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Introduction

In geometric topology, testing the topological equivalence of knots (up to isotopy) is a fundamental yet remarkably difficult algorithmic problem.

A main approach is to compare knots by properties depending on their topological types, called invariants. Starting with the introduction by Jones [START_REF] Vaughan | A polynomial invariant for knots via von Neumann algebras[END_REF] in the 1980s of a new polynomial invariant of knots, we have witnessed the birth of a new domain of low dimensional topology called quantum topology. From the study of quantum groups [START_REF] Drinfeld | Quantum groups[END_REF][START_REF] Michio | A q-difference analogue of U(g) and the Yang-Baxter equation[END_REF] in algebra, topologists have designed new families of topological invariants for knots, links, and 3-manifolds, such as the Reshetikhin-Turaev invariants [START_REF] Yu | Ribbon graphs and their invariants derived from quantum groups[END_REF]. In practice, these quantum invariants have shown outstanding discriminative properties for non-equivalent knots and links, e.g., in the composition of knot census databases [START_REF] Burton | The next 350 million knots[END_REF], and are at the heart of deep mathematical conjectures in the field [START_REF] Garoufalidis | On the characteristic and deformation varieties of a knot[END_REF][START_REF]The Jones slopes of a knot[END_REF][START_REF] Kashaev | The hyperbolic volume of knots from the quantum dilogarithm[END_REF][START_REF] Murakami | The colored Jones polynomials and the simplicial volume of a knot[END_REF].

Consequently, efficient algorithms to compute quantum invariants are of strong interest. However, even the simplest quantum invariants, such as the Jones polynomial [START_REF] Jaeger | On the computational complexity of the Jones and Tutte polynomials[END_REF], are #Phard to compute. A successful approach towards practical implementations has been the introduction of parameterized complexity to low dimensional topology. Independently, computing the Jones polynomial [START_REF] Makowsky | The parameterized complexity of knot polynomials[END_REF] and the HOMFLYPT polynomial [START_REF] Burton | The HOMFLY-PT polynomial is fixed-parameter tractable[END_REF] have been shown to admit fixed parameter tractable algorithms in the tree-width of the input link diagrams. Note that similar techniques have been applied to quantum invariants of 3-manifolds, such as the Barrett-Westbury-Turaev-Viro invariants of triangulated 3-manifolds [START_REF] Burton | Algorithms and complexity for Turaev-Viro invariants[END_REF][START_REF] Turaev | State sum invariants of 3-manifolds and quantum 6j-symbols[END_REF]. These algorithms led to significant speed-ups in practice. Contribution. In this article, we give an algorithm to compute quantum invariants derived from ribbon categories [START_REF] Yu | Ribbon graphs and their invariants derived from quantum groups[END_REF][START_REF] Vladimir | Quantum invariants of knots and 3-manifolds[END_REF], taking into account the carving-width of the input link diagram. In particular, this implies that, up to some easily computable re-normalisation, computing any Reshetikhin-Turaev invariant derived from a simple Lie algebra g is fixed parameter tractable (complexity class FPT) in the carving-width of the input link diagram. Cases of interests are, in particular, g = sl(2, C) giving the N th -coloured Jones polynomials, and g = sl(n, C) giving the N th -coloured HOMFLYPT polynomials. This algorithm is:

1 the first fixed parameter tractable algorithm, and-considering cw = O( √ n)-sub-exponential time algorithm, for quantum invariants of knots stated in such generality (previously known cases were the (uncoloured) Jones polynomial [START_REF] Makowsky | The parameterized complexity of knot polynomials[END_REF], and the (uncoloured) HOM-FLYPT polynomial [START_REF] Burton | The HOMFLY-PT polynomial is fixed-parameter tractable[END_REF]), 2 an exponential improvement over Burton's 2 O(cw log cw) poly(n) time algorithm for the uncoloured HOMFLYPT polynomial [START_REF] Burton | The HOMFLY-PT polynomial is fixed-parameter tractable[END_REF], and generally a low exponent ( 3 2 cw) singly exponential algorithm for quantum invariants 1 .

In Section 2 we recall the definition of quantum invariants derived from ribbon categories, and notions of parameterized complexity. In Section 3 we introduce a high-level parameterized algorithm based on graphical calculus and a tree embedding, then detail in Section 4 the main operation of the algorithm. In Section 5 we develop the implementation of the algorithm in the case of a ribbon category of R-modules, and analyse its arithmetic complexity in Section 6, in the case R = Z[q]. This last study concludes the proof of the main theorem, and implies more generally that, when the type of invariant is part of the input, computing a quantum invariant is in the complexity class XP.

Background

We introduce the necessary notions from knot theory, quantum topology, and parameterized complexity. Tangles and diagrams. A tangle is a piecewise linear embedding of a collection of arcs and circles into R 2 × [0, 1], such that the arcs' endpoints, called bases, belong to the top or bottom boundaries R 2 × {0} and R 2 × {1}. A tangle intersecting i times R 2 × {0} and j times R 2 × {1} is an (i, j)-tangle.

A link is a tangle whose connected components are all closed curves (a (0, 0)-tangle), and a knot is a 1-component link. An orientation on a tangle is an orientation of each tangle component. Two tangles are equivalent iff they differ by an ambient isotopy of R 2 × [0, 1] maintaining the boundary fixed.

A tangle diagram is a projection of the tangle into the plane, induced by a projection of

R 2 × [0, 1] into R × [0, 1], sending R 2 × {0} and R 2 × {1} to R × {0} and R × {1} respectively.
In a tangle diagram, the only multiple points are crossings, at which one section of the tangle crosses under or over another one transversally. We consider diagrams with no base points (i.e., link diagrams) as living on the sphere S 2 .

Component orientations are pictured with arrow heads, and a k ∈ Z framing is pictured by k positive twists if k > 0, and k negative twists is k < 0. See Figure 1.

We refer to [START_REF] Raymond Lickorish | An introduction to knot theory[END_REF] for more details on knot theory. Ribbon categories and quantum invariants. We refer to Turaev's monograph [START_REF] Vladimir | Quantum invariants of knots and 3-manifolds[END_REF] for the categorical formulation of quantum invariants. We only introduce the necessary notions. Intuitively, a strict ribbon category is an abstraction of the category of modules over a commutative ring, with their usual tensor product. Some morphisms-called braidings, twists, evaluations and co-evaluations-are distinguished in order to establish a connection between topology (tangles and knots) and algebra (morphisms between objects), via graphical calculus.

More precisely, a strict ribbon category C is a category with a unit object 1 and which is equipped, for any objects U, V, U , V and morphisms f : V → V , g : U → U , with: (a) an associative tensor product assigning to U and V an object U ⊗ V , and to f and g a morphism f ⊗ g :

U ⊗ V → U ⊗ V , (b) a natural braiding isomorphism c U,V : U ⊗ V → V ⊗ U with inverse c -1
U,V , (c) a duality associating to any V a dual object V * , together with co-evaluation morphisms b V : 1 → V ⊗ V * and evaluation morphisms d V :

V * ⊗ V → 1, (d) a natural twist isomorphism θ V : V → V with inverse θ -1
V , (e) and where Hom C (1, 1) has the structure of a commutative ring R.

By convention, the "tensor product of zero objects" is equal to 1. In a strict ribbon category, these objects and morphisms satisfy additional compatibility constraints, that are necessary to state Theorem 2.1 below.

For example, the category of modules over a commutative ring R with standard tensor product, and equipped with the trivial braiding u ⊗ v → v ⊗ u, forms a strict ribbon category. In this case, the ring R, seen as a module over itself, is the unit object 1, and any morphism R → R is a multiplication by a scalar τ ∈ R. Hence Hom C (1, 1) is isomorphic to the commutative ring R itself. For invariants derived from quantum groups, we mainly focus on the category of R-modules, generally free of finite dimension but with more complex braidings than the trivial ones. The ring R is Z[q] (or Z[q, q -1 ]), the ring of one-variable polynomials with integer coefficients. Morphisms between free modules are represented by matrices with R-coefficients. Graphical calculus and coloured tangles. Fix a strict ribbon category C. A colouring of a link L, with m ordered components L 1 , . . . , L m , is an assignment of an object

V i ∈ C, 1 ≤ i ≤ m, to every component L i of L.
A link diagram is considered in standard form if it can be decomposed into the following pieces, described in Figure 2: (i) vertical strands, (vi) & (vii) positive and negative crossings, (viii) & (ix) positive and negative right twists, and (x) & (xi) caps and cups. See Figure 3 for a Hopf link in standard position. Any link (or tangle) diagram can be moved into standard form.

Rules (i) to (xi) of Figure 2 gives the conversion from coloured tangle to C-morphism, called Penrose functor. Specifically, given a coloured link diagram D(L) in standard form, the Penrose functor turns the diagram into a morphism, following the rules: (xii): the dual morphism f * : V * → U * of a morphism f : U → V is given by the graphical equation (xii) or, equivalently, by:

(o): A morphism f : U → V in C is
f * = (d V ⊗ id U * ) • (id V * ⊗f ⊗ id U * ) • (id V * ⊗b U ).
The morphisms are applied to the objects colouring the entering and leaving strands. Figure 2 gives the morphism associated to the Hopf link coloured with objects U and V .

Consequently, for a category C, the Penrose functor associates to any coloured link a morphism 1 → 1. More generally, it associates to a coloured (i, j)-tangle a morphism

U 1 ⊗ . . . ⊗ U i → V 1 ⊗ . . . ⊗ V j ,
for the C-objects U k s and V s colouring the bottom and top bases respectively.

If the ordered components of a link L are coloured V 1 , . . . , V m , this morphism is written:

J C L (V 1 , . . . , V m ) ∈ Hom C (1, 1).

Strict ribbon category produce topological invariants, called quantum invariants:

Theorem 2.1 ( [START_REF] Yu | Ribbon graphs and their invariants derived from quantum groups[END_REF][START_REF] Vladimir | Quantum invariants of knots and 3-manifolds[END_REF]). Let D(L) be a diagram of an m-components link L on S 2 , and let C be a strict ribbon category. Let V 1 , . . . , V m be a colouring of the components of L. The quantity

J C L (V 1 , ..., V m )
produced by the Penrose functor is invariant by ambient isotopy of S 2 and Reidemeister moves on D(L). It is consequently a topological invariant of the coloured link L.

When C is the category of R-modules, J C L (V 1 , ..., V k ) ∈ Hom(1, 1) ∼ = R is identified to a scalar in R.
Graph parameters. The carving-width, also known as congestion, is a graph parameter introduced by Seymour and Thomas [START_REF] Seymour | Call routing and the ratcatcher[END_REF]. Definition 2.2. Let G = (V, E) be a graph on n vertices, with loops and multiple edges. Let T be an unrooted binary tree, with all internal nodes of degree 3, and with n leaves.

(o) (i) (ii) (iii) V 1 U 1 V 2 U 2 h 1 h 2 h 1 ⊗ h 2 V 1 U 1 V 2 U 2 . = h 1 ⊗ h 2 . = V 1 ⊗ V 2 U 1 ⊗ U 2 (v) (iv) . = θ V V V V (viii) . = θ -1 V V V V f U * V * f * . = V * V d V V * ⊗ V . = (x) V V * b V V ⊗ V * . = U V V U (vi) U V V U (vii) (ix) (xi) (xii) f V U . = V V * U V . = U ⊗ V V id V V V . = g f g • f . = V U V U . = c U,V V ⊗ U U ⊗ V c -1 U,V V ⊗ U U ⊗ V . = V U Figure 2. Graphical calculus induced by Penrose functor.
An embedding φ of G into T is a bijective mapping between the nodes of G and the leaves of T . Every edge e of T induces a partition of the vertices of G into two sets, V = U e V e , inherited from the partition of T e into two trees. Let w(e) denote the number of edges in G between U e and V e , called the weight of e.

The congestion of an embedding (T , φ) is the maximal weight of a tree edge:

cng(T , φ) = max e edge of T w(e),
The carving-width cng(G) of a graph G is the minimal congestion over all its embeddings into binary trees. The carving-width cng(D(L)) of a link diagram D(L) is the carving-width of the 4-valent planar graph it realises. The carving-width cng(L) of a link L is the minimal carving-width of any of its diagrams.

The carving-width of a graph is closely related to its tree-width [START_REF] Robertson | Graph minors. II. Algorithmic aspects of tree-width[END_REF], which plays a major role in combinatorial algorithms.

U * ⊗ U ⊗ V ⊗ V * U * ⊗ V ⊗ U ⊗ V * U * ⊗ U ⊗ V ⊗ V * 1 V b U * ⊗ b V id U * ⊗ c V,U ⊗ id V * id U * ⊗ c U,V ⊗ id V * d U ⊗ d V * 1 U Figure 3
. Application of Penrose functor to the Hopf link coloured by objects U and V from a strict ribbon category, leading to a 1 → 1 morphism by composition.

Theorem 2.3 (Theorem 1 of [START_REF] Bienstock | On embedding graphs in trees[END_REF]). Let G be a graph of maximal degree δ. Then,

2 3 (tw(G) + 1) ≤ cng(G) ≤ δ(tw(G) + 1). For tangle diagrams δ ≤ 4.
Carving-width has several advantages over tree-width, and has been successfully used in low dimensional topology [START_REF] Huszár | 3-manifold triangulations with small treewidth[END_REF][START_REF] Huszár | On the treewidth of triangulated 3-manifolds[END_REF][START_REF] Maria | Treewidth, crushing, and hyperbolic volume[END_REF][START_REF] Schleimer | On the tree-width of knot diagrams[END_REF].

First, optimal tree embeddings of planar graphs can be realised topologically, as stated below. A bridge in a connected graph G is an edge of G whose removal splits G into more than one connected component. A tree embedding (T , φ) of G is bond if the two vertex sets U e and V e from the cut associated to an edge e of T induce connected sub-graphs in G. Up to a subdivision of multiple edges, which does not increase carving-width, a link diagram can be made simple, as a graph. Being 4-valent, it is bridgeless, and, if connected, it consequently admits a bond tree embedding of minimal congestion. We interpret a bond tree embedding of a planar graph (on the sphere S 2 ) as a collection of disjoint Jordan curves λ e ⊂ S 2 , one for each edge e of T , realising the cut U e V e [START_REF] Schleimer | On the tree-width of knot diagrams[END_REF].

For planar graphs, a bond tree embedding of minimal congestion can be computed in polynomial time [START_REF] Gu | Optimal branch-decomposition of planar graphs in o(n3) time[END_REF][START_REF] Seymour | Call routing and the ratcatcher[END_REF]. By the planar separator theorem, the carving-width of a planar graph with n-vertices is in O( √ n).

Fixed parameter tractable algorithm via graphical calculus

Let C be a strict ribbon category, and let L be an oriented link with m components L 1 , . . . , L m . Let D(L) be an oriented link diagram of L, where each link component L i is coloured by an object V i from the category C, such that the Penrose functor gives an isotopy invariant of L associated to its colouring, as described in Theorem 2.1.

It follows from the definition of Penrose functor that the quantum invariant of a separable link L ∪ L is the product of the invariants of L and L , such that they can be computed separately. W.l.o.g. we assume that the diagram D(L) is connected as a graph, and has at least 2 crossings, not all twists.

c V,U V U b V b U * b V b U * V U c -1 V,U V b V * V b V * θ V θ -1 V Figure 4.
The four tangles and associated morphisms at the tree leaves. From left to right: Equations (3.1), (3.2), (3.3), and (3.4). The marked bullet point is on the left of each diagram, and is selected such that only these four morphisms are encountered.

3.1. Tree embedding of link diagrams. Let (T , φ) be a bond tree embedding of the planar graph of D(L), and root it by subdividing an arbitrary tree edge, picking the centre as the root. All edges of T have now a parent and child endpoint. By convention, we add a "halfedge" on top of the tree, having the root as child. Every inner node in T has consequently degree 3, with two edges "going down", and one edge "going up".

Let e be an edge of T with child node x, and X the set of crossings mapped to the leaves of the subtree T x rooted at x. According to Theorem 2.4, there exists a Jordan curve λ e separating X from the rest of the diagram. The diagram being on the sphere, we draw the tangle "inside" the Jordan curve when we represent it on the plane.

To an edge e corresponds a (0, w(e))-tangle T , spanned by the crossings X and contained "inside" λ e . We mark an arbitrary but fixed "bullet" point on λ e and order the bases of T counter-clockwise from that point. We get a (0, w(e))-tangle by isotopically sliding all bases to the top boundary, such that the first base in the bullet ordering is rightmost on the top boundary. See Figure 4 for examples of (0, w(e))-tangles at the tree leaves, and Figure 5 (Left) for bases ordered by bullet ordering.

In the process of the algorithm below, bullet orderings are assigned on the fly.

3.2. Tree traversal algorithm. Let D(L) be coloured by objects of the category C. To every edge e of weight w(e) in T , the Penrose functor assigns a C-morphism f e :

1 → V 1 ⊗ . . . ⊗ V w(e)
to the associated tangle, where V 1 , . . . , V w(e) are the colours of the strands intersecting the Jordan curve λ e . The morphism associated to the half-edge at the root is a 1 → 1 morphism, because the corresponding Jordan curve does not intersect the link diagram. This morphisms gives the invariant J C L ∈ R of Theorem 2.1. All edge morphisms are computed recursively following a depth first traversal of T . We describe the base morphisms assigned to the edges whose child node is a leaf, and we describe an algorithm for inner edges in the next section.

3.3.

Morphisms at the leaves. Up to reorientation of the strands, which algebraically consists of dualising colours, we can restrict to four base morphisms:

(3.1) (id U * ⊗c V,U ⊗ id V * ) • (b U * ⊗ b V ) (3.2) (id U * ⊗c -1 V,U ⊗ id V * ) • (b U * ⊗ b V ) (3.3) (id V * ⊗θ V ) • b V * (3.4) (id V * ⊗θ -1 V )
• b V * They correspond graphically to the diagrams in Figure 4, where the bullet ordering is chosen to restrict to these four cases.

3.4. Merging morphisms at tree nodes. Every inner node x of T is the parent node of two edges e 1 and e 2 , and the child of an edge e. Given the morphisms f e 1 and f e 2 for edges e 1 and e 2 respectively, we construct the morphism f e for edge e. , f e 2 and f e (outer coupon) obtained after plane isotopy. The bullet for λ e is selected so as to restrict to these three cases.

First, note that the bullet ordering of the strands intersecting λ e 1 and λ e 2 leads to three configurations when representing morphisms f e 1 and f e 2 with coupons ; see Figure 5 where thick lines represent sets of parallel tangle strands. By hypothesis, morphisms on tree edges have domain 1. The coupons for f e 1 , f e 2 , and f e (the outer coupon) are obtained by a plane isotopy forcing the strands to intersect coupons on their top side, and putting bullets on the coupons' left sides. The bullet of the outer coupon f e is selected so as to restrict to the three configurations of Figure 5.

Factorisation of morphisms at tree nodes

Given the morphisms f e 1 and f e 2 in Figure 5, we describe graphically a factorisation scheme to obtain the morphism f e . 4.1. Sliding and canonical form. The canonical form for morphisms to be merged is depicted in the top left corner of Figure 7. It consists of two side-by-side morphisms g 1 and g 2 , bridged by parallel strands coloured U 1 , . . . U k . All other strands go vertically.

Given morphisms f e 1 and f e 2 in Figure 5, we obtain a canonical form by sliding strands, wrapping clockwise around the coupons, under the coupons. For example, in the top right case of Figure 5, we slide strand 1 under the f e 1 -coupon, and strands a and b under the f e 2 -coupons.

V U f . = U f V V 1 V 2 V 3 V j U 1 U 2 U i • • • • • • • • • • • • U = U i ⊗ . . . ⊗ U 1 V = V j ⊗ . . . ⊗ V 1 f . = Figure 6. Sliding of a V = V j ⊗ . . . ⊗ V 1
-coloured strand under an f -coupon by underlying knot isotopy. The operation composes f with a consecutive sequence of j twists θ V , of j(j -1) crossings c ± V i ,V j , and ij crossings c ± U k ,V .

The details of the operation are depicted in Figure 6, where the V -strand wraps clockwise around the f -coupon, and f is a 1 → U ⊗ V morphism. Sliding the V -strand under the coupon by tangle isotopy produces a positive twist θ V and a positive crossing c V,U .

Decomposing further in Figure 6, let U = U i ⊗ . . . ⊗ U 1 be the tensor product of the colours of i parallel strands, and V = V j ⊗ . . . ⊗ V 1 the tensor product of j parallel strands wrapping clockwise around the f coupon. As depicted in the figure, sliding the j strands under f induces -a twist θ V on each of the V -coloured strands, 1 ≤ ≤ j, -a sequence of j(j -1) positive and negative crossings of type c ± V ,V k , followed by -a sequence of ij positive crossings of type c V ,U k .

We obtain the morphisms g 1 , g 2 of the canonical form (Figure 7) by factorising the morphisms f e 1 and f e 2 with these sequences of twists and crossings, after the sliding operation. 4.2. Factorisation of the canonical form. Figure 7 pictures two factorisation schemes for side-by-side morphisms g 1 and g 2 in canonical form, bridged by k parallel strands coloured U 1 , . . . , U k . Denote by cw the carving-width of the link diagram, and assume the tree embedding (T , φ) has width cw. We distinguish between two cases: Small bridge. For k smaller than half the carving-width (Figure 7, Left), we consider first the morphism d U 1 ⊗...⊗U k induced by the composition of the evaluation morphisms d U , = k . . . 1.

More precisely, the morphism d

U 1 ⊗...⊗U k : U 1 ⊗ . . . ⊗ U k ⊗ U * k ⊗ . . . ⊗ U * 1 → 1 
, is obtained by composing the evaluation morphisms from bottom up:

(4.1) d U 1 ⊗...⊗U k : U 1 ⊗ . . . ⊗ U k ⊗ U * k ⊗ . . . ⊗ U * 1 → 1, = 1 =k id U 1 ⊗...⊗U -1 ⊗d U * ⊗ id U * -1 ⊗...⊗U * 1
where = k is the rightmost term of the composition.

The (partial) composition of d U 1 ⊗...⊗U k with g 2 through U * k ⊗ . . . ⊗ U * 1 gives the morphism h: Finally, the morphism f e obtained from the merging of f e 1 and f e 2 is given by the (partial) composition of g 1 and h, through

(4.2) h : U 1 ⊗ . . . ⊗ U k → W 1 ⊗ . . . ⊗ W j , = d U 1 ⊗...⊗U k ⊗ id W 1 ⊗...⊗W j • (id U 1 ⊗...⊗U k ⊗g 2 ) . g 2 g 1 V 1 V i W j W 1 • • • U k U 1 • • • • • • • • • g 2 g 1 V 1 V i W j W 1 • • • • • • • • • • • • U 1 U k U 1 U k d U 1 ⊗...⊗U k g 1 V 1 V i • • • • • • • • • h U 1 U k d U 1 ⊗...⊗U k h 2 h • • • W j W 1 • • • U 1 U k V 1 V i • • • • • • U k U 1 U k h 2 g 2 • • • W j W 1 f e • • • if k ≤ cw 2 if k > cw 2 . = V 1 V i • • • W j • • • • • • g * 2 g 1 • • • U 1 U k V 1 V i • • • • • • • • • g * 2 g 1 • • • U 1 U k W 1 W j b W 1 ⊗...⊗W j V 1 V i • • • W j W 1 h • • • U 1 U k g 1 • • • V 1 V i • • • • • • U k U 1 U k h 2 g 2 • • • W j W 1 f e • • •
U 1 ⊗ . . . ⊗ U k . Precisely, (4.3) f e : 1 → V 1 ⊗ . . . ⊗ V i ⊗ W 1 ⊗ . . . ⊗ W j , = (id V 1 ⊗...⊗V i ⊗h) • g 1 .
By construction, these operations give the morphism f e induced by the Penrose functor on the coloured tangle associated to the subtree of T rooted at the child node of edge e. Large bridge. The case k strictly larger than half the carving-width starts by flipping upsidedown coupon g 2 . Precisely, this operation is depicted in Figure 8. Starting with a morphism

g U V g * V U g U V . = . = Figure 8
. Planar isotopy, then factorisation with g * , the dual morphism to g.

g, it consists of a planar isotopy to produce g * , the dual morphism to g. In the case where the category C satisfies the hypothesis of Theorem 2.1, Figure 8, depicting an isotopy, proves the equality:

(d U ⊗ id V ) • (id U * ⊗g) = (id V ⊗g * ) • (b V ⊗ id U * ) .
Applied to the canonical form on g 1 and g 2 (Figure 7, Top) the operation gives the composition of morphisms, involving g 1 and g * 2 , in the top right corner of Figure 7. The following compositions are similar to the case of a small bridge. Morphism b W 1 ⊗...⊗W j describes the composition of the co-evaluation morphisms for W 1 , . . . , W j , i.e., (4.4) b

W 1 ⊗...⊗W j : 1 → W * 1 ⊗ . . . ⊗ W * j ⊗ W j ⊗ . . . ⊗ W 1 , = j =1 id W * 1 ⊗...⊗W * -1 ⊗b V ⊗ id W -1 ⊗...⊗W 1 .
where = 1 is the rightmost term of the composition.

The morphism h is obtained by (partial) composition of b W 1 ⊗...⊗W j and g * 2 :

(4.5)

h = id W * 1 ⊗...⊗W * j ⊗g * 2 • b W 1 ⊗...⊗W j ⊗ id U 1 ⊗...⊗U k ,
and f e is obtained by (partial) composition of g 1 and h :

(4.6) f e = id V 1 ⊗...⊗V i ⊗h • g 1 .
Correctness. The correctness of the algorithm follows directly from Theorem 2.1, noting that the algorithm consists of an isotopy of the link, realisable by isotopies of the sphere on which the diagram is drawn, and Reidemeister moves.

Algebraic implementation and complexity

For the implementation of the algorithm, we assume that the objects in the category C are finite dimensional free R-modules, for a commutative ring with unity R and usual tensor product. Denote the dimension of every link component colour V i by N i := dim V i , and let N := max i {dim V i }. Fixing a basis for every V i , all morphisms in C-in particular the distinguished braiding, evaluation and co-evaluation, and twist morphisms-are represented by matrices with R coefficients.

This model is general, and contains all quantum invariants derived from simple Lie algebras.

5.1. Elementary compositions. We consider the seven elementary compositions of morphisms depicted in Figure 9. They respectively represent the composition with (1) a single braiding, (2) a single twist, (3) a single co-evaluation, (4) a single evaluation. Cases ( 5), [START_REF] Fürer | Faster integer multiplication[END_REF], and ( 7) represent three types of partial compositions of the morphisms f and g. We describe algorithms to perform these compositions on matrices.

• • • • • • f • • • • • • f • • • • • • f f • • • f g g f f g V V V V V U W U W V V U W V V U U (1) (2) (3) 
h h h h (4) 
W U U W U W h h h (6) (5) (7) 
Figure 9. Graphical representation of the seven elementary compositions of morphisms.

Lemma 5.1. Consider the elementary morphism compositions in Figure 9 (1), ( 2), (3), and (4). Let U, V, V , W be finite dimensional free R-modules, with dim U = a, dim V = b, dim V = b , and dim W = c. Then, given the matrices for morphisms f , θ ± V , c ± V,V , b V , and d U , we can compute the matrix for morphism h in:

• O(a(bb ) 2 c) arithmetic operations in R for (1),

• O(ab 2 c) arithmetic operations for ( 2) and ( 3), and

• O(a 2 b) arithmetic operations for (4). The memory complexity of the operation does not exceed the size of the output, which is a row or column vector h containing scalars from R.

Proof. Figure 9 (1), (2), and (3). All three cases consist of the matrix-vector product h = (id U ⊗M ⊗ id W ) • f , where M is respectively the (bb × bb )-matrix c ± V,V , the (b × b)-matrix θ ± V , and the (b 2 × 1)-matrix b V . Consider M to be an (m × m )-matrix, with coefficients (M i,j ) 1≤i≤m,1≤j≤m . Matrix (id U ⊗M ⊗ id W ) has at most m non-zero coefficients per row. We get the formula for the i th entry of h:

h i,1 = k=1...m M β+1,k • f αcm +γ+(k-1)c,1 ,
where i is uniquely written as

i = α • cm + β • c + γ, with 0 ≤ α ≤ a -1, 0 ≤ β ≤ m -1, and 1 ≤ γ ≤ c. Computing h requires O(m |f |) arithmetic operation in R, where |f | is the length of vector f , storing O(|f |) scalars from R.
Figure 9 [START_REF] Burton | Algorithms and complexity for Turaev-Viro invariants[END_REF]. With a similar approach, we get for any j, 1 ≤ j ≤ a 2 b:

h 1,j = (d U ) 1,αa+γ • f β+1,1 ,
where j is uniquely written as Lemma 5.2. Consider the elementary morphism compositions in Figure 9 (5), [START_REF] Fürer | Faster integer multiplication[END_REF], and [START_REF] Garoufalidis | On the characteristic and deformation varieties of a knot[END_REF]. Let U, V, W be finite dimensional free R-modules, with dim U = a, dim V = b, and dim W = c. Then, given the matrices for morphisms f and g, we can compute the matrix for morphism h in O(abc) arithmetic operations in R, and memory complexity O(ab + bc + ac) times the size of a scalar in R.

j = α • ab + β • a + γ, with 0 ≤ α ≤ a -1, 0 ≤ β ≤ b -1,
Proof. Figure 9 (5). Morphism f is a bc × 1 matrix, and morphism g is a 1 × ab matrix. Define h = (g ⊗ id W )(id U ⊗f ). Morphism h is a c × a matrix.

Studying the shape of matrices (id U ⊗f ) and (g ⊗ id W ), it appears that every one of the c × a coefficients of the product h = (g ⊗ id W )(id U ⊗f ) is a sum of O(b) terms. Precisely, an explicit computation gives us, for any i, j, 1 ≤ i ≤ c, 1 ≤ j ≤ a:

h i,j = k=0...b-1 g 1,(j-1)b+k+1 • f kc+i,1 .
Morphism h is a c×a matrix, and each of its coefficients can be computed in O(b) arithmetic operations in R, leading to the O(abc) time complexity. The memory consumption is the sum of the sizes of the input matrices f and g, and the output matrix h. Figure 9 [START_REF] Fürer | Faster integer multiplication[END_REF]. With a similar approach, for any i, j, 1 ≤ i ≤ a, 1 ≤ j ≤ c:

h i,j = k=0...b-1 g 1,kc+j • f (i-1)b+k+1,1 .
Figure 9 [START_REF] Garoufalidis | On the characteristic and deformation varieties of a knot[END_REF]. With a similar approach, for any i, 1 ≤ i ≤ ac:

h i,1 = k=1...b g β,k f αb+k,1 ,
where we write i = αc + β, for 0 ≤ α ≤ a -1 and 1 ≤ β ≤ c.

5.2.

Implementation of the algorithm. We implement the algorithm described in Sections 3 and 4 using the elementary composition of Figure 9. Define N a bound on the dimension of the different modules U i , V j , W k colouring the components of the link. Leaf morphisms. The leaf morphisms described in Equations (3.1-3.1) and Figure 4 are implemented using elementary compositions (1) and [START_REF] Burton | The next 350 million knots[END_REF]. By Lemma 5.1, the complexity is at most O(N 6 ) arithmetic operations in R. Sliding under a coupon. The sliding operation as presented in Figure 6 composes a morphism f with a sequence of twist and braiding morphisms. Precisely, let h denote the entire morphism in Figure 6. Starting from the (O(N i+j ) × 1) matrix f , it is computed iteratively applying j times elementary composition (2) for the twists, then j(j-1) times elementary composition [START_REF] Bienstock | On embedding graphs in trees[END_REF] for the braidings between V i -and V j -strands, and finally ij times elementary composition [START_REF] Bienstock | On embedding graphs in trees[END_REF] for the braidings between V i -and U j -strands.

During the computation, we maintain a vector of size (1 × O(N i+j )). Applying Lemma 5.1, the sliding operation runs in O(j(i + j)N i+j+2 ) arithmetic operations in R, storing O(N i+j ) scalar from R. In the algorithm, i + j ≤ cw, the carving-width of the link diagram. Consequently, we get O(cw 2 N cw +2 ) operations, with memory O(N cw ). Construction of evaluations and co-evaluations. The morphism d U 1 ⊗...⊗U k appearing in Figure 7 is the result of k elementary compositions of type [START_REF] Burton | Algorithms and complexity for Turaev-Viro invariants[END_REF]. The morphisms maintained during the computation are of size (1 × O(N 2k )). Applying Lemma 5.1, the computation takes a total of O(kN 2k ) arithmetic operations in R, storing O(N 2k ) scalars from R. The case b W 1 ⊗...⊗W j is similar.

In the algorithm, k (or j) is smaller than cw /2. Consequently, the complexity is O(cw N cw ) arithmetic operations, storing O(N cw ) scalars.

Composition of morphisms. Finally, the compositions of morphisms described in Figure 7 are implemented with a constant number of elementary compositions ( 5), [START_REF] Fürer | Faster integer multiplication[END_REF], and [START_REF] Garoufalidis | On the characteristic and deformation varieties of a knot[END_REF]. Considering Lemma 5.2, the product abc of dimensions never exceed N 

Arithmetic complexity and quantum invariants of links

Working with matrices with R-coefficients, for a ring R, allows the algorithm to be applied in great generality. For example, any complex simple Lie algebra g produces quantum invariants of links, that can be expressed as a composition of morphisms between free R-modules, and to which our algorithm can be applied. See [START_REF] Vladimir | Quantum invariants of knots and 3-manifolds[END_REF]Chapter 6] for an explicit construction.

In this case, R is a polynomial ring, and degrees of polynomials as well as values of coefficients may blow-up during intermediate computation. Specifically, both arithmetic operations within R and bit size of R-elements may become exponential in n.

In this section we describe a solution to control the arithmetic complexity in the case R = Z[q], which is sufficient for all J g L invariants. We also provide detailed complexity bounds for completeness.

6.1. Arithmetic complexity of polynomial invariants. We give coarse, but general, bounds on the degrees and coefficients of a polynomial invariant produced by the algorithm introduced above, that are sufficient for the complexity analysis. Proposition 6.1. Let C be a strict ribbon category of Z[q]-modules, and let D(L) be an ncrossings diagram of a link L whose components are coloured with free modules V 1 , . . . , V m ∈ C, of dimension at most N .

Let d 0 and C 0 be respectively a bound on the degree and a bound on the absolute value of coefficients of all polynomials in the matrices c ±

V i ,V j , θ ± V i , d U i , b U i , for 1 ≤ i, j ≤ m. Then the polynomial invariant J C L (V 1 , . . . , V m ) ∈ Z[q]
has degree and absolute value of coefficients bounded by d n and C n respectively, with:

d n = O(nd 0 ) and C n = 2 O(n √ n log N +n log C 0 ) .
Proof. Consider a tree embedding of graph D(L) where the tree is a path, with leaves attached to it. The minimal congestion over all such embeddings is called the cut-width of the graph, and is O( √ n) due to the planar separator theorem. Let k be the cut-width of D(L), and (P, φ) a minimal embedding of D(L) into a path-tree. Running the algorithm of Sections 3-5 on this path decomposition boils down to computing the product of O(n) matrices M α•n • . . . • M 1 , where all matrices are tensor products of a c ± V i ,V j , θ ± V i , d U i , b U i , for some 1 ≤ i, j ≤ m, with identities, and all matrices have size at most N O(k) × N O(k) . Additionally, M 1 has 1 column, and M α•n has 1 row, to give a scalar in Z[q].

Tensor with the identity does not change the bounds d 0 and C 0 on degrees and coefficients. Multiplying by a matrix adds at most d 0 to the degree, and multiplies by at most N O(k) C 0 the largest coefficient. We get the global bounds by multiplying the matrices together, and substituting O( √ n) for k.

We give a general algorithm to compute a one-variable, integer coefficient, polynomial invariants, using standard computer algebra techniques and the algorithm of Sections 3-5. Proposition 6.2. Let C be a strict ribbon category of Z[q]-modules for the one-variable polynomial ring Z[q]. Let L be an m-components link with colours the free modules V 1 , . . . , V m , and let J C L (V 1 , . . . , V m ) ∈ Z[q] be the associated topological invariant. Assume L is presented by an n-crossings diagram D(L) with carving-width cw.

Assume that the dimensions of the free modules V 1 , . . . , V m are at most N , and that the polynomial bits. Here, Ar(l) ∈ O(l) is the arithmetic complexity of operations +, -, ×, ÷ on integers encoded on at most l bits, which is linear in l up to a poly-logarithmic factor.

J C L (V
Proof. The algorithm relies on evaluation and interpolation. For short, denote J C L (V 1 , . . . , V m ) by P (q) ∈ Z[q]. Evaluation. We evaluate P (q) on integer points q ∈ {0, 1, . . . , d n }. Fix q 0 in this set, and substitute q 0 for q in matrices c ± V i ,V j , θ ± V i , d V i , and b V i . The algorithm of Sections 3-5 is consequently a succession of matrix multiplications, where all matrices have integer coefficients, and the resulting P (q 0 ) is an integer of absolute value less than:

Cd dn+1 n ≤ 2 (dn+1) log 2 dn+log 2 Cn = 2 O(dn log dn+log Cn)
For a fixed q 0 , we perform computation modulo the first r prime numbers 2 = p 1 , . . . , p r successively, such that the product p 1 • • • p r is larger than |P (q 0 )|. We then reconstruct P (q 0 ) using the Chinese Remainder Theorem. The product p 1 • • • p r is of order 2 r log r [START_REF] Rosser | Approximate formulas for some functions of prime numbers[END_REF]. We take an appropriate r such that r log r ∈ Θ(d n log d n + log C n ), which gives r ∈ O(d n + log C n ).

Reconstructing the value P (q 0 ) from all the (P (q 0 ) mod p i ), 1 ≤ i ≤ r, can be computed in O(r 2 log 2 r) = O((d n log d n + log C n ) 2 ) machine operations [START_REF] Von | Modern computer algebra[END_REF]Theorem 5.8].

Additionally, the values of all primes p i , i ≤ r, are in O(r log(r log r)) = O(r log r) = O(d n log d n + log C n ) [START_REF] Rosser | Approximate formulas for some functions of prime numbers[END_REF].

Denote by Ar(l) the computational complexity of performing arithmetic operations +, -, × on integers encoded on at most l bits, in Z/wZ, for an integer w ≤ 2 l . The best known estimate for C(l) is:

C(l) = O(l log 2 (l) 2 O(log * l) ) = O(l),
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Figure 1 .

 1 Figure 1. Left: Diagram of a 4-components oriented framed tangle, whose top left component has framing +2. Right: Positive/negative twists and crossings. The . = symbol is an equivalence of diagrams.

Theorem 2 . 4 (

 24 [START_REF] Seymour | Call routing and the ratcatcher[END_REF] Theorem 5.1]). Let G be a simple connected bridgeless graph with more than two vertices. If G has carving-width cw then there exists a bond tree embedding of G of congestion cw.

3 Figure 5 .

 35 Figure 5. Merging two sub-trees. Left: Planar embeddings of the diagram with Jordan curves λ e 1 , λ e 2 (inner circles) and λ e (outer circle), depending on the position of the bullets for λ e 1 and λ e 2 . The bold lines connecting the Jordan curves represent multiple parallel strands connecting the corresponding tangles. Right: Coupons for f e 1 , f e 2 and f e (outer coupon) obtained after plane isotopy. The bullet for λ e is selected so as to restrict to these three cases.

1 Figure 7 .

 17 Figure 7. Merging of two coupons in a canonical form (top left) along k strands coloured U 1 , . . . , U k . The factorisation scheme differs whether k ≤ cw /2 (left column) or k > cw /2 (right column). The top right equivalence comes from the equality in Figure 8.

and 1 ≤

 1 γ ≤ a. The algorithm has complexity O(a 2 b) and memory usage O(a 2 b).

3 2 3 2 3 2

 333 cw . Consequently, the compositions of Figure7are implemented using O(N cw ) arithmetic operations in R, storing O(N cw ) scalars from R. Overall complexity. In conclusion, we sum up the different steps of the algorithm and its implementation. Let D be a coloured link diagram with n crossings and carving width cw, where the dimension of each colouring module is at most N . The algorithm first computes an optimal tree embedding in O(poly(n)) operations. The tree has size n and width cw. W.l.o.g., we assume the diagram has at least one crossing that is not a twist, and consequently cw ≥ 4, the maximal degree of the graph. Considering cw ∈ O( √ n) and cw +2 ≤ 3 2 cw, the quantum invariant associated to the colouring is computed in: O(n 2 N cw ) arithmetic operations in R, storing: O(n) words for the diagram, plus O(N cw ) scalars from R.

  two morphisms h 1 and h 2 side by side are equivalent to their tensor product h 1 ⊗h 2 ,

	represented graphically by a box, aligned with x-and
	y-axis, called coupon, with incoming vertical V -coloured strands (top) and outgoing
	vertical U -coloured strand (bottom),
	(i): reversing a component orientation changes a colour V to its dual V * ,
	(ii): two parallel strands coloured U and V are equivalent to a single strand coloured
	U ⊗ V ,
	(iii): a vertical strand coloured V is equivalent to the identity morphism id V ,
	(iv): a morphism g above another one f is equivalent to there composition g • f ,
	(v): (vi) & (vii): a positive crossing is equivalent to a braiding morphism, a negative cross-
	ing is equivalent to the inverse of the braiding morphism,
	(viii) & (ix): positive and negative twists are equivalent to the twist morphism and its
	inverse respectively,
	(x) & (xi): caps and cups are equivalent to evaluation and co-evaluation respectively.

  1 , . . . , V m ) has degree bounded by d n and largest coefficient in absolute value bounded byC n . Then J C L (V 1 , . . . , V m ) can be computed in: O d n (d n + log C n ) • Ar (log(d n log d n + log C n )) × nN 3 2 cw +d n (d n log d n + log C n ) 2 + d 2 n Ar (d n log d n + log C n )machine operations, using:O log (d n log d n + log C n ) N cw + nd n (d n log d n + log C n ) + d 2 n Ar(d n log d n + log C n )

Note that previous algorithms[START_REF] Makowsky | The parameterized complexity of knot polynomials[END_REF] are expressed in terms of tree-width, which is proportional but not equal to the carving-width, in consequence exponents are not directly comparable.

where log * denotes the iterated logarithm, and the O-notation hides poly-log factors. This describes the complexity of performing the extended Euclidean algorithm [START_REF] Von | Modern computer algebra[END_REF] using Fürer's method [START_REF] Fürer | Faster integer multiplication[END_REF].

Interpolation. We reconstruct polynomial P (q) ∈ Z[q] of degree bounded by d n using Lagrange interpolation. Lagrange interpolation gives directly a formula for P (q), computable in O(d 2 n Ar(d n log d n + log C n )) machine operations [9, Theorem 5.1]. Summing up the complexity of evaluating polynomial P (q) on the first d n + 1 non-negative integers using the modulo reconstruction approach and running the algorithm of Sections 3-5, and the complexity of evaluating the interpolation formula, gives the complexity of the proposition.

We conclude by proving the main Theorem:

Proof. [of main Theorem 1.1] Fixing the category C and the colours V 1 , . . . , V m , of dimension at most N , makes N constant, as well as the quantities d 0 and C 0 bounding degrees and coefficients of polynomials in the matrix for braidings, twists, and (co)evaluations. It enforces Remark 6.3. Note that quantum invariants are usually defined in the category of Z[q, q -1 ]modules. Multiplying the braiding, twist, and (co)evaluation matrices by q a for a large enough, and re-normalising the output, allows us to restrict the algorithm to the case of Z[q]-modules.

Note that we get the following parameterized complexity result for the more general problem of quantum invariant computation, where the invariant is part of the input: In other words, when the polynomials in the matrices are encoded with their lists of coefficients, the input size is Ω(poly(N, d 0 , log C 0 ) + n), and the general quantum invariant problem is in the parameterized complexity class XP.