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ABSTRACT

The Natal Valley, offshore Mozambique, is a key area for understanding the evolution of East 

Gondwana. Within the scope of the integrated multidisciplinary PAMELA project, we present new 

wide-angle seismic data and interpretations, which considerably alter Geoscience paradigms. These 

data reveal the presence of a 30 km-thick crust that we argue to be of continental nature. This falsifies 

all the most recent paleo-reconstructions of the Gondwana. This 30 km-thick continental crust 1000 m 

below sea level implies a complex history with probable intrusions of mantle-derived melts in the 

lower crust, connected to several occurrences of magmatism, which seems to evidence the crucial role 

of the lower continental crust in passive margin genesis. 

INTRODUCTION

 Since Aslanian et al., 2009 and Kumar et al., 2009, very few works on passive margin formation 

modeling have analyzed the implications of inherent horizontal movement in terms of kinematic 

reconstruction and intraplate deformation (for instance: Blaich et al., 2011; Brune et al., 2017; Kukla 

et al., 2018). Notwithstanding, to understand the genesis and evolution of continental passive margins 

we need to define their current and initial geometries, their crustal segmentation and its nature by 

combining high quality multi-channel (MCS) and wide-angle seismic data. We also need to determine 

the exact conjugate margin system and its tightest initial position and constrain horizontal and vertical 

motions (subsidence) by studying the overlying sedimentary sequences with a focus on paleo-

environments and stratigraphic sequences (for instance Leroux et al., 2015).

Therefore, all propositions, interpretations and conceptual models must be restored on precise paleo-

geographic maps to test their consequences on the global view and be validated or falsified (Aslanian 

& Moulin, 2012). Symmetrically, paleo-geographic reconstructions should take into account all 

observations available on passive margins and continental deformation to avoid gaps and overlaps 

(Moulin et al., 2010; Thompson et al., 2019).

The disintegration of Pangea occurred on two parallel breakups, spaced 6000 km apart, in the Central 

Atlantic Ocean and the Indian Ocean (Figure 1A). Whilst the opening of the Central Atlantic Ocean is A
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now well dated at Sinemurian (195 Ma) (Sahabi et al., 2004), the age of the Indian Ocean and the 

initial position of the different plates (Madagascar, India and Antarctica) with respect to Africa are 

still under debate (Sahabi, 1993; Leinweber and Jokat, 2012; Gaina et al., 2013; Gibbons et al., 2013; 

Gaina et al., 2015; Reeves et al., 2015; Nguyen et al., 2016; Davis et al., 2016; Mueller & Jokat, 

2019; Thompson et al., 2019) (Figure 1B). The Northern Natal Valley (NNV) holds a key position in 

the East Gondwana breakup. Whilst the Southern Natal Valley (SNV), separated from the NNV, by 

the Naude Ridge (NR), since Goodlad et al., (1982) and Martin et al., (1981), is commonly 

interpreted as an oceanic crust with Mesozoic magnetic anomalies (M12 to M0), the NNV is subject 

to controversy as the magnetic anomalies are very weak and the seismic images very poor: old wide-

angle seismic data (Ludwig et al., 1968) were interpreted as imaging either continental crust (Dingle 

and Scrutton, 1974; Lafourcade, 1984) or oceanic crust (Ludwig et al., 1968). Green (1972) 

interpreted the northern Mozambique ridge as a N/S spreading centre, and Marks and Tikku (2001) 

proposed the recognition of magnetic anomalies from chron M11 to chron M2 as an evidence of an 

extinct E-W spreading center in the middle of the NNV. This debate leads to two tendencies for the 

Gondwana reconstruction (Figure 1C): an old hypothesis with a loose fit in the Mozambique area 

(Sahabi, 1993) and a set of recent models with a tighter fit implying a large overlap of plates. For 

instance, Mueller and Jokat, (2019), derived from the Leinweber and Jokat model (2012) proposed a 

300 km-wide overlap of the Antarctic plate on the Mozambican Coastal Plain (MCP) and the NNV, 

implying an oceanic nature of substratum for both areas. However, new results based on both 

inversion and forward analysis of new sea surface vector geomagnetic data acquired in 2009 (Hanyu 

et al., 2017) seem to rule out the existence of an extinct E-W spreading center and support instead the 

presence of stretched continental crust, with basaltic magma intrusion in the NNV. The MCP, East of 

the Lebombo monocline, exhibits low crustal velocities, from 1-D shear wave velocity profiles 

(Domingues et al., 2016) inconsistent with the presence of an oceanic crust as suggested by most of 

the recent models of Gondwana reconstruction (Figure 1B). Finally, the new kinematic fit proposed 

by Thompson et al., (2019) supports the same conclusions.

METHODS 
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During the PAMELA-MOZ3-5 cruise (2016) (Moulin & Aslanian, 2016; Moulin & Evain, 2016) on 

the R/V Pourquoi Pas?, new marine geophysical and geological data were acquired (bathymetry, 

coring, water column, sub-bottom profiler, gravity, magnetism, dredges, wide-angle and reflection 

seismic) with the aim of resolving this controversy. We conducted 193 deployments of Ocean Bottom 

Seismometers from the Ifremer pool (Auffret et al., 2004) over seven profiles on the NNV and 

Limpopo margin (LM) (Figure 2A). Six profiles were extended onshore with 124 land stations from 

the FCUL pool. The seismic source was composed of an array of 15 airguns, providing a total volume 

of 6500-in3, with a shot interval every 60s. Method details regarding data processing and constraining 

a velocity model are available in the supplementary data (see also Lepretre et al., 2017, 2018; Verrier 

et al., 2017; Schnurle et al., 2018). 

RESULTS

The wide-angle data were modeled using the RAYINVR (Zelt & Smith 1992; Zelt, 1999) software 

package applying a layer-stripping approach and iterative damped least-squares travel-time inversion 

at later stages. Figure 3 presents two examples of the wide-angle results showing that the NNV 

exhibits a 30 km-thick crust, composed of four crustal layers, with a structure similar to the 

neighbouring onshore MCP. The propagation velocity in the crust varies from 5.6 km/s in the upper 

crust to 7.3 km/s in the lower crust. Whilst the Mohorovicic discontinuity is flat and at a depth of 

about 33-35 km, except at distal zones, the velocity structure inside the crustal layers presents, in 

some places, up to 0.5 km/s lateral variations (Figure 3). Above the basement, the sedimentary layer is 

about 5 km thick, and can be divided in two separated by a strong, probably volcanic reflector (Figure 

2B), characterized by seismic velocities ranging from 4.05 to 4.5 km/s. This reflector was previously 

interpreted as a magmatic layer of Karoo age (183 Ma) (Salman & Abdula, 1995). Below it, the 

refraction data show the presence of 2 to 3 km of additional strata of probably volcano-sedimentary 

nature (Figure 3A). To the north, in the MCP, a similar 2-3 km thick sequence of deep reflectors is 

present below the strong reflector supposed to be related to the Karoo Magmatic event, arguing for a 

common origin and an onshore-offshore connection. In the center of the NNV, where the basement 

appears at a shallower depth (4.3-4.8 compared to 5-5.5 km) (Figure 3), reliefs were surveyed in 

bathymetry and seismic data, during the MOZ3-5 cruise. Carbonate dredges suggest several vertical A
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motions during the evolution of the margin (Figure 2A). 

Figure 4A shows the 1D velocity-depth below seafloor across the MCP at its southern extremity along 

the MZ7 profile. The 1D-Vz profiles below the seafloor fit perfectly with the velocity field of shields 

throughout the world (Christensen and Mooney, 1995) indicating that the crust in this region is of 

continental nature. Figure 4B also shows the resemblance between the MCP and the two conjugate 

cratons at the time of the Gondwana assemblage: both crustal structures estimated along the Lebombo 

monocline (35-38 km) (Nguuri et al., 2001; Kwadiba et al., 2003, etc) and below the Grunehogna 

craton in Antarctica (Hubscher et al., 1996) are similar to the one described by our results. Figure 4C 

compares the same 1D velocity-depth profiles to the compilation of the « normal » Atlantic oceanic 

crust (White et al., 1992) and the 1D velocity-depth profiles of some thickened oceanic structures like 

the Agulhas plateau (Gohl and Uenzelmann-Neben, 2001), the Ontong Java Plateau (Miura et al., 

2004), the South Mozambique ridge (Gohl et al., 2011), the Kerguelen plateau (Charvis and Operto, 

1999) or the Tuamotu plateau (Patriat et al., 2002). Neither the velocity bounds of these 1D-velocity-

depth profiles nor their thickness fit the velocity structure of the MCP.

Figure 5 shows the evolution of the 1D velocity-depth below basement profiles every 10 km along the 

N-S MZ7 profile. This evolution demonstrates the genetic link between the MCP and the NNV 

(Figure 5B). The NNV indeed presents a very similar velocity structure, except for the thickness, 

implying a southward step-by-step thinning of 10 km at the base of the continental crust, showing the 

crucial role of the lower crust (Aslanian et al., 2009). South of Naude ridge, the Moho rises to a depth 

of 15 km below sea level and the velocity structure becomes increasingly similar to an oceanic or 

proto-oceanic type crust (Moulin et al., 2015; Afilhado et al., 2015; Evain et al., 2015).

Our results show the evolution of the 35 km thick continental crust in the MCP to a thinner 

continental crust (25-31 km thick) in the NNV. These results are consistent with those proposed by 

Domingues et al., (2016) in the MCP and Hanyu et al., (2017) for the NNV. 

The lateral velocity variations observed in the lower crust of the NNV (Figures 3 & 5) have already 

been imaged for other regions such as in the Paleoproterozoic block of the Ukrainian Shield (Thybo et 

al., 2003; Thybo and Artemieva, 2013), the intracontinental lake Baikal rift (Thybo and Nielsen, 

2009) or the intracontinental Parnaïba basin (Tozer et al., 2017). Such variations are interpretated as a 

presence of mafic and ultramafic mantle materials in the lower or middle continental crust and as A
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magmatic intrusions (Nunn and Aires, 1988; DeRito et al., 1983; Tozer et al., 2018) or eclogitization 

of the lower crust (Haxby et al., 1976; Baird et al., 1995).  As described for the Arctic Ocean (Shulgin 

et al., 2018), this part of the Indian Ocean has also experienced several magmatic events at different 

periods (the Karoo volcanic event, the Turonian trapps event, Eocene, Miocene…), which are 

observed on the reflection seismic profiles at different levels of the sedimentary layers and may imply 

the supposed intrusion/transformation of the lower crust.

DISCUSSION

The presence of 30 km-thick continental crust in the NNV, in continuation of the continental MCP 

(Domingues et al., 2016), together with the presence of the Beira Continental block in the Zambezi 

Basin (Mueller et al., 2016) exclude the possibility of an overlap between the Antarctica and Africa 

plates in that area, as inferred by the most recent kinematic models (Leinweber & Jokat, 2012; Gaina 

et al., 2013, 2015; Gibbons et al., 2013; Reeves et al., 2015; Tikku et al., 2002; Torsvik et al., 2008, 

2012; Seton et al., 2012; Reeves & De Wit, 2000; Nguyen et al., 2016; Davis et al., 2016). These 

results definitely impose a looser fit model confirming kinematic results proposed recently by 

Thompson et al. (2019).

All these results induce the location of the continental ocean boundary at the limit between the NNV 

and the SNV, south of the NR (Figure 2A) as inferred by the sea surface vector geomagnetic analysis 

(Hanyu et al., 2017), and timing at around 135 Ma, when the Patagonia plate moved to the west, 

during the opening of the Austral segment of the South Atlantic ocean.

A 30 km thick supposed continental crust, similar to the MCP but below more than 1000 m of the sea 

level is unexpected. This anomalous topography must be related to the presence of lateral variations in 

the velocity structure of the crust and the presence of multiple magmatic events recorded in the 

sedimentary layers. In the Parnaïba basin, Tozer et al. (2017) proposed that the lower part of the 

continental crust is overloaded by mafic intrusions, inducing subsidence and the formation of the 

sedimentary basin. Shulgin et al., 2018 equally proposed  a deep originating process with 

emplacement of intrusive mafic bodies at the transition crust/upper mantle. In line with these authors, 

we propose that several magmatic events (from Karoo to Miocene events) have played a role in the A
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transformation of the lower crust (intrusion, underplating, metamorphism, etc.), overloading the NNV 

crust. 

The crustal geometry obtained in the NNV evidences the lack of extensive features, arguing against 

any extensional or a conservational thinning model, like simple shear, pure shear or polyphase 

models, which exclude exchanges between the lower continental crust and upper mantle (Aslanian & 

Moulin, 2012). The small thinning (about 10 km) from the MCP to the NNV as well as the presence 

of a 30 km continental crust below sea level implies an overloading of the lower part of the crust as 

proposed in the Parnaïba intracontinental basin (Daly et al., 2018). Our results confirm the complexity 

of the thinning processes, with several mechanisms such as surface processes, reactivation of 

inherited structures, melting, thermo-mechanical structure and dyke dynamics providing additional 

complexity for the tectonic evolution of individual rift systems (Cloetingh et al., 2013; Brune, 2014; 

Ulvrova et al., 2018; etc…). Other basin forming mechanisms are entailed (Aslanian et al., 2019) and 

must involve the crucial role of the lower continental crust, which can be affected by mafic intrusions 

and sometimes flow into the so-called intermediate domain, as was proposed for the South Atlantic 

Margins (Aslanian et al., 2009; Clerc et al., 2018; Quirk and Rüpke, 2018) and the Provençal Basin 

(Moulin et al., 2015; Afilhado et al., 2015).
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FIGURE CAPTIONS

Figure 1. A) Reconstruction of the super-continent Pangea at Permo-trias time (250 Ma) (Olivet & 

Aslanian, pers. comm.). Position of the Pangea has been chosen to highlight the parallelism of the two 

breakups (blue lines) and the meridian circles during the first phase of distension which give birth to 

the future central Atlantic Ocean and part of the future Indian Ocean. Grey areas correspond to 

Paleozoic mountains, the red dotted line and hatched red areas to volcanism in relation to distensive 

events. B) Comparison of several initial reconstructions of the system: Africa / Antarctica / India / 

Madagascar / Sri Lanka. Each color corresponds to different authors (Sahabi, 1993; Leinweber and 

Jokat, 2012; Gaina et al., 2013; Reeves et al., 2015; Davis et al., 2016; Nguyen et al., 2016; A
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Thompson et al., 2019). Africa is fixed. The figure was modified after Thompson et al., (2019) C) & 

D) Consequences for two reconstructions models: C) Sahabi (1993) to the left, D) Leinweber and 

Jokat (2012) to the right, with the position of the main tectonic plates (black lines) Beira high (dark 

purple), the Mozambique aseismic ridges (light purple) and North Madagascar aseismic ridge (light 

red). Austral Africa is fixed. In the Sahabi model (1993), the position of main tectonic plates takes 

into account the directions of opening, the fit of the magnetic anomalies and homologeous structures 

like the aseismic Ridges of Mozambique, Madagascar, Astrid, Gunnerus, etc. The Leinweber and 

Jokat model (2012) mainly focuses on the adjustment between Antarctica and Africa, on the base of 

fracture zones (Sandwell & Smith, 2009) and magnetic anomaly studies. NNV signifies North Natal 

Valley, NR Naude Ridge and MCP Mozambique Coastal Plain.

Figure 2. A) Location map showing the PAMELA-MOZ-3-5 cruises. White circles: OBSs; white 

triangles: Land stations; Blue lines: seismic acquisition. Black lines: seismic profiles related to the 

publications of Leinweber et al., 2013 and Mueller & Jokat, 2016. NNV and SNV for North and 

South Natal Valley. Magnetic anomalies are identified by Goodlad et al., (1982) and Martin et al., 

(1981). Black squares indicate the position of the two profiles shown in Figure 3. B) Zoom of the 

multichannel seismic profile MZ7, highlighting different magmatic episodes on the NNV 

Figure 3. Final P-wave velocity models for two of the MOZ3-5 profiles including the model 

boundaries used during inversion (solid black lines) and iso-velocity contours every 0.20 km/s (thin 

black dotted lines), OBS locations and land seismic stations are indicated by black inverted triangles. 

Areas constrained by ray-tracing modeling are the shaded areas. The top (acoustic basement) and 

bottom (Moho) of the substratum are marked in thick black lines. Red vertical lines: crossing point 

with other MOZ3-5 profiles. A) N/S profile MZ7, with thirty-eight OBS and sixteen land stations 

(LSS), from the MCP to the north, to the Naude Ridge (NR) to the south. B) E-W profile MZ1, with 

thirty-eight OBS and sixteen land stations (LSS), from the Lebombo Monocline in the west, to the 

Mozambique aseismic ridge in the east. 
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Figure 4. A) 1D-Vz profiles below seafloor extracted every 10 km, in the MCP, from MZ7 (in green) 

compared to the compilations of Extended Continental crust, Rifted Continental crust and 

Shields/Platforms (Christensen & Mooney, 1995); B) Comparison of crustal thickness between the 

MCP and neighbouring cratons: Kaapval Craton in Africa (Nguuri et al., 2001; Kwadiba et al., 2003) 

and the Grunehogna Craton in Antarctica (Hubscher et al., 1996); C) the same 1D velocity-depth 

profiles of the MZ7-MCP profile (in shaded green area) compared to thickened oceanic structures, 

like the Agulhas plateau (Gohl and Uenzelmann-Neben, 2001), the South Mozambique Ridge (Gohl 

et al., 2011) the Ontong Java Plateau (Miura et al., 2004), the Kerguelen plateau (Charvis and Operto, 

1999) and the Tuamotu plateau (Patriat et al., 2002).

Figure 5. A) P-wave final modeling of the N-S profile MZ7, with the exact position of the extracted 

Vz-profiles, illustrated on profile MZ7 with the same colors. B) Evolution of the 1-D velocity versus 

depth below seafloor spaced every 10 km along the MZ7 profile showing the N/S evolution, marked 

by a thinning reducing the crustal thickness to a range of 26 to 31 km, and no major change until the 

NR. This compilation is compared to the one of Extended Continental crust, Rifted Continental crust 

and Shields/Platforms (Christensen & Mooney, 1995) and the last domain and also to that of the 

Atlantic oceanic crust (blue shaded area) (White et al., 1992). 
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Figure 5 - Moulin et al.,
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