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PARAMETERIZED COMPLEXITY OF QUANTUM KNOT INVARIANTS

CLÉMENT MARIA

Abstract. We give a general fixed parameter tractable algorithm to compute quantum
invariants of links presented by diagrams, whose complexity is singly exponential in the
carving-width (or the tree-width) of the diagram.

In particular, we get a O(N
3
2
cwpoly(n)) time algorithm to compute any Reshetikhin-

Turaev invariant—derived from a simple Lie algebra g—of a link presented by a planar
diagram with n crossings and carving-width cw, and whose components are coloured with
g-modules of dimension at most N . For example, this includes the N th-coloured Jones
polynomial and the N th-coloured HOMFLYPT polynomial.

1. Introduction

In geometric topology, testing the topological equivalence of knots (up to isotopy) is a
fundamental yet remarkably difficult algorithmic problem.

A main approach is to compare knots by properties depending on their topological types,
called invariants. Starting with the introduction by Jones [15] in the 1980s of a new polynomial
invariant of knots, we have witnessed the birth of a new domain of low dimensional topology
called quantum topology. From the study of quantum groups [5, 14] in algebra, topologists
have designed new families of topological invariants for knots, links, and 3-manifolds, such
as the Reshetikhin-Turaev invariants [21]. In practice, these quantum invariants have shown
outstanding discriminative properties for non-equivalent knots and links, e.g., in the compo-
sition of knot census databases [2], and are at the heart of deep mathematical conjectures in
the field [7, 8, 16, 20].

Consequently, efficient algorithms to compute quantum invariants are of strong interest.
However, even the simplest quantum invariants, such as the Jones polynomial [13], are #P-
hard to compute. A successful approach towards practical implementations has been the
introduction of parameterized complexity to low dimensional topology. Independently, com-
puting the Jones polynomial [18] and the HOMFLYPT polynomial [3] have been shown to
admit fixed parameter tractable algorithms in the tree-width of the input link diagrams.
Note that similar techniques have been applied to quantum invariants of 3-manifolds, such
as the Barrett-Westbury-Turaev-Viro invariants of triangulated 3-manifolds [4, 27]. These
algorithms led to significant speed-ups in practice.
Contribution. In this article, we give an algorithm to compute quantum invariants derived
from ribbon categories [21, 26], taking into account the carving-width of the input link dia-
gram.

Theorem 1.1. Fix a strict ribbon category C of Z[q]-modules, and free modules V1, . . . , Vm ∈ C
of dimension bounded by N . The problem:

Quantum invariant at C, V1, . . . , Vm:
Input: m-components link L, presented by a diagram D(L),
Output: quantum invariant JCL(V1, . . . , Vm)
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2 CLÉMENT MARIA

can be solved in O(poly(n)N
3
2

cw) ∈ O(poly(n)N
3
2

√
n) machine operations, with O(N cw + n)

memory words, where n and cw are respectively the number of crossings and the carving-width
of the diagram D(L).

In particular, this implies that, up to some easily computable re-normalisation, comput-
ing any Reshetikhin-Turaev invariant derived from a simple Lie algebra g is fixed parameter
tractable (complexity class FPT) in the carving-width of the input link diagram. Cases of inter-
ests are, in particular, g = sl(2,C) giving the N th-coloured Jones polynomials, and g = sl(n,C)
giving the N th-coloured HOMFLYPT polynomials. This algorithm is:

1 the first fixed parameter tractable algorithm, and—considering cw = O(
√
n)—sub-exponen-

tial time algorithm, for quantum invariants of knots stated in such generality (previously
known cases were the (uncoloured) Jones polynomial [18], and the (uncoloured) HOM-
FLYPT polynomial [3]),

2 an exponential improvement over Burton’s 2O(cw log cw)poly(n) time algorithm for the un-
coloured HOMFLYPT polynomial [3], and generally a low exponent (3

2 cw) singly exponen-

tial algorithm for quantum invariants1.

In Section 2 we recall the definition of quantum invariants derived from ribbon categories,
and notions of parameterized complexity. In Section 3 we introduce a high-level parameterized
algorithm based on graphical calculus and a tree embedding, then detail in Section 4 the main
operation of the algorithm. In Section 5 we develop the implementation of the algorithm in
the case of a ribbon category ofR-modules, and analyse its arithmetic complexity in Section 6,
in the case R = Z[q]. This last study concludes the proof of the main theorem, and implies
more generally that, when the type of invariant is part of the input, computing a quantum
invariant is in the complexity class XP.

2. Background

We introduce the necessary notions from knot theory, quantum topology, and parameterized
complexity.
Tangles and diagrams. A tangle is a piecewise linear embedding of a collection of arcs and
circles into R2× [0, 1], such that the arcs’ endpoints, called bases, belong to the top or bottom
boundaries R2×{0} and R2×{1}. A tangle intersecting i times R2×{0} and j times R2×{1}
is an (i, j)-tangle.

A link is a tangle whose connected components are all closed curves (a (0, 0)-tangle), and
a knot is a 1-component link. An orientation on a tangle is an orientation of each tangle
component. Two tangles are equivalent iff they differ by an ambient isotopy of R2 × [0, 1]
maintaining the boundary fixed.

A tangle diagram is a projection of the tangle into the plane, induced by a projection of
R2 × [0, 1] into R× [0, 1], sending R2 × {0} and R2 × {1} to R× {0} and R× {1} respectively.
In a tangle diagram, the only multiple points are crossings, at which one section of the tangle
crosses under or over another one transversally. We consider diagrams with no base points
(i.e., link diagrams) as living on the sphere S2.

Component orientations are pictured with arrow heads, and a k ∈ Z framing is pictured by
k positive twists if k > 0, and k negative twists is k < 0. See Figure 1.

We refer to [17] for more details on knot theory.

1Note that previous algorithms [18] are expressed in terms of tree-width, which is proportional but not
equal to the carving-width, in consequence exponents are not directly comparable.
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Figure 1. Left: Diagram of a 4-components oriented framed tangle, whose
top left component has framing +2. Right: Positive/negative twists and cross-
ings. The

.
= symbol is an equivalence of diagrams.

Ribbon categories and quantum invariants. We refer to Turaev’s monograph [26] for the cat-
egorical formulation of quantum invariants. We only introduce the necessary notions.

Intuitively, a strict ribbon category is an abstraction of the category of modules over a
commutative ring, with their usual tensor product. Some morphisms—called braidings, twists,
evaluations and co-evaluations—are distinguished in order to establish a connection between
topology (tangles and knots) and algebra (morphisms between objects), via graphical calculus.

More precisely, a strict ribbon category C is a category with a unit object 1 and which is
equipped, for any objects U, V, U ′, V ′ and morphisms f : V → V ′, g : U → U ′, with:

(a) an associative tensor product assigning to U and V an object U ⊗ V , and to f and g a
morphism f ⊗ g : U ⊗ V → U ′ ⊗ V ′,

(b) a natural braiding isomorphism cU,V : U ⊗ V → V ⊗ U with inverse c−1
U,V ,

(c) a duality associating to any V a dual object V ∗, together with co-evaluation morphisms
bV : 1→ V ⊗ V ∗ and evaluation morphisms dV : V ∗ ⊗ V → 1,

(d) a natural twist isomorphism θV : V → V with inverse θ−1
V ,

(e) and where HomC(1, 1) has the structure of a commutative ring R.

By convention, the “tensor product of zero objects” is equal to 1. In a strict ribbon category,
these objects and morphisms satisfy additional compatibility constraints, that are necessary
to state Theorem 2.1 below.

For example, the category of modules over a commutative ring R with standard tensor
product, and equipped with the trivial braiding u⊗v 7→ v⊗u, forms a strict ribbon category.
In this case, the ring R, seen as a module over itself, is the unit object 1, and any morphism
R → R is a multiplication by a scalar τ ∈ R. Hence HomC(1,1) is isomorphic to the
commutative ring R itself. For invariants derived from quantum groups, we mainly focus on
the category of R-modules, generally free of finite dimension but with more complex braidings
than the trivial ones. The ring R is Z[q] (or Z[q, q−1]), the ring of one-variable polynomials
with integer coefficients. Morphisms between free modules are represented by matrices with
R-coefficients.
Graphical calculus and coloured tangles. Fix a strict ribbon category C. A colouring of a link
L, with m ordered components L1, . . . , Lm, is an assignment of an object Vi ∈ C, 1 ≤ i ≤ m,
to every component Li of L.

A link diagram is considered in standard form if it can be decomposed into the following
pieces, described in Figure 2: (i) vertical strands, (vi) & (vii) positive and negative crossings,
(viii) & (ix) positive and negative right twists, and (x) & (xi) caps and cups. See Figure 3 for
a Hopf link in standard position. Any link (or tangle) diagram can be moved into standard
form.
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Rules (i) to (xi) of Figure 2 gives the conversion from coloured tangle to C-morphism,
called Penrose functor. Specifically, given a coloured link diagram D(L) in standard form,
the Penrose functor turns the diagram into a morphism, following the rules:

(o): A morphism f : U → V in C is represented graphically by a box, aligned with x- and
y−axis, called coupon, with incoming vertical V -coloured strands (top) and outgoing
vertical U -coloured strand (bottom),

(i): reversing a component orientation changes a colour V to its dual V ∗,

(ii): two parallel strands coloured U and V are equivalent to a single strand coloured
U ⊗ V ,

(iii): a vertical strand coloured V is equivalent to the identity morphism idV ,

(iv): a morphism g above another one f is equivalent to there composition g ◦ f ,

(v): two morphisms h1 and h2 side by side are equivalent to their tensor product h1⊗h2,

(vi) & (vii): a positive crossing is equivalent to a braiding morphism, a negative cross-
ing is equivalent to the inverse of the braiding morphism,

(viii) & (ix): positive and negative twists are equivalent to the twist morphism and its
inverse respectively,

(x) & (xi): caps and cups are equivalent to evaluation and co-evaluation respectively.

(xii): the dual morphism f∗ : V ∗ → U∗ of a morphism f : U → V is given by the
graphical equation (xii) or, equivalently, by:

f∗ = (dV ⊗ idU∗) ◦ (idV ∗ ⊗f ⊗ idU∗) ◦ (idV ∗ ⊗bU ).

The morphisms are applied to the objects colouring the entering and leaving strands. Fig-
ure 2 gives the morphism associated to the Hopf link coloured with objects U and V .

Consequently, for a category C, the Penrose functor associates to any coloured link a
morphism 1 → 1. More generally, it associates to a coloured (i, j)-tangle a morphism
U1 ⊗ . . . ⊗ Ui → V1 ⊗ . . . ⊗ Vj , for the C-objects Uks and V`s colouring the bottom and
top bases respectively.

If the ordered components of a link L are coloured V1, . . . , Vm, this morphism is written:

JCL(V1, . . . , Vm) ∈ HomC(1, 1).

Strict ribbon category produce topological invariants, called quantum invariants:

Theorem 2.1 ([21, 26]). Let D(L) be a diagram of an m-components link L on S2, and let
C be a strict ribbon category. Let V1, . . . , Vm be a colouring of the components of L. The
quantity JCL(V1, ..., Vm) produced by the Penrose functor is invariant by ambient isotopy of S2

and Reidemeister moves on D(L). It is consequently a topological invariant of the coloured
link L.

When C is the category of R-modules, JCL(V1, ..., Vk) ∈ Hom(1, 1) ∼= R is identified to a
scalar in R.
Graph parameters. The carving-width, also known as congestion, is a graph parameter intro-
duced by Seymour and Thomas [25].

Definition 2.2. Let G = (V,E) be a graph on n vertices, with loops and multiple edges. Let
T be an unrooted binary tree, with all internal nodes of degree 3, and with n leaves.
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Figure 2. Graphical calculus induced by Penrose functor.

An embedding φ of G into T is a bijective mapping between the nodes of G and the leaves
of T . Every edge e of T induces a partition of the vertices of G into two sets, V = Ue t Ve,
inherited from the partition of T re into two trees. Let w(e) denote the number of edges in
G between Ue and Ve, called the weight of e.

The congestion of an embedding (T , φ) is the maximal weight of a tree edge:

cng(T , φ) = max
e edge of T

w(e),

The carving-width cng(G) of a graph G is the minimal congestion over all its embeddings
into binary trees. The carving-width cng(D(L)) of a link diagram D(L) is the carving-width
of the 4-valent planar graph it realises. The carving-width cng(L) of a link L is the minimal
carving-width of any of its diagrams.

The carving-width of a graph is closely related to its tree-width [22], which plays a major
role in combinatorial algorithms.
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U∗ ⊗ U ⊗ V ⊗ V ∗

U∗ ⊗ V ⊗ U ⊗ V ∗

U∗ ⊗ U ⊗ V ⊗ V ∗

1

V

bU∗ ⊗ bV

idU∗ ⊗ cV,U ⊗ idV ∗

idU∗ ⊗ cU,V ⊗ idV ∗

dU ⊗ dV ∗

1

U

Figure 3. Application of Penrose functor to the Hopf link coloured by objects
U and V from a strict ribbon category, leading to a 1 → 1 morphism by
composition.

Theorem 2.3 (Theorem 1 of [1]). Let G be a graph of maximal degree δ. Then,

2

3
(tw(G) + 1) ≤ cng(G) ≤ δ(tw(G) + 1). For tangle diagrams δ ≤ 4.

Carving-width has several advantages over tree-width, and has been successfully used in
low dimensional topology [11, 12, 19, 24].

First, optimal tree embeddings of planar graphs can be realised topologically, as stated
below. A bridge in a connected graph G is an edge of G whose removal splits G into more
than one connected component. A tree embedding (T , φ) of G is bond if the two vertex sets
Ue and Ve from the cut associated to an edge e of T induce connected sub-graphs in G.

Theorem 2.4 ([25, Theorem 5.1]). Let G be a simple connected bridgeless graph with more
than two vertices. If G has carving-width cw then there exists a bond tree embedding of G of
congestion cw.

Up to a subdivision of multiple edges, which does not increase carving-width, a link di-
agram can be made simple, as a graph. Being 4-valent, it is bridgeless, and, if connected,
it consequently admits a bond tree embedding of minimal congestion. We interpret a bond
tree embedding of a planar graph (on the sphere S2) as a collection of disjoint Jordan curves
λe ⊂ S2, one for each edge e of T , realising the cut Ue t Ve [24].

For planar graphs, a bond tree embedding of minimal congestion can be computed in
polynomial time [10, 25]. By the planar separator theorem, the carving-width of a planar
graph with n-vertices is in O(

√
n).

3. Fixed parameter tractable algorithm via graphical calculus

Let C be a strict ribbon category, and let L be an oriented link with m components
L1, . . . , Lm. Let D(L) be an oriented link diagram of L, where each link component Li is
coloured by an object Vi from the category C, such that the Penrose functor gives an isotopy
invariant of L associated to its colouring, as described in Theorem 2.1.

It follows from the definition of Penrose functor that the quantum invariant of a separable
link L ∪ L′ is the product of the invariants of L and L′, such that they can be computed
separately. W.l.o.g. we assume that the diagram D(L) is connected as a graph, and has at
least 2 crossings, not all twists.
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cV,U

V U

bVbU∗ bVbU∗

V U
c−1
V,U

V

bV ∗

V

bV ∗

θV θ−1
V

Figure 4. The four tangles and associated morphisms at the tree leaves.
From left to right: Equations (3.1), (3.2), (3.3), and (3.4). The marked bullet
point is on the left of each diagram, and is selected such that only these four
morphisms are encountered.

3.1. Tree embedding of link diagrams. Let (T , φ) be a bond tree embedding of the planar
graph of D(L), and root it by subdividing an arbitrary tree edge, picking the centre as the
root. All edges of T have now a parent and child endpoint. By convention, we add a “half-
edge” on top of the tree, having the root as child. Every inner node in T has consequently
degree 3, with two edges “going down”, and one edge “going up”.

Let e be an edge of T with child node x, and X the set of crossings mapped to the leaves
of the subtree Tx rooted at x. According to Theorem 2.4, there exists a Jordan curve λe
separating X from the rest of the diagram. The diagram being on the sphere, we draw the
tangle “inside” the Jordan curve when we represent it on the plane.

To an edge e corresponds a (0,w(e))-tangle T , spanned by the crossings X and contained
“inside” λe. We mark an arbitrary but fixed “bullet” point on λe and order the bases of T
counter-clockwise from that point. We get a (0,w(e))-tangle by isotopically sliding all bases
to the top boundary, such that the first base in the bullet ordering is rightmost on the top
boundary. See Figure 4 for examples of (0,w(e))-tangles at the tree leaves, and Figure 5 (Left)
for bases ordered by bullet ordering.

In the process of the algorithm below, bullet orderings are assigned on the fly.

3.2. Tree traversal algorithm. Let D(L) be coloured by objects of the category C. To every
edge e of weight w(e) in T , the Penrose functor assigns a C-morphism fe : 1→ V1⊗ . . .⊗Vw(e)

to the associated tangle, where V1, . . . , Vw(e) are the colours of the strands intersecting the
Jordan curve λe.

The morphism associated to the half-edge at the root is a 1 → 1 morphism, because the
corresponding Jordan curve does not intersect the link diagram. This morphisms gives the
invariant JCL ∈ R of Theorem 2.1. All edge morphisms are computed recursively following a
depth first traversal of T . We describe the base morphisms assigned to the edges whose child
node is a leaf, and we describe an algorithm for inner edges in the next section.

3.3. Morphisms at the leaves. Up to reorientation of the strands, which algebraically
consists of dualising colours, we can restrict to four base morphisms:

(3.1) (idU∗ ⊗cV,U ⊗ idV ∗) ◦ (bU∗ ⊗ bV ) (3.2) (idU∗ ⊗c−1
V,U ⊗ idV ∗) ◦ (bU∗ ⊗ bV )

(3.3) (idV ∗ ⊗θV ) ◦ bV ∗ (3.4) (idV ∗ ⊗θ−1
V ) ◦ bV ∗

They correspond graphically to the diagrams in Figure 4, where the bullet ordering is
chosen to restrict to these four cases.

3.4. Merging morphisms at tree nodes. Every inner node x of T is the parent node of
two edges e1 and e2, and the child of an edge e. Given the morphisms fe1 and fe2 for edges
e1 and e2 respectively, we construct the morphism fe for edge e.



8 CLÉMENT MARIA

e2e1
3

2
1

a
b

c
fe1 fe2

1
2

3 a
bc

e2e1 fe1 fe2

a
bc

a

b
c

2
1

3
4

4
3

1
2

e2e1

b1

3

2

a

c

d
4

fe1 fe2

4
1

2 a
b

cd
3

Figure 5. Merging two sub-trees. Left: Planar embeddings of the diagram
with Jordan curves λe1 , λe2 (inner circles) and λe (outer circle), depending
on the position of the bullets for λe1 and λe2 . The bold lines connecting the
Jordan curves represent multiple parallel strands connecting the corresponding
tangles. Right: Coupons for fe1 , fe2 and fe (outer coupon) obtained after plane
isotopy. The bullet for λe is selected so as to restrict to these three cases.

First, note that the bullet ordering of the strands intersecting λe1 and λe2 leads to three
configurations when representing morphisms fe1 and fe2 with coupons ; see Figure 5 where
thick lines represent sets of parallel tangle strands. By hypothesis, morphisms on tree edges
have domain 1. The coupons for fe1 , fe2 , and fe (the outer coupon) are obtained by a plane
isotopy forcing the strands to intersect coupons on their top side, and putting bullets on the
coupons’ left sides. The bullet of the outer coupon fe is selected so as to restrict to the three
configurations of Figure 5.

4. Factorisation of morphisms at tree nodes

Given the morphisms fe1 and fe2 in Figure 5, we describe graphically a factorisation scheme
to obtain the morphism fe.

4.1. Sliding and canonical form. The canonical form for morphisms to be merged is de-
picted in the top left corner of Figure 7. It consists of two side-by-side morphisms g1 and g2,
bridged by parallel strands coloured U1, . . . Uk. All other strands go vertically.

Given morphisms fe1 and fe2 in Figure 5, we obtain a canonical form by sliding strands,
wrapping clockwise around the coupons, under the coupons. For example, in the top right
case of Figure 5, we slide strand 1 under the fe1-coupon, and strands a and b under the
fe2-coupons.
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VU

f .
=

U

f

V
V1V2V3VjU1U2Ui · · · · · ·

· · ·

· · ·

U = Ui ⊗ . . . ⊗ U1 V = Vj ⊗ . . . ⊗ V1

f

.
=

Figure 6. Sliding of a V = Vj ⊗ . . .⊗ V1-coloured strand under an f -coupon
by underlying knot isotopy. The operation composes f with a consecutive
sequence of j twists θV` , of j(j − 1) crossings c±Vi,Vj , and ij crossings c±Uk,V`

.

The details of the operation are depicted in Figure 6, where the V -strand wraps clockwise
around the f -coupon, and f is a 1 → U ⊗ V morphism. Sliding the V -strand under the
coupon by tangle isotopy produces a positive twist θV and a positive crossing cV,U .

Decomposing further in Figure 6, let U = Ui⊗ . . .⊗U1 be the tensor product of the colours
of i parallel strands, and V = Vj ⊗ . . .⊗ V1 the tensor product of j parallel strands wrapping
clockwise around the f coupon. As depicted in the figure, sliding the j strands under f
induces

- a twist θV` on each of the V`-coloured strands, 1 ≤ ` ≤ j,
- a sequence of j(j − 1) positive and negative crossings of type c±V`,Vk , followed by
- a sequence of ij positive crossings of type cV`,Uk

.

We obtain the morphisms g1, g2 of the canonical form (Figure 7) by factorising the mor-
phisms fe1 and fe2 with these sequences of twists and crossings, after the sliding operation.

4.2. Factorisation of the canonical form. Figure 7 pictures two factorisation schemes for
side-by-side morphisms g1 and g2 in canonical form, bridged by k parallel strands coloured
U1, . . . , Uk. Denote by cw the carving-width of the link diagram, and assume the tree embed-
ding (T , φ) has width cw. We distinguish between two cases:
Small bridge. For k smaller than half the carving-width (Figure 7, Left), we consider first the
morphism dU1⊗...⊗Uk

induced by the composition of the evaluation morphisms dU`
, ` = k . . . 1.

More precisely, the morphism dU1⊗...⊗Uk
: U1 ⊗ . . .⊗ Uk ⊗ U∗k ⊗ . . .⊗ U∗1 → 1, is obtained by

composing the evaluation morphisms from bottom up:

(4.1)
dU1⊗...⊗Uk

: U1 ⊗ . . .⊗ Uk ⊗ U∗k ⊗ . . .⊗ U∗1 → 1,

=
∏1
`=k

(
idU1⊗...⊗U`−1

⊗dU∗` ⊗ idU∗`−1⊗...⊗U
∗
1

)
where ` = k is the rightmost term of the composition.

The (partial) composition of dU1⊗...⊗Uk
with g2 through U∗k ⊗ . . .⊗U∗1 gives the morphism

h:

(4.2)
h : U1 ⊗ . . .⊗ Uk →W1 ⊗ . . .⊗Wj ,

=
(
dU1⊗...⊗Uk

⊗ idW1⊗...⊗Wj

)
◦ (idU1⊗...⊗Uk

⊗g2) .



10 CLÉMENT MARIA
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.
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· · · · · ·
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U1 Uk

V1 Vi
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· · · · · ·
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W1 Wj
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V1 Vi
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h′
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· · · · · ·Uk

U1

Uk h2g2

· · ·
WjW1

fe

· · ·

WjW1

.
=

.
=

.
=

.
=

.
=

.
=

.
=

W1

Figure 7. Merging of two coupons in a canonical form (top left) along k
strands coloured U1, . . . , Uk. The factorisation scheme differs whether k ≤
cw /2 (left column) or k > cw /2 (right column). The top right equivalence
comes from the equality in Figure 8.

Finally, the morphism fe obtained from the merging of fe1 and fe2 is given by the (partial)
composition of g1 and h, through U1 ⊗ . . .⊗ Uk. Precisely,

(4.3)
fe : 1→ V1 ⊗ . . .⊗ Vi ⊗W1 ⊗ . . .⊗Wj ,

= (idV1⊗...⊗Vi ⊗h) ◦ g1.

By construction, these operations give the morphism fe induced by the Penrose functor on
the coloured tangle associated to the subtree of T rooted at the child node of edge e.
Large bridge. The case k strictly larger than half the carving-width starts by flipping upside-
down coupon g2. Precisely, this operation is depicted in Figure 8. Starting with a morphism
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g
U V

g∗

V U

g
U V

.
=

.
=

Figure 8. Planar isotopy, then factorisation with g∗, the dual morphism to g.

g, it consists of a planar isotopy to produce g∗, the dual morphism to g. In the case where
the category C satisfies the hypothesis of Theorem 2.1, Figure 8, depicting an isotopy, proves
the equality:

(dU ⊗ idV ) ◦ (idU∗ ⊗g) = (idV ⊗g∗) ◦ (bV ⊗ idU∗) .

Applied to the canonical form on g1 and g2 (Figure 7, Top) the operation gives the com-
position of morphisms, involving g1 and g∗2, in the top right corner of Figure 7.

The following compositions are similar to the case of a small bridge. Morphism bW1⊗...⊗Wj

describes the composition of the co-evaluation morphisms for W1, . . . ,Wj , i.e.,

(4.4)
bW1⊗...⊗Wj : 1→W ∗1 ⊗ . . .⊗W ∗j ⊗Wj ⊗ . . .⊗W1,

=
∏j
`=1

(
idW ∗1⊗...⊗W ∗`−1

⊗bV` ⊗ idW`−1⊗...⊗W1

)
.

where ` = 1 is the rightmost term of the composition.
The morphism h′ is obtained by (partial) composition of bW1⊗...⊗Wj and g∗2:

(4.5) h′ =
(

idW ∗1⊗...⊗W ∗j ⊗g
∗
2

)
◦
(
bW1⊗...⊗Wj ⊗ idU1⊗...⊗Uk

)
,

and fe is obtained by (partial) composition of g1 and h′:

(4.6) fe =
(
idV1⊗...⊗Vi ⊗h′

)
◦ g1.

Correctness. The correctness of the algorithm follows directly from Theorem 2.1, noting that
the algorithm consists of an isotopy of the link, realisable by isotopies of the sphere on which
the diagram is drawn, and Reidemeister moves.

5. Algebraic implementation and complexity

For the implementation of the algorithm, we assume that the objects in the category C
are finite dimensional free R-modules, for a commutative ring with unity R and usual tensor
product. Denote the dimension of every link component colour Vi by Ni := dimVi, and
let N := maxi{dimVi}. Fixing a basis for every Vi, all morphisms in C—in particular the
distinguished braiding, evaluation and co-evaluation, and twist morphisms—are represented
by matrices with R coefficients.

This model is general, and contains all quantum invariants derived from simple Lie algebras.

5.1. Elementary compositions. We consider the seven elementary compositions of mor-
phisms depicted in Figure 9. They respectively represent the composition with (1) a single
braiding, (2) a single twist, (3) a single co-evaluation, (4) a single evaluation. Cases (5), (6),
and (7) represent three types of partial compositions of the morphisms f and g. We describe
algorithms to perform these compositions on matrices.



12 CLÉMENT MARIA

· · · · · ·

f

· · · · · ·

f

· · · · · ·

f
f
· · ·

f

gg

f f

g
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V V

U W
V

V
U U

(1) (2) (3)

h h h h

(4)

W U U W

U W
hh h

(6)(5) (7)

Figure 9. Graphical representation of the seven elementary compositions of
morphisms.

Lemma 5.1. Consider the elementary morphism compositions in Figure 9 (1), (2), (3),
and (4). Let U, V, V ′,W be finite dimensional free R-modules, with dimU = a, dimV = b,
dimV ′ = b′, and dimW = c. Then, given the matrices for morphisms f , θ±V , c±V,V ′, bV , and

dU , we can compute the matrix for morphism h in:

• O(a(bb′)2c) arithmetic operations in R for (1),
• O(ab2c) arithmetic operations for (2) and (3), and
• O(a2b) arithmetic operations for (4).

The memory complexity of the operation does not exceed the size of the output, which is a row
or column vector h containing scalars from R.

Proof. Figure 9 (1), (2), and (3). All three cases consist of the matrix-vector product
h = (idU ⊗M⊗ idW ) ·f , where M is respectively the (bb′×bb′)-matrix c±V,V ′ , the (b×b)-matrix

θ±V , and the (b2 × 1)-matrix bV .
Consider M to be an (m × m′)-matrix, with coefficients (Mi,j)1≤i≤m,1≤j≤m′ . Matrix

(idU ⊗M ⊗ idW ) has at most m′ non-zero coefficients per row. We get the formula for the ith

entry of h:

hi,1 =
∑

k=1...m′

Mβ+1,k · fαcm′+γ+(k−1)c,1,

where i is uniquely written as i = α · cm+ β · c+ γ, with 0 ≤ α ≤ a− 1, 0 ≤ β ≤ m− 1, and
1 ≤ γ ≤ c. Computing h requires O(m′|f |) arithmetic operation in R, where |f | is the length
of vector f , storing O(|f |) scalars from R.

Figure 9 (4). With a similar approach, we get for any j, 1 ≤ j ≤ a2b:

h1,j = (dU )1,αa+γ · fβ+1,1,

where j is uniquely written as j = α · ab+ β · a+ γ, with 0 ≤ α ≤ a− 1, 0 ≤ β ≤ b− 1, and
1 ≤ γ ≤ a. The algorithm has complexity O(a2b) and memory usage O(a2b). �

Lemma 5.2. Consider the elementary morphism compositions in Figure 9 (5), (6), and (7).
Let U, V,W be finite dimensional free R-modules, with dimU = a, dimV = b, and dimW = c.
Then, given the matrices for morphisms f and g, we can compute the matrix for morphism h
in O(abc) arithmetic operations in R, and memory complexity O(ab+ bc+ ac) times the size
of a scalar in R.
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Proof. Figure 9 (5). Morphism f is a bc × 1 matrix, and morphism g is a 1 × ab matrix.
Define h = (g ⊗ idW )(idU ⊗f). Morphism h is a c× a matrix.

Studying the shape of matrices (idU ⊗f) and (g ⊗ idW ), it appears that every one of the
c× a coefficients of the product h = (g ⊗ idW )(idU ⊗f) is a sum of O(b) terms. Precisely, an
explicit computation gives us, for any i, j, 1 ≤ i ≤ c, 1 ≤ j ≤ a:

hi,j =
∑

k=0...b−1

g1,(j−1)b+k+1 · fkc+i,1.

Morphism h is a c×a matrix, and each of its coefficients can be computed in O(b) arithmetic
operations in R, leading to the O(abc) time complexity. The memory consumption is the sum
of the sizes of the input matrices f and g, and the output matrix h.

Figure 9 (6). With a similar approach, for any i, j, 1 ≤ i ≤ a, 1 ≤ j ≤ c:

hi,j =
∑

k=0...b−1

g1,kc+j · f(i−1)b+k+1,1.

Figure 9 (7). With a similar approach, for any i, 1 ≤ i ≤ ac:

hi,1 =
∑
k=1...b

gβ,kfαb+k,1,

where we write i = αc+ β, for 0 ≤ α ≤ a− 1 and 1 ≤ β ≤ c. �

5.2. Implementation of the algorithm. We implement the algorithm described in Sec-
tions 3 and 4 using the elementary composition of Figure 9. Define N a bound on the
dimension of the different modules Ui, Vj , Wk colouring the components of the link.
Leaf morphisms. The leaf morphisms described in Equations (3.1-3.1) and Figure 4 are im-
plemented using elementary compositions (1) and (2). By Lemma 5.1, the complexity is at
most O(N6) arithmetic operations in R.
Sliding under a coupon. The sliding operation as presented in Figure 6 composes a morphism f
with a sequence of twist and braiding morphisms. Precisely, let h denote the entire morphism
in Figure 6. Starting from the (O(N i+j)× 1) matrix f , it is computed iteratively applying j
times elementary composition (2) for the twists, then j(j−1) times elementary composition (1)
for the braidings between Vi- and Vj-strands, and finally ij times elementary composition (1)
for the braidings between Vi- and Uj-strands.

During the computation, we maintain a vector of size (1×O(N i+j)). Applying Lemma 5.1,
the sliding operation runs in O(j(i+ j)N i+j+2) arithmetic operations in R, storing O(N i+j)
scalar from R. In the algorithm, i + j ≤ cw, the carving-width of the link diagram. Conse-
quently, we get O(cw2N cw +2) operations, with memory O(N cw).
Construction of evaluations and co-evaluations. The morphism dU1⊗...⊗Uk

appearing in Fig-
ure 7 is the result of k elementary compositions of type (4). The morphisms maintained
during the computation are of size (1 × O(N2k)). Applying Lemma 5.1, the computation
takes a total of O(kN2k) arithmetic operations in R, storing O(N2k) scalars from R. The
case bW1⊗...⊗Wj is similar.

In the algorithm, k (or j) is smaller than cw /2. Consequently, the complexity is O(cwN cw)
arithmetic operations, storing O(N cw) scalars.
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Composition of morphisms. Finally, the compositions of morphisms described in Figure 7 are
implemented with a constant number of elementary compositions (5), (6), and (7). Con-

sidering Lemma 5.2, the product abc of dimensions never exceed N
3
2

cw. Consequently, the

compositions of Figure 7 are implemented using O(N
3
2

cw) arithmetic operations in R, storing
O(N cw) scalars from R.
Overall complexity. In conclusion, we sum up the different steps of the algorithm and its
implementation. Let D be a coloured link diagram with n crossings and carving width cw,
where the dimension of each colouring module is at most N . The algorithm first computes an
optimal tree embedding in O(poly(n)) operations. The tree has size n and width cw. W.l.o.g.,
we assume the diagram has at least one crossing that is not a twist, and consequently cw ≥ 4,
the maximal degree of the graph. Considering cw ∈ O(

√
n) and cw +2 ≤ 3

2 cw, the quantum
invariant associated to the colouring is computed in:

O(n2N
3
2

cw) arithmetic operations in R,

storing: O(n) words for the diagram, plus O(N cw) scalars from R.

6. Arithmetic complexity and quantum invariants of links

Working with matrices with R-coefficients, for a ring R, allows the algorithm to be applied
in great generality. For example, any complex simple Lie algebra g produces quantum invari-
ants of links, that can be expressed as a composition of morphisms between free R-modules,
and to which our algorithm can be applied. See [26, Chapter 6] for an explicit construction.

In this case, R is a polynomial ring, and degrees of polynomials as well as values of coeffi-
cients may blow-up during intermediate computation. Specifically, both arithmetic operations
within R and bit size of R-elements may become exponential in n.

In this section we describe a solution to control the arithmetic complexity in the case
R = Z[q], which is sufficient for all Jg

L invariants. We also provide detailed complexity
bounds for completeness.

6.1. Arithmetic complexity of polynomial invariants. We give coarse, but general,
bounds on the degrees and coefficients of a polynomial invariant produced by the algorithm
introduced above, that are sufficient for the complexity analysis.

Proposition 6.1. Let C be a strict ribbon category of Z[q]-modules, and let D(L) be an n-
crossings diagram of a link L whose components are coloured with free modules V1, . . . , Vm ∈ C,
of dimension at most N .

Let d0 and C0 be respectively a bound on the degree and a bound on the absolute value of
coefficients of all polynomials in the matrices c±Vi,Vj , θ±Vi, dUi, bUi, for 1 ≤ i, j ≤ m.

Then the polynomial invariant JCL(V1, . . . , Vm) ∈ Z[q] has degree and absolute value of
coefficients bounded by dn and Cn respectively, with:

dn = O(nd0) and Cn = 2O(n
√
n logN+n logC0).

Proof. Consider a tree embedding of graph D(L) where the tree is a path, with leaves attached
to it. The minimal congestion over all such embeddings is called the cut-width of the graph,
and is O(

√
n) due to the planar separator theorem.

Let k be the cut-width of D(L), and (P, φ) a minimal embedding of D(L) into a path-tree.
Running the algorithm of Sections 3-5 on this path decomposition boils down to computing
the product of O(n) matrices Mα·n · . . . · M1, where all matrices are tensor products of a
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c±Vi,Vj , θ
±
Vi

, dUi , bUi , for some 1 ≤ i, j ≤ m, with identities, and all matrices have size at most

NO(k) ×NO(k). Additionally, M1 has 1 column, and Mα·n has 1 row, to give a scalar in Z[q].
Tensor with the identity does not change the bounds d0 and C0 on degrees and coefficients.

Multiplying by a matrix adds at most d0 to the degree, and multiplies by at most NO(k)C0

the largest coefficient. We get the global bounds by multiplying the matrices together, and
substituting O(

√
n) for k. �

We give a general algorithm to compute a one-variable, integer coefficient, polynomial
invariants, using standard computer algebra techniques and the algorithm of Sections 3-5.

Proposition 6.2. Let C be a strict ribbon category of Z[q]-modules for the one-variable poly-
nomial ring Z[q]. Let L be an m-components link with colours the free modules V1, . . . , Vm,
and let JCL(V1, . . . , Vm) ∈ Z[q] be the associated topological invariant. Assume L is presented
by an n-crossings diagram D(L) with carving-width cw.

Assume that the dimensions of the free modules V1, . . . , Vm are at most N , and that the
polynomial JCL(V1, . . . , Vm) has degree bounded by dn and largest coefficient in absolute value
bounded by Cn. Then JCL(V1, . . . , Vm) can be computed in:

O
(
dn (dn + logCn) ·Ar (log(dn log dn + logCn))× nN

3
2

cw

+dn (dn log dn + logCn)2 + d2
n Ar (dn log dn + logCn)

)
machine operations, using:

O
(
log (dn log dn + logCn)N cw + ndn(dn log dn + logCn) + d2

n Ar(dn log dn + logCn)
)

bits. Here, Ar(l) ∈ Õ(l) is the arithmetic complexity of operations +,−,×,÷ on integers
encoded on at most l bits, which is linear in l up to a poly-logarithmic factor.

Proof. The algorithm relies on evaluation and interpolation. For short, denote JCL(V1, . . . , Vm)
by P (q) ∈ Z[q].

Evaluation. We evaluate P (q) on integer points q ∈ {0, 1, . . . , dn}. Fix q0 in this set, and
substitute q0 for q in matrices c±Vi,Vj , θ

±
Vi

, dVi , and bVi . The algorithm of Sections 3-5 is con-

sequently a succession of matrix multiplications, where all matrices have integer coefficients,
and the resulting P (q0) is an integer of absolute value less than:

Cddn+1
n ≤ 2(dn+1) log2 dn+log2 Cn = 2O(dn log dn+logCn)

For a fixed q0, we perform computation modulo the first r prime numbers 2 = p1, . . . , pr
successively, such that the product p1 · · · pr is larger than |P (q0)|. We then reconstruct P (q0)
using the Chinese Remainder Theorem. The product p1 · · · pr is of order 2r log r [23]. We take
an appropriate r such that r log r ∈ Θ(dn log dn + logCn), which gives r ∈ O(dn + logCn).

Reconstructing the value P (q0) from all the (P (q0) mod pi), 1 ≤ i ≤ r, can be computed
in O(r2 log2 r) = O((dn log dn + logCn)2) machine operations [9, Theorem 5.8].

Additionally, the values of all primes pi, i ≤ r, are in O(r log(r log r)) = O(r log r) =
O(dn log dn + logCn) [23].

Denote by Ar(l) the computational complexity of performing arithmetic operations +,−,×
on integers encoded on at most l bits, in Z/wZ, for an integer w ≤ 2l. The best known estimate
for C(l) is:

C(l) = O(l log2(l) 2O(log∗ l)) = Õ(l),
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where log∗ denotes the iterated logarithm, and the Õ-notation hides poly-log factors. This
describes the complexity of performing the extended Euclidean algorithm [9] using Fürer’s
method [6].

Interpolation. We reconstruct polynomial P (q) ∈ Z[q] of degree bounded by dn using La-
grange interpolation. Lagrange interpolation gives directly a formula for P (q), computable in
O(d2

n Ar(dn log dn + logCn)) machine operations [9, Theorem 5.1].

Summing up the complexity of evaluating polynomial P (q) on the first dn+ 1 non-negative
integers using the modulo reconstruction approach and running the algorithm of Sections 3-
5, and the complexity of evaluating the interpolation formula, gives the complexity of the
proposition. �

We conclude by proving the main Theorem:

Proof. [of main Theorem 1.1] Fixing the category C and the colours V1, . . . , Vm, of dimension
at most N , makes N constant, as well as the quantities d0 and C0 bounding degrees and
coefficients of polynomials in the matrix for braidings, twists, and (co)evaluations. It enforces

dn = O(n) (the bound on degree of the output polynomial), and Cn = 2O(n
√
n) (the bound on

absolute value of coefficients of the output invariant) in the complexity analysis. Substituting
values gives the result of Theorem 1.1. �

Remark 6.3. Note that quantum invariants are usually defined in the category of Z[q, q−1]-
modules. Multiplying the braiding, twist, and (co)evaluation matrices by qa for a large enough,
and re-normalising the output, allows us to restrict the algorithm to the case of Z[q]-modules.

Note that we get the following parameterized complexity result for the more general problem
of quantum invariant computation, where the invariant is part of the input:

Theorem 6.4. The problem:

General quantum invariant problem:
Input: C, V1, . . . , Vm, presented by braiding, twist, evaluation and co-evaluation matrices,

and m-components link L, presented by a diagram D(L),
Output: quantum invariant JCL(V1, . . . , Vm)

can be solved in O(poly(n, d0, logC0)N
3
2

cw) machine operations, where n and cw are respec-
tively the number of crossings and the carving-width of the diagram D(L), and d0 and C0 are
respectively the maximal degree and maximal absolute value of coefficients of any polynomial
in the input matrices.

In other words, when the polynomials in the matrices are encoded with their lists of coeffi-
cients, the input size is Ω(poly(N, d0, logC0)+n), and the general quantum invariant problem
is in the parameterized complexity class XP.
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