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Key Points: 33 

• Sediments located at the termination of Congo Canyon and channel-levee system are a 34 

large sink of organic carbon (0.35 TgC/yr) and amorphous silica (0.11 TgSi/yr)  35 

• These sediments collect and store in the deep-sea (~5 km depth) 18 and 35% of Congo 36 

River organic carbon and amorphous silica inputs, respectively  37 

• Organic carbon burial in these sediments increases OC burial in the entire South Atlantic 38 

deep basin (>3000m) by 19% for a surface area <0.01% 39 
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• Burial efficiencies in these megasinks are 85% for OC and 73% for aSi  40 
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Abstract 47 

Carbon and silicon cycles at the Earth surface are linked to long-term variations of atmospheric 48 

CO2 and oceanic primary production. In these cycles, the river-sea interface is considered a 49 

biogeochemical hotspot, and deltas presently receive and preserve a major fraction of riverine 50 

particles in shallow water sediments. In contrast, periods of glacial maximum lowstand were 51 

characterized by massive exports of sediments to the deep-sea via submarine canyons and 52 

accumulation in deep-sea fans. Here, we calculate present-day mass balances for organic carbon 53 

(OC) and amorphous silica (aSi) in the terminal lobe complex of the Congo River deep-sea fan 54 

as an analog for glacial periods. We show that this lobe complex constitutes a megasink with the 55 

current accumulation of 18 and 35% of the OC and aSi river input, respectively. This increases 56 

the estimates of organic carbon burial by 19% in the South Atlantic Ocean in a zone representing 57 

less than 0.01% of the basin. These megasinks might have played a role in carbon trapping in 58 

oceanic sediments during glacial times. 59 

 60 

1 Introduction 61 

The carbon cycle regulates atmospheric CO2 concentration, the major driver of climate variations 62 

over different timescales (Cox et al., 2000; Frank et al., 2010; Parrenin et al., 2013). Over the last 63 
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decade, the coastal ocean, and particularly large river estuaries and deltas, have received 64 

increased attention as a biogeochemical hotspot at the interface between the oceanic and 65 

continental carbon cycles (Battin et al., 2009; Bauer et al., 2013; Bianchi et al., 2014; Regnier et 66 

al., 2013). The silicon cycle is tightly linked to the carbon cycle (Tréguer et al., 2018) with 67 

diatom production and export largely contributing to the biological carbon pump and the transfer 68 

of particulate carbon from the surface to the deep ocean  (Ragueneau et al., 2002). The major 69 

role of continent-ocean transfer in the marine silicon cycle has also been recognized (Tréguer 70 

and De La Rocha, 2013). As these two cycles are largely intertwined, it is of prime importance to 71 

investigate their interaction at the continent-ocean interface (Demaster, 2002; Laruelle et al., 72 

2009).  73 

Eustatic sea-level change is a major forcing on continent-ocean sediment transfer and submarine 74 

deep-sea fan development as it controls the location of sediment deposition on the shelf during 75 

highstands or its delivery to the deep ocean during lowstands (Posamentier and Vail, 1988; 76 

Shanmugam and Moiola, 1982; Vail et al., 1977). Though a strict lowstand model of submarine 77 

fan development is frequently discussed  (Allin et al., 2017; Covault and Graham, 2010; Covault 78 

and Fildani, 2014), sea level remains the main control in areas characterized by a large 79 

continental shelf like for the Amazon fan  (Flood and Piper, 1997), Mississippi  (Bouma et al., 80 

1989), Rhone fan  (Lombo Tombo et al., 2015) or Danube fan  (Constantinescu et al., 2015). In 81 

the present highstand ocean, terrestrial particulate organic carbon (OC) and amorphous silica 82 

(aSi) are mainly buried and recycled in river deltas (Berner, 1989; Bianchi and Allison, 2009; 83 

Bianchi et al., 2014; Blair and Aller, 2012; Burdige, 2005; Hedges and Keil, 1995; Lansard et al., 84 

2009) and continental shelves (80-90%; (Rabouille et al., 2001), and a small fraction of riverine 85 

OC and aSi is therefore transported away to continental slopes or the abyssal plain (Canals et al., 86 
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2006; Rabouille et al., 2009). In contrast, a larger fraction of continental carbon and silicon was 87 

transferred into canyons connected to rivers during glacial period lowstands, as rivers discharged 88 

closer to shelf breaks and slopes (Schlünz et al., 1999; Tsandev et al., 2010). As a result, the 89 

exposed continental shelf of the Amazon (Goni, 1997; Keil et al., 1997) or the Mississippi 90 

(Burdige, 2005; Newman et al., 1973) was bypassed, and deep-sea fans acted as main carbon and 91 

silicon repository during the glacial period. However, these deep-sea repositories are presently 92 

inactive making impossible to understand lowstand source-to-sink processes for OC and aSi. 93 

The Congo River is the world’s second largest river by its discharge and ranks fifth by its 94 

particulate organic carbon input to the ocean (Milliman, 1991; Spencer et al., 2014). It is the only 95 

major river directly connected to an active canyon enabling a large amount of its sediment load 96 

to bypass the shelf and to be conveyed through the canyon to the deep-sea channel-levees by 97 

turbidity current  (Babonneau et al., 2002; Dennielou et al., 2017). This direct transfer thereby 98 

makes the repository zone named Congo terminal lobes (Mulder and Etienne, 2010; Savoye et 99 

al., 2009) excellent analogs to understand the functioning and the significance of river-sea fluxes 100 

of carbon and silicon in a lowstand ocean. Indeed, a large and unknown fraction of the 1.9 Tg 101 

OC y-1 (1Tg =1012 g) and 0.33 Tg aSi y-1 exported by the Congo River into the Atlantic Ocean is 102 

presently transported by turbidity currents over 1000 km along the submarine canyon and deep-103 

sea channel (Azpiroz-Zabala et al., 2017; Khripounoff et al., 2003; Vangriesheim et al., 2009). 104 

Previous estimations of the organic carbon and amorphous silica accumulation in the Congo lobe 105 

complex (Rabouille et al., 2009; Raimonet et al., 2015; Stetten et al., 2015) lacked a detailed 106 

survey of the lobe complex morphology, accurate sedimentation rates, and estimates of the 107 

surface area involved to precisely determine the fate of OC and aSi. In this paper, we use a 108 

multidisciplinary dataset including detailed remotely operated vehicles (ROV) mapping, 109 
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sediment characteristics and composition together with sedimentation rates over the last century, 110 

in situ benthic chamber fluxes, and sediment traps to quantify the fate of deposited OC and aSi in 111 

the Congo lobe complex. This leads to the calculation of a mass balance (burial and recycling) of 112 

terrestrial OC and aSi for the lobe complex. We further estimate the proportion of terrestrial 113 

amorphous silica and organic carbon from the Congo River trapped in the terminal lobes sink 114 

and the importance of this previously unknown C and Si sink in the South Atlantic Ocean for the 115 

present and extrapolate to the glacial periods. 116 

2. Materials and Methods 117 

2.1. Location and background 118 

The present Congo fan lobe complex includes five successive amalgamated lobes developed 119 

during the last 4000 years (Dennielou et al., 2017; Picot, 2015). Annual and powerful turbidity 120 

currents feeding the lobe complex have been recorded and monitored in the canyon (Heezen et 121 

al., 1964) and the deep-sea channel (Azpiroz-Zabala et al., 2017; Khripounoff et al., 2003; 122 

Vangriesheim et al., 2009), but the flux of sediment to the lobe complex is difficult to estimate 123 

because of the pulsed and unpredictable nature of these turbidity currents. Sediments record the 124 

deposition of these currents as exemplified by the counting of turbidites in sediment cores from 125 

the lobe complex combined with 210Pb chronology which shows that the recurrence time of 126 

deposits by turbidity currents ranges between 6 and 17 years (Dennielou et al., 2017; Picot, 127 

2015). 128 

 129 

2.2. Methods for mass balance   130 
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Two expeditions were carried out in February 2011  (Olu, 2011) and December 2011  131 

(Rabouille, 2011). State of the art methods were used for assessing mass balances in the terminal 132 

lobes of the Congo deep-sea fan. Most data were already published in several papers (see section 133 

3 for references) except sediment trap fluxes, DSi benthic fluxes and aSi sediment content 134 

(methods in Supplementary Material). Recycling rates of OC and aSi were calculated from in 135 

situ measurements of total oxygen uptake (TOU) and dissolved silica (DSi) benthic fluxes with a 136 

benthic chamber lander (Khripounoff et al., 2006). Uncertainty on TOU values was calculated 137 

from variability among 3 chambers during the same deployment (5-10%) and was propagated as 138 

relative uncertainty to the DSi flux. In order to recalculate OC mineralization rates, a C/O2 (C/O2 139 

= 1-2*N/C; Van Cappellen and Wang, 1996) molar ratio of 0.9 was used corresponding to the 140 

average observed C/N of 15-20 observed in the area (Stetten et al., 2015). The aSi dissolution 141 

rates were assumed similar to measured dissolved silica fluxes. Burial was estimated by 142 

multiplying the measured sedimentation rates by porosity and the organic carbon or amorphous 143 

silica content (Congolobe group et al., 2017; Stetten et al., 2015; Raimonet et al., 2015) with an 144 

uncertainty calculated using 30% variability on sedimentation rates and 5% for the average OC 145 

(Baudin et al., 2017a; Baudin et al., 2017b; Stetten et al., 2015) or aSi  (Raimonet et al., 2015) 146 

concentrations (see Supplementary Material for details) . Vertical fluxes of OC and aSi were 147 

measured in 2011 (unpublished data) using sediment traps deployed at 35 m above sea floor for a 148 

year at the Congolobe site without any noticeable turbidity current (Supplementrary Material). 149 

Therefore, sediment traps have measured the ambient “non-turbiditic” vertical flux. Another 150 

sediment trap array was deployed in a nearby site in 2003-2004 (site Bio-D, 200 km east of the 151 

lobe complex; Rabouille et al., 2009). In addition, a particular effort was made to estimate the 152 
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lobe complex perimeter and surface areas of the five lobes using multibeam acoustic backscatter 153 

and sub-bottom profiler imagery (Dennielou et al., 2017; and Supplementary Materials). 154 

In this paper, we used the classical method for calculating the input of OC and aSi to the lobe 155 

complex by summing independent estimates of recycling and burial fluxes (Burdige, 2006): 156 

Input to the lobe complex = recycling flux + burial flux    (Eq. 2) 157 

As sedimentation rates were calculated from 210Pb chronologies, covering a period of time of 158 

about a century (Congolobe group, 2017), the burial timescale encompasses several turbidity 159 

events (return time of 6-17 years), and is thus a fair estimate of average burial. Furthermore, 160 

since turbiditic activity in the lobe zone was absent throughout 2011 as recorded by sediment 161 

traps, we can reasonably assume that recycling is not biased by a pulse input of new turbiditic 162 

material and fairly reflects recycling between turbidity events. The OC and aSi total input fluxes 163 

were thus computed using the sum of recycling and burial fluxes for each lobe multiplied by its 164 

surface area. They were summed to determine the total inputs of OC and aSi to the lobe 165 

complex. 166 

 167 

3 Results: cycling and burial fluxes in the terminal lobe system 168 

3.1 Recycling of OC and aSi derived from benthic chamber measurements 169 

TOU and DSi fluxes ranged between 5.4 and 9.6 mmol O2 m-2 d-1 and between 0.6 and 1.9 mmol 170 

Si m-2 d-1 respectively at the different stations along the lobe complex (Table 1; Olu et al., 2017; 171 

Raimonet et al., 2015). TOU fluxes were up to one order of magnitude higher than those 172 

recorded in the South Atlantic tropical abyssal plain (0.5-1 mmol O2 m-2 d-1; Wenzhöfer and 173 
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Glud, 2002), whereas the DSi fluxes were comparable to fluxes measured in the Equatorial 174 

Atlantic (Ragueneau et al., 2009).  175 

3.2 Burial flux of OC and aSi in terminal lobe complex sediments 176 

High sedimentation rates due to the deposition of turbidites (0.5-1 cm y-1; Congolobe group et 177 

al., 2017; Rabouille et al., 2009) were recorded over the entire lobe complex. The feeding 178 

channel of lobe 5 (the most distal and recent lobe) displayed sedimentation rate of 12 cm y-1 179 

(Table 1). The sedimentation rates were on average three to four orders of magnitude higher than 180 

those in the surrounding abyssal plain (Congolobe group et al., 2017; Mollenhauer et al., 2004; 181 

Stetten et al., 2015). The lobe complex sediments were characterized by large OC concentrations 182 

of OC (Stetten et al., 2015; Baudin et al., 2017b), exceeding 3% as compared to 0.5% in the 183 

Atlantic sediments of the central basin (Mollenhauer et al., 2004). In turn, aSi concentrations 184 

(0.9-1.3% Si dry weight; Raimonet et al., 2015) were in the same range as those in the abyssal 185 

plain sediments of Eastern Equatorial Atlantic (Ragueneau et al., 2009). As recently proposed by 186 

Rahman et al. (2016), aSi concentrations in lobe sediments may have been underestimated by a 187 

factor of 2-3, because of amorphous silica alteration in the shelf repository (canyon head) before 188 

being entrained by turbidity current. Burial of OC and aSi in terminal lobe sediments showed 189 

extremely large fluxes of 38-1560 g C m-2 y-1 for OC burial and 11-381 g Si m-2 y-1 for aSi 190 

(Table 1). These fluxes exceeded South Atlantic Basin values at these depths (>3000m) by a 191 

factor of 2000 for OC (0.06 g C m-2 y-1; Mollenhauer et al., 2004) and 100 for aSi (maximum 0.4 192 

g Si m-2 y-1; Geibert et al., 2005). OC and aSi burial fluxes were the highest in the feeding 193 

channel of lobe 5 (station C, Fig. 1), where sedimentation rates are highest (12 cm y-1; 194 

Congolobe group et al., 2017). The OC/aSi molar ratios in buried particles (average 7.1) were 195 
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also consistently high (Table 1), with values that are five times larger than the maximal ratio 196 

measured in deep-sea sediments (0.02-1.7; Ragueneau et al., 2002). 197 

3.3 Vertical flux of OC and aSi from sediment traps 198 

The particulate OC and an aSi rain rate were much lower than the recycling and burial fluxes 199 

(Table 1). The OC/aSi molar ratio of the rain rate was 1-2, a much lower value than the measured 200 

burial ratio (≈7, Table 1) which was consistent with deep-sea sediment and trap particles OC/aSi 201 

ratio (Ragueneau et al., 2002).  202 

 203 

4 Discussion: Budgets, burial efficiencies and comparison to riverine and marine sources 204 

The striking point of these OC and aSi budgets is the high burial rates (0.35 Tg C y-1 and 0.11 Tg 205 

Si y-1) and the large burial efficiencies (70-85%) compared to abyssal plain sediments, where 206 

generally only <10% of the OC and aSi rain rates are buried (Burdige, 2007; Ragueneau et al., 207 

2002). In addition, the strong decoupling from the vertical marine flux (1% and 4% of the total 208 

OC and aSi input, Table 2) is clear. Previous results have highlighted the terrestrial nature of the 209 

lobe complex organic matter (Baudin et al., 2017b; Schnyder et al., 2017; Stetten et al., 2015). 210 

The small contribution of marine inputs to the total input corroborates the dominance of canyon 211 

inputs to the lobe complex. The comparison of the OC/aSi signature of the buried particulate 212 

matter (7.1) to the two possible sources of material (riverine=13 and marine=1.5) also points to 213 

the Congo River as the main source of sediments in the lobe complex, with limited decoupling 214 

between carbon and silicon during the transfer of particles to the terminal lobes. The OC/aSi 215 

decrease of riverine material from 13 to 7 can probably be attributed to preferential recycling of 216 

carbon versus silica (Ragueneau et al., 2002) in surficial sediments before burial (Raimonet et 217 
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al., 2015). Overall, the rapid transfer of Si and C through the canyon leads to an enhanced 218 

preservation of Si and C with little decoupling (Raimonet et al., 2015) compared to the strong 219 

decoupling occurring during particle settling in the open ocean (Ragueneau et al., 2002). If 220 

generalized during glacial periods, this rapid transfer to the deep sea fans through the canyons, 221 

may lead to a decrease of biogenic matter deposition and recycling on continental shelves and 222 

slopes with the following consequences: long-term decrease of CO2 production during 223 

mineralization of the organic matter, and short term changes of phytoplankton dynamics 224 

(diatoms) linked to lower silicic acid recycling from shelves and slopes sediments. 225 

The present estimate of OC inputs to the lobe complex (0.42 Tg C y-1) can be compared with 226 

recent estimates of canyon particulate export rates (0.5-1.1 Tg C y-1 ) based on ADCP 227 

measurements of canyon turbidity currents at 2000 m water depth, 500 km upstream from the 228 

lobe complex (Azpiroz-Zabala et al., 2017). These comparable export rates between two distant 229 

sites indicates that the sediment transport along the canyon and deep-sea channel is very efficient 230 

and that a significant fraction (up to 50%) of the material transported by turbidity currents may 231 

reach the lobe complex located at the far end of the channel-levee system.  232 

The Congo lobe complex represents an overlooked sink for organic carbon and amorphous silica 233 

in the abyssal Atlantic Ocean. The OC and aSi budgets in the lobe complex are dominated by 234 

burial fluxes, 3-4 orders of magnitude larger than those in the surrounding abyssal plain (38-235 

1560 versus 0.06 g C m-2 y-1 and 11-381 versus 0.15 g Si m-2 y-1). When compared to the overall 236 

burial of OC in the South Atlantic (0-40°S) during the Holocene (Mollenhauer et al., 2004), the 237 

accumulation of OC in Congo terminal lobe sediments adds 19% to the estimation of OC burial 238 

in this deep ocean basin. This contribution is remarkable given the lobe area represents less than 239 
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0.01% of the South Atlantic surface area (0-40°S) and indicates that the Congo lobe complex 240 

constitutes a megasink of OC in the South Atlantic which was clearly overlooked in previous 241 

studies due to the lack of knowledge on Congo terminal lobes. Although slightly less acute, 3% 242 

of the total burial of aSi in the South Atlantic occurs in the lobe complex. This number could be 243 

raised to 4-6% if aSi was underestimated as suggested by Rahman et al. (2016). Burial fluxes of 244 

this dominantly terrestrial OC (70-90%; Schnyder et al., 2017; Stetten et al., 2015) and aSi, that 245 

represent 18% and 35% of the Congo River discharge of POC and aSi, respectively, are in the 246 

same range of estimates for deltaic sediments, i.e. 22% of river OC input preserved (Burdige, 247 

2005; Hedges and Keil, 1995). The estimated burial of terrigenous OC in the lobe complex (0.3 248 

Tg C y-1) represents about 0.7% of the overall terrestrial OC burial in the global abyssal ocean 249 

(Schlünz and Schneider, 2000).  250 

The present-day export to the abyssal depth of Congo River sediments through the presently 251 

active connection to its canyon, and therefore of embedded OC and aSi, is similar to the 252 

lowstand functioning of major deep-sea fans (Vail et al., 1977), e.g. Amazon fan (Flood and 253 

Piper, 1997). It may therefore be a representative glacial analogue for terrestrial OC and aSi 254 

export when rivers discharged at the shelf break and active canyons carried a large proportion of 255 

their load to the continental rise and abyssal plain (Schlünz et al., 1999). If, as suggested in 256 

previous studies (Burdige, 2005), the same fraction of the carbon load (18%) of other major 257 

tropical rivers of the Atlantic such as the Amazon (5 Tg C y-1; Moreira-Turcq et al., 2003) or the 258 

Orinoco Rivers (1 Tg C y-1; Mora et al., 2014) was buried in the deep Atlantic basin during 259 

glacial times, this burial flux would equal the present-day carbon preservation in the entire South 260 

Atlantic basin and significantly increase the global oceanic carbon sink during these low CO2 261 

periods. The OC burial estimate for the Amazon fan during glacial times (3.7 Tg C/yr; Schlünz et 262 
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al., 1999) clearly substantiate this calculation. These megasinks may also contribute to enhance 263 

OC storage during glacial by better preservation (burial efficiencies of 85%, Table 2) as 264 

proposed by Cartapanis et al. (2016). These findings emphasize the need to better constrain these 265 

localized but intense megasinks in order to understand the natural sinks in the carbon and silica 266 

cycles during both modern and glacial times. 267 

5 Conclusions 268 

In this paper, we have shown that the terminal lobes of the Congo deep-sea fan constitute a 269 

singular point in the South Atlantic Ocean corresponding to a mega burial site for organic carbon 270 

and amorphous silica. It represents 19% of the entire burial of the South Atlantic Ocean for OC 271 

despite covering less than 0.01‰ of the total surface area. By comparing burial in lobe sediments 272 

with the Congo River input, we conclude that 18% of organic carbon inputs and 35% of 273 

amorphous silica inputs from the Congo River are buried in sediments, which thus constitutes a 274 

major repository for exported riverine material. This is largely due to the present and active 275 

connection of the Congo canyon to the River estuary. This situation may represent a fair 276 

analogue to glacial period river export when most rivers were closely connected to their canyons 277 

due to the low sea level. It is expected that burial of OC and aSi in these terminal lobe regions of 278 

other rivers was much larger at this period. 279 
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Fig.1: Map and high resolution detrended bathymetry of the terminal lobes of the Congo deep-sea fan 

showing the contours of lobes numbered from 1 to 5 according to their distance from the entrance of 

the lobe complex (=recent channel). Average depth is 4800m (Congolobe group, 2017). Stations were 

located at four representative sites along the lobes (A=Lobe 1+Lobe 2, B=Lobe 3, F=Lobe 4, C=Lobe 

5). The dotted line contour outlines the lobe 5 feeding channel that shows the highest sedimentation 

rates. White dots show the location of sediment cores used for additional sedimentation rate 

calculation. The black dot on Site A shows the location of sediment traps deployed in 2011. 

  



 

Figure 2: Mass balance for the Congo terminal lobe complex for organic carbon (OC in Tg C 

y-1; 1 Tg = 1012 g) and amorphous silica (aSi in Tg Si y-1). Input from the Congo River, from 

the marine rain and burial rates in the South Atlantic basin (0-40°S) are also displayed. Red 

numbers are for OC and blue for aSi. 

  



Table 1: Recycling, burial and vertical fluxes for OC and aSi in Congo lobe sediments. 
Recycling fluxes of OC (mineralization) and aSi (dissolution) was calculated from TOU (total 

oxygen uptake) and DSi flux (dissolved silica flux). Conversion of TOU to OC mineralization 

was made using a molar ratio C/O2 of 0.9 (see text). Burial fluxes were calculated from 

measured sedimentation rates, porosity and average OC and aSi content of surface sediments 

(0-20cm). For recycling and burial, a weighted average for the entire lobe complex was 

calculated using the proportion of surface area of each lobe (see below). The measured 

porosity values were averaged for depth in core between 10 and 40 cm. Vertical fluxes are 

from station A (unpublished when unmarked). The mark (*) values are from Rabouille et al. 

(2009) and Ragueneau et al. (2009) measured at site Bio-D 200km East of the Lobe zone at 

400m above seafloor. 

 
Site A 

(Lobes1&2) 

Site B 

(Lobe 3) 

Site F 

(Lobe 4) 

Site C levee 

(Lobe 5) 

Site C channel 

(Lobe 5 feeding  

channel) 

Weighte

d  

average 

Recycling       

Surface area (km2) 533 283 1203 424 82  

TOU (mmol O2 m-2 d-1) 5.4±0.5 7±0.9 6.5±0.7 7.8±0.4 9.6±0.8  

OC miner (g C m-2 y-1) 21±2 28±4 26±3 31±2 38±4 26±4 

DSi flux (mmol Si m-2 d-1) 1.1±0.1 - 1.9±0.2 0.6±0.1 0.6±0.1  

aSi dissol. (g Si m-2 y-1) 7.7±0.7 - 19±2 6.2±0.6 5.9±0.6 13±2 

Burial       

Sedim. rate (cm y-1) 1±0.3 0.3±0.1 0.7±0.2 0.7±0.2 12±6  

Porosity 0.84 0.84 0.85 0.85 0.87  

OC (% dw) 3.25±0.2 3.2±0.2 3.3±0.2 3.4±0.2 4.0±0.2  

aSi (%Si dw) 1.3±0.1 0.9±0.1 1.2±0.1 1.2±0.1 1.0±0.1  

OC Burial (g C m-2 y-1) 130±40 38±12 87±30 89±32 1560±540 139±42 

aSi Burial (g Si m-2 y-1) 53±11 11±4 32±8 31±9 381±125 45±11 

OC/aSi burial (mol/mol) 5.8 8.0 6.3 6.7 9.6 7.1 

Vertical flux       

F-aSi (g Si m-2 y-1) 1.5-2.5*      

F-OC (g C m-2 y-1) 1.1-1.7*      



 

Table 2: Mass balance for the terminal lobes of the Congo deep-sea fan and comparison to 

the marine particulate fluxes, Congo discharge and burial in the South Atlantic (1 Tg = 1012 

g). *aSi burial in the South Atlantic is calculated from the regional organic carbon burial and 

OC/aSi ratio or downscaling global fluxes (see supplementary material). OC/aSi is calculated 

as molar ratio compared to mass fluxes for OC and aSi. 

 OC (Tg C y-1) aSi (Tg Si y-1) 
OC/aSi 

(mol/mol) 

Burial 0.35 ± 0.12 0.11 ± 0.05 7.1 

Mineralization/dissolution 0.07 ± 0.01 0.03 ± 0.01  

Lobe input based on mass balance 0.42 ± 0.14 0.15 ± 0.05 8.0 

Burial efficiency (BE) 84% 73%  

Marine input 0.004 0.006 1.5 

% marine in total input 1% 4%  

River discharge (Coynel et al., 2005; 
Hugues et al., 2011; Seylers et al., 2005) 

1.9 0.33 13 

% burial of Congo River export 18% 35%  

Burial in deep South Atlantic (0-40°S; 
>3000m; (Mollenhauer et al., 2004) 

1.8 3.8* 1 

% burial in Congo lobes relative to deep 
South Atlantic 

19% 3% 
 

 

 




