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The research literature provides plenty of examples of epistemological analyses of multiplication 

and descriptions of the complexity of the conceptual field of multiplication. Nevertheless, 

multiplication is often introduced as repeated addition, although decades of research have 

identified this pedagogical choice as leading to persistent problems in students’ conceptualisation 

of multiplication. In this paper, we describe a teaching design that aims to implement theoretical 

and empirical research results regarding multiplication in classroom practice. Within our design, 

models in the form of iconic representations serve as a means for creating patterns that make 

multiplicative invariants and structures visible. The teaching we have designed is currently tested in 

a mid-scale randomized controlled trial and in a large-scale professional development project.  
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Introduction 

Multiplicative structures constitute a vast part of compulsory school mathematics. The importance 

of the concept of multiplication for students’ possibilities to develop mathematical competence 

cannot be overstated. When multiplication is introduced in school mathematics, children start a 

journey that should take them to advanced mathematical knowledge about fractions, ratio, rate, 

slope, similarity, trigonometry, probability and vector spaces. In addition, physics and social 

science are heavily reliant on multiplicative reasoning and proportional relationships, e.g., 

statements of equality of ratios a/b = c/d. Hence, multiplication is a fundamental concept, and it is 

therefore crucial to learn from educational research and to implement gained insights into classroom 

practice. 

Up until today, research has gathered extensive knowledge on students’ understanding of 

multiplication (e.g., Clark & Kamii, 1996; Fischbein, Deri, Nello & Marino, 1985; Harel & 

Confrey, 1994; Larsson, 2016; Thompson & Saldanha, 2003). We know that concepts preferably 

develop over long periods, through experience of a large number of situations (Vergnaud, 1988). 

We also know that the “whole number bias” leads students to a solid belief that multiplication 

makes bigger and that multiplication is synonymous with repeated addition. However, we do not 

yet know how to transform research results about students’ understanding of the properties of 

multiplication into classroom practice in order to obviate the whole number bias. In this paper, we 

will describe an ongoing project, aiming to bridge the gap between research findings and teaching 

practice through an innovation (Century & Cassata, 2016): a carefully designed teaching sequence 

implementing alternative models for the introduction of multiplication. The implementation is 

carried out in Sweden, where multiplication traditionally is introduced in school year 2, at age 8–9 

years. Research on the effects of the implementation is an integral part of the project.  
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The whole number bias 

The whole number bias is “a tendency to use the single-unit counting scheme applied to whole 

numbers to interpret instructional data on fractions” (Ni & Zhou, 2005, p. 27). This bias may be a 

result of an unchallenged presentation of multiplication as repeated addition with whole numbers. 

The consequences of a biased conceptualisation have been long known. Bachelard (1938) 

concluded that knowledge that has been formed and tested for validity in action tends to form a 

consolidated belief concerning the nature of the concept. When the concept is later challenged in 

new situations, assimilation might be more complex than if initial knowledge was absent. This is 

why an introduction of multiplication as repeated addition may become an epistemological obstacle 

for students. Fischbein et al. (1985) conclude that:  

The initial didactical models seem to become so deeply rooted in the learner’s mind that they 

continue to exert control over mental behavior even after the learner has acquired formal 

mathematical notions that are solid. (p. 16) 

There are two misconceptions of the properties of multiplication specifically linked to the whole 

number bias: conceptualising multiplication as an additive relation rather than a multiplicative 

relation, and a belief that a product will always be bigger than each of its factors. As long as 

multiplication is limited to whole numbers, these misconceptions will not constrain children’s 

reasoning, and are therefore unlikely to be challenged. However, as soon as children are introduced 

to multiplication with fractions and decimals their conceptualisation will no longer be sufficient. 

Products such as ½ times 5 cannot be calculated as repeated addition, and the law of commutativity, 

which could be helpful in this situation, is difficult to explain in terms of repeated addition. 

Furthermore, a firm belief that multiplication makes bigger will undermine the children’s 

possibilities to interpret situations with operations like 0.22 · 1.20 (Bell, Swan & Taylor, 1981), 

since the answer is less than 1.20, which is not compatible with a conceptualisation of 

multiplication built on additive reasoning with whole numbers. In summary, conceptualising 

multiplication as repeated addition works when dealing with whole numbers but will become a 

misunderstanding of multiplicative properties when extended to rational and real numbers. This is a 

strong argument for finding alternative ways to introduce multiplication, and thereby avoiding the 

whole number bias.   

Alternative models for introducing multiplication 

The complexity of multiplication is reflected in the body of research, and might be one reason why 

innovative designs are scarce in both research and practice. The efforts to describe dimensions and 

aspects of multiplicative knowledge are diverse, and show less agreement than, for example, the 

literature on additive knowledge (Nunes & Bryant, 1996). In Vergnaud’s (1988) terms, 

multiplicative structures can be seen as a conceptual field, consisting of situations, invariants and 

symbolic representations. Compared to additive structures, multiplication embraces a much more 

diverse family of situations. Already in the simplest case, with two factors, multiplication unifies 

qualitatively different situations, which can be both one-dimensional, like scaling, and two-

dimensional, like one-to-many correspondence, area, intensity and Cartesian products (Harel & 

Confrey, 1994; Nunes & Bryant, 1996; Vergnaud, 1988). In line with the theory of conceptual 



 

 

fields, our teaching design comprises both activities focused on situations and activities focused on 

invariants, with care taken to link established symbolic notation to both types of activities (see 

Table 1).  

Week 1 

 

Factorization (multiplicative grouping) of 

numbers with lattice models. Regrouping of 

lattices. 

Week 2 

 

Connecting lattices to symbolic notation for 

multiplication and division. Constructing the 

multiplication table by sorting lattices by 

factors. 

Week 3 

 

Placing numbers on number lines by measuring 

with skips and cubes. Discovering proportional 

relationships. 

Week 4 

 

Measuring number lines with halves. Equating 

different numeric expressions for multiple 

halves. 

Week 5 

 

Regrouping lattices by halving and doubling. 

Multiplication with half-integers. 

Week 6 

 

Exponential relationships and associativity in 

the context of repeated folding (inspired by 

Empson & Turner, 2006). 

Week 7 

 

Equal grouping situations: partition, quotation 

and one-to-many correspondences. 

Week 8 

 

Proportions: double, half, times four and fourth. 

Table 1: Overview of the sequence of multiplicative activities. Week 1–5 focus on investigating 

multiplicative patterns and structure, while week 6–8 focus on modelling multiplicative situations 

However, since classifications of multiplicative situations, including examples of classroom 

activities, have been thoroughly described elsewhere, we will focus this paper on the use of models 

in the form of iconic representations, and how such models may aid the discovery of invariants. 

Since multiplicative situations can be both one- and two-dimensional, we have chosen to use both 

one-dimensional number lines and two-dimensional lattices as models. 



 

 

A coherent conceptualisation of multiplication requires an appreciation of multiplicative invariants 

across situations. In other words, one has to recognise patterns in different situations as 

manifestations of the same structure. Within the implementation, patterns and structure (Mulligan & 

Mitchelmore, 2013) has proven to be a useful terminology for conveying the importance of 

invariants to teachers, and for describing the purpose of activities where patterns are created and 

described. Seeing patterns calls for experience of a breadth of cases, rather than focusing on one 

particular situation at the time. Therefore, the first five weeks focus on exploring specific models of 

numbers (see Table 1). 

From the perspective of embodied cognition, Lakoff and Núñez (2000) argue that arithmetic is a 

conceptual blend, resting on four conceptual mappings from concrete situations. These mappings, 

or metaphors, each contribute to the concepts of number and arithmetic in their own way, implying 

that no single metaphor can reflect these concepts in full. Our lattice models are related to the first 

two of the grounding metaphors: object collection and object construction, while number lines are 

related to the latter two: measuring with a stick and movement along a path. There is a particularly 

close relationship between multiplication and measuring. Both simple proportions and area build on 

two important ideas: unitizing and norming (Lamon, 1994). Unitizing is described as the ability to 

construct a reference unit or a unit whole, and norming is then to interpret a situation in terms of 

that unit. In other words: creating a measure and then using it for measurement. This idea is also 

mirrored in verbal expressions on the form “two threes”, where the number three becomes the unit 

six is measured in.  

We will now describe how lattices, number lines and verbal expressions are used as models in our 

teaching design. In particular, we will detail how these models convey important properties of 

multiplication.  

Lattice models 

Lattice models are in many situations exchangeable with arrays, but they do have some advantages. 

In arrays, each unit is separated from the others and pictured as indivisible. In lattices, the units are 

placed in a continuum, which makes the idea of dividing units by adding new lines attainable. 

Furthermore, open arrays are visually closer to lattices than arrays. Within our teaching design, both 

interlocking cubes and drawn grids are used to create lattice models. The activities using 

interlocking cubes could often be done in the same way with arrays of tickers or other objects, but 

that would make the step to drawn grids larger. By using cubes and grids of the same size (2 · 2 

cm), the two representations are easily compared, and lattices of both kinds can be used in the same 

systematic arrangements.  

Lattices can be seen as ‘bar models for multiplication’, in that they provide a way to represent 

different multiplicative groupings of numbers, just as bars can represent different additive 

groupings. Within the design, the class has previously worked with finding number bonds to ten by 

building ten bars and naming them “_ + _”. Multiplication can then be seen as a different way to 

group numbers (see Figure 1). Our choice of introducing multiplication by lattices hence introduce 

multiplication not as an additive relation, but as something different than addition. The criteria for 

multiplicative groupings are easily established by discussion in class, distinguishing proper lattices 



 

 

from other shapes. The existence of different lattices for a number calls for expressions of the form 

“_ · _” to be introduced as names for lattices. Finding different lattices for each number then 

becomes an explorative activity, leading to discussions of which lattices are the same 

(commutativity), and why some numbers have more lattices than others (primes and composite 

numbers) (Week 1, Table 1). Hence, important multiplicative invariants, which are hidden when 

multiplication is conceptualised as repeated addition, are made visible already in the first activity. 

 

Figure 1: Bars and lattices as two different ways of grouping numbers  

Arranging lattices according to products reveal that multiplicative groupings do not form a pattern 

as simple as for additive groupings. Finding patterns in lattices therefore requires more careful 

instruction. Directing attention to lattices of twos leads to the discovery of even numbers and could 

be generalised to multiples of other numbers. This idea will inspire to a different arrangement of the 

lattices, focusing on factors rather than products. Building lattices of twos, threes, fours, etc. and 

ordering them in rows will result in the multiplication table (Week 2, Table 1). The table will spark 

a new exploration of patterns in the products, and the lattices will provide a means for explaining 

those patterns. For example, you can see two copies of the product in the second row in the 

corresponding product in the fourth row (a basis for the distributive law and powers), and that the 

products in the second column are the same as the products in the second row, because the lattices 

in the column are just rotated versions of the lattices in the row (commutativity). 

Using interlocking cubes facilitate successive adding and subtracting of columns and rows, which 

are mainly additive strategies. However, they also allow for multiplicative regrouping of numbers. 

When comparing the two twelve lattices 6 · 2 and 3 · 4, you can split one of the lattices and 

rearrange the parts, in order to see how one lattice can be regrouped into the other (Week 1, Table 

1). Paper grids enable generalisation of such multiplicative regroupings to half-integers (numbers of 

the form n + ½), since paper can be cut and arranged to illustrate e.g., 2 · 5 = 4 · 2.5. This 

immediately gives rise to multiplications where the product is smaller than one of the factors, such 

as 4 = 8 · 0.5 (Week 5, Table 1). The model hence enables the discovery of cases where 

multiplication does not make bigger, within the first weeks of introducing multiplication. 

Number lines 

Number lines are important tools for arithmetic reasoning. Approximate use of empty number lines 

can both aid and communicate reasoning even in complex arithmetic problems. However, for empty 

number lines to be meaningful, one needs to be aware of the properties of linearity, closely linked to 

multiplication. Within our design, the class will use a variation of number lines, which put different 

properties of linearity in the fore.  

During choral counting, a number line with markings and numbers, placed on the wall, is often used 

for pointing at numbers while skip counting (e.g., 0, 2, 4, 6, etc.). In some activities, a floor number 



 

 

line is used. This number line has evenly spaced markings, with every fifth marking a little longer 

than the others, and a collection of number cards which can be placed in different ways in different 

activities. Every placement of two numbers raises the question of where other numbers should be 

and leads to discussions of equal spacing of numbers. In week 3 this is done with 0, and 1 or 2 in 

different positions (see Table 1). When starting with 1, the situation is a pure one-to-many 

correspondence, while starting with 2 requires more complex proportional reasoning. When 

justifying a proposed placement of numbers, or figuring out a placement, the children walk along 

the line, taking e.g., two-steps or three-steps. When documenting the work, teachers use verbal 

expressions and symbolic notation e.g., “you take three two-steps, so it’s three twos, we write 3 · 

2”. A similar activity is done with semi-empty number lines on paper, where only markings for 

specific numbers are present, e.g., 0 and 3. The task is to place markings for the missing numbers 

between 0 and 6, using interlocking cubes as a measuring tool. This activity is also provided at 

different levels, with some restricted to pure one-to-many correspondences. 

As in the case with the lattice model, these activities are easily extended to fractions, starting with 

halves. Walking in regular or half-steps to different numbers creates an opportunity to introduce 

multiplication of fractions in an intuitive context. Since multiple double or triple steps were called 

twos or threes and represented as n · 2 or n · 3, it makes perfect sense to call multiple half-steps 

halves and represent them as n · ½. Documenting the number of each type of step it takes to reach 

different numbers will result in a pattern with a proportional structure: the number of half-steps is 

always twice the number of regular steps (Week 4, Table 1). After whole class exploration of these 

patterns on the floor number line, children work in pairs to place half-integers on empty number 

lines, using interlocking cubes as a measuring tool, this time with 1 cube = ½. 

Verbal expressions 

In relation to both lattices and the number line, care is taken to use sustainable verbal expressions of 

the form “two threes” and “five halves”. As emphasized by Thompson and Saldanha (2003), there 

is a principal difference between “two threes” and “add three two times”. It is possible to generalise 

the first expression beyond integers, to e.g., “one and a half threes” or “one and a half third”, while 

“adding three one and a half time” is harder to conceptualise. Phrases of the first form mimic 

phrases used in measurement, making a number the measuring unit: “one and a half threes” – “one 

and a half meter”. While such phrases are used to discuss both models, they relate to each model a 

bit differently. Each phrase, e.g., “three twos”, labels a certain way of walking to a number or a 

series of skips to a number, which is different from what “two threes” labels. In contrast, both 

expressions can be linked to the same lattice, and the corresponding ways of seeing the lattice are 

made explicit, pointing out the three twos and the two threes in this six lattice. 

Implementation of the alternative models for multiplication 

Taken together, our design covers a variety of advanced aspects and properties within the first 

weeks of the introduction of multiplication. The handling of advanced content is made possible by 

the highly structured material organising the teaching of each week in a cycle with six phases, 

including whole class discussions as well as pair work and individual documentation. This cyclic 

teaching structure has been previously described and tested in preschool (Sterner & Helenius, 



 

 

2015). The material developed for the implementation of the design includes explicit instructions on 

what the teacher should do and say in each phase, and in reaction to different student actions and 

reasoning. Each activity also contains a detailed description of the mathematical concepts and 

procedures involved, as well as the purpose of each activity in relation to children’s learning. 

Activities, as well as instructions, were tried and evaluated by small groups of teachers during the 

development of the material, increasing the quality and functionality of the design. Thorough 

testing of the activities is important for the teachers’ trust in the material, which is particularly 

important due to the high level of prescription in the design. 

The teaching design has been implemented in an intervention research project covering 15 weeks in 

grade 2, where the multiplicative part covers 8–9 weeks. The project is a randomized controlled 

trial with 28 participating teachers in grade 2 (14 using our material, 14 in a control group). Data 

from the pre- and post-tests are currently being analysed. In a parallel project we are developing 

similar teaching sequences for grades 1 and 3. Including sequences dealing with additive structures 

and number, the complete material will cover most of the area of number and operations for grades 

1–3. These sequences will also be tried and evaluated by small groups of teachers during 

development, together with auxiliary professional development material. In collaboration with 5 

municipalities, we will implement the teaching design together with professional development for 

around 500 teachers starting in the fall of 2020. 

Closing reflection 

The literature on the downsides of relying on multiplication as repeated addition is substantial. Still, 

teaching experiments with alternative models for multiplication are sparse, one example being 

Nunes, Bryant, Evans, and Bell (2010), who report on two studies covering only a few sessions. 

Also among teachers and textbook authors the dominance of repeated addition as the model for 

introducing multiplication persists. Fishbein et al. (1985) suggest that this model is chosen because 

it fits the mental requirements of children in the first years of schooling. It is simply hard for 

teachers to resist building on addition, since it is a concept that children are already familiar with at 

the time when multiplication is introduced. However, as seen above, multiplication in fact has 

several complementary roots that are not additive, such as measuring and one-to-many 

correspondence (Lamon, 1994; Nunes & Bryant, 1996). Many of these roots are intuitive for 

children and can hence be used as alternative bases for introducing multiplication.  

According to Century and Cassata (2016), there are three key foci for implementation research: the 

innovation, the aligned outcomes, and the influential factors. This paper has described the 

innovation of an ongoing, large scale implementation project: a teaching sequence introducing 

multiplication by means of deliberately chosen models for making multiplicative patterns visible 

and comparable, which in turn inspire discussions where multiplicative structures are explicated. 

The analysis of test results in the randomised controlled trial will reveal to what extent this 

innovation achieves the desired outcomes, while the grade 1–3 project will provide opportunities to 

study the influential factors, as well as to further develop the innovation.  
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