inside the sampling window.
Finally, we combined the vertical and note head model
constraints (the vertical note head model in Figure 5d).
For each of these bootstrapping strategies, we augment the
dataset in different quantities: 25k, 50k, 100k, 200k, 400k.

We also use this data augmentation opportunity to balance
our dataset and over-sample less frequent classes like the flat
and natural. Our previous use of the centroid position of the
current note head can now be used to distinguish between
multiple accidentals, and help the network to pick the right
accidental to localize anywhere in the image.

B. Modified Spatial Transformer Detector

We modify a Spatial Transformer Network to construct
an accidental detector as shown in Figure 4. We use only
four parameters for affine transformations instead of the
original six in [12] by zeroing out the two shearing pa-
rameters to produce axis-aligned bounding boxes. The main
modification of the ST architecture is the forwarding of
the affine transformation produced by the initial localization
network to the new multi-task network that produces both
classification and a localization correction for a symbol. This
localization correction is added to the initial localization to
produce the final detection. Localization and classification is
learned jointly using a weighted multi-task loss 1 composed
of a mean squared loss for the localization Lreg and cat-
egorical cross-entropy for classification Lcls. A weighting
coefficient λ is used to normalize the localization loss with
the classification loss.

L(t, tcorr, p) = Lcls(p, p
∗) + λ · Lreg(t+ tcorr, t

∗) (1)

Here, p and p∗ are respectively predicted class and
ground-truth class. t, tcorr and t∗ are respectively the
initial transformation produced by the localization network,
the transformation correction produced by the multi-task
network and the ground-truth transformation.

Use Of Contextual Information: To this localization
and multi-task network, we propose an improvement in order
to use more contextual knowledge available during a typical
OMR workflow. Knowing that the position of the note
head is strongly correlated to the position of the accidental,
we provide this coordinate as an input feature using two
additional neurons in the first feed-forward layer of the
localization network and multi-task network. Similarly, the
affine transformation produced by the localization network
is forwarded to the first feed-forward layer for the multi-task
network to provide more contextual information.

We chose the origin to be the upper left corner of the
window and normalize the coordinates using the size of the
window, that is the bottom right corner has a coordinate
of (1, 1). In the original training samples, every note head
centroid will have the same coordinate (1, 0.5), because the
window is positioned relative to the note head.

C. Multiple ROIs Object Detector Approach

Instead of specializing our detection model to the data
we want to process, we show in this section the use of more
complex and general CNN based detectors like the Faster
R-CNN, R-FCN and SSD. These detectors typically extract
multiple Region Of Interests (ROIs) from the input image
and make either two step detection (Faster R-CNN and R-
FCN) or single step detection (SSD). This strategy has the
advantage of dramatically improving detection precision at
the expense of adding a lot of computation, as discussed
in Section IV-C. We use the official implementation of [16]
that can be used to train and compare Faster R-CNN, R-
FCN and SSD models. For the Faster R-CNN and R-FCN
models, input images are typically scaled to 600 pixels on
the shorter edge while keeping a maximum width or height
of 1024 pixels. The SSD models only takes fixed size input
images of 300x300 pixels. We propose to reuse our cropping
strategy presented in III-A for the input of the network. This
strategy produces relatively small images of around 130x130
pixels. However, we note that the up-sampling to the normal
input size of the different object detector models does not
deteriorate the image like a down-sampling strategy and it
also allows us to use umodified Resnet 101 and MobileNet
v1 feature extractors, without having to change ratio and
scales of anchor boxes.

Faster R-CNN: Our objective is to build the most
precise music symbol detector possible in order to minimize
errors early in the OMR pipeline. That is why we use the
Resnet 101 feature extractor that produces excellent accuracy
while providing pre-trained weights on the Common Objects



Figure 4. Accidental detection using a Spatial Transformer (ST). The localization network takes an 80x80 image as input, and produces an axis-aligned
bounding box represented by an affine transformation in 4 outputs nodes. The sub-image in the bounding box, resized to 40x40 pixels, is then classified
by the Multi-task network into four classes III-A. The Multi-task network refines the output of the Localization network by producing offset for theta. We
train the whole architecture end-to-end using a weighted multi-task loss composed of a classification loss and localization loss.

(a) unconstrained (b) vertical (c) notehead (d) v notehead

Figure 5. Four randomized sample bootstrapping techniques. The red
square shows possible areas where the blue square, which is the sampling
window, can be positioned. The green zone is always inside the blue
sampling zone.

in Context (COCO) dataset for both Faster R-CNN and R-
FCN models. The COCO dataset is a large object detection
dataset containing around 200K images with 1.5 million
object instances and is currently one of the major dataset
used to train and evaluate object detection models. The
ability of using pre-trained weights is essential because
our dataset of 2955 examples is far too small to train
these complex architectures from scratch. By using transfer
learning, we can reduce over-fitting and benefit from the
start of powerful feature extractors learned on the COCO
dataset. It is therefore a way for us to reduce the amount of
training data needed to produce an accurate detector.

Using the Faster R-CNN, we also propose to combine
this complex object detector architecture with our previous
propositions of bootstrapping and concatenation of contex-
tual information (section III-B). We experiment using the
best performing bootstrapping method, which is vertical as
shown in Figure V, in order to augment the number of train-
ing samples. In combination with the bootstrapping method,
which could lead to a confusion for the object detector
of the correct accidental to localize, we concatenate the
(x, y) coordinate information of the center of the note head
to the first fully-connected layer after the crop and resize
operation of the selected ROIs. Originally, the coordinates
of the center of the note head are relative to the top left
corner of the original image and scaled relatively. Because
of the crop operation of ROIs, we duplicate the note head
centroid position of one dataset example for each ROI and
translate and rescale the coordinate relatively to the cropped
area. The Faster R-CNN, R-FCN and SSD, are trained using
the classical multi-loss function, combining a classification

loss Lcls (Softmax) and localization loss Lreg (Smooth L1):

L(ai, I) = Lcls(pi, p
∗
i ) + λ · [ai > 0] · Lreg(ti, t∗i ) (2)

For each anchor ai of image I , we search for the best
matching predicted box ti. If such a box exist, ai is assigned
to be positive and enable the localization loss Lreg. pi and
p∗i are respectively the predicted class and the ground-truth
class, t∗i is the ground-truth bounding box associated with
the anchor ai. Here, λ = 2 meaning that the localization
loss has twice as much weight as the classification loss. All
other parameters are left to their default values.

R-FCN: R-FCN is similar to the Faster R-CNN except
for in how the ROIs are computed and extracted from the
feature extractor. This led to a significant speed-up as shown
by [16] and our own results in section IV. The loss function
is the same as the Faster R-CNN, see equation 2.

SSD: By doing detection in single step fashion, the
Single Shot Detector is able to produce multiple detection
with much faster speed than the Faster R-CNN and the R-
FCN. We also use a different, more lightweight, feature
extractor known as MobileNet v1. We resize all input images
at 300x300 pixels as the model does not accept variable
size input. No bootstrapping and contextual information was
used for the R-FCN and SSD detectors. We use the same
multi-task loss function as the Faster R-CNN, but use a
Weighted sigmoid function for the classification loss. All
parameters are left by default and use α = 1 meaning that
both classification and localization loss has the same weight.

D. Training Protocol

Contextual Bootstrapping Approach: The training of
our Spatial Transformer architecture, shown in Figure 4,
used in our contextual bootstrapping approach is done in a
single end-to-end approach using a multi-task loss function
composed of a categorical cross-entropy loss for classifi-
cation and mean-squared error loss for localization. The
normalization of the two losses is done by multiplying the
localization. After a quick grid search for this parameter
in {1,5,10,15,20}, the best results were obtained using
a value of 20. The network is trained using the Adam
backpropagation algorithm with a learning rate of 0.0001
and a batch size of 50.



Multiple ROIs Object Detector Approach: For training
the Faster R-CNN, R-FCN and SSD models, we mainly
reuse the recommended parameters by [16]. We chose to
use pre-trained weights on the COCO dataset as mentioned
before in section III-C for all feature extractors used: Resnet
101 and MobileNet v1. We train the Faster R-CNN and R-
FCN with SGD configured with a learning rate of respec-
tively 0.0001 and 0.0003. For the SSD, we use RMSProp
with a learning rate of 0.004 and a batch size of 24.

Cross-Validation: Our dataset consists only of 2955
original images with very imbalanced classes. We do a 5
fold cross-validation in order to test our different approaches
to produce reliable results. We implement this strategy by
splitting the original dataset of 2955 images into 5 folds of
∼593 examples. We iterate 5 times and each time we choose
a different fold to be the testing fold and use the remaining
4 folds for training. In the context of bootstrapping as seen
in section III-B, we make sure that the data augmentation
only operates on the training folds and happens only after
the cross-validation splitting is done. That way, there are no
possibilities that different bootstrapped images coming from
the same original image are present in both training and
test set. Using this cross-validation method, we therefore
propose both the mean and standard deviation for every
results presented in the next section.

IV. RESULTS

Using the cross-validation protocol described in the pre-
vious section, we evaluate our detectors using the mean
Average Precision (mAP) metric proposed by the PASCAL
VOC Challenge in [17]. This metric allows us to jointly
evaluate classification and localization accuracy and com-
pare the impact of bootstrapping of our ST-based detector
in Table V. We also compare with state-of-the-art detectors
in Table III. However, we make two small modifications to
this metric. The mAP metric uses an IoU threshold in order
to decide if a detection is a True Positive (TP) or a False
Positive (FP). It is common to use 0.5 as the IoU threshold
for object detection. In our context of precise music symbol
detection, we propose to add a second threshold of 0.75,
which is much more strict and more representative of the
level of precision we want to obtain. Also, rejection (i.e.,
the absence of any detection target) is not considered in the
original mAP metric. That is why we propose to ignore the
localization if the model correctly predict the input image
to be a rejection (no accidental). Although, we define our
rejection task to localize the note head, our objective is to
give the network something stable to localize in order to
simplify the rejection.

A. Detector Comparison

Using the mAP metric, Table III shows the performance
of our different approaches. We can see that results are very
good with an mAP of ∼99% with an IoU threshold of 0.5

Table III
RESULTS COMPARING THE BEST SPATIAL TRANSFORMER (ST) BASED
DETECTOR, FASTER R-CNN, R-FCN AND SSD. RESULTS SHOWN ARE

MAP (IN %) WITH AN IOU THRESHOLD OF EITHER 0.5 OR 0.75. SEE
TABLE II FOR AN OVERVIEW OF EACH DETECTORS.

Detectors mAP with IoU >0.5 mAP with IoU >0.75

µ(%) σ(%) µ(%) σ(%)

ST v4 97.25 1.68 94.81 2.99

Faster R-CNN v1 98.73 0.94 98.34 0.73
Faster R-CNN v2 98.85 0.67 98.65 0.59
Faster R-CNN v3 86.91 3.79 84.80 3.86

R-FCN 99.17 0.30 98.73 0.40
SSD 98.93 0.67 97.81 0.92

Table IV
SPEED AND MEMORY CONSUMPTION OF THE ST BASED DETECTOR,
FASTER R-CNN, R-FCN AND SSD. MEASURES WERE TAKEN ON A

NVIDIA GPU K80.

Detectors ST SSD R-FCN Faster R-CNN

Speed (ms/image) 2 14 80 180
Memory (Mb) 260 300 4800 4800

except for our ST detector which only performs at ∼97%.
Using an IoU threshold of 0.75 more clearly distinguish the
detectors and place first the R-FCN with a mAP of 98.7%,
then Faster R-CNN followed by SSD and finally the ST
based detector. These results show the superiority of using
multiple ROIs generated from different part of the images
instead of a single ROI from the whole image.

However, more complex detectors come with additional
overhead, as shown in Table IV. The Faster R-CNN is about
90 times slower than the ST based detector, and takes about
18 times more memory. Given that this detector will be
intensively used by the OMR system (more than thousand
of calls by page of music score), using a Faster R-CNN will
provoke a significant slow-down of the recognition process.

B. Impact Of Bootstrapping And Contextual Information

In the case of the ST based detector, we found that the
augmentation of training data almost always leads to better
localization as shown in Table V. Another interesting obser-
vation is that different sampling strategies led to different
results. The unconditional inclusion of the note head in the
sampled image does not lead into an improvement, which
seems to correlate with the property of translation invariance
found in classical CNN architecture based on convolution
and pooling operation. We also found that reducing the
vertical displacement of the sampled images relatively to the
vertical position of the note head lead to better results than
allowing an unconstrained positional sampling. This seems
to confirm our starting hypothesis that introducing variation
in a very stable characteristic of our data does not help the
ST based detector to converge.

In case of the use of the Faster R-CNN, we found that
bootstrapping techniques actually hurt the precision of the
detection. To better analyze this result, we divided the
dataset into four categories: single accidental where only



one accidental is visible in the image, multi accidental where
multiple accidentals are visible, reject without accidental
where no accidental are visible and finally reject with acci-
dental where an accidental is visible in the image but should
not be detected as it is not associated with the correct note
head. We found that when using bootstrapping the results for
both multi accidental and reject with accidental decreased
significantly: 11% decreased for mAP with IoU > 0.5 and
17% decreased for mAP with IoU > 0.75. Our conclusion
is that the architecture of the Faster R-CNN, designed
for multi-object detection with strong translation invariance
using the anchor boxes mechanism, is not suitable to be used
in combination with bootstrapping for our particular task of
contextual detection.

Again, for the ST based detector, we found that the use
of contextual information like the centroid position of the
current note head always helps the detector improve the
detection results. In contrast, this add of information for the
Faster R-CNN did not change anything to the results.

Finally, for the ST based detector, combining bootstrap-
ping techniques and contextual information lead to an im-
provement of 9.3% mAP for an IoU threshold of 0.5 and
30.8% mAP for an IoU threshold of 0.75 (line 1 and 6
comparison in Table V). In the contrary, for more complex
detectors like the Faster R-CNN, the use of contextual
information or bootstrapping techniques did not improve the
already very good results.

C. Discussion

After seeing the results of our experiments, we show the
clear superiority of the Faster R-CNN and R-FCN for the
task of detecting an accidental. However, we also propose
less powerful models like the SSD and ST based detector
for having more efficient and faster inference time for less
accuracy. Also, if we consider using semi-supervised or
unsupervised architecture in order to resolve the detection of
music symbols, the Spatial Transformer should be simpler
to integrate as it was designed as an attention model and
integrates in any kind of neural network architectures.

In regards of the full OMR task, we only show here how
to resolve a small subset of the pipeline. Future works will
be oriented towards two main points: extend detection to
other symbols, further reduce the number needed of training
samples and propose a new corpus of dense and complex
orchestral printed scores.

We plan to extend the detection of music symbols in a
bottom up fashion, first adding multiple note heads detec-
tion and then gracefully integrate accidentals, followed by
articulation marks, ornaments. . .

We also have done some preliminary experiments by
further reducing the quantity of training samples to 1/5th
of what is used in this work and the Faster R-CNN, R-
FCN and SSD models show only a small degradation of the
results. More investigation is needed in order to characterize

the relation between the accuracy of the detectors relative to
the number of training samples and the size of the window
in which we want to detect a symbol. Our focus on reducing
the number of needed training samples is based on the
observation of the fact that manually annotating data is very
slow and costly. Moreover, it has to be done again each time
we work in a new corpus/type of documents.

Even though the situation in OMR recently improved by
the introduction of the MUSCIMA++ dataset which contains
localization, class and relationship information of music
symbols in handwritten scores, the dataset is still extremely
homogeneous because the corpus was originally designed
for the staff lines removal task. We feel that the OMR
community is neglecting printed scores because of recent
software printed music scores with very good impression
quality. However, there is still a huge quantity of music
scores printed or engraved from the 18th to the early 20th
century. These scores present a lot of challenges because
of their printing techniques, time degradation, bad scanning
qualities and complexity of the classic or romantic music
style. While the dataset used in this work is available here 2,
we will propose to the OMR community a new corpus of
printed scores with the optic of automatically generating
ground-truth data instead of manually annotating scores.

V. CONCLUSION

A renewed interest is shown toward OMR in the com-
puter vision and pattern recognition research communities,
because many interesting challenges remain to be overcome.
In this work, we concentrated on designing a method that
produces an accurate segmentation and classification of the
accidental associated with a note head, without a priori
rules concerning segmentation problems. We propose four
different detectors: a Spatial Transformer based detector,
SSD, R-FCN and Faster R-CNN. We show the tradeoff
in speed over accuracy in different detectors with the best
detector having 98.73% mAP for an IoU threshold of 0.75.
The fastest ST based detector shows very bad out of the box
performance. However, by using contextual information like
the position of the note head and bootstrapping techniques,
we improve significantly the accuracy of the detection by
9.3% mAP for an IoU threshold of 0.5 and 30.8% mAP for
an IoU threshold of 0.75. Much more work is still needed in
order to implement the whole OMR pipeline. In our future
work, we are planning to further extend our detection models
to other type of symbols like note heads, further reduce
training data and propose a new corpus of printed music
scores to the OMR community in order to research automatic
ground-truth data generation.

REFERENCES

[1] A. Fornés and G. Sánchez, “Analysis and Recognition of Mu-
sic Scores,” in Handbook of Document Image Processing and

2https://www-intuidoc.irisa.fr/en/choi accidentals/

https://www-intuidoc.irisa.fr/en/choi_accidentals/


Table V
MEAN AVERAGE PRECISION RESULTS (IN %) WITH IOU >0.5 OR >0.75 (5-FOLD CROSS-VALID., 2,955 SAMPLES) FOR THE SPATIAL TRANSFORMER

BASED DETECTOR, FIGURE 4. WE EXPLORE THE USE OF: nh WHICH MEANS THE NOTE HEAD CENTROID IS PROVIDED TO THE INPUT OF THE
NETWORK, DIFFERENT DATA quantity, DIFFERENT bootstrapping methods AND DIFFERENT LOCALIZATION loss weight.

Spatial Transformer-based Detector Conditions mAP with IoU >0.5 mAP with IoU >0.75

nh quantity bootstrapping method loss weight µ(%) σ(%) µ(%) σ(%)

4 400k vertical 20 97.3 1.7 94.8 3.0
4 200k vertical 20 96.0 2.4 92.0 2.8
4 100k vertical 20 94.6 3.5 86.1 6.3
4 25k vertical 20 92.9 3.1 68.0 1.5
4 original 20 90.0 4.0 62.5 4.3

original 20 88.0 3.6 64.0 3.7
400k vertical 20 94.3 3.5 86.2 5.9

4 400k vertical note head 20 96.0 1.6 92.2 1.1
4 400k unconstrained 20 94.4 2.1 92.4 2.3
4 400k note head 20 95.7 1.9 88.4 2.5
4 400k vertical 10 96.6 1.9 93.8 2.2
4 400k vertical 1 95.6 1.9 89.7 3.5

Recognition, D. Doermann and K. Tombre, Eds. Springer
London, 2014, pp. 749–774.

[2] A. Rebelo, I. Fujinaga, F. Paszkiewicz, A. R. S. Marcal,
C. Guedes, and J. S. Cardoso, “Optical music recognition:
State-of-the-art and open issues,” International Journal of
Multimedia Information Retrieval, vol. 1, no. 3, pp. 173–190,
Mar. 2012.

[3] J. Calvo-Zaragoza, G. Vigliensoni, and I. Fujinaga, “Staff-
Line Detection on Grayscale Images with Pixel Classifica-
tion,” in SpringerLink. Springer, Cham, Jun. 2017, pp. 279–
286.

[4] V. P. d’Andecy, J. Camillerapp, and I. Leplumey, “Kalman
filtering for segment detection: Application to music scores
analysis,” in Proceedings of 12th International Conference on
Pattern Recognition, vol. 1, Oct. 1994, pp. 301–305 vol.1.

[5] A. Rebelo, G. Capela, and J. S. Cardoso, “Optical recogni-
tion of music symbols,” International Journal on Document
Analysis and Recognition (IJDAR), vol. 13, no. 1, pp. 19–31,
Nov. 2009.

[6] A. Pacha, K.-Y. Choi, B. Coüasnon, Y. Ricquebourg,
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