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An algebra is called skew-symmetric if its multiplication operation is a skewsymmetric bilinear application. We determine all these algebras in dimension 3 over a field of characteristic different from 2. As an application, we determine the subvariety of 3-dimensional Hom-Lie algebras. For this type of algebras, we study also the dimension 4.

INTRODUCTION. An algebra over a field K is a K-vector space equipped with a bilinear product. The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and nonassociative algebras. If we denote by µ this multiplication, we do not assume that µ satisfies any quadratic, ternary, or n-ary relation. When we consider only the finite dimensional framework, that is, when the K-vector space is of finite dimension, one of the first natural problems arising to determine all these algebras. For example, the classification of algebras up to isomorphism for a given dimension seems interesting and looks at first easy to solve. It is strange that this problem was solved only in dimension 2 (see the works of Goze-Remm, Peterssen or Bekbaev [START_REF] Ahmed | Complete classification of two-dimensional algebras[END_REF][START_REF] Remm | 2-Dimensional Algebras. Application to Jordan, G-Associative and Hom-Associative Algebras[END_REF][START_REF] Petersson | The classification of two-dimensional nonassociative algebras[END_REF]). For special classes of algebras, this classification work was carried on for greater dimensions, but always relatively small; for example, associative algebras are classified up to dimension 6 and Lie algebras up to dimension 7 ( [START_REF] Goze | Nilpotent Lie algebras[END_REF]). For nonassociative algebras (see for example [START_REF] Goze | A class of nonassociative algebras[END_REF]) there are few results. Of course the classification is complete for some special classes, for example the simple Lie algebras and the simple associative algebras. But for the general case, we have not much information, probably because we know very few invariants in multilinear algebra. Furthermore, when the classification exists (always with the fear that this classification could be incomplete), it is often difficult to use. Consider for example the classification of the complex nilpotent Lie algebras of dimension 7. We can think that this list is complete. In this case there are five one-parameter families and more than one hundred of algebras (this number depends on the way the authors classify and it is not an invariant). To recognize among this list a given Lie algebra it is often difficult especially when if it is not written in a basis respecting the invariants used to obtain the classification. Moreover it is not convenient to determine subclasses, for example to determine the contact nilpotent Lie algebras. To test each algebra of this list is more than boring. That is why, as presented in our previous works, we prefer to determine classes invariant by isomophism and minimal in the sense that we specify.

Date:

In this work we are interested in the 3-dimensional algebras over a field K with skewsymmetric multiplication. We suppose that K is an arbitrary field of characteristic different from 2. The paper is organized as follows: In the first part we study the automorphism group of a 3-dimensional algebra. In particular, we characterize among all these algebras those which are Lie algebras by studying the dimension of the automorphism group. In the second part we classify the nilpotent skew-symmetric algebras by showing that all these algebras are Lie algebras (but it is not the case in higher dimensions). Next we classify the solvable skew-symmetric algebras and, to end this classification, the non-solvable case. The last section is essentially dedicated to the study of Hom-Lie algebras, which are a particular class of skew-symmetric algebras. We show that any skew-symmetric algebra of dimension 3 is Hom-Lie. This is no longer true in dimension 4 where we study the algebraic variety of Hom-Lie algebras.

1. The automorphism group of a 3-dimensional skew-symmetric algebra 1.1. Generalities. An algebra over a field K is a K-vector space V with a multiplication operation given by a bilinear map

µ : V × V → V.
Such a multiplication is a linear tensor on V of type (2, 1), that is 2-times contravariant and 1-time covariant. Throughout this paper, the vector space V is finite-dimensional and fixed. Consider for example consider V = K n . We denote by A = (V, µ) a K-algebra with multiplication µ. We also assume that the field K is of characteristic zero and that the multiplication µ is skew-symmetric, that is

µ(X, Y ) = -µ(Y, X).
In this case, we shall say that A is a skew-symmetric algebra, written as ss-algebra to short. Two K-algebras A = (V, µ) and A = (V, µ ) are isomorphic if there is a linear isomorphism

f : V → V such that f (µ(X, Y )) = µ (f (X), f (Y )
) for all X, Y ∈ V and we denote by Aut(A) or Aut(µ) the automorphism group of the algebra A = (V, µ). Now assume that dim V = 3. Let {e 1 , e 2 , e 3 } be a fixed basis of V . A general skewsymmetric bilinear map µ has the following expression (1)

   µ(e 1 , e 2 ) = α 1 e 1 + β 1 e 2 + γ 1 e 3 , µ(e 1 , e 3 ) = α 2 e 1 + β 2 e 2 + γ 2 e 3 , µ(e 2 , e 3 ) = α 3 e 1 + β 3 e 2 + γ 3 e 3 ,
and the set of these applications is a 9-dimensional vector space ssAlg 3 parametrized by the structure constants α i , β i , γ i , i = 1, 2, 3, identifying µ with its structure constants. The linear group GL(V ) acts on ssAlg 3 by :

(g, µ) ∈ GL(V ) × ssAlg 3 → µ g ∈ ssAlg 3 with µ g (X, Y ) = g -1 µ(g(X), g(Y ))
for any X, Y ∈ V. Let O(µ) be the orbit of µ corresponding to this action. It is a nonsingular algebraic subvariety of ssAlg 3 (see for example [START_REF] Markl | Deformation theory of algebras and their diagrams[END_REF]). To compute the dimension of the subvariety O(µ), it is sufficient to compute the dimension of its tangent space at the point µ. Since ssAlg 3 is linear, its tangent space T µ (ssAlg 3 ) at µ is identified to itself and it is constituted by skew-symmetric bilinear map ψ ∈ ssAlg 3 . The tangent space T µ (O(µ)) at the point µ to the orbit is a linear subspace of T µ (ssAlg 3 ) = ssAlg 3 , whose elements are the skew-symmetric applications of type ψ = δ µ f with f ∈ End(V ) and

δ µ f (X, Y ) = µ(f (X), Y ) + µ(X, f (Y )) -f (µ(X, Y ))
for any X, Y ∈ V . Recall also that f is a derivation of the algebra

A = (V, µ) if δ µ (f ) = 0.
The set Der(µ) of derivations of A is a Lie algebra, more specifically, the Lie algebra of the algebraic group Aut(µ).

1.2. The matrix M µ associated to µ. To compute the dimension of T µ (O(µ)), we consider the following matrix M µ associated to µ, which will give a linear representation of µ. Recall that we have fixed {e i , 1 ≤ i ≤ 3} a basis of V and identified the skew-symmetric applications on V with its structure constants related to this basis. Let f be in gl(V ). We denote also by f the matrix of f related to the fixed basis. If f = (f ij ), we consider the vector v f of K 9 :

v f = (f 1,1 , f 2,1 , f 3,1 , f 1,2 , • • • , f 2,3 , f 3,3 ).
We have δf (e i , e j ) = µ(f (e i ), e j ) + µ(e i , f (e j )) -f (µ(e i , e j ))

for 1 ≤ i < j ≤ 3 and we still denote δf (e i , e j ) the column matrix of its components in the basis {e 1 , e 

M µ • t v f .
This matrix M µ is a square matrix of order 9 and the map

µ → M µ
gives a linear representation of µ.

If we consider the structure constants of µ related to the basis {e i , 1 ≤ i ≤ 3} given in (1), then M µ is equal to

M µ =              0 0 -α 3 -β 1 α 1 α 2 -γ 1 0 0 β 1 -α 1 -β 3 0 0 β 2 0 -γ 1 0 γ 1 0 -γ 3 -α 1 0 γ 1 γ 2 -β 1 0 0 -γ 1 0 α 3 0 -β 2 0 0 -γ 2 α 1 α 2 β 2 -α 2 + β 3 0 0 -β 2 0 0 -γ 2 + β 1 β 2 γ 2 γ 3 -α 2 0 0 -β 2 0 γ 1 0 -α 3 0 0 α 2 -β 3 α 3 0 -α 1 -γ 3 0 α 3 0 -α 3 0 β 2 0 0 -β 1 -γ 3 β 3 0 0 -α 3 γ 2 γ 3 -β 3 -γ 1 0 0              Proposition 1.
For any µ, the matrix M µ is singular. Moreover, there exists µ such that Rank(M µ ) = 8.

Proof. The first part is a direct computation of the determinant. We can see also that 0 is always an eigenvalue. Now we consider µ given by (β 1 = 1, γ 2 = 2, α 3 = 1). For this algebra the kernel of M µ is of dimension 1 and constituted of the matrices

f =   0 0 0 0 b 2 0 0 0 -b 2  
and Rank(M µ ) = 8. For a generic algebra, that is, without algebraic conditions between the structure constants, the kernel of M µ is a 1-dimensional vector space generated by the vector

(-α 1 α 2 β 1 + α 2 1 β 2 -α 2 2 γ 1 + β 2 3 γ 1 + α 1 α 2 γ 2 -β 1 β 3 γ 3 + β 3 γ 2 γ 3 -β 2 γ 2 3 , α 2 β 2 1 + α 1 β 1 β 2 -2β 2 γ 1 (α 2 + β 3 ) + α 2 β 1 γ 2 + α 1 β 2 γ 2 + β 1 β 3 γ 2 -β 3 γ 2 2 + β 1 β 2 γ 3 + β 2 γ 2 γ 3 , 2β 2 γ 1 (α 1 -γ 3 ) -α 2 β 1 γ 1 + β 1 β 3 γ 1 -α 1 β 1 γ 2 -α 2 γ 1 γ 2 + β 3 γ 1 γ 2 + α 1 γ 2 2 -β 2 1 γ 3 + β 1 γ 2 γ 3 , α 1 α 3 β 1 -α 2 1 β 3 + 2α 3 γ 1 (α 2 + β 3 ) -α 1 α 3 γ 2 -α 1 α 2 γ 3 -α 3 β 1 γ 3 -α 1 β 3 γ 3 + α 3 γ 2 γ 3 -α 2 γ 2 3 , α 3 β 2 1 -α 1 β 1 β 3 -α 2 2 γ 1 + β 2 3 γ 1 + α 1 α 2 γ 2 -α 3 γ 2 2 -β 1 β 3 γ 3 + α 2 γ 2 γ 3 , α 1 β 3 γ 1 -α 1 α 2 γ 1 -2α 3 γ 1 (β 1 + γ 2 ) + α 2 1 γ 2 + α 1 β 1 γ 3 + α 2 γ 1 γ 3 -β 3 γ 1 γ 3 + α 1 γ 2 γ 3 + β 1 γ 2 3 , α 2 α 3 (β 1 -γ 2 ) -2α 3 β 2 (α 1 -γ 3 ) + α 1 α 2 β 3 + α 3 β 1 β 3 -α 1 β 2 3 -α 3 β 3 γ 2 + α 2 γ 3 (α 2 -β 3 ), α 1 α 2 β 2 -α 2 2 β 1 + α 2 β 1 β 3 + α 1 β 2 β 3 -2α 3 β 2 (γ 2 -β 1 ) + α 2 β 3 γ 2 -β 2 3 γ 2 + α 2 β 2 γ 3 + β 2 β 3 γ 3 , α 1 α 2 β 1 + α 3 β 2 1 -α 2 1 β 2 -α 1 β 1 β 3 -α 3 γ 2 2 + α 2 γ 2 γ 3 -β 3 γ 2 γ 3 + β 2 γ 2 3
). Corollary 2. For any 3-dimensional ss-algebra A = (V, µ) over K, the dimension of the automorphism group Aut(µ) is greater than or equal to 1.

Proof. In fact, Aut(µ) is an algebraic group whose Lie algebra is isomorphic to Der(µ), the Lie algebra of derivations of µ, that is the subspace of gl(V ) whose elements f satisfy δ(f ) = 0 or equivalently such that the vector t v f is in the kernel of M µ . Since the rank of this matrix is smaller that 8, its kernel is bigger than 1.

Proposition 3. The algebra A = (V, µ) is a Lie algebra if and only if there exists a nonzero vector X in V such that the linear endomorphism

L X : Y → µ(X, Y ) is in the kernel of M µ . Proof. If f ∈ End(A) then, considering the basis {e i , 1 ≤ i ≤ 3}, we identify f with the matrix   a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3  
and we associate it with the vector

v f = (a 1 , a 2 , a 3 , b 1 , b 2 , b 3 , c 1 , c 2 , c 3 ).
If we take X = e 1 , then

L e 1 =   0 α 1 α 2 0 β 1 β 2 0 γ 1 γ 2   and M µ • t v Le 1 = 0 is equivalent to    -α 1 β 3 + α 3 β 1 -γ 3 α 2 + α 3 γ 2 = 0, β 2 α 1 -β 1 α 2 -γ 3 β 2 + β 3 γ 2 = 0, γ 2 α 1 + γ 3 β 1 -β 3 γ 1 -γ 1 α 2 = 0,
which corresponds to Jacobi's conditions.

Proposition 4. If the ss-algebra A = (V, µ) is a Lie algebra, then the rank of M µ is smaller than or equal to 6.

Proof. In fact, since A = (V, µ) is a Lie algebra, the endomorphisms L X (Y ) = µ(X, Y ) are derivations and the vectors v L X are in the kernel of M µ . If L e 1 , L e 2 , L e 3 are linearly independent, then ker M µ ≥ 3 and the rank of M µ is smaller than 6. If these vectors are linearly dependent, we have a non trivial linear combination between these vectors and without loss of generality, we can assume that

L e 1 = 0. But v Le 1 = (0, 0, 0, α 2 , β 2 , γ 2 , α 3 , β 3 , γ 3 ) and v Le 1 = 0 implies that M µ =              0 0 0 -β 1 α 1 0 -γ 1 0 0 β 1 -α 1 0 0 0 0 0 -γ 1 0 γ 1 0 -α 1 0 γ 1 -β 1 0 0 -γ 1 0 0 0 0 0 0 0 α 1 0 0 0 0 0 0 0 0 β 1 0 0 0 0 0 0 0 0 γ 1 0 0 0 0 0 0 0 -α 1 0 0 0 0 0 0 0 0 -β 1 0 0 0 0 0 0 0 0 -γ 1 0 0             
which rank is less or equal to 3.

The converse of this proposition is not true. We can find non-Lie algebras whose associated matrix M µ is of rank 6. For example we consider the algebra

   µ(e 1 , e 2 ) = e 2 , µ(e 1 , e 3 ) = γ 2 e 3 , µ(e 2 , e 3 ) = e 1 .
This algebra is a Lie algebra if and only if γ 2 = -1. In this case the rank is 6 and the kernel is composed of the endomorphisms

  0 -a 3 a 2 -a 2 b 2 0 a 3 0 -b 2   .
If γ 2 = 1, the algebra is not a Lie algebra but the rank is also 6. In this case the kernel is composed of endomorphisms

  0 0 0 0 b 2 c 2 0 b 3 -b 2   .
While the last algebra is not a Lie algebra, we can embedded the algebra in a larger class of algebras such as algebras of Lie type (see [START_REF] Makarenko | Lie type algebras with an automorphism of finite order[END_REF]) or Hom-Lie algebras. We shall see that in the last section.

What happen in dimension 4

? If A = (V 4 , µ) is a 4-dimensional skew-symmetric K-algebra, then M µ
is a non square matrix of order 24 × 16. It is not too much complicated to write this matrix, but we do not make it here. If we identified A with µ and µ with its structure constants related with a fixed basis {e 1 , e 2 , e 3 , e 4 } of V , the set of 4-dimensional ss-algebras is a 24-dimensional vector space denoted ssAlg 4 .

Proposition 5. There exists a Zariski-open set in the affine variety ssAlg 4 constituted of ss-algebras (V, µ) whose automorphism group Aut(µ) is of dimension 0.

Proof. In fact, for a generic algebra of ssAlg 4 , there are no relations between the structure constants and the corresponding matrix M µ is of rank 16. Then, any derivation is trivial and the algebraic group Aut(µ) is of dimension 0. For example the following algebra Let us note that ssAlg 4 is an affine algebraic variety isomorphic to K 24 and the Zariski open set constituted of algebras A = (V 4 , µ) whose automorphism group Aut(µ) is of dimension 0 is a finite union of algebraic components where each one is the complementary of an hypersurface, then they are algebraic subvarieties of ssAlg 4 .

             µ(
Remark: Two-dimensional case. Before studying the dimension 3, we have naturally studied the 2-dimensional case in [START_REF] Remm | 2-Dimensional Algebras. Application to Jordan, G-Associative and Hom-Associative Algebras[END_REF]. In this case, if µ(e 1 , e 2 ) = αe 1 + βe 2 , then

M µ = 0 0 -β α β -α 0 0 .
The rank of M µ is 2 as soon as α = 0 or β = 0 and in this case ker(M µ ) is of dimension 2. This implies that the automorphism group of A = (V, µ) is an algebraic group of dimension 2. We have also noted that any ss-algebra of dimension 2 is a Lie algebra.

1.4. Deformations and rigidity. A deformation of µ, in the Gerstenhaber'sense, is given by a tensor (2, 1) in K[t] ⊗ ssAlg 3 . By and large, the notion of deformation permits to describe a neighborhood of µ in ssAlg 3 . There exists a cohomological approach of the notion of deformations. In our situation, the complex of cohomology is well known. The space of pcochains is the space of p-linear skew symmetric applications, the first space of cohomology corresponds to the kernel of M µ , and the second space is a factor space isomorphic to T µ (ssAlg 3 )/ImM µ . This complex is well described in the context of operads. We denote by Sign the quadratic operad encoding the category of skew-symmetric algebras. Recall its construction (see also [START_REF] Markl | Algebras with one operation including Poisson and other Lie-admissible algebras[END_REF]). Let K[Σ 2 ] be the group algebra of the symmetric group of degree 2. We have K[Σ 2 ] = 1 1 2 ⊕ sgn 2 Considered as a Σ 2 -module, where 1 1 is the 1-dimensional representation and sgn 2 the 1-dimensional signum representation. We then consider Γ(sgn 2 ) the free operad generated by a skew symmetric operation. In particular for this operad, we have Γ(sgn 2 )(0

) = 0, Γ(sgn 2 )(1) K, dim Γ(sgn 2 )(2) = 1 because Γ(sgn 2 )(2) is the K[Σ 2 ]- module generated by {x 1 x 2 = -x 2 x 1 }, dim Γ(sgn 2 )(3) = 3, Γ(sgn 2 )(3) is the K[Σ 2 ]-module generated by {(x 1 x 2 )x 3 , (x 2 x 3 )x 1 , (x 3 x 1 )x 2 )} and dim Γ(sgn 2 )(4) = 15 because Γ(sgn 2 )(2) is the K[Σ 2 ]-module generated by {(x 1 x 2 )(x 3 x 4 ), (x 1 x 3 )(x 2 x 4 ), (x 1 x 4 )(x 2 x 3 ), ((x 1 x 2 )x 3 )x 4 , ((x 1 x 2 )x 4 )x 3 , ((x 1 x 3 )x 2 )x 4 , ((x 1 x 3 )x 4 )x 2 , ((x 1 x 4 )x 2 )x 3 , ((x 1 x 4 )x 3 )x 2 , ((x 2 x 3 )x 1 )x 4 , ((x 2 x 3 )x 4 )x 1 , ((x 2 x 4 )x 1 )x 3 , ((x 2 x 4 )x 3 )x 1 , ((x 3 x 4 )x 1 )x 2 , ((x 3 x 4 )x 2 )x 1 }.
This operad is a Koszul operad, then the cohomology which parametrizes the deformations is the operadic cohomology.

Recall also the notion of rigidity which traduces the fact that any deformation of µ is isomorphic to µ.

Definition 6. A skew-symmetric algebra A = (V, µ) is rigid if the orbit O(µ) is Zariski-open in the algebraic variety ssAlg 3 .
This topological notion can be replaced by an algebraic condition. If we denote by H * S (µ, µ) the complex of deformations, an element µ ∈ Alg 3 is rigid if and only if H 2 S (µ, µ) = 0 since the variety Alg 3 is an affine reduced variety. We deduce from the previous results Proposition 7. For any µ ∈ ssAlg 3 , we have

dim O(µ) ≤ 8.
In particular none of the 3-dimensional ss-algebras is rigid in ssAlg 3 .

Proof. Since ssAlg 3 is a linear plane and then a reduced algebraic variety, and since dim ssAlg 3 -dim O(µ) ≥ 1, none of these algebras is rigid in ssAlg 3 . This notion of rigidity, which concerns an element, can be extended to parametrized families of algebras. In fact any deformation of any element of this family is isomorphic to an element of the same family.

If O(F t 1 ,••• ,t k ) is this orbit, its rigidity implies that O(F t 1 ,••• ,t k ) (the closure in the Zariski sense) is an algebraic component of ssAlg 3 . But ssAlg 3 is connected so if F t 1 ,••• ,t k is rigid, O(F t 1 ,••• ,t k ) = ssAlg 3 .

Nilpotent case

Let (A, µ) be a K-algebra. We consider the descending central series

C 0 (µ) = A, C 1 (µ) = µ(A, A), C k (µ) = µ(C k-1 (µ), A), k ≥ 2.
The algebra A is nilpotent if there exists k such that C k (µ) = 0. The smallest k such that C k (µ) = 0 is the nilindex. For a 3-dimensional nilpotent algebra (A, µ), we have only the following sequences:

(1) A ⊃ C 1 (µ) = 0, (2) A ⊃ C 1 (µ) ⊃ C 2 (µ) = 0, (3) A ⊃ C 1 (µ) ⊃ C 2 (µ) ⊃ C 3 (µ) = 0.
It is obvious that the last nontrivial term C k-1 (µ) is contained in the center. Thus the first case corresponds to abelian case, the last is impossible because it would imply that dim C 1 (µ) = 2. Hence A ⊃ C 1 (µ) ⊃ C 2 (µ) = 0 remains. We consider an adapted basis {e 1 , e 2 , e 3 }. It satisfies [START_REF] Goze | Nilpotent Lie algebras[END_REF] µ(e i , e 3 ) = 0, µ(e 1 , e 2 ) = γ 1 e 3 , with γ 1 = 0. We deduce Proposition 10. Any 3-dimensional nilpotent algebra is a Lie algebra. It is isomorphic to the abelian 3-dimensional Lie algebra or to the Heisenberg algebra h 3 .

Note that in the nonabelian case the rank of M µ is equal to 3.

Remark: What happen in dimension greater than or equal to 4? We have seen that in dimension 3, any nilpotent algebra is a Lie algebra. This property doesn't extend to higher dimensions. Let us consider for example the filiform case, that is nilpotent algebras such that

A ⊃ C 1 (µ) ⊃ • • • ⊃ C k (µ) = 0, with dim A/C 1 (µ) = 2 and dim C i (µ)/C i+1 (µ) = 1, i = 1, • • • , k -1,
where k is the nilindex of A. If the dimension is less than or equal to 4, then we can conclude that these algebras are also Lie algebras, in dimension 5 (or greater) we can find filiform non-Lie algebras. Consider the family

(3)       
µ(e 1 , e i ) = e i+1 , i = 2, 3, 4, µ(e 2 , e 3 ) = ae 4 + be 5 , µ(e 2 , e 4 ) = ce 5 , µ(e 3 , e 4 ) = de 5 . Such an algebra is not a Lie algebra as soon as a -c = 0 or d = 0. But this algebra is provided with a Hom-Lie algebra structure (see Section 5).

Solvable case

Let (A, µ) a K algebra. We consider the derived series:

D 0 (µ) = A, D 1 (µ) = µ(A, A), D k (µ) = µ(D k-1 (µ), D k-1 (µ)), k ≥ 2.
The algebra A is solvable if there exists k such that D k (µ) = 0. The smallest integer k such that D k (µ) = 0 is the solvindex. For a 3-dimensional solvable algebra (A, µ), we have only the following sequences:

(1) A ⊃ D 1 (µ) = 0, (2) A ⊃ D 1 (µ) ⊃ D 2 (µ) = 0, (3) A ⊃ D 1 (µ) ⊃ D 2 (µ) ⊃ D 3 (µ) = 0.
In the first case A is abelian. In the second case, if dim A/D 1 (µ) = 2, we consider an adapted basis {e 1 , e 2 , e 3 } and the hypothesis imply that [START_REF] Hartwig | Deformations of Lie algebras using σ-derivations[END_REF] µ(e i , e j ) = a ij e 3 , 1 ≤ i < j ≤ 3.

Not to consider again the nilpotent case, we consider a 13 = 0 or a 23 = 0. This algebra is a solvable Lie algebra for any a ij and the rank of M µ = 5. In particular the automorphism group is of dimension 4. Let us note that any algebra of ( 4) is isomorphic to

µ(e 1 , e 3 ) = e 3 ,
and in this case, the identity component of this group is constituted of the matrices

  1 0 0 x y 0 z 0 t  
with yt = 0. Assume now that dim A/D 1 (µ) = 1 and consider an adapted basis {e 1 , e 2 , e 3 }. This means that {e 2 , e 3 } is a basis of D 1 (µ). By hypothesis µ(e 2 , e 3 ) = 0. Then µ satisfies (5)

   µ(e 1 , e 2 ) = β 1 e 2 + γ 1 e 3 , µ(e 1 , e 3 ) = β 2 e 2 + γ 2 e 3 , β 1 γ 2 -β 2 γ 1 = 0.
Such algebra is also a Lie algebra. Recall that the classification, up to isomorphism, of 3-dimensional solvable Lie algebras is given in the book of Jacobson ([5]). The rank of M µ is smaller or equal to 5. For example, it is equal to 5 for µ(e 1 , e 2 ) = e 3 , µ(e 1 , e 3 ) = e 2 , and equal to 3 for µ(e 1 , e 2 ) = e 2 , µ(e 1 , e 3 ) = e 3 .

Let the descending sequence be filiform, that is 

A ⊃ D 1 (µ) ⊃ D 2 (µ) ⊃ D 3 (µ) = 0. Assume that {e 1 , e 2 ,

We have

Rank(M µ ) = 8 as soon as β 2 = 0 and the kernel is generated by

(-β 2 , β 1 + γ 2 , -β 2 1 -2β 2 γ 1 + β 1 γ 2 , 0, 0, β 1 , 0, 0, β 2
). If β 2 = 0, then Rank(M µ ) = 7 and the kernel is generated by {(0, 0, -γ 1 , 0, 0, 0, 0, 0, 1), (0, 0, -β 1 + γ 2 , 0, 0, 1, 0, 0, 0)}.

It would be interesting to present this parameter β 2 as an invariant which is done in the following proposition: 6) is nondegenerate if and only β 2 = 0.

Proposition 12. The Killing symmetric form K µ (X, Y ) = tr(L X • L Y ) where L U (V ) = µ(U, V ) of an algebra (
Proof. The matrix of K µ in the basis {e 1 , e 2 , e 3 } is

  β 2 1 + 2β 2 γ 1 + γ 2 2 γ 2 -β 2 γ 2 1 0 -β 2 0 0   and its determinant is equal -β 2 2 .
Let us note that (A, µ) is not a simple algebra as I = K{e 2 , e 3 } is an ideal of A, but its Killing form is nondegenerate as soon as β 2 = 0. Let us note also that K µ is, in this case, a not invariant pseudo scalar product.

Non-Solvable case

If (A, µ) is not solvable, there exists k with

D k (µ) = D k-1 (µ) = 0.
We have the following possibilities:

(1) A = D 1 (µ), (2) A ⊃ D 1 (µ) = D 2 (µ) = 0, (3) A ⊃ D 1 (µ) ⊃ D 2 (µ) = D 3 (µ) = 0. The sequence A ⊃ D 1 (µ) ⊃ D 2 (µ) = D 3 (µ) = 0 is impossible because this implies that dim D 2 (µ) = 1 and µ(D 2 (µ), D 2 (µ)) = 0, which is impossible since µ is skew-symmetric. The same is true for the sequence A ⊃ D 1 (µ) = D 2 (µ) = 0. Thus, if (A, µ) is not solvable, we have A = D 1 (µ) that is    µ(e 1 , e 2 ) = α 1 e 1 + β 1 e 2 + γ 1 e 3 , µ(e 1 , e 3 ) = α 2 e 1 + β 2 e 2 + γ 2 e 3 , µ(e 2 , e 3 ) = α 3 e 1 + β 3 e 2 + γ 3 e 3 with det   α 1 β 1 γ 1 α 2 β 2 γ 2 α 3 β 3 γ 3   = 0.
Lemma 13. There exists X, Y in A such that X, Y and µ(X, Y ) are independent.

Proof. Assume that this property is not true. In any basis {e 1 , e 2 , e 3 } we must have    µ(e 1 , e 2 ) = α 1 e 1 + β 1 e 2 , µ(e 1 , e 3 ) = α 2 e 1 + γ 2 e 3 , µ(e 2 , e 3 ) = β 3 e 2 + γ 3 e 3 with det

  α 1 β 1 0 α 2 0 γ 2 0 β 3 γ 3   = -α 1 β 3 γ 2 -α 2 β 1 γ 3 = 0.
Let e 2 = ae 2 + be 3 . Therefore, we see that rank{e 1 , e 2 , µ(e 1 , e 2 )} = 2 implies

β 1 = γ 2 .
Likewise rank{e 2 , e 1 = ae 1 + be 3 , µ(e 1 , e 2 )} = 2 implies -γ 3 = α 1 and rank{e 3 , e 2 = ae 1 + be 2 , µ(e 3 , e 2 )} = 2 implies β 3 = α 2 . We deduce

-α 1 β 3 γ 2 -α 2 β 1 γ 3 = -α 1 α 2 β 1 + α 2 β 1 α 1 = 0.
This gives a contradiction.

From this lemma we can find a basis {e 1 , e 2 , e 3 } of A such that    µ(e 1 , e 2 ) = e 3 , µ(e 1 , e 3 ) = α 2 e 1 + β 2 e 2 + γ 2 e 3 , µ(e 2 , e 3 ) = α 3 e 1 + β 3 e 2 + γ 3 e 3 , and α 2 β 3 -α 3 β 2 = 0. We shall show that this family can be reduced to a family with only 5 parameters. This condition implies that α 2 or α 3 is non zero. We can assume that α 3 = 0.

In fact, if α 3 = 0 and α 2 = 0 we have our result. If α 2 = 0, then the change of basis e 1 = e 1 -α 2 /α 3 e 2 and e i = e i for i = 2, 3 permits to consider α 2 = 0. We deduce:

Proposition 14. Let (A, µ) a 3-dimensional nonsolvable algebra. Then this algebra is isomorphic to the algebra The algebras [START_REF] Markl | Deformation theory of algebras and their diagrams[END_REF] are Lie algebras if and only if

β 3 = γ 2 = γ 3 = 0, that is if we have    µ(e 1 , e 2 ) = e 3 , µ(e 1 , e 3 ) = β 2 e 2 , µ(e 2 , e 3 ) = α 3 e 1 ,
with α 3 β 2 = 0; for the algebras (8), if and only if

γ 2 = γ 3 = 0, β 3 = -α 2 , that is,    µ(e 1 , e 2 ) = e 3 , µ(e 1 , e 3 ) = α 2 e 1 + β 2 e 2 ,
µ(e 2 , e 3 ) = -α 2 e 2 with α 2 = 0.

For any generic algebra µ belonging to the family [START_REF] Markl | Deformation theory of algebras and their diagrams[END_REF], the rank of M µ is 8, the kernel is generated by the vector (-

β 2 3 -β 3 γ 2 γ 3 + β 2 γ 2 3 , 2β 2 β 3 + β 3 γ 2 2 -β 2 γ 2 γ 3 , -β 3 γ 2 + 2β 2 γ 3 , -2α 3 β 3 -α 3 γ 2 γ 3 , β 2 3 -α 3 γ 2 2 , 2α 3 γ 2 + β 3 γ 3 , α 3 β 3 γ 2 -2α 3 β 2 γ 3 , 2α 3 β 2 γ 2 + β 2 3 γ 2 -β 2 β 3 γ 3 , α 3 γ 2 2 + β 3 γ 2 γ 3 -β 2 γ 2 3
) and of rank 6 in case of a Lie algebra, that is if (γ 2 , β 3 , γ 3 ) = (0, 0, 0). We have a similar result for the family [START_REF] Markl | Algebras with one operation including Poisson and other Lie-admissible algebras[END_REF], but in this case the kernel is generated by

(β 3 γ 2 γ 3 -β 2 γ 2 3 , -β 3 γ 2 2 + β 2 γ 2 γ 3 , 0, α 2 γ 2 3 , -α 2 γ 2 γ 3 , 0, α 2 2 γ 3 -α 2 β 3 γ 3 , α 2 β 3 γ 2 -β 2 3 γ 2 + α 2 β 2 γ 3 + β 2 β 3 γ 3 , α 2 γ 2 γ 3 + β 3 γ 2 γ 3 -β 2 γ 2
3 ). Proposition 15. Any 3-dimensional nonsolvable algebra is a simple algebra and belongs to the family [START_REF] Markl | Deformation theory of algebras and their diagrams[END_REF] or [START_REF] Markl | Algebras with one operation including Poisson and other Lie-admissible algebras[END_REF]. For all these algebras, the automorphism group is of dimension 1 except if the algebra is a Lie algebra, in this case it is of dimension 3.

5.

Applications: Hom-Lie algebras 5.1. Hom-Lie algebras. The notion of Hom-Lie algebras was introduced by Hartwig, Larsson and Silvestrov in [START_REF] Hartwig | Deformations of Lie algebras using σ-derivations[END_REF]. Their principal motivation concerns deformations of the Witt algebra. This Lie algebra is the complexification of the Lie algebra of polynomial vector fields on a circle. A basis for the Witt algebra is given by the vector fields

L n = -z n+1 ∂ ∂z for any n ∈ Z. The Lie bracket is given by [L m , L n ] = (m -n)L m+n .
The Witt algebra is also viewed as the Lie algebra of derivations of the ring C[z, z 

D q (f )(z) = f (qz) -f (z) qz -z .
It is clear that D q is a linear operator, but its behavior on the product is quite different as the classical derivative:

D q (f g(z)) = g(z)D q (f (z)) + f (qz)D q (g(z)).
The authors of [START_REF] Hartwig | Deformations of Lie algebras using σ-derivations[END_REF] interpret this relation by putting

(9) D q (f g) = gD q (f ) + σ(f )D q (g)
where σ is given by σ(f

)(z) = f (qz) for any f ∈ C[z, z -1 ].
Starting from ( 9) and for a given σ, one defines a new space of "derivations" on C[z, z -1 ] constituted of linear operators D satisfying this relation. With the classical bracket we obtain is a new type of algebras so called σ-deformations of the Witt algebra. This new approach naturally leads to consider the space of σ-derivations, that is, linear operators satisfying [START_REF] Petersson | The classification of two-dimensional nonassociative algebras[END_REF], and to provide it with the multiplication associated with a bracket. This new algebra is not a Lie algebra because the bracket doesn't satisfies the Jacobi conditions. The authors shows that this bracket satisfies a "generalized Jacobi condition", and they have called this new class of algebras the class of Hom-Lie algebras. Since then this notion was developed through numerous studies and was also generalized in other directions (see [START_REF] Zheng | Free involutive Hom-semigroups and Hom-associative algebras[END_REF]). We denote by HLie n the subset ssAlg n whose elements are n-dimensional Hom-Lie algebras. We have seen that ssAlg n is an affine variety isomorphic to K n 2 (n-1)/2 . We will study in particular the case n = 3 and n = 4, proving that in dimension 3 any skew-symmetric algebra is a Hom-Lie algebra and in dimension 4, HLie 4 is an algebraic hypersurface in ssAlg 4 . We end this work by the determination of binary quadratic operads whose associated algebras are Hom-Lie.

Definition 16. A Hom-Lie algebra structure on the vector space V is a triple A = (V, µ, α) consisting of a skew-bilinear map µ : V × V → V and a linear space homomorphism f : V → V satisfying the Hom-Jacobi identity

x,y,z µ(µ(x, y), f (z)) = 0 for all x, y, z in A, where x,y,z denotes summation over the cyclic permutations on x, y, z.

For example, a Hom-Lie algebra whose endomorphism f is the identity is a Lie algebra. We deduce, since any 2-dimensional skew-symmetric algebra (the multiplication µ is a skewsymmetric bilinear map) is a Lie algebra, that any 2-dimensional algebra is a Hom-Lie algebra.

In what follows we are interested in the determination of all Hom-Lie algebras for small dimensions. Let f be an element of gl(3, K) and consider its matrix under the same basis {e 1 , e 2 , e 3 }  

a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3   .
We then define the vector

v f = (a 1 , a 2 , a 3 , b 1 , b 2 , b 3 , c 1 , c 2 , c 3 ).
For such an algebra we associate the following matrix, HL µ , belonging to M(3, 9) the space of matrices of order (3 × 9) and given by 

  α 1 v 1 + α 2 v 2 + α 3 v 3 β 1 v 1 + β 2 v 2 + β 3 v 3 γ 1 v 1 + γ 2 v 2 + γ 3 v 3   , where v 1 = (-β 3 , α 3 , 0, β 2 , -α 2 , 0, -β 1 , α 1 , 0), v 2 = (-γ 3 , 0, α 3 , γ 2 , 0, -α 2 , -γ 1 , 0, α 1 ), v 3 = (0, -γ 3 , β 3 , 0, γ 2 , -β 2 , 0, -γ 1 , β 1 ).
 -α 1 β 3 -α 2 γ 3 -β 1 β 3 -β 2 γ 3 -γ 1 β 3 -γ 2 γ 3   , 23.2 =   α 1 α 3 -α 3 γ 3 β 1 α 3 -β 3 γ 3 γ 1 α 3 -γ 3 γ 3   , 23.3 =   α 2 α 3 + α 3 β 3 β 2 α 3 + β 3 β 3 γ 2 α 3 + γ 3 β 3   31.1 =   α 1 β 2 + α 2 γ 2 β 1 β 2 + β 2 γ 2 γ 1 β 2 + γ 2 γ 2   , 31.2 =   -α 1 α 2 + α 3 γ 2 -β 1 α 2 + β 3 γ 2 -γ 1 α 2 + γ 3 γ 2   , 31.3 =   -α 2 α 2 -α 3 β 2 -β 2 α 2 -β 3 β 2 -γ 2 α 2 -γ 3 β 2   12.1 =   -α 1 β 1 -α 2 γ 1 -β 1 β 1 -β 2 γ 1 -γ 1 β 1 -γ 2 γ 1   , 12.2 =   α 1 α 1 -α 3 γ 1 β 1 α 1 -β 3 γ 1 γ 1 α 1 -γ 3 γ 1   , 12.3 =   α 2 α 1 + α 3 β 1 β 2 α 1 + β 3 β 1 γ 2 α 1 + γ 3 β 1   .
Theorem 17. Any skew-symmetric 3-dimensional algebra is a Hom-Lie algebra.

Proof. Consider a basis {e 1 , e 2 , e 3 } of the algebra (A, µ) and let α i , β i , γ i for i = 1, 2, 3 be its structure constants defined previously. Let f be in gl(3, K) and let us consider the associated vector

v f = (a 1 , a 2 , a 3 , b 1 , b 2 , b 3 , c 1 , c 2 , c 3 ). The endomorphism f ∈ gl(3, K) satisfies the Hom-Jacobi condition if and only if its corre- sponding vector v f = (a 1 , a 2 , a 3 , b 1 , b 2 , b 3 , c 1 , c 2 , c 3 )
is in the kernel of the matrix HL µ . But this matrix belongs to M(3, 9) and represents a linear morphism

t : K 9 → K 3 .
From the rank theorem we have dim Ker t = 9 -dim Im t ≥ 6.

Then this kernel is always non trivial and for any algebra µ, there exists a non trivial element in the kernel. Consequently this algebra always admits a non trivial Hom-Lie structure. 5.3. Classification of Hom-Lie algebras of dimension 3. We have determinated the 3dimensional skew-symmetric K-algebras In the above argument. Since any Hom-Lie algebra is skew-symmetric, we deduce the classification of Hom-Lie algebras. Moreover, for a given skew-symmetric algebra, we can calculate the endomorphisms f associated with the Hom-Lie-Jacobi condition solving the linear system: For example, the identity map whose associated vector is v Id = (1, 0, 0, 0, 1, 0, 0, 0, 1) is in the kernel of HL µ if and only if µ satisfies (23)1 + (31)2 + (12)3 = 0 that is if it is a Lie algebra. We deduce Proposition 18. If the Hom-Lie algebras A = (V, µ) and A = (V, µ ) are isomorphic, then the kernels of the associated matrices HL µ and HL µ are isomorphic. 

C k i,j e k , 1 ≤ i, j ≤ 4.
This algebra is a Hom-Lie algebra if there exists a linear endomorphism f satisfying the Hom-Lie Jacobi equations. The endomorphism f is represented in the basis {e 1 , e 2 , e 3 , e 4 } by a square matrix (a i,j ) of order 4. As in dimension 3, we consider the vecteur

v f ∈ K 16 v f = (a 1,1 , a 2,1 , a 3,1 , a 4,1 , a 1,2 , a 2,2 , • • • , a 3,4 , a 4,4 ).
Then f satisfies the Hom-Lie conditions if and only if v f is solution on the linear system

HL µ • t v f = 0
where HL µ is the square matrix of order 16: 

HL µ =     23 
.k =     l C l i,j C 1 l,k l C l i,j C 2 l,k l C l i,j C 3 l,k l C l i,j C 4 l,k     .
The kernel of HL µ is not trivial if and only if the rank of HL µ is smaller or equal to 15. We deduce that A = (V, µ) is provided with a Hom-Lie structure if the structure constants C k i,j satisfy the homogeneous polynomial equation of degree 16: det(HL µ ) = 0.

Proposition 19. The set HL 4 of 4-dimensional K-Hom-Lie algebras is provided with a structure of algebraic variety embedded in K 24 .

For any A = (V, µ) ∈ HL 4 we consider the vector space Ker HL µ . We thus define a singular vector bundle K(HL 4 ) whose fiber over A = (V, µ) is Ker HL µ . This fiber corresponds to the set of Hom-Lie structure which can be defined on a given 4-dimensional algebra. Remarks.

(1) In dimension 3, HL 3 is the affine variety ssAlg 3 which is isomorphic to the affine space K 9 . In this case, the fibers of K(HL 3 ) are vector spaces of dimension greater or equal to 6. (1) Algebras [START_REF] Makarenko | Lie type algebras with an automorphism of finite order[END_REF]. Such algebras are of Lie type if β 2 = β 3 = 0, that is if it is also a Lie algebra. (2) Algebras [START_REF] Markl | Deformation theory of algebras and their diagrams[END_REF]. Such algebras are never algebras of Lie type.

(3) Algebras [START_REF] Markl | Algebras with one operation including Poisson and other Lie-admissible algebras[END_REF]. Such an algebra is a Lie algebra and only if it is a Lie algebra (γ 2 , β 3 , γ 3 ) = (0, 0, 0). Assume α 2 = 1, β 2 = 0. We have a Lie algebra structure if and only if (γ 2 , β 3 , γ 3 ) = (0, -1, 0). We have a complex structure of algebra of Lie type, which is not a Lie algebra if and only if γ 2 = γ 3 = 0 and β 3 is a complex root of -1 (we assume here that K = C) that is β 3 = -j or -j 2 . In this case the relation is µ(µ(X, Y ), Z) + jµ(µ(Y, Z), X) + j 2 µ(µ(Z, X), Y ) = 0 or µ(µ(X, Y ), Z) + j 2 µ(µ(Y, Z), X) + jµ(µ(Z, X), Y ) = 0. Moreover in this case M µ is of rank 8 and the automorphism group is of dimension 1 and generated by the automorphisms   u 0 0 0 u -1 0 0 0 1   .

  e 1 , e 2 ) = e 1 + e 4 , µ(e 1 , e 3 ) = e 2 + e 3 , µ(e 1 , e 4 ) = e 3 + e 4 , µ(e 2 , e 3 ) = e 1 + e 3 , µ(e 2 , e 4 ) = e 2 , µ(e 3 , e 4 ) = e 2 + e 3 satisfies this property.

Definition 8 .

 8 Let F t 1 ,••• ,t k be a family of algebras of ssAlg 3 parametrized by t 1 , • • • , t k . This family is rigid if its orbit by the action of the group GL(V ) is Zariski open in ssAlg 3 .

Proposition 9 .µ(e 1 , e 2 ) = e 3 , µ(e 1 , e 3 ) = β 2 e 2 + γ 2 e 3 , µ(e 2 , e 3 ) = α 3 e 1 + β 3 e 2 + γ 3 e 3 ,

 9123132323123 The family F β 2 ,γ 2 ,α 3 ,β 3 ,γ 3 whose elements are the algebras   is rigid in ssAlg 3 .

e 3 } 3 ) = β 2 e 2 + γ 2 e 3 ,

 3323 is an adapted basis to this flag. We have µ(e 2 , e 3 ) = γ 3 e 3 , µ(e 1 , e 2 ) = β 1 e 2 + γ 1 e 3 , µ(e 1 , e with γ 3 = 0 and β 1 = 0 or β 2 = 0. Such an algebra is never a Lie algebra. Let us note that since γ 3 = 0, giving e 2 = γ -1 3 e 3 , we can consider that γ 3 = 1. Proposition 11. Any 3-dimensional solvable algebra is a Lie algebra or is isomorphic to the non-Lie algebra given by 1 , e 2 ) = β 1 e 2 + γ 1 e 3 , µ(e 1 , e 3 ) = β 2 e 2 + γ 2 e 3 , µ(e 2 , e 3 ) = e 3 , with β 1 = 0 or β 2 = 0.

  1 , e 2 ) = e 3 , µ(e 1 , e 3 ) = β 2 e 2 + γ 2 e 3 , µ(e 2 , e 3 ) = α 3 e 1 + β 3 e 2 + γ 3 e 3 , with α 3 β 2 = 0, or 1 , e 2 ) = e 3 , µ(e 1 , e 3 ) = α 2 e 1 + β 2 e 2 + γ 2 e 3 , µ(e 2 , e 3 ) = β 3 e 2 + γ 3 e 3 , with α 2 β 3 = 0.

  -1 ]. Recall that a derivation on an algebra with product denoted by ab is a linear operator satisfying D(ab) = D(a)b + aD(b). The Lie bracket of two derivations D and D is [D, D ] = D•D -D •D. We can also define a new class of linear operators which generalize derivations, the Jackson derivate, given by

5. 2 .

 2 Hom-Lie algebras of dimension 3. Any 3-dimensional skew-symmetric K-algebra A = (V, µ) is defined by its structure constants {α i , β i , γ i } i=1,2,3 with respect to a given basis {e 1 , e 2 , e 3 } :    µ(e 1 , e 2 ) = α 1 e 1 + β 1 e 2 + γ 1 e 3 , µ(e 1 , e 3 ) = α 2 e 1 + β 2 e 2 + γ 2 e 3 , µ(e 2 , e 3 ) = α 3 e 1 + β 3 e 2 + γ 3 e 3 .

23. 1

 1 23.2 23.3 31.1 31.2 31.3 12.1 12.2 12.3 t v f = 0.

5. 4 .

 4 The case of dimension 4. Let A = (V, µ) a 4-dimensional skew-symmetric K-algebra. Let us choose a basis {e 1 , e 2 , e 3 , e 4 } of V and let us consider the corresponding structure constants of µ: µ(e i , e j ) = 4 k=1

( 2 )

 2 In dimension 4, we are confronted with the resolution of the equation of degree 16 with 24 variables det(HL µ ) = 0. If K is algebraically closed, we can simplify this problem because the endomorphism f admits a general reduced form In this case, we need only to consider the reduced matrix HL µ of order 16 × 7:It remains to verify that there exists at least one point of ssAlg 4 which do not belong to HL 4 . Let us consider, for example, the following algebra: a = 0. For example, In the first section, we have considered the non Lie algebra   µ(e 1 , e 2 ) = e 2 ,µ(e 1 , e 3 ) = e 3 , µ(e 2 , e 3 ) = e 1 . This algebra satisfies the identityµ(µ(X, Y ), Z) + µ(µ(Y, Z), X) + b(X, Y, Z)µ(µ(Z, X), Y ) = 0where b is a trilinear form satisfying b(e 1 , e 2 , e 3 ) = -b(e 3 , e 1 , e 2 ) = 1. It is an algebra of Lie type. An important study of the automorphism group of these algebras is presented in[START_REF] Makarenko | Lie type algebras with an automorphism of finite order[END_REF]. In this example, dim Aut(µ) = 3 and the identity component is the group of matrices ad -bc = 1. It is isomorphic to SO(2). For all the non Lie algebras determined in the above sections, let us determine the algebras of Lie type.

  Using the notation ij.k in place of µ(µ(e i , e i ), e k ), we have

	HL µ = 23.1 23.2 23.3 31.1 31.2 31.3 12.1 12.2 12.3
	with
	
	23.1 =
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