
HAL Id: hal-02429793
https://hal.science/hal-02429793v1

Submitted on 6 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Privacy Preserving Platform for
Ridesharing Services

Yevhenii Semenko, Damien Saucez

To cite this version:
Yevhenii Semenko, Damien Saucez. Distributed Privacy Preserving Platform for Ridesharing Services.
Security, Privacy, and Anonymity in Computation, Communication, and Storage, Springer, pp.1-14,
2019, �10.1007/978-3-030-24907-6_1�. �hal-02429793�

https://hal.science/hal-02429793v1
https://hal.archives-ouvertes.fr

Distributed Privacy Preserving Platform for
Ridesharing Services

Yevhenii Semenko and Damien Saucez

Université Côte d’Azur, Inria, France

Abstract. The sharing economy fundamentally changed business and
social interactions. Interestingly, while in essence this form of collabora-
tive economy allows people to directly interact with each other, it is also
at the source of the advent of eminently centralized platforms and mar-
ketplaces, such as Uber and Airbnb. One may be concerned with the risk
of giving the control of a market to a handful of actors that may unilat-
erally fix their own rules and threaten privacy. In this paper, we propose
a decentralized ridesharing architecture which gives the opportunity to
shift from centralized platforms to decentralized ones. Digital commu-
nications in our proposition are specifically designed to preserve data
privacy and avoid any form of centralization. We integrate a blockchain
in our proposition to guarantee the essential roles of a marketplace, but in
a decentralized way. Our numerical evaluation quantifies the advantages
and limits of decentralization and our Android implementation shows
the feasibility of our proposition.

Keywords: Data Privacy; Decentralized; Sharing Economy; Blockchain; Peer-
to-Peer

1 Introduction

Mass digitalization of our daily life and deep involvement of user data boosted
the sharing economy by allowing the advent of massively used platforms, such
as Airbnb and Uber, that make our day-to-day tasks much easier. However, such
platforms raise concerns about the concentration of power and information in
a handful of mercantile companies with the risk of inappropriate personal data
usage [7], personal information leakage [16], or market control [9].

This paper proposes to tackle these issues for the case of ridesharing services
by proposing a multilayered distributed architecture that removes the need of a
centralize platform. The shift to a fully decentralized paradigm is not straight-
forward. First, with a centralized approach, personal data are concentrated and,
unless security breaches or inadequate policies, the data can only be manipulated
by well identified entities (i.e., the platform operator). In a fully decentralized
entity data are scattered among the constituents of the decentralized entity
platform with inherently more risks of information leakage. Second, decisions to
authorize or not a given client or producer to be part of the platform or to define

a price are more complex in a decentralized platform as the system as a whole
must answer these questions. Finally, responsiveness of the system can become
a challenge as it is impossible to tune the resources as well as with centralized
platforms.

Ridesharing services are particularly challenging as they are by nature highly
dynamic (clients come and leave frequently), they involve users willing to mini-
mize data communication as they are roaming, they require to exchange sensitive
personal information, and they are subject to rules that can change from region
to region while users can move between these regions.

Privacy preserving solutions for ridesharing have been proposed ([1–3, 6, 8,
10, 14]) but we are the first to take a holistic approach were we consider simul-
taneously privacy, accountability, business, communications, and scalability.

In Sec. 2 we define a decentralize privacy preserving platform for ridesharing
where peers forms an overlay communication network and rely on a blockchain
to organize their marketplace. In Sec. 3 we evaluate its scalability based on
analytical bounds and on a trace-driven numerical evaluation. Sec. 4 discusses
our Android prototype and the lesson learned while developping it. Finally, in
Sec. 5 we conclude.

2 Decentralized Platform

Ridesharing platforms such as Uber or Lyft rely on centralized infrastructures
involving third-parties, which raises privacy concerns. In this paper, we remove
this dependency to avoid any lock-in with a third-party and to preserve privacy.
To that aim, we conceive the platform as a fully decentralized peer-to-peer net-
work [11] where each node is equally important and interchangeable and rely on
a multilayer architecture.

2.1 Multilayered architecture

First, we build an overlay network including all the business actors to consti-
tute the network layer. As ridesharing services can span over multiple regions
with different constraints and can have several millions of users, the underlying
peer-to-peer networking technology must provide a way to segregate traffic in
arbitrary regions and it must be able to scale. For these reasons we must use a
protocol where node IDentifiers (ID) can be structured and scoped, such as in
Chord [18] or in Kademlia [12]. It is therefore straightforward to limit the scope
of communications to particular regions. For example, if communications must
remain within peers of a country, it is enough to partition the ID space with
one partition per country and impose that every peer of a country uses an ID
within the partition of the country. Fig. 1 shows an example of how to scope
communications per region with Chord.

Second, as the platform does not involve a data storage third party, all actors
involved in the platform must take part in the storage effort. Keeping in mind
that data privacy is essential, the best approach is to build a Distributed Hash

USA (f852*)

J
a
p
a
n

 (e7b9*)

France (e0b1*)

S
e
n
e
g
a
l
(1ed9*)

e7b94355a4

f85206e9d52

e7b9f0b5c2c

f8527de1555

1ed91121cfc

f85253c234e

e0b110159ba

f852aa67a16

e0b12e6d31a

e7b9917df33
1ed925d4f2a

Fig. 1. Example of device grouping with Chord.

Table (DHT) to implement the Data storage layer. Even though the data storage
layer by itself is not sufficient to guarantee data privacy, when it is combined
with the other layers it enables data privacy as detailed in Sec. 2.2.

User Interface (UI) and user experience can’t be altered by the decentral-
ization even though the User application layer where the UI is implemented
fundamentally changes. In centralized platforms, user applications interact with
the rest of the platform via REST APIs. In a decentralized solution, the ap-
plication must include the other layers of the platform and implement, at least
partially, the logic of the platform.

Finally, the Management layer that is simple by nature in a centralized ap-
proach is complex to implement in a fully distributed system with no trusted
parties. Particularly complex issues to solve in such an environment are how to
control business processes, manage data access, and provide accountability to
solve potential disputable situations. These issues arise as there is no central to
solve debatable issues, to control or to set the required system parameters.

To implement the Management layer we use a blockchain [19] which plays
the role of an intermediary for controlling data access, guarantee that parties
act in conformance with the rules of the platform, and log events. The business
logic is implemented with smart contracts and privacy is ensured.

Alone blockchains do not provide data privacy protection. Instead they tend
to reduce privacy as they spread data to open locations. However, thanks to
smart contracts data owners can specify who and how their data can be ac-

cessed. In Sec. 2.2 we detail how to guarantee data privacy with our multilayered
distributed platform.

2.2 Data Privacy

The first condition to preserve privacy is to minimize the amount of data that
is spread in the system. That is, for each data, the designer of the service must
determine whether or not the data must be shared, who can access it, and under
which conditions. Consumers of the data are either identified at the time of the
publication or they are not.

The first case is the simplest, the data is encrypted with the public key of the
target such that only the target can read the data. In this case, the data can be
stored anywhere in the DHT, multiple targets means multiple copies of the data.
As our architecture does not rely on trusted third parties, there is no trusted
Public Key Infrastructure (PKI) on which we can rely to obtain the public key.
However, if like in Bitcoin the ID is made such that it is unambiguously linked
with the public key of the party then it is possible to safely retrieve the public
key for that node [13]: 1) the producer of data determines the ID of its target,
2) it requests the system (or the target directly) to provide its public key, and
3) it verifies that the ID and the public key are linked (e.g., the ID contains a
hash of the public key).

In the second case where the target of the data is not known while publishing
the data, it is not possible to use encryption directly. Instead, the producer uses
the Shamir’s Threshold Scheme [17]. The producer generates as many parts of
its secret as needed and determines a DHT key for each part such that they can
be published in the DHT according to its requirements. Here the choice of the
key for each part to be published in the DHT is important as it determines the
nodes that will store the data. In parallel to publishing the data in the DHT,
the producer also publishes a smart contract in the blockchain that specifies
the policy of accessing the data. As a result, when a party wants to consume
a data, it sends a request to the overlay and if the smart contract is fulfilled
then the storing nodes provide their parts to the requester that will be able to
re-construct the data. The threshold value and where to store the parts (and
their redundancy level) depends on the service’s threat model.

2.3 Protocol

Road transportation clients and drivers are by nature on the move and thus have
poor, expensive, and unreliable connectivity. For that reason they do not directly
take place in the peer-to-peer network. Instead the peer-to-peer network is run by
arbitrary machines willing to share their resources for the community.The nodes
taking part in the peer-to-peer network then act as service nodes to access the
network for the clients and drivers by the means of an HTTPS REST API.

Client and driver applications select a node from the peer-to-peer network as
service node according to their own preferences (e.g., randomly or topologically
close to them, or a trusted service node).

Any ride can be decomposed in three phases. First, the client hails for a
ride. During that phase, the client and a driver mutually agree on making the
ride together. Second, the ride starts and the client is dropped-off at its desired
location. Finally, the client and driver finish the transaction by paying and they
comment the service if they want.

Below we detail the protocol that we designed to implement these three
phases in our distributed platform. Fig. 2 and Fig. 3 depict the exchanges and
the messages, respectively.

Requesting phase When a client wants to ride from point A to point B, it
sends a Request message to its service node. The message contains a nonce, a
timestamp, and information on the desired types of car. The nonce is made to
avoid leaking the identity of the client in the network and is the HMAC of a
random number generated by the client. The information about the ride are the
anonymized origin and destination location of the ride, the exact distance for
the ride as computed with a traffic route planner API, the price per kilometer
that the client is ready to pay, and the categories of cars the client is willing
to use. The client does not provide its actual origin and destination coordinates
to avoid leaking sensitive information to the system. Instead it provides approx-
imate locations. The price per kilometer is computed according to an auction
mechanism. The location anonymization and price computation mechanisms are
out of the scope of this paper.

When a service node receives a Request, it broadcasts it in the peer-to-peer
network and tags the message with its own IP address and port number. In the
meanwhile, the service node locally stores the request in its pending ride requests
queue. When a node in the peer-to-peer network receives a broadcasted Request

message, it locally stores it in its pending ride requests queue.

Every driver periodically polls its service node with a Ping message to know
the pending ride requests. The Ping message contains the anonymized location
of the driver, its type of car, and a timestamp. If the driver is in a location
close to a request in the pending request queue of the service node, the service
node replies to the driver by forwarding it the oldest compatible “close enough”
Request message in its pending ride requests queue. If the driver doesn’t want to
accept this ride, it silently ignores it. Otherwise, it sends an Acknowledgement

message directly to the service node of the client, without going through the
peer-to-peer network as it knows the IP and port that can be used for direct
communications with the service node. It is worth to notice that at this stage the
driver leaked potential private information as it publicly reveals its ID, current
approximate location, and will to achieve a ride that is uniquely identified by a
nonce. Unfortunately, the only solution to avoid this would be to have a mecha-
nism to encrypt the acknowledgment such that only the client can decrypt it. But
as we are in an untrusted environment, that would imply to leak the client ID as
drivers would have to verify that the request was not forged by a service node.
In the meanwhile, only the ID and an approximate location is leaked, which is
not a severe threat for drivers as they are anyway clearly publicly identified in

Client Service Node
Sc

Service Node
SD

Driver

[51 B]
Broadcasted Request

[33 B]
Request

[25B]
Ping

[51 B]
Request

[533 B]
Acknowledgment+ signed

[533 B]
Acknowledgment+ signed

[532 B]
Confirmation + signed

[532B]
Confirmation + signed

Transaction processing
Drive from A to B.

REQUESTING
PHASE

(DRIVE REQUEST)

TRANSACTION
PROCESSING PHASE

(DRIVE)

TRANSACTION
FINISHING PHASE

[598 B]
Transaction + signed

1
2

3

4

5

5

6

6

7

7
7

7

[598 B]
Transaction + signed

[598 B]
Transaction + signed

[598 B]
Transaction + signed

Fig. 2. Ridesharing service protocol workflow.

Request [33 Bytes]

Nonce: 8 Bytes

Timestamp: 8 Bytes

Anonymised origin: 6 Bytes

Anonymized destination: 6 Bytes

Distance: 2 Bytes

Price per km: 2 Bytes

Car category: 1 Byte

Broadcasted Request [51 Bytes]

Nonce: 8 Bytes

Timestamp: 8 Bytes

Anonymised origin: 6 Bytes

Anonymised destination: 6 Bytes

Distance: 2 Bytes

Price per km: 2 Bytes

Car category: 1 Byte

Service node IP address: 16 Bytes

Service node port: 2 Bytes
Ping [25 Bytes]

ID: 10 Bytes

Timestamp: 8 Bytes

Anonymised location: 6 Bytes

Car type: 1 Byte

Acknowledgment [533 Bytes]

Nonce: 8 Bytes

ID: 10 Bytes

Car type: 1 Byte

Rank: 2 Bytes

Price per km: 2 Bytes

Random number: 8 Bytes

Driver IP address: 16 Bytes

Driver port: 2 Bytes

Ancillary data: 100 Bytes

Public key: 128 Bytes

Signature: 256 Bytes

Confirmation [532 Bytes]

Nonce: 8 Bytes

ID: 10 Bytes

Nonce random number: 8 Bytes

Origin: 6 Bytes

Destination: 6 Bytes

Rank: 2 Bytes

Driver's random number: 8 Bytes

Ancillary data: 100 Bytes

Public key: 128 Bytes

Signature: 256 Bytes

Transaction [598 Bytes]

Customer ID: 10 Bytes

Driver ID: 10 Bytes

Driver/Customer flag: 1 bit

Start timestamp: 8 Bytes

End timestamp: 8 Bytes

Paid price per km: 2 Bytes

Car type: 1 Byte

Grade: 2 Bytes

Comments: 140 Bytes

Locations hash: 32 Bytes

Public key: 128 Bytes

Signature: 256 Bytes

1 2

3

5 6 74

Fig. 3. Ridesharing service messages.

real life for legal reasons (e.g., with a specific sticker on their cab), while it could
be a sever threat for clients. This is the reason while we designed our protocol
in that way.

The Acknowledgement message contains the nonce taken from the Request,
the driver’s ID and public key, he’s car type, his rank, a price per kilometer, a
random number, and ancillary data that depend on the local regulations and
habits (e.g., driver name, car make and model. . .). In addition, it provides the
IP address and port number to use to have a direct communication with it.1

The message is signed by the driver. When the client service node receives this
message, it forwards the acknowledgment to the client and removes the request
from its pending requests queue such that any further Acknowledgement message
will be silently dropped.

When a client receives an Acknowledgement message, he decides whether or
not he agrees to make the ride with that particular driver (e.g., based on the
driver’s rank). If he doesn’t accept the driver proposition, he silently ignores
the proposition in order to avoid leaking personal information. If he accepts the
proposition, he sends a Confirmation message directly to the driver’s device (for
which he knows the IP address and port number to use). The message contains
the nonce and the random number used by the client to generate the nonce, the
client’s ID, public key, and rank, the exact origin and destination points of the
ride, the random number sent by the driver, and ancillary data that depend on
the local regulations and habits (e.g., client’s surname). The message is signed
by the client and is fully encrypted with the public key of the driver. With
the nonce and its associated random number, the client’s public key, and the
signature, the driver can verify that the client acknowledgment is generated by
the owner of the ID that initiated the Request message and with the echo of the
random number that it provided in the Acknowledgment message, this prevents
replay attacks.

1 We assume that drivers can set in place hole-punching mechanisms, e.g., via their
home box, to allow direct connection to their device while working.

At this stage, both the client and the driver have fully disclosed their personal
information, but this information is known only by them. The client and driver
start exchanging their actual GPS coordinates until the client is picked up. To
minimize the number of messages exchanged they rely on a traffic route planner
API and only exchange information if they deviate from the plan. These com-
munications are encrypted and directly sent between the client and the driver.

It is worth to mention that even though the client’s service node doesn’t
know the ID or exact coordinates of the client, it knows its IP address (as it
has direct communication with it) and knows the ID of the driver. There are no
practical solutions to avoid such leakage of information but the client can tackle
this issue by using a trusted service node.

Driving phase The drive starts when the client is picked up by the driver. At
this time, devices can collect GPS exchange format (GPX) data independently
from each other. During the drive there are no messages exchanged between the
devices or with the rest of the network. Due to this, a third party will never be
able to determine the time of making the drive or intercept any data concerning
the transaction participants GPS positions. This information is not published
anywhere and is for strict personal usage. It can, for example, be used during a
litigation where parties can compare their traces to justify their disagreement.

Cloture phase When the ride is finished, participants give a grade (e.g., stars)
and a comment on the drive. The driver and the client independently advertise
their ride to the network with a Transaction message. This message contains
the ID of the client and of the driver, a start and an end timestamp, a flag
indicating whether the message is from a client or a driver, the proposed grade,
a comment, the price paid per kilometer, and a hash of the concatenation of the
origin and destination of the ride. The message is signed by the emitter of the
message (i.e., the driver or the client) and contains its public key.

The only personal information that can be inferred from a Transaction

message is that a given client did a ride with a given driver at a given time.
Other information, such as location, are never disclosed.

Transaction Data are eventually validated in the blockchain. Each node in
the blockchain checks the values of both transaction data. If both are similar and
correct, i.e., timestamps are reasonably close in both transaction messages, the
hash of the locations is the same, and the price per kilometer is the same, then
they are considered as validated transactions and added to the new next block.
In the case transactions cannot be validated (e.g., only one of the two has been
received, or the transactions are incompatible), they are still eventually added
to the blockchain but they are marked as being in conflict.

Periodically, a summary block is published in the blockchain. The new sum-
mary block contains the list of observed IDs seen since the last summary block
and their new rank. The rank is computed based on the last published rank for
this ID and the grades that appear in the transactions with this ID. The function
used to re-compute the rank must be robust to malicious users.

100 101 102 103 104 105 106

Number of service nodes (n)

101

102

103

104

105

106

107

108

109

M
a
x
im
u
m
 n
u
m
b
e
r
o
f
m
o
n
th
ly
 r
id
e
s

500 GB
100 GB
50 GB
30 GB
10 GB

Fig. 4. Total maximum
number of monthly rides
supported by the plat-
form, given a maximum
monthly data volume
budget per service node.

100 101 102 103 104 105 106

Number of service nodes (n)

101

102

103

104

105

106

107

108

M
a
x
im
u
m
 n
u
m
b
e
r
o
f
m
o
n
th
ly
 r
id
e
s

α=0.1%
α=1%
α=5%
α=10%
α=100%

Fig. 5. Total maximum
number of monthly rides
supported by the platform
when service nodes are
grouped per zone for a
maximum monthly data
volume budget of 30 GB
per service node.

101 102 103 104 105 106

Number of monthly rides

10-3

10-2

10-1

100

101

102

103

M
a
x
im

u
m

 B
lo

ck
ch

a
in

 s
iz

e
 [
M

B
]

maximum block size=256 B
maximum block size=1 KB
maximum block size=10.0 KB
maximum block size=100 KB
maximum block size=1 MB
maximum block size=10 MB

Fig. 6. Maximum in-
crease of blockchain size
per month as a function
of the number of monthly
rides.

3 Evaluation

In the following we evaluate the scalability of our proposition when it is imple-
mented with Chord. We first perform an analytical study that we comment with
data coming from on a real ride trace.

3.1 Platform dimensioning

Traffic load With the protocol described above, we can precisely determine the
data traffic generated by each ride for a network composed of n service nodes.
We compute the maximum amount of traffic for the worst case scenario (i.e.,
using IPv6). To determine the amount of traffic supported by service nodes for
one ride, we have to identify the three different types of service nodes.

(i) The client’s service node receives the client’s Request that it broad-
casts to its neighbors (i.e., log2(n) service nodes). It also receives the driver’s
Acknowledgment messages from the d drivers willing to take the ride and for-
wards the first one to the client. At the end of a ride, it receives the Transaction
message from the its client and forwards it to its neighbors (i.e., log2(n) service
nodes) but also the one from the driver that it also broadcasts.

(ii) The driver’s service node receives one broadcasted Request message and
forwards it to its neighbors (i.e., log2(n) service nodes) and the driver’s Ping

message to which it answers by forwarding the broadcasted Request message.
Similar to the client’s node, this node will receive and broadcast transactions.

(iii) The relay service nodes have neither the client nor a driver. Such relay
nodes receive one broadcasted Request message and two Transaction messages
that they have to broadcast it to their neighbors (i.e., log2(n) nodes).

The worst case is if the client requests are always issued from clients con-
nected to the same client’s service node and when one driver of each service node
(including the client’s service node) answers to the request.

Fig. 4 shows the evolution of the maximum number of rides that the whole
platform can handle every month for a given monthly data volume quota. The x-
axis gives the number of service nodes and the y-axis gives the maximum number
of rides per month. Both axes are in log-scale. As shown in Fig. 4, the maximum
number of rides that can be handled by the system exponentially decreases with
the number of service nodes because every request has to be broadcasted in the
network. For example, for 10,000 service nodes having a budget of 30 GB per
month, the platform will handle at least 5,524 rides per month. This is three
orders of magnitude lower than the number of requests currently seen by Uber
or Lyft in a city like San Francisco [5]. Nevertheless, it is important to remember
that this value represents the minimum number of rides that the platform can
support. Based on a trace study in Sec. 3.2 we will see that in practice our
platform can handle much more rides, and be used for current taxi services.

To alleviate this scalability issue, we can leverage the possibility to limit the
scope of the messages in our Chord network thanks to a clever construction of IDs
and identify two types of communications. On the one hand the Transaction

messages must be broadcasted to all the service nodes in order to be treated
safely by the blockchain. All the other messages can remain in the scope of the
region where the number of service nodes can be small (e.g., a dozen) without
impairing the security of the system if taken randomly in a large pool of sup-
posedly independent nodes. If α is the fraction of service nodes that compose
a region the traffic volume at a service node is in O (α · n+ log(n)) instead of
O (n+ log(n)) which substantially decreases the service node load for small val-
ues of α. Similarly to Fig. 4, Fig. 5 shows the maximum number of rides that the
platform can support for various α and a monthly budget of 30 GB. We can see
an important improvement as regions decrease in size. For example, with 10,000
nodes, if each region is limited to 10 service nodes (i.e., α = 0.1%), the platform
will support at least 1,275,197 rides per month, which is of the same order of
magnitude as what ride sharing services are experiencing today in large cities
like San Francisco [5].

Blockchain bloat Blockchains are strictly growing structures and we can com-
pute the worst case increase of the blockchain size as that is directly linked
to the number of rides supported by the platform: for every ride, at most two
transactions will be published in a block of the blockchain. Each transactions in
a block contains the IDs of the driver and client, a flag to indicate if the emitter
was the driver or the client, a rank, the price per kilometer and the pointer to
the comment stored in the DHT. A block contains a list of transactions, a times-
tamp, the hash of the block, and the hash of its previous block. Summary blocks
are also created with the list of IDs and their rank for IDs with a modified rank
since the emission of the last summary block. In the worst case, if the IDs are
observed only once between two summary blocks and if their rank changed, the
summary block will contain all the IDs.

Fig. 6 shows the maximum monthly increase of the blockchain size as a
function of the number of monthly rides. Both axes are in log scale. As long as

the maximum block size allows to store a large enough number of transactions,
the size of the block has no particular impact on the blockchain size. On the
contrary, when the block size is too small, it cannot contain many transactions
and the block overhead (i.e., its timestamp, hash value, and predecessor pointer)
is not negligible anymore. Nevertheless, for reasonable block size, increasing the
maximum block size only marginally influences the block chain size but is makes
it less reactive as the time span between two block creations increases, a linear
function of the transaction rate.

Fig. 6 shows that for realistic parameters of the system, the monthly increase
of blockchain size is reasonable. For example, for a monthly budget of 30 GB,
α = 0.1%, and 10,000 service nodes, the number of rides would be 1,275,197.
With a maximum block size of 100 KB, a new block would be created about
every 20.57 minutes and a new summary block about every 2.48 hours for a
total of 241.10 MB. If the system can be less reactive, the maximum block size
can be increased to 1 MB. In this case, blocks are created every 3.50 hours and
summary blocks are created every 1.03 days and the blockchain size monthly
increase is 240.84 MB.

3.2 San-Francisco Taxi trace evaluation

In Sec. 3.1 we show the scalability limits of our distributed platform in the worst
possible case. In this section, we re-evaluate the scalability of our platform in a
realistic scenario. To that aim, we use the San Francisco taxi cabs mobility trace
from Piorkowski et al. [15]. This dataset tracked GPS coordinates and status of
536 taxi cabs for one month in the Bay area, between May 17th 2008 and June
9th 2008. 2008. In total, this data set logs 437,377 rides over a month.

If the platform is composed of 10,000 service nodes, in the worst case where
all available drivers acknowledge ride requests and α = 1, the maximum monthly
traffic at a service node would only be 45.96 GB while the theoretical worst case
is higher than 500 GB for the same amount of rides, as depicted by Fig. 4. These
results show that despite in theory our distributed platform does not scale as
well as a centralized platform, in practice the distributed scheme is perfectly
usable. The reason is that in practice the offer and the demand are aligned and
only few resources remain unused. In practice, d � n for large enough number
of service nodes.

Finally, the blockchain size as computed from the trace, shows that in practice
the blockchain bloat is limited. For instance, with maximum block size values
between 1 KB and 10 MB, the total blockhain size to store informations from
the trace stays between 78 MB and 79 MB.

4 Proof of concept implementation

The architecture and protocol presented above have been mostly driven by our
prototype implementation as described in this section. We decoupled the ap-
plication layer from the rest of the platform and used a REST API. The user

application layer is implemented in Android while the rest is developped with
the Spring Framework [4] with which we implemented the REST API, the Chord
network, and a DHT.

Smartphones are always “on the move” and because of their intermittent
connectivity it is not straightforward to allow service nodes to spontaneously
send data to the mobile device but two alternatives exist:

– to rely on external services provided by the mobile application system (e.g.,
Google Firebase);

– to regularly poll service nodes from mobile applications.

In the usual case, this question is not of particular importance and many
would rely on the first solution. However, for propositions with a particular
focus on privacy, like ours, this solution cannot be considered as a suitable one
as it would infringe user privacy. For that reason, we have chosen the second
approach, which explains why we introduce the Ping message from the driver
in the requesting phase of the protocol. The polling period must be chosen
carefully to offer at the same time good reactivity and low network usage to
reduce operational costs. Nevertheless, we assume that drivers have local data
plans (as opposed to clients that might be have expensive roaming fees) and we
do not foresee particular cost issues as long as polling is done only by drivers.

In mobile environments it is usually not allowed for a terminal equipment
(e.g., a smartphone) to open ports for listening. This reason combined to privacy
reasons explains why the acknowledgement and the confirmation messages (5 and
6) are transiting through the client service node. Once confirmed, our protocol
assumes that direct communication between the driver and the client is possible,
which in practice requires complex NAT/firewall traversal mechanisms that that
could be implemented by the service nodes. Our prototype does not implement
traversal techniques but we anticipate that this particular point is technically
complex given the privacy requirements we have.

We only have implemented payment in cash in our prototype. However, to be
adopted by user it should support dematerialized payment solutions. Usual elec-
tronic payment techniques such as Visa are easy to put in place but they require
trusted third parties, which goes against the general idea of our proposition.
Blockchain-based cryptocurrencies are more adapted for that usage. One may
propose to integrate the currency directly in our system. However, we believe
that for adoption by many it is better to connect to already existing cryptocur-
rency markets, the issue being then to guarantee the privacy while using these
platforms.

Users expect to be able to seamlessly use their services on any device. When
the service relies on a centralized infrastructure managed by a third party this
ubiquity is simple to implement. However in a fully distributed system with pri-
vacy preserving properties it is harder to implement. The main issue is to to store
the profile in a distributed way such that only the real owner can access private
information. A simple solution would consist in protecting the information with
encryption and give the key only to the owner. Unfortunately this method is not

adapted for real world usage where users regularly lose their credentials or keys
and where recovery mechanisms are used daily by the users (e.g., email recov-
ery). For now our implementation keeps the profile encrypted and its private key
on the mobile device as we have not found yet a mechanism that is at the same
time truly secured and guarantees privacy and data recovery in any situation.

Finally, an important feature of ride sharing solutions is the trip planner to
estimate costs. In theory the client and the driver only need a road map covering
the trip region and they can compute the route locally. A solution would be to
store worldwide road maps on the devices, but that would require several tens
of gigabytes on the devices. This approach minimizes the data roaming costs
but is not practical, unless people plan their trip and download the desired
locations. An alternative, used by virtually all route planing apps today without
causing any particular problem, is to download maps only when needed. The
latter solution is acceptable as long as maps and live traffic information can be
retrieved by regions to avoid to disclose exact location to the map provider. In
parallel the users of our solution must be able to find an exact location. When the
address is known exactly the problem is rather easy if downloaded maps are well
annotated. However, the trend is to use natural language search for addresses and
current services offering such solution rely on a centralized approach meaning
that the users must disclose critical information to third parties.

5 Conclusion

The sharing economy relies on centralized platforms causing serious threats on
security, privacy, and concentration of power. To tackle these issues we present
a fully decentralized and privacy preserving solution. Communication between
clients and providers is ensured by a peer-to-peer network and distributed stor-
age. A blockchain plays the role of the marketplace to compute the prices and
provide proven trust between the clients and the providers. We carefully designed
our communication protocol and data manipulations to ensure data privacy.

We have specifically designed our solution for ridesharing business and our
analytical study shows that scalability of a privacy-preserving distributed plat-
form remains a challenge in theory. However, in practice, when applied to real
taxi services, we can see that it scales enough to enable new respectful sharing
economy businesses.

Acknowledgments

This work has been supported by the project Data Privacy funded by the IDEX
of Université Côte d’Azur.

References

1. Arcade City: The Future of Ridesharing Is Decentralized.
https://fee.org/articles/arcade-city-the-future-of-ridesharing-is-decentralized/

2. Hailing Rides Down Crypto Lane: The Future Of Ridesharing.
https://www.forbes.com/sites/andrewrossow/2018/07/18/hailing-rides-down-
crypto-lane-the-future-of-ridesharing/, accessed: 2018-12-11

3. LaZooz. http://lazooz.org, accessed: 2018-12-11
4. Spring Framework. https://spring.io, accessed: 2019-02-14
5. TNCs TODAY. http://tncstoday.sfcta.orghttp://tncstoday.sfcta.org, accessed:

2018-08-17
6. Aı̈vodji, U.M., Gambs, S., Huguet, M.J., Killijian, M.O.: Meeting points in

ridesharing: A privacy-preserving approach. Transportation Research Part C:
Emerging Technologies 72, 239–253 (2016)

7. Cadwalladr, C., Graham-Harrison, E.: Revealed: 50 million facebook profiles har-
vested for cambridge analytica in major data breach. The Guardian 17 (2018)

8. Dai, C., Yuan, X., Wang, C.: Privacy-preserving ridesharing recommendation in
geosocial networks. In: International Conference on Computational Social Net-
works. pp. 193–205. Springer (2016)

9. Fletcher, D.: How facebook is redefining privacy (2010)
10. Goel, P., Kulik, L., Ramamohanarao, K.: Privacy-aware dynamic ride sharing.

ACM Transactions on Spatial Algorithms and Systems (TSAS) 2(1), 4 (2016)
11. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of

peer-to-peer overlay network schemes. IEEE Communications Surveys & Tutorials
7(2), 72–93 (2005)

12. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based
on the xor metric. In: International Workshop on Peer-to-Peer Systems. pp. 53–65.
Springer (2002)

13. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
14. Pham, T.V.A., Dacosta Petrocelli, I.I., Endignoux, G.F.M., Troncoso-Pastoriza,

J.R., Huguenin, K., Hubaux, J.P.: Oride: A privacy-preserving yet accountable
ride-hailing service. Proceedings of the 26th USENIX Security Symposium (2017),
http://infoscience.epfl.ch/record/228219

15. Piorkowski, M., Sarafijanovoc-Djukic, N., Grossglauser, M.: A Parsimonious Model
of Mobile Partitioned Networks with Clustering. In: The First International Confer-
ence on COMmunication Systems and NETworkS (COMSNETS) (January 2009),
http://www.comsnets.org

16. Robbins, J.M., Sechooler, A.M.: Once more unto the breach: What the equifax and
uber data breaches reveal about the intersection of information security and the
enforecement of securities laws. Criminal Justice 33(1), 4–7 (2018)

17. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

18. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Computer Communication Review 31(4), 149–160 (2001)

19. Tapscott, D., Tapscott, A.: Blockchain revolution: how the technology behind bit-
coin is changing money, business, and the world. Penguin (2016)

