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Spectral estimation for non-linear long range dependent discrete

time trawl processes

P. Doukhan? F. Roueffl and J. Rynkiewicz!

January 6, 2020

Abstract

Discrete time trawl processes constitute a large class of time series parameterized by a
trawl sequence (a;)jen and defined though a sequence of independent and identically
distributed (i.i.d.) copies of a continuous time process (v(t))ier called the seed process.
They provide a general framework for modeling linear or non-linear long range dependent
time series. We investigate the spectral estimation, either pointwise or broadband, of long
range dependent discrete-time trawl processes. The difficulty arising from the variety of
seed processes and of trawl sequences is twofold. First, the spectral density may take
different forms, often including smooth additive correction terms. Second, trawl processes
with similar spectral densities may exhibit very different statistical behaviors. We prove
the consistency of our estimators under very general conditions and we show that a wide
class of trawl processes satisfy them. This is done in particular by introducing a weighted
weak dependence index that can be of independent interest. The broadband spectral
estimator includes an estimator of the long memory parameter. We complete this work
with numerical experiments to evaluate the finite sample size performance of this estimator

for various integer valued discrete time trawl processes.

Keywords: trawl processes; integer-valued time series; long memory parameter estimation
MSC: 62M10; 62F12; 60G51;

1 Introduction

A discrete time trawl process X = { X}, k € Z} is defined in [Doukhan et al., 2019] by

Xp = Y wyley), ke, (1.1)
=0
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where

(A-1) The sequence (vk)kez is a sequence of i.i.d. copies of a generic process v = {y(u),u € R}

and a = {aj, j > 0} is a sequence converging to zero.

Processes so defined can be interpreted as discrete time versions of the trawl processes intro-
duced in [Barndorff-Nielsen et al., 2014]. The generic process 7 is called the seed process and
the sequence a is called the trawl (height) sequence.
Additional assumptions are required to have a converging sum in (1.1). The convergence
in L2 is guaranteed if .
Z |E~(a;)| + Varvy(a;)) < oo . (1.2)
j=0
See [Doukhan et al., 2019, Proposition 1], where the covariance function is also given by the

formula
r(k) = Cov(Xo, Xi) ZCOV y(az),y(ajix)) - (1.3)

By [Doukhan et al., 2019, Proposition 3], we moreover know that if, in addition, the two

following asymptotic behaviors hold:

Cov(y(u),7(v)) = (lul Afvl) (1+0(1)) as u,v—0, (1.4)

a; cji T (140(1) as j— oo, (1.5)

with ¢ # 0 and o > 1, then, the covariance function behaves at large lags as
rk)=¢ k17 (140(1) as k—o0. (1.6)
In the following we will refer to o* in (1.5) as the trawl ezponent. In particular if
l<a*<2, (1.7)
this behavior is often referred to as X being long range dependent with long memory parameter
d'=1-a"/2. (1.8)

Here (1.7) implies d* € (0,1/2) (sometimes referred to as positive long memory). We here use
one of the several existing definitions of long range dependence, see for instance Condition II
in [Pipiras and Taqqu, 2017, Section 2.1]. In fact in the cases considered here, the same long
memory parameter d* can also be defined through their condition IV, based on the spectral
density. In the case where a* > 2, the two definitions may no longer coincide. The definition

of negative long memory (d* < 0) is generally relying on the behavior of the spectral density



at the origin (in particular imposing this spectral density to vanish there). Adopting this
definition the formula (1.8) may not be valid anymore as the obtained process could have
short memory (d* = 0) even if a* > 2, or have negative long memory (d* < 0). In the
following, we will only consider the case where d* > 0, avoiding the negative long memory
case for convenience.

A very interesting feature of trawl processes is that under the fairly general assump-
tion (1.4) on the seed process, the low frequency behavior of the spectral density is mainly
driven by the trawl sequence. However, it is shown in [Doukhan et al., 2019] that, for a given
trawl sequence, two different seed processes can yield different large scale behaviors, as can
be seen by different types of limits in the invariance principle. In the case of a Lévy seed for
instance, a Brownian seed process leads to an invariance principle with fractional Brownian
motion limit, with Hurst parameter (3 — a*)/2, and a (centered) Poisson seed process leads
to an invariance principle with Lévy a*-stable limit, see [Doukhan et al., 2019, Theorems 1
and 2].

The goal of this paper is to investigate the spectral estimation of a long-range dependent
process X from a sample Xi,...,X,. Deriving general results applying to a wide class of
long range dependent trawl processes raise two major difficulties. First, as already noted
about the asymptotic results derived in [Doukhan et al., 2019], the large scale behavior of
such processes, can be very different from one trawl process to another, even with similar
or even equal covariance structure. Second, the spectral density has a closed form only in
particular cases for the seed process and the trawl sequence. The computation of the spectral
density function depends both on the seed process v and the sequence (a;). For instance, in
[Doukhan et al., 2019, Example 5], it is shown that for a large class of seed processes (that
will be referred to as the Lévy seed process below), a specific sequence (a;) leads to the same

spectral density as an ARFIMA(0,d*,0), namely,

1 L —2d*
) = — [1— —i\
T ( ) 2T ¢

(1.9)

Here the spectral density is normalized in such a way to have the innovation process with unit
variance. The general form that we will assume on the spectral density includes of course a
multiplicative constant ¢* but also an additive smooth function h* belonging to the space C
of continuous and (27) periodic functions endowed with the sup norm. Namely, to encompass

as many cases as possible, we assume that X has a spectral density function given by
fA) = (feN) +0° (V) AeR, (1.10)

where d* € [0,1/2), ¢* > 0 and h* € C. The form (1.10) is the spectral behavior correspond-

ing to that of the covariance in (1.6). Here d* is again the long memory parameter, and it



characterizes the power law behavior of f at low frequencies while the function h* encom-
passes the short-range behavior. As we will see, in many cases of interesting trawl processes,
the function A* is smooth in the Holder sense, leading naturally to the additive parametric
form (1.10) of the spectral density, which is different for the usual product parametric form
usually encountered in linear models such as ARFIMA processes. Note however that such
an additive form of the spectral density were already considered in [Hurvich et al., 2005] for
completely different (non-linear) models.

We consider either pointwise or broadband estimation of the spectral density. In the first
case, we estimate f(\) directly for a given A, and, in the second case, we estimate the triplet
(c¢*,d*, h*) by assuming it belongs to a known parameter set. The first approach only makes
sense for A # 0 and will be investigated in Section 2.2 using a smoothed version of the pe-
riodogram. The second approach will be investigated in Section 2.3. The estimation of the
long memory parameter is a widely studied problem in statistical inference, see the refer-
ence book [Doukhan et al., 2002], or, more recently, [Giraitis et al., 2012] and the references
therein. Here, we propose to estimate the parameter (c¢*,d*, h*) using a parametric Whittle
approach. Define the periodogram

, (1.11)

n

Z(Xk _ Xn)e—i)\k

k=1

1
I,(\) = 3

where X,, denotes the empirical mean of the sample Xi,...,X,, and denote the Whittle

contrast by

I

" _dL +/1 +h) dL, 1.12
Fegdn) + [ g (112

where fy is defined by (1.9) and L is the Lebesgue measure on [—7, 7] divided by 27. Our

An(d, k) =1In (

estimator (dy,, hp,é,) is to find a near minimizer (dy,hy) of (d,h) — An(d,h) over a well

chosen set of parameters for (d, h), and then set

I,
én:/ —" _dL. (1.13)

From which we can also define an estimator of the spectral density, namely,

Here we derive results that apply to a wide class of trawl processes, in particular to those of
nature quite different from the well studied class of Gaussian or linear processes. For conve-
nience, we focus on proving the consistency of our estimators under very general assumptions,

that can be of interest beyond trawl processes:

(A-2) The process X = (Xy)rez is stationary, ergodic and L2.



(A-3) There exist Cyp > 0 and sg € (0, 1) such that, for all integers t1 < to < t3 < 1y,

1Cov(Xy, , Xi,)| < Co(1+ts — 1), (1.14)
|COV(Xt1Xt2 s thXt4)| S Cl (1 + t3 - t2)750 s (115)
’COV(XtIXt2Xt3 , Xt4)‘ < (1 + 1ty — tg)iso . (116)

Assumption (A-2) is basically satisfied by all well defined discrete-time trawl processes. To
show that a given trawl process satisfies (A-3) with a well chosen exponent sy, we will rely on
a weighted weak dependence property that is easy to prove for discrete-time trawl processes.

The paper is organized as follows. In Section 2, we present successively: 1) general
conditions on the seed process and the trawl sequence so that the corresponding trawl process
satisfies Condition (A-2) and (A-3) above, 2) general results on second order estimation under
Assumption (A-3) and 3) a general consistency result on the parametric Whittle estimation
of the parameters (d*, h*) of the unknown spectral density in (1.9). For this estimation result
to hold, we only require on the observed process to satisfy (A-2). The assumption on the
parameter set on which the Whittle contrast is maximized will be detailed in (A-4). We
provide in Section 3 various examples of trawl processes. Although the usual causal linear
models for long range dependence (such as ARFIMA processes) constitute specific examples of
trawl processes, we here focus on the non-linear models introduced in [Doukhan et al., 2019],
and specify simple sufficient conditions implying the assumptions used in the general results.
The proofs of the results presented in Sections 2 and Section 3 are detailed in Section 5. Before
that, we introduce in Section 4 some weighted weak dependence coefficients that can be of
independent interest but which will mainly serve us here to check (A-3) for trawl processes.
Finally in Section 6, we present numerical experiments focusing on the estimation of the long
memory parameter d* comparing our approach to the more classical local Whittle estimator,
which is known to perform well for standard linear models. Concluding remarks including

directions for future work are proposed in Section 7.

2 Main results

2.1 Results on trawl processes

As explained in the introduction, the L? convergence of (1.1) follows from (1.2). We provide
hereafter a more precise statement, and a slight extension to a convergence in L% with p > 1.

All the proofs of this section are postponed to Section 5.1.

Lemma 1. Assume (A-1). Then (1.2) implies that the convergence (1.1) holds in L? and



the resulting process X is ergodic. A centered version of X can be obtained by setting

Y(u) = v(u) = Ey(u) (2.17)
X=X — > Erlay) =Y rjla;) kelZ. (2.18)
§=0 =

If moreover, we have, for some p > 1,

[e.e]

> IAtalsh < (2.19)

j=0
then the convergence (1.1) also holds in 1L?P.

Having a condition for X to satisfy (A-2) and to be L?, we now provides conditions for

obtaining (A-3), which requires p > 2 for the considered covariances to be well defined.

Theorem 1. Assume (A-1) and (1.2). Then X is an IL? stationary process (by Lemma 1),
and (A-3) follows from any of the two following assertions with the same sg € (0,1).

(i) We have (2.19) with p =2 and , as r — 00,

Zvam(aj) = O(r=%0) (2.20)
Z 15(aj) 150 = O~ =) . (2.21)

(ii) We have (2.19) with p =3 and (2.20) holds as r — oc.

2.2 Second order estimation

In this section, we suppose that X is a weakly stationary process with auto-covariance r or
spectral density f. All the proof of this section are postponed to Section 5.2 for convenience.
The main assumption that we will require on X is (A-3). It is interesting to note that,

if (1.14) holds then assuming (1.15) and (1.16) is equivalent to assuming
|Cum (X, , Xpy o Xiy o Xey)| SCo [(L+ts —13) 0 A (1413 —t2) "] . (2.22)
The precise statement is the following.

Lemma 2. Let X be a weakly stationary process with zero mean such that (1.14) holds for
all t; < tg in Z. Then, for all ty <ty <ts <ty inZ, (1.15) and (1.16) imply (2.22), with
Cy = C1 4 3C and (2.22) implies (1.15) and (1.16) with Cy = Cy + 3C3.



We denote the empirical covariance function by

R 1 n—m - B
rn(m) = " Z (Xj = Xn)(Xjgm — Xn) (2.23)
j=1
where X,, denotes the empirical mean of the sample X1, ..., X,,. The centering in the defini-

tions of 7, can be treated separately. Define non-centered covariance estimator

_ 1k

Falk) =~ ; XX 0k - (2.24)
The empirical covariance function defined by (2.23) can then be written as

(k) = (k) — Ry, (k) (2.25)

where 7, is the non-centered empirical covariance function defined in (2.24) and R]!(k) is the

reminder term defined by

, k

n—k
o 1
(o)™ + X | = Z X; |- (2.26)
Jj=k+1
This term is “small” only if X is a centered process. Nevertheless, X can be assumed centered

here, since the empirical covariance 7, is unchanged when X is replaced by its centered version.

In the case where X has mean zero, we have the following result.

Proposition 1. Let X be an L* process with zero mean and satisfying (A-8). Then there
exists a constant C" only depending on Cy, Cy and so such that, for all0 < k < { < n,

|Cov(T (k) , T(0)| < C'n~%0 . (2.27)
The following result follows.

Corollary 1. Let X be a weakly stationary L* process satisfying (A-8) with covariance func-
tion r. Then there exists a constant C' only depending on Cy,Cy and sg such that, for all
0<k</l<n,

max B |, (k) —r(k)| < C'n=%0/% (2.28)
0<k<n

Another possible application of Proposition 1 is the pointwise Kernel estimation of the
spectral density f wherever it is well defined and smooth. Let J denotes a two times contin-
uously differentiable function with support [—1/2,1/2] and such that [ J = 1. For any 8 > 0
and \g € [—7, 7], let Jg ), denotes its A\g-shifted, S-scaled and (27)-periodic version:

T = 3 307 (AR

keZ



Define the Kernel estimator of f(\o)

fn,B(AO) = /EIn Jﬁ,)\o .

Let p denote the spectral measure of X and suppose that it admits a density f in the
neighborhood of Ay, and that this density is continuous at Ag. Then, it is easy to show that

lim /Jﬁ)\o dM - f()\o) (229)
£5—0

and the rate of convergence as 8 — 0 can be obtained from the smoothness index of f at Ap.
This deterministic limit can be interpreted as a control on the bias of the estimator fn,ﬁn()‘O)

of f(Ag). The deviation is bounded by the following result.

Corollary 2. Let p be the spectral density associated to the covariance function r. Define
I, and 7, by (1.11) and (2.23). Let J be a kernel function as above and define the kernel
estimator fnﬁ accordingly. Then (2.28) implies that there exists a constant C" only depending
on C', r(0) and J such that, for any \g € [—m, 7],

E

Fap(No) = / I du' <2t (2.30)

As usual, the deviation bound (2.30) (where § = (3, should not converge to 0 at a rate
faster than n°9/2) has to be balanced with the convergence (2.29) (where 8 = 3, should
converge to 0, the faster the better).

2.3 Parametric Whittle estimation

Although A* is an unknown element in the infinite dimensional space C, our approach is
parametric in nature in the sense that we now assume that (d*,h*) belongs to a known
compact subset K of [0,1/2] x C. In practice, to get a good approximation of an element of
C, only a finite number of its Fourier coefficients needs to be estimated. More generally we
denote by (K,) a sequence of subsets of K in which we can always find (d*, b)) such that A}

approximates h* well for n large. More precisely we consider the following assumption.

(A-4) Let K be a compact subset of [0,1/2] x C such that, for all (d,h) € K, fg+h >0
on R, and let (K,) be a sequence of subsets of K such that for a well chosen sequence

(h:) € CN, we have (d*,h}) € K, for all n € N and h} converges to h* uniformly.

Remark 1. If h € K is parameterized by finitely many parameters, one can take K, = K for
alln > 1, in which case the last assertion of (A-4) is immediately satisfied for all (d*,h*) € K
by taking h), = h* for all n.



An infinite dimensional setting can be set up as follows. For any s,C > 0, let H(s,C) denote
the ball of even, real and locally integrable (27)-periodic functions i : R — R such that the

Fourier coefficients
() :/h(A)eiAkL(d)\) satisfy |ex(B) < C 1+ k)", keZ.

For any non-negative integer m, let moreover P,, denote the set of even real trigonometric
polynomials of degree at most m. For any locally integrable (27)-periodic function h, denote

by pm[h] the projection of h onto P,,, that is,
pmlh](A) = co(h) + > 2cp(h) cos(Ak), AeER.
k=1

For any s,C > 0, it is easy to show that sup |h — Py, [h]| = O(m™*) uniformly in h € H(s,C)
as m — oo. The following result can be used to build a parameter space K and a sequence
(K,,) satisfying (A-4) from a given set A C [0,1/2] x H(s,C) of couples (d, h) containing the

true parameters.

Lemma 3. Let s,C > 0 and A C [0,1/2] x H(s,C) such that fqg+ h > 0 on R for all
(d,h) € A. Suppose that A is closed in [0,1/2] x C and let (d*,h*) € A. Then there exists a
positive integer mg such that fq+ pm[h] >0 on R for all (d,h) € A and m > mg. Moreover,
for any diverging sequence (my,) of integers larger than or equal to mg, Assumption (A-4)
holds by setting Ky, = {(d, pm, [h]) : (d,h) € A}, for alln>1 and K = AU (|J,, K»).

The proof of this lemma is postponed to Section 5.3. We can now state the consistency
of our estimator which, in the same flavor as in [Giraitis et al., 2012, Theorem 8.2.1], only

requires the observed process to be ergodic. Its proof is also postponed to Section 5.3.

Theorem 2. Suppose that the process X satisfies (A-2) and admits a spectral density of
the form (1.10) with parameter (c¢*,d*, h*) satisfying (A-4) for some subsets K and (K,) of
[0,1/2] x C.

Let (dyn, hy) € K, such that, a.s., as n — 0o,

An(dp, hy) < inf  An(d,h) +o(1) , (2.31)

(dJ’L)EKn

where A, is defined by (1.12), and define é, by (1.13). Then, a.s., d, and é, converge to d*

and ¢*, and hy, converges to h* uniformly.

Assumption (A-4) provides a new framework of parametric models, different from the
ones classically used in Whittle parameter estimation, and which seems to be well adapted

for many examples of trawl processes, see Section 3. However it also includes many known



cases. Let us examine the celebrated ARFIMA model, in which the spectral density takes the

form

1+Z * 71k)\
1— k:l (bke—lk)\

FN) =02 fa (V) : (2.32)

where, for some positive integers p and ¢, the MA and AR coefficients 6* = (67,...,0;) and
o* = (o7,... ,(;5:;) are assumed to make the corresponding ARMA process canonical. In the
following this will be denoted by (¢, ) € ©, 4, defined by

Opq = {(¢,0) € RP™¥ : & and © have no common roots

and for all z € C such that |z| < 1,®(z) # 0 and ©(z) # 0} , (2.33)

where ® and © are the AR and MA polynomials defined by

D(2) —1—Z¢kz and O(z —1+29kz

The corresponding reduced Whittle contrast reads

x 2
*

An(d, (& </ ) 12(e7)P? (dA)) (2.34)
n fd ’@ e 1)\)’2 ) )
where fy is defined by (1.9) and L is the Lebesgue measure on [—7, 7] divided by 27. The
O(c™) (1)
h* = fy —
(A) fd (A) (‘ (b(e_l)\) @(1)
W . (2-36)

form (2.32) is in fact a special case of (1.10) by setting
2
— 1) (2.35)
o) |
Note that h* is indeed continuous. The ARFIMA linear processes have been extensively

studied. However the usual proof of the consistency relies on the Hannan’s approach of
[Hannan, 1973] but it does not hold if d = 0 is included in the set of parameters. Here, as a

consequence of Theorem 2, we get the following, which provides an alternative proof.

Corollary 3. Let p,q be two positive integers and K be a compact subset of [0,1/2) x Oy .
Suppose that the process X satisfies (A-2) and admits a spectral density of the form (2.32),
with (d*, (¢*,0%)) € K and o, > 0.

Let (czn,@n) € K such that, a.s., as n — oo,

An(dn,0y) < inf Ay(d,9) +o(1) (2.37)
(d)eK

where A, is defined by (2.34). Define moreover
62 = exp </~Xn(cin, ﬁn)) . (2.38)

Then, a.s., czn, V, and 62 converge to d*, V* = (¢*,0*) and o?.

10



Proof. See Section 5.4. O

3 Examples of discrete time trawl processes

3.1 Random line seed

As explained in [Doukhan et al., 2019, Example 1], any causal linear process is a trawl process
by setting the seed process to be the random line seed 7(t) = te, where € is a random variable
with zero mean and finite variance.

The parametric estimation in the linear case is a well known topic, usually treated us-
ing ARFIMA parametrization, see e.g. [Giraitis et al., 2012, Section 8.3.2] for a complete

statistical analysis of this model.
3.2 Lévy seed and non-increasing sequence
Consider the two following assumptions

(A-5) The process 7 is a Lévy process with finite variance normalized so that Var~y(1) = 1.

(A-6) The sequence a is non-increasing and there exist ¢ > 0, and a* > 1 such that (1.5)
holds.

They imply (1.2) since then we have, for all ¢t > 0, E~(t) = d ¢ for some drift § and Var~y(t) = t.
By Lemma 1 and Eq. (1.3), the trawl process X defined by (1.1) satisfies (A-2) and its auto-

covariance function r is given by

r(k)=> a;, keN. (3.39)
>k

If (A-5) and (A-6) hold and ~(1) admits a finite ¢-th moment, we easily have that, for all

tl S . S tq in Z,
Cum (X, , ..., Xy,) = ZCum (Y(aty—t1+5)s k=1,...,q)
J=0
=rg D ak.
k>tg—t1

where £, is the g-th order cumulant of v(1). We then obtain
Cum (th y th y Xt3 s Xt4) - O((t4 — tl)l_a*) .

So, by Lemma 2, if ¢ = 4, X satisfies (A-3) with sg = a* — 1. Theorem 1 shows that
Condition (A-3) continues to hold for more general trawl processes, provided some adequate

moment conditions, but with sg possibly higher than a* — 1 (see Section 3.3 for examples).

11



For such a process, we can specify (ax) so that the spectral density is of the form (1.10)
with (d*,h*) lying within a parameter space K satisfying Condition (A-4). A very special

case, detailed in [Doukhan et al., 2019, Example 5|, consists in setting
ap = c* (r,(cd*) - r,(ﬁ:i) , keN, (3.40)

where, for all d < 1/2, 7@ is defined as the auto-covariance function of ARFIMA (0, d, 0) with

unit variance innovation, that is,

T(d)(k) :/ ‘1 —e A

It is shown in [Doukhan et al., 2019] that, for any d* € (0,1/2) such a sequence (a;) satis-
fies (A-6) with o = 2(1 — d*) € (1,2), so that, under (A-5), following (3.39) and (3.41), the
corresponding trawl process has a spectral density of the form (1.10) with A* = 0.

d .
ALY,  keZ. (3.41)

We check in the following section that more general seed processes and trawl sequences

can be used.

3.3 More general seeds and sequences

In this section, in contrast to (A-6), we consider trawl sequences (a;) that may not be non-
increasing but we specify (1.5) by assuming that, there exists ¢ > 0 and o* € (1,2) such
that

0<aj = cj“(1+0(F™Y) as j—oo. (3.42)

We also consider the non Lévy seed processes introduced in [Doukhan et al., 2019], for which
the covariance structure can still be derived precisely. Let us examine here the mixed Poisson
seed and the Binomial seed processes of their Examples 3 and 4. The first case extends
the (thus Lévy) Poisson seed by setting v(t) = N({t), where N is a homogeneous Poisson
counting process with unit intensity and ( is a positive random variable independent of N
and with finite variance. Then we have, for all u,v > 0, E~y(u) = wE¢ and Cov(y(u),v(v)) =
(u Av)EC 4+ wvVar(¢). Thus, for any sequence (a;) satisfying (3.42), Condition (1.2) holds
and (A-2) follows from Lemma 1 and Eq. (1.3) yields the following auto-covariance function
for X :
r(k) ECZ (aj A ajqr) + Var(¢ Za]aﬁk, keN.
j=0

If moreover E(% < oo, then (2.19) holds with p = 3, and, by Theorem 1 (ii), we get (A-3)
with sg = (a* — 1)/2. If we only assume that EC* < oo, then (2.21) holds with p = 2
and sg = (a* — 1)/4, so that Theorem 1 (i) gives that (A-3) holds this time only with
sp = (a* —1)/4.

12



The Binomial seed process of [Doukhan et al., 2019, Example 4] is defined for some given
n € N* by setting v(t) = Y i Iqy,<;p with the Uy’s ii.d. and uniform on [0,1]. In this
case, we have that, for all v > 1, v(u) = n and, for all u,v € [0,1], Ev(u) = nu and
Cov(vy(u),v(v)) = n(u Av —uv). Thus, for any sequence (a;) satisfying (3.42), similarly to
the previous case, (A-2) holds and the trawl process X has auto-covariance function r given
by
) )
r(k) =n Y (@ Najex) —n Y ajaj4n, kEN,
J=0 J=0
where, forall j € N, a; = a;1,4, <1} Also, for the binomial seed and (a;) satisfying (3.42), (2.19)
holds for any integer p, and (A-3) holds with sg = (a* — 1)/2 by Theorem 1 (ii).
Having checked that the trawl process satisfies (A-2) and (A-3) for these seeds, we now
turn to the form of its spectral density and show that it is indeed of the form (1.10) and can

be used with Lemma 3 to form a parameter space K that satisfies (A-4).

Proposition 2. Assume (A-1). Suppose that 7y is Lévy seed process, a mized Poisson seed
process or a binomial seed process. Suppose moreover that v(1) has finite positive variance
and (a;) satisfies (3.42) with o* € (1,2). Then the trawl process defined by (1.1) has a spectral
density of the form (1.10) with d* =1 —a*/2 € (0,1/2) and h* € H(a* — 1,C) for some
C > 0.

Proof. See Section 5.1. O

4 Weighted weak dependence indices

Here we introduce a somewhat general setting that will be used later to derive some important
properties on the memory of Trawl processes. They can be, however, of independent interest.

We use the classical weak-dependence concept.

Definition 1 ([Dedecker et al., 2007]). A random process (Xi)icz is said to be O—weakly
dependent if
‘COV (f(Xll7 s 7Xiu)7g(Xj17 s 7va))‘ <brv, (443)

forig < oo <y < j1—71 < j1 < - < gy and functions f : R* — R with ||f|lec < 1 and
g:RY = R with

’g(yla"'ayv)_g(xla---7xv)’ < ‘yl —x1‘+"'+‘yv—$y‘ .

Definition 2. A time series (X}) is said to be a causal Bernoulli shift process (CBS) if there

exists an iid sequence (v;)jez valued in (E,€) and a measurable function ® : EN — R such

13



that, for allk € Z, X, = ®((yk—;)j>0). The LI coefficients (77@),21 of (Xi) are then defined
by

D = |[@(()20) = 2((ozi<rs )iz, - (4.44)

where (7;)jez is an independent copy of (v;)jez.-
Provided that a CBS process is well defined in L2, it is weakly dependent.

Lemma 4. Let X be an L? centered CBS process. Then it is W(Q)—weakly dependent.

Proof. We write Xj, = X +(X—Xj) where (X} ) is defined by X; = @((vk—j)o<j<rs (Ve_;)j>r))-
Observe now that X is independent of o(v;, i@ < k —r), hence of o(X;, ¢ < k — 7). On the
other hand we have that

E(X, — X)? =72 .

T

Now take f: R* — R with ||f||coc <1 and g : RY — R Lipschitz and i1 < -+ <1, < j3 —r <
Jj1 < --- < j,. Denoting
m:Ef(X“,,XZu) N

we get that |Cov (f(Xi,,...,Xi,),9(Xj,,...,Xj,))| is bounded from above by

k=1

And we conclude with the Cauchy-Schwartz inequality. O

Using the same proof we can include polynomial terms in the functions f and g.

Definition 3. Let p(_y,p4) > 1. A random process (X;)iez is said to be (p(_y, p(+))-weighted
0—weakly dependent if

‘COV (f(X“, e 7Xiu)7g(Xj17 N ,va))‘ < HTU s (445)

forallip < - <y < j1—7r <ji1 <--- <y, all functions f : R* = R satisfying

(=)
|f(xl'1a"'axiu)|—1_|_ <1+Z|x2k|> s

and all functions g : RY — R satisfying

|g(y1,,yv)—g(£€1,,xv)| (1_{_2@) <(|y1—x1|++|y _r |)
(L Jyn] - fyol o Ja| o [P o

Remark 2. Note that in Definition 3, the conditions on f and g are weaker as p(+) increases.
Namely, if 1 < p(4y < p'(i), then a (p'(i),p'(ﬂ)—weighted 0—weakly dependent random process
(Xi)iez is also (p(—y, p(4))-weighted 0—weakly dependent.

14



Using this new definition, we get the following result.

Lemma 5. Let (X;) be an L2 centered CBS process. Then, for any p(+) = 1 such that
P(—) + D) = 2p, it is (p(,),p(ﬂ)—weighted 0-weakly dependent with

6, < (1V 1 Xo)37") =)

Proof. Let us now prove the bound of the p-weighted 6 —weak dependence coefficient 9,(}) ). We
use the same notation as in the proof of Lemma 4 but this time with f and g as in Definition 3.

We then obtain that
|COV (f(lea e ,Xl'u),g(le, e ,va))|

is bounded from above by

1 v p(+)—1
[ = (S =) (1 30+ )

k=1
(4.46)
Using the Holder inequality with p_y/(2p) + 1/(2p) + (p+) — 1)/2p = 1, we obtain
|COV (f(lea ce ,Xl'u),g(le, ce ,va))| < ABC 5 (447)

with

A= Hf(X“’ s 7Xiu) - m”2 < Hf(X“’ s 7Xiu)H2p/p(,)

< 77521’)

2p

1 v P(4)—1
_ , 1
C= 1520 (1 +k_1 (1X. | + |X]k|)>

We immediately have that, by the assumption on f that

P(—)
P
A< ? <1+Z‘|sz||2p> < 1V Xoll, b

2p/(p(+)—1)

Finally, we note that C' < (1 V|| Xo Hp(” 1). The result follows from (4.47) and the above
bounds of A, B and C. O

We also obtained this lemma with an improved weighted weakly dependent coefficient by

conceding a bit of moment condition.
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Lemma 6. Let (X};) be an L?P centered CBS process. Then, for any Py =1
pytpy=p+1. (4.48)
it is (p(—y, p(+))-weighted 0-weakly dependent with
b <2 (1V | Xoll5,) =
where Cy, is a positive constant only depending on p and Sy(2p) is defined in (5.51).

Proof. We use again the upper bound (4.46) of
’COV (f(Xi17 s 7Xiu)7g(Xj17 s 7va))’ )

but we apply the Holder inequality with the weights p(_)/(2p) +1/2 + (p) —1)/(2p) = 1
(which holds by (4.48)) and obtain that

|COV (f(Xll, e ,Xiu),g(le, e ,va))| < Al B/ Cl 5 (449)
with
Al = Hf(XH? tet 7Xlu) - m”2p/p(,) <2 Hf(XZN ce 7Xiu)”2p/p(,)
v
B =) 1X;, - Xjl| <vn®
k=1 2

1 v Py—L
C'= 150 (1+Z(\Xjk\ + \X}k\)>
k=1

2p/(p(+)—1)

We immediately have that, by the assumption on f that
9 u P(-)
D
A< TTu <1 +) ||Xz‘k\|2p> <2 (1 V([ Xolloy )) :
k=1

2p
the above bounds of A’, B’ and C". O

Finally, we note that, similarly, C" < (1 \Y ||X0||p(+)71>. The result follows from (4.49) and

5 Proofs

5.1 On trawl processes

Proof of Lemma 1. We prove the result under (1.2) and (2.19). The case where (2.19) is not

assumed corresponds to setting p = 1 in the following. By the Rosenthal Inequality for sums
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of independent random variables, see [Petrov, 1995, Theorem 2.9], we have, for any 1 < i < k,

for some constant C), only depending on p,

k k k L/2p k 1/2
Yol <G > Byl + | D] IFe)lZ + [ > Vary(ay) (5.50)
Jj=t % Jj=t Jj=t Jj=t

The convergence of (1.1) in L2 follows.

It follows that we can write X, as X = F((y5—;);j>0) With F measurable from R¥ to R,
with R® endowed by the o-field B(R)®® (the smallest one that makes the R¥ — R mapping
x — x(t) measurable for all ¢ € R). Since (v;);jez is i.i.d., it is ergodic, and so is (Xi)rez-

All the other assertions of the lemma are obvious. O
Using the same idea and the results of Section 4, we now prove Theorem 1.

Proof of Theorem 1. Let us now prove Theorem 1. Note that

1/2 1/2

=2 COV(W%’% V(ar+j ) > Var v(aj) > Var v(aj)

>0 >0 ik

Hence (2.20) implies (1.14).
It remains to show (1.15) and (1.16). We use that (X}) defined in (2.18) can be written

the causal Bernoulli shift process
X = ((yk—4)j20) with  ®((7;);20) Z’Ya a;)
where ® is a measurable mapping on EV, with £ = R® endowed with B(R)®®. Then the L?

coefficients defined in (4.44) with (7§)j20 denoting an independent copy of (v;);>0, satisfy,
for all r € N, and ¢ > 2,

7T7(~q) = Z 5(a;) ’Yg a]))

q
<20C5:(9)
where the second inequality follows from (5.50) by setting
1/q - 1/2

o
> lAta)|g + [ D Vary(ay) . (5.51)
j=r j=r

We now separate the two cases.
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In the case where p = 2 and both (2.20) and (2.21) hold, we apply Lemma 5 with p_) =
P+) = 2 and p_y = 3, p(4) = 1, successively. This gives (1.15) and (1.16), respectively.

In the case where p = 3, we only need (2.20) to hold, as we can apply Lemma 6 with
P(—) =P+) = 2 and p_y = 3, p(4) = 1, successively. ]

The following lemma is useful for proving Proposition 2.

Lemma 7. Let o > 1. Let (by) be a non-negative sequence such that by, = (1 + k)~ (1 +

O(k™Y)) as k — co. Then we have, as k — oo,

D (bj Abjrr) =D bj+O(k

7>0 >k

Proof. First observe that, for all £ € N,

D (b Abjak) <D bk - (5.52)

Jj=0 J=0

Now, there exists C' > 0 such that for all j € N,
L+)™A=-COH+D) )<l <1+)0+CE+DT). (5.53)

It follows from the first inequality that, for all j € N and & > (1+ C)/a,

b

W >(1-C@+ 1)71) (1+ 0571(1 +C)(j + 1)71)0[

=1+(G+1)+03E?) asj— oo,

In particular, the latter term is larger than or equal to 1 for j large enough and it follows

that there exists jo only depending on o and C' such that, for all j > jo and k > (14 C)/«,
b > (+k+1)" " >bu—CG+k+1)7",

where we used the second inequality of (5.53). This now implies that, for all k£ > (1 + C)/«,
Jo—1

D (b Abjak) > D bj—C > (j+k+1)” Zbﬁk—Zbﬁk—Cz (j+k+1)"

J=0 Jzjo Jzjo J=0 J=jo

Since jo is fixed the two last term in the previous display are O(k~%) as k — oo and we

conclude from (5.52). O

We can now provide the proof of Proposition 2.
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Proof of Proposition 2. From what precedes, we know that under these assumptions, the

trawl process has an auto-covariance function of the form
r(k) =AS(k)+ B P(k) , keN, (5.54)

[ee] [ee]
with  S(k) = (a; Adjx) and P(k) = a;a;ik -
j=0 5=0
where A > 0, B € R and a; = a; I{a;<a} with a some positive constant. We treat the two
terms in the right-hand side of (5.54) separately.

Term S: Since a, = ay, for k large enough, (ay) also satisfies Condition (3.42) and Lemma 7

gives that

Sk)=> a;+ 0k )= a; +0(k™). (5.55)

jzk jzk
Recall the definition of #(?) in (3.41). Define, for all k& > 0,

1—2d*

az = T(d*)(k) — T(d*)(k + 1) = T(d*)(k)m 5

where the second equality is derived in [Doukhan et al., 2019, Example 5]. By [Giraitis et al., 2012,
Theorem 72.1] and its proof, we have for any d € (—1/2,1/2),

! = % F L+ 00T) (5.56)

Hence the previous equation and the definition of d* give that

ol = % k" (1+0(k™Y) . (5.57)

And Condition (3.42) is equivalent to have
ap = c* ((I;’; + O(k‘ia*il)>

with ¢* > 0 only depending on ¢ and o*. Inserting this in (5.55) and using the definition of
a®, we obtain

S(k) = r @ (k) + Ok~ .

This, with the definition (3.41) implies

S(k) = / (c*

where h§ € H(a* —1,Cyg) for some Cg > 0.
Term P: It only remains to prove that P defined in (5.54) satisfies P(k) = O(k™") as

k — oo (so that the associated Fourier series belongs to H(a* — 1,Cp) for some Cp > 0).

1— e—i>\

—2d* .
+ hj;) MLAN), keN,
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This follows immediately by observing that (3.42) with o* > 1 implies, for some constant
C >0andall £ € N,

o (o]
CY G+ ™ G+k+1)™ <C Y G+ | (k+1)°
j=0 7=0
This concludes the proof. ]

5.2 Convergence of the empirical covariance function

We start with the proof of Lemma 2.

Proof of Lemma 2. Let r denote the autocovariance function of X. Let t; <ty < t3 <ty in
Z. We use the identities

Cov(Xy, Xt, , Xy Xp,) = Cum (Xy, , Xyy , Xpy, Xpy) +7(t1 — t3)r(ta — t4)

+r(ty —tg)r(ta — t3) , (5.58)
Cov( Xy, X, Xty , Xpy) = Cum (X, , Xy, Xy, X)) +7(ts — t1)r(tz — ta)

+ 7ty — to)r(ts — t1)

+ 7ty —t3)r(te —t1) (5.59)

This, with the bound (1.14), allows to go back and forth from (1.15) or (1.16) to (2.22). O
We can now prove Proposition 1.

Proof of Proposition 1. We have, using again the identity displayed in (2.22),

1nkn£

[Cov(n(k) , P(O) < —5 D D |Cov(XeXarr , XoXoyo)

s=1 s'=1

1 n—k n—/¢

< Z; S ICum (X, ) Xesn s X\ Xos)] (5.60)
s=1g¢'=1

+EZZ\ s (s — 8+ k—0) (5.61)

+_QZZ‘ (s—s +k) (8—8—5)‘. (5.62)

Using (1.14), we get that (5.61) and (5.62) are both less than or equal to

1 n.on B 1 n—1 - B
GLS S bzl $ arpresen,
s=1s'=1 T=—n-+1
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where C' > 0 only depends on Cj and sg. To get (2.27), it thus only remains to show that a
similar bound holds for the term appearing in (5.60). To this end we use the bound (2.22)
that we have showed to hold under (A-3) in Lemma 2. More precisely we use the bound on
left-hand side of the A sign in (2.22) in the first following case and the bound on right-hand
side of the A sign for all the other cases:

1. For s/ <s<s+k<s +1,
|Cum (X , Xopk , Xe, Xeogo)] <Co (1+]s—s])7%0.
2. For s<s',s+k<s +/,
|Cum (X5, Xeip, Xy, Xeyg)] <Co (1 +|s+k—38|)"%.
3. For s’ <s,8 +0 << s+k,
|Cum (X, Xoip, Xoy Xeggo)| <Oy (148" +£—s])7°

(The case s < s < '+ /¢ < s+ k can only occur if s = ¢ and £ = k since we assumed
0 <k </, so is included in the first case.) Hence we get that the term in (5.60) is bounded

from above by

2n
G ma, Sl DL S ) s on,
s=1s'=1 T=—2n
where C only depends on C5 and s. O

Next, we prove Corollary 1.

Proof of Corollary 1. Since 7, (k), I, r and f are invariant by centering, we can assume in
the following that X is centered without loss of generality.
Using Proposition 1 and E7,(k) = (1 — k/n) r(k), we have, for all 0 < k < n,

2
E (Fu(k) = r(k))* < Cns°+<§ r(k:)> <070 (C + Co(L+ k)*#0n*7%) <n™*0 (C+Cp)

where the second inequality follows from (1.14) in (A-3). The same bound gives that, for all
0>1,

/-1

200 2—3s

Var ZX = Z (0 —1r])r(r) < T (24 £)27%0 (5.63)
T=—4+1
and we get, with (2.26), forall 0 <k <n,
1/2 1/2
n n n—=k 20,
E|R! (k)| < n~2 | Var ZXJ» + | var ZXJ» Var Y X X (24n) %0
j=k+1

With (2.25), we conclude that (2.28) holds. O
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Let T denote R/27Z. Recall that the spectral measure p of a weakly stationary process

X is a finite measure on T such that the covariance function of X satisfies

r(k) = /ev‘ p(dX), keZ.
We derive the following useful lemma.

Lemma 8. Let X be weakly stationary process with spectral measure p and define the peri-
odogram and the empirical covariance by (1.11) and (2.23). Let h : R — R be a (27)-periodic

bounded function. Then, for all0 < m <n and (cx)—m<k<m € (ORUER

m

h(\) — Z et

k=—m

(70 (0) +7(0)) .

/Inh—/hd,u‘ < Z |7n (k) — r(k)| |cx| + sup
T AER

k=—m

Proof. Let 0 < m < n and (c)_m<k<m € C*™FL and denote h,,(\) = Y7 cre* and

€m = sup |h — hy,|. We write

Afnh—/hdﬂ:AInhm—/hmdu+/1rfn(h—hm)—/(h—hm)du.

Replacing h,,, by its definition, we get

m

/Tln . —/hm du= Y e (Fnlk) —r(k)) .

k=—m

Then, by definition of ¢,,, we have

/In (h — hm)' <eéen /In = €m Tn(0)

T T

and, similarly | [ (b — k)| dp < €n, 7(0). The result follows. O
We can no prove Corollary 2.

Proof of Corollary 2. For  small enough, since J is compactly supported, we have, for all
M ERand k € Z,

ek (prg) = ﬁ / (0 = A)/B) ™ dX = ek T (5 )

where J*(¢) = [ J(x)e'®¢ dx is the Fourier transform of .J. Since .J is two times continuously
differentiable and has compact support, we have |J*(£)| = O(|¢|72) as |¢| — oo. Hence Jg.»,

has absloutely summable Fourier coefficients and the following identity holds

Jpre(N) = Z k(o) @™, AER.
kez

22



Applying Lemma 8 with m =n — 1 and ¢, = ¢(Jg,),) We get that

n

R EAR e SRR ICEIRY S S CEI SRR

k=—n |[k|>n

Applying (2.28) and |J*(€)[ = O(|¢|7?), we get
‘ / In Jgp — / J5.x0 d#‘ < C'nol? ( POREAE k>|> +C1(Bn) " r(0)(1+C")
T k=—n
where C only depends on J. The result then follows from the fact that

lim %kz_:nu*(ﬁk)\ :/u*y <o,

n—00,8—0

5.3 Consistency of parametric Whittle estimation

We first introduce some notation valid throughout this section and derive useful lemmas. For

any d € R and € > 0, we define

—2(d+e —2(d—e —2(d—e —(dte
i(d,e)()\) 2 Z(Z+ ) Sin% - and  fg0(A) = 2 Z(Z ) sin% e ,
so that, for all d € [d — e,d+ €] and X\ € R,
9—2d' —2d
FaoN s fe)=——1sing| < fag(h). (5.64)
Finally we denote
e (d,ihrigK ;\relJ% (fa(A) + 2(A)) - (5.65)

We now introduce the useful lemmas.

Lemma 9. Let a > 0 and f : R — R be (2m)-periodic. Let g : R — Ry be (27)-periodic
and such that [ gdL > 0. Then h +— In [ m dL is (1/a)-Lipschitz on C. If moreover
J In(fVa)dL < oo, h— [ In((f + h)Va)dL is also (1/a)-Lipschitz on C.

Proof. We apply successively that, for all 0 < z < y,

and |lny—Inz| < ly—a2l .
x

1 1_\y—x\
z oyl wy
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We obtain, for all h,h € C,

g B g glh —hl
'/ Gatmva® /<fd+ﬁ>vadL'§/<<fd+h>va><<fd+ﬁ>va>dL

1 - g
<ol [ e
1 T
or gasup|h h| / ((fd—i-it)\/a)dL

hence is bounded from above by the min of the two last right-hand sides. Taking the difference
of the log’s then yields

1n/#dL—ln/+dL‘glsup\h—m.
(fa+h)Va (fa+h)Va a

Hence we get the first assertion.

Similarly, we get that, for all h, h € C,
- 1 -
‘ln((fd +h)Va)—In((fg+h)V a)‘ < — sup |h—h| .
And we get the second assertion. O

Lemma 10. Let d* < 1/2, h* € C and a > 0. For all d € R and h € C, we have

hmln/fc”—JrhdL:ln/MdL,
e—0 (f(d75)+h)Va (fd—{—h)\/a

ti [ W((faq+ ) vaydL = [ In(fa+h) va)dL

e—0
where f(4¢) denotes either i(d o " T(d@).
Proof. We have, for all A\ ¢ 277Z, as € = 0, f(q.)(A) — fa(\). Moreover, for € € (0, 1),

fax +h*
(fide +h)Va

We conclude by dominated convergence. U

< (fe+07) and na <In((fg +h)Va) <I((Fan +h) Va)

Lemma 11. Let d* < 1/2, h* € C and a > 0. For all d € R and h € C, we have
lim ln/ﬂ Lzln/M L.
(@',h)=(d,h) (fo +h)Va (fa+h)Va

lim /ln((fd/—i—ﬁ)\/a)dL:/ln((fd—i—h)\/a)dL.

(d’,h)—s(d,h)

Proof. By Lemma 9, we have for all d € R and h,h € C,

s s 1 ;
‘ln/LdL—ln/LdL‘g—sup]h—h\.
(fo +h)Va (fa +h)Va a

Then using (5.64) and Lemma 10, we get the first assertion. The second assertion is proved

similarly. U
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Lemma 12. Let K be a compact subset of R x C such that, for all (d,h) € K, fg+h >0 on

R. Suppose moreover that

({0} xC)NClg(R* xC) =0, (5.66)

where for any A C R x C, Clg(A) denotes the closure of AN K in K. Then we have
inf(d,h)eK lnf(fd + h) > O

Proof. Let

Cx= sup [h(N)],
(d,h)e K, \eR

which is finite since K is compact and (h, A) — h(A) continuous.

We will need the following remark. Let ¢ € (0,7). We have, for all d > 0 and X € [—¢, €],

—2d 9d €f2d
i 2)7 > —— .
— Jsin(\/2)| ¥ >

fay) = 2

Then we get, if €724/(21) > 2Ck + 1, which is equivalent to d > In(2w(2Ck + 1))/(~21ne),
for all (d,h) € K and X € [—¢, €],

faN) +h(N) > e 2/2n) = Cx > Cr + 1. (5.67)
Let (dy, hn, A\n) be a sequence valued in K x [—m, 7| such that

aK = nlgrolo (fdn ()‘n) + hn()‘n)) ’

where af is defined by (5.65). By compactness, there is an increasing sequence of integers (g,,)
and (d, h,\) € K x [—m, x| such that (dg,, hq,,Aq,) converges to (d,h,\). We now separate
four cases, which cover all possible cases: 1) A#0,2) d<0,3) A=0andd >04) A=d=0.
Case 1) Suppose that A # 0. Since the mapping (d’,h, \') — fu(X)+h(X\) is continuous on
R xC x (R\ (27Z)), we get that ax = fg(A) + h(X) > 0.

Case 2) Suppose that d < 0. This case is similar to Case 1): it is sufficient to show that
(d' h, N) = for(N)+h(N) is continuous on (—oo,0) x C x R, which follows from the continuity
of (z,u) — u” on (0,00) x R, which is easy to establish.

Case 3) Suppose that A = 0 and d > 0. Then there exists an arbitrarily small ¢ € (0,7)
such that d > In(2m(2Ck +1))/(—41Ine), and (5.67) implies, for n large enough, fq, (Ag, )+
hg, (Ag,) > Ck + 1 hence ag > 0.

Case 4) Suppose that A = d = 0. Thanks to Condition (5.66), dg4, must be non-negative for

n large enough, in which case we have

2*2dqn ] _od 2*2dqn
fdQn ()\Qn) - ot ’Sln()\Qn/z)’ " 2 A )
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which tends to 1/(27) as n — oo, while Ay, (A\,,) tends to ~(0). Hence
i = 1 o, o)+ gy (hg) = 1/(27) + 5(0) = Fa(N) + ()
since d = XA = 0. Again, we get ax > 0. O

Remark 3. Condition (5.66) means that any parameter (0, h) in K is isolated from parame-
ters (d, iL) with d < 0. This assumption cannot be avoided in Lemma 12.(As a counterexample,
take K = {(d,—d) : d € [-1/2,0]} where here —d is seen as the function in C that is constant
equal to —d). It is of course trivially satisfied if K C Ry x C.

We can now proceed with the proofs of Lemma 3 and Theorem 2.

Proof of Lemma 8. We first recall why H(s,C) is a compact subset of C. For all u,v € R, we

|u—v| )
/ ik %" dg
0

We get that, for all h € H(s,C) and u,v € R,

have

|eiku _eikv| _ < k|u_v| .

h(w) =h()| <C |fu=v] > Q+K)k+2 Y Q+[k) | = O(lu—v[M),
k| <[u—v]| k| >[u—v]
where the O does not depend on h. By the Arzela—Ascoli theorem, we get that H(s,C) is
a compact subset of C. It follows that A, as a closed subset of [0,1/2] x C is also compact.
Thus by Lemma 12, there exists ax > 0 such that fq+ h > ax for all (d,h) € A. Since
sup(|pm(h) — h|) tends to 0 uniformly in h € H(s,C) as m — oo, we get that there exists a
positive integer mg such that fy+ pm,[h] > ax/2 > 0 on R for all (d,h) € A and m > myg. Let
K, and K be defined as in the lemma for some diverging sequence (m,,) of integers larger than
or equal to mg. It is straightforward to show that K is compact (because for any increasing or
constant sequence (ag)ren of integers and any sequence ((d, hi))ken valued and converging
in A, we have that (dg, pm,, [hx]) converges in K). Assumption (A-4) easily follows by setting
Ry, = P, [P O

Proof of Theorem 2. Define

A" :=lInc" +/ In(fg« + h*)dL .

By (A-4), we have (d*,h*) € K,. Thus Equation (2.31) implies (d,,h,) — (d*,h*) in
[0,1/2] x C a.s. provided that

limsup A, (d*, b)) < A*  as. (5.68)

n—oo
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and that, for any €y > 0, we have
liminf inf A,(d,h) > A" as., (5.69)
n—o0o (dﬁ)eKO
where K is defined by
Ky={(d,h) e K : |d—d*|+sup|h—h*| > €} ,

We start with the proof of (5.68). By definition of ax in (5.65), we have, for all (d,h) € K,

A :=1Inc" + / In((fg« +h*) Vag)dL, (5.70)

And by Lemma 12, ag > 0. Note that [ I,,dL = #,(0)/(2w) > 0 for n large enough, a.s.

Applying Lemma 9 with a = ax and since h} converges to h* uniformly by (A-4), we get

lim |A,(d*, 1Y) — Ap(d*,B) =0 as.

n—oo
Since 1/((fq=+h*)Var) is continuous and X is ergodic with spectral density f given by (1.10),

lim/( Ln dL:/ (C*(fd“rh*) dL  as.

n—00 far +h*)Vag far +h*)Vag
(see e.g. [Giraitis et al., 2012, Theorem 8.2.1]). By definition of ag, this limit is ¢* and, with

we have

the three previous displayed equation, we get (5.68).

We conclude with the proof of (5.69), given some ¢y > 0. Equations (5.71) and (5.64)
and Lemma 9 with a = ag yield, for all (d,h) and (d',h) in K such that |d — d’| < € and
sup|[h —h| <,

- I 2e
An(d h >1/_ n dL+/1 +h)V dL — — .
(@h) 2 In (f(ge) +h)Vax " ((i(dvﬁ) ) aK) aK

Since 1/((?(11,5) + h) Vag) is continuous and X is ergodic, we have

lim —
n=0 ) (flae +h)Vax

a.s.

(f(dge +h)Vax

The last two displays give that, for all (d,h) € K and € > 0,
lim inf inf {An(d/,ﬁ) : (d/,il) €K, |d —dl <e suplh— iL’ < e}

n—0o0
*(far + 1) / )
Zln/ = dL + [ In((f +h)Va dL — — a.s. (5.72
(f(d,e) + h) V ag ((—(d,e) ) K) - ( )
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For all (d,h) € Ky, since fg+ h and fz+ + h* do not coincide almost everywhere, the Jensen
inequality and the definition of A* give that
c*(far + 1) /

1 ——~dL+ [ 1 +h)V dL > A™.

w [ AL 0((fa+ h)V ax)
Since K is compact, by Lemma 11, we can find 1 > 0 such that

) < (far + %) /
f 1 ———dL+ [ 1 +h)V dL > A" +4n .
(@R)eKo n/ (fa+h)Vak Hae )y el = !
Applying Lemma 10 with a = ag, we get that, for all (d,h) € Ky, there exists € > 0 such
that
ln/ _(far + 1)
(fdge+h)Vak

*(far +h")
(fa+h)Vag

dL+/ln((i(d75)+h)\/a;()szln/
+/ln((fd+h)VaK)dL—277
> A"+ 2n.

Since K is compact, we can thus cover Ky with a finite collection (B;);=1,.. n, for which, for

any ¢ = 1,..., N, there exists ¢ € (0,nax/2) and (d;, h;) € Ko such that

*(fa= +h*) /
ln/ = dL+ [ In((f,, . +hi) Vag)dL>A*+27,
(f (i) T i) V ak (disei)

and (d, h) € B; implies |d — d;| < ¢; and sup |h — h;| < €. Let i =1,...,N. Applying (5.72)
with d = d;, h = h; and € = ¢;, we get that

liminf inf A,(d,h) > A +7n as.

n=00 (! h)EB;

Since (B;)i=1,.. n covers Ky, we obtain (5.69).
We thus have proved that (dy,, hn) — (d*,h*) in [0,1/2] X C a.s. and it only remains to

show that ¢, — ¢* a.s., where, by (1.13) and the definition of ay,

In
Cp = / - dL .
(fg, +hn)Vak

Let € > 0 and suppose that |cZn — d*| < e and sup |an — h*| < ¢, which happens for n large

enough, a.s. By (5.64) and Lemma 9 successively, we get that

I I
ln/ _ n ar — = glnéngln/ n dL+ &
(f(d*,e)%-h*)\/a}( aK (i(d*75)+h*)\/aK ax

Letting n tend to oo and then € to zero (using Lemma 10), we get that

lim Ine¢, = ln/ ¢(far + 1) dL a.s.
n—o0 (fd* —|— h*) \/ CLK

By definition of ag, the latter integral is ¢* and the proof is concluded. O
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5.4 The arfima case: Proof of Corollary 3

Denote, for any d € [0,1/2) and ¥ = (¢,60) € O, 4,

O(e—ikN) |2
fa0.02(N) = 0 fa(N) ‘@ETI’M;

From the discussion preceding Corollary 3 and leading to (2.35), we write

210"
@(1)[*

(fa+ faR(D)) ,

fd,ﬁ,o2 =0

with R(¢¥) defined for all ¥ € O, , as the R — R (27)-periodic function

Define the mapping

U:0,1/2) x©,,—[0,1/2) x C
(d,9) = (d, faR(V))

and denote by K = \I’(f( ) its range over K. The following facts are established at the end of

this proof section.
(i) We have A, = A, o ¥ over [0,1/2) x Op.q-
(ii) We have, for all d € [0,1/2), ¥ = (¢,60) € O, and o2 > 0,

exp o, (d, 9) = ‘ o)

) dL .

2/ I,
fa+ faR(9)

(iii) The mapping R is continuous and one-to-one on 0, ,. We denote by R~! its inverse,

which is continuous on R(Kj) for all compact subset Ky C Oy 4.

Then the condition (2.37) defining (d,,,d,,) is equivalent to have (2.31) with K, = K and
hp = f Can(ﬁn) (and the same d,). To apply Theorem 2 on this sequence (dy, hy,), we need
to check that (A-4) holds with K,, = K and h}, = h* = fz Ry (as in (2.35)) for all n. In
this case, only the compactness of K is non-trivial and since K is compact, this compactness

follows from the following assertion:
(a) The mapping V¥ is continuous.

Assuming this fact proven, we can apply Theorem 2 and get that (cfn, iLn) converges a.s. to
(d*,h*) = W(d*,¥*) (that is, h* as in (2.35)). Also by Fact (ii) above, with (1.13), (2.36)
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and (2.38), if we can apply Theorem 2, then we also get that 62 is a consistent estimator of
o2. Finally, it only remains to explain how to get that U converges to ¥* a.s. This follows
from the assertion that (dp, hn) = ¥(d,,J,) converges a.s. to (d*,h*) = U(d*,9*), provided
that ¥ can be continuously inversed on K. To summarize, to conclude the proof, we only

need to prove the following assertion.
(b) The mapping ¥ is bijective and bi-continuous from K to K (its range).
Define the mapping
A:(-1/2,1/2) x A—=C
(d,h) = fah

where, for any C' > 0,

A(C) = {h €C : sup |h(t)/t] < c} and A = <U A(C)) .

teR* >0

Note that we have, for all d € [0,1/2), h € A and ¥ € ©, 4,
U(d,9) = (d, A(d, R(9))) ,
U (d, R (A(—d,h)))) = (d, h) .
Hence Assertion (b) follows from Assertion (iii) among with the following facts.
(iv) For all compact subset Ky C ©, 4 there exists C' > 0 such that the range R(Ky) C A(C).
(v) For any C' > 0, A is continuous on (—1/2,1/2) x A(C).

Proof of Assertion (i): This follows directly from the definitions of A, and A, in (1.12)
and (2.34) and the well known fact that, for all d € (—1/2,1/2) and ¥ € O, ,
2

/ In(fq+ faR(9))dL =1In '%

Proof of Assertion (ii): This is simple algebra using the above definitions.
Proof of Assertions (iii) and (iv): Using standard properties of canonical ARMA pro-
cesses, we have, for all ¥ = (¢,0) € ©,,

Zak(vﬂ) (cos(kX) — 1) ,

k>1

RO = |53

where for any k£ > 1, the mapping ¥ — ai(9) is polynomial and for any compact subset
Ky C O, 4, there exists Cy > 0 and pg € (0,1) such that, for all £ > 1,

law(9)] < Cop* .
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Assertion (iv) easily follows as well as the continuity of R over ©,, ,. Also since R(¢) +1 is the
spectral density of the ARMA (p, q) process with ARMA polynomials ® and O, it is obvious
that R is one-to-one on ©, 4. Let Ky be a compact subset of ©,,. Then for all h € R(K)),
using standard arguments, we can express the reciprocal R™!(h) by

R7Y(h) = arg 7gmin K(h;9) ,

eKo

where, for all ¥ = (¢,0) € ©,, and h € C,

L(d)) .

B B oiA
ki) = [ GO +1) [

Since (h,?) — K(h;¥) is continuous on C x 6,4, we get that R~! is obviously continuous on
R™Y(Kp) and Assertion (iii) is proved.

Proof of Assertion (v): Let d € (—1/2,1/2) and h € A(C) for some positive constant C.
Let € > 0 such that [d—e,d+¢] C (—1/2,1/2). Let n € (0,7/2). Then, for all d’ € [d—e¢,d+€]
and h € A(C), we have, using (5.64),

sup |£a(\) h(Y) = fa )R] £2C sup (Fag (V) IN)
IAl<n IAl<n

which tends to 0 as n — 0. On the other hand, we clearly have that

Jim sup
(d,h)—(d,h) n<|A| <7

FaO) RN = far(N) B(A)( ~0.

The last two displays yield (v), which concludes the proof.

6 Numerical experiments

6.1 Simulated trawl processes

We take a sample of exponents o* € (1,2) : o* € {1.1,1.3,1.5,1.7,1.9}, and for each of them,
we generate two trawl processes obtained from two different sequences (ay) and two different

seed processes:

1. Poisson seed: ~y(t) is a homogeneous Poisson counting process with unit intensity and

power sequence : aj, = 10. (k +1)7".
2. Binomial seed with n = 10 (see Section 3.3) and power sequence : ap = (k +1)7%".

We showed in Section 3.3 that the spectral densities of the two resulting trawl processes
are of the form (1.10) with (d*,h*) € [0,1/2] x H(a* —1,C'), for the Poisson (thus Lévy) seed

and the Binomial seed.
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6.2 Estimation of the trawl exponent

To test our new estimator, we will compare it with local Whittle estimator for long range
dependent sequences ([Robinson, 1995]). First, let us recall the definition of the local Whittle
estimator.

Here the Hurst exponent is H = (3 — «)/2 and the spectral density writes

o
I'(«) cos <@)

Let A\; = 2jm/n denote the canonical frequencies for 1 < j < n/2, where n is the sample size.

f) = A2 (1 +0(N),

The local Whittle contrast is defined for a given bandwidth parameter m < n/2 by
m :

where I,, is the usual periodogram, see (1.11). Then the local Whittle estimator Gy is

R(a) = lnG

]7

computed through numerical minimization of R(a) over a € [1,2]. In the non-linear case, such
as trawl processes with Poisson or binomial seed, the use of such an estimator is theoretically
justified in[Dalla et al., 2005] under the assumption lim,, (% + %) = 0.

The parametric Whittle estimator that we use is based on the parameterization (1.10).
Thus we set Gpyw = 2(1 — czn) with czn the estimator obtained through numerical minimization
of Ay, (d,h) defined by (1.12) over d € [0,1/2] and h € Px (see Section 2.3), for a given N.

In our setting, both the local Whittle estimator ap and the parametric Whittle estimator
Qpw rely on tuning parameters, respectively denoted by m and N. Observe that N and m
have very different interpretations. As the bandwidth parameter m increases, a larger range
of frequencies is used in the estimation, thus reducing the variance, and the estimator relies
on the approximation f(\) a~ cA% 2 also over a larger range of frequencies, thus worsening
the bias. In contrast, as N increases, we expect the variance to increase, since the number of

parameters to estimate for h is larger, and the bias to decrease, since the approximation of h

by a trigonometric polynomial is more accurate.

6.3 Results

We show here the comparison of the two estimators. We have to guess the hyperparameter of
the two estimators: The “m” for the local Whittle and the number “N” of Fejér kernels for the
parametric estimator. We give our results in function of the choice of these hyperparameters.
For each experiment, we write in bold the choice of hyperparameters minimizing the sum of
the square of the bias and the variance (the mean square error). In all cases, but especially

for the Binomial seed, we can see in the following tables that our estimator outperforms the
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local Whittle estimator. A right choice for the number of kernels seems to be around between
3 and 5, even if, best results may be obtained for higher number of kernels, but this may be

due to local minima reached by numerical optimization.

Table 1: Estimation results for a local Whittle estimator, when o € {1.1,1.3,1.5,1.7,1.9},
5000 observations, m € {20, 50, 100,200}, 100 replications.

« Statistic Poisson seed Binomial seed

m 20 | 50 | 100 [ 200 20 | 50 [ 100 | 200

1.1 | bias(arw) | 0.0679 | 0.0179 | -0.0193 | -0.0563 || 0.0441 -0.0332 | -0.0776 | -0.0953
sd(arw) 0.1973 | 0.1296 0.0854 0.0513 0.1943 0.1008 0.0467 | 0.0174
1.3 | bias(arw) | 0.0305 | -0.0072 | -0.0495 | -0.0941 -0.0887 | -0.1294 | -0.1795 | -0.2352
sd(arw) 0.2697 0.168 0.1078 0.0765 0.2383 0.144 0.0969 0.0635
1.5 | bias(arw) | -0.0374 | -0.0726 | -0.1053 | -0.1402 -0.0513 | -0.1595 -0.224 -0.2932
sd(QLw) 0.2939 | 0.1837 0.111 0.075 0.2861 0.166 0.1051 0.0872
1.7 | bias(arLw) | -0.1025 | -0.1447 -0.17 -0.2074 -0.1118 | -0.1998 | -0.2529 -0.336
sd(arw) 0.2594 | 0.1656 | 0.1125 0.0822 0.2509 | 0.1841 0.1159 0.0786
1.9 | bias(arw) | -0.1658 | -0.1954 | -0.2148 | -0.2644 -0.1955 | -0.2588 | -0.3238 | -0.4069
sd(a@rw) 0.2238 | 0.1465 | 0.1125 0.0804 0.2614 | 0.1802 0.1265 0.0859

Table 2: Estimation results for the parametric Whittle estimator and Poisson seed, when
a€{1.1,1.3,1.5,1.7,1.9}, 5000 observations, N € {2,3,4,5,6,7,8,9}, 100 replications.

«@ Statistic Poisson seed

N e | 3 | a4 | 5 | 6 | 7 | 8 | o
1.1 | bias(apw) | -0.0037 | 0.0524 | 0.1075 | 0.157 0.206 0.2595 0.2993 0.2927
sd(aprw) 0.058 0.0754 | 0.0925 | 0.1114 | 0.1309 | 0.1376 0.1585 0.1552
1.3 | bias(apw) | -0.0072 | 0.0803 | 0.1483 | 0.2282 | 0.3085 | 0.3639 0.362 0.3233
sd(arw) 0.0694 | 0.0922 | 0.1117 | 0.1361 | 0.1569 | 0.1574 0.1308 0.1288
1.5 | bias(apw) | 0.0159 | 0.1045 | 0.1974 | 0.2766 | 0.3353 0.356 0.2743 0.1949
sd(aprw) 0.0817 | 0.1162 | 0.1381 | 0.1439 | 0.1312 | 0.1073 0.0918 0.0788
1.7 | bias(apw) | 0.0199 | 0.1249 | 0.1959 | 0.2305 | 0.2544 | 0.2383 0.125 0.0781
sd(aprw) 0.102 0.1144 | 0.0933 | 0.0774 | 0.0558 | 0.0441 0.0788 0.0836
1.9 | bias(apw) 0.0199 0.0653 | 0.0796 | 0.0841 | 0.0814 | 0.0469 | -0.0201 | -0.0696
sd(apw) 0.0696 | 0.0434 | 0.0216 | 0.0158 | 0.0151 | 0.0288 | 0.0578 | 0.0602

7 Conclusion

In this paper the consistency of pointwise and broadband spectral estimators have been

proved under general conditions. We show in particular that a wide class of trawl pro-
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Table 3: Estimation results for the parametric Whittle estimator and Binomial seed, when
a€ {1.1,1.3,1.5,1.7, 1.9}, 5000 observations, N € {2,3,4,5,6,7,8,9}, 100 replications.

«@ Statistic Binomial seed

N e | 3 | 4 | 5 | 6 | 7 | 8 | o9
1.1 | bias(apw) | -0.0892 | -0.0762 | -0.0458 | -0.0048 | 0.0443 | 0.0829 0.1193 0.1115
sd(aprw) 0.0046 0.0316 0.0602 0.0804 0.1084 | 0.1232 0.141 0.1269
1.3 | bias(apw) | -0.2235 | -0.1334 | -0.0651 | -0.0025 | 0.0579 | 0.1127 0.1251 0.0826
sd(arw) 0.0517 0.0817 0.1032 0.1213 | 0.1365 | 0.1498 0.1499 0.1322
1.5 | bias(apw) | -0.2472 | -0.1348 | -0.0467 0.042 0.1227 | 0.1925 0.1365 0.0578
sd(arw) 0.0634 0.0908 0.1102 0.1342 0.1533 | 0.1527 0.1296 0.132
1.7 | bias(apw) | -0.2484 | -0.1068 0.0152 0.1083 0.1703 | 0.1808 | 0.0263 | -0.0468
sd(apw) 0.0781 | 0.0941 0.118 0.1209 | 0.0998 | 0.0759 | 0.1009 | 0.0956
1.9 | bias(apw) | -0.268 | -0.1074 | -0.0025 0.0439 0.0631 | 0.0278 | -0.1148 | -0.2035
sd(aprw) 0.0888 0.1118 0.0922 0.0693 0.0483 | 0.0498 | 0.0855 0.0903

cesses satisfy these conditions. However, in view of the sample mean behaviors exhibited in
[Doukhan et al., 2019], finer results on the asymptotic behavior of these estimators should be
treated under more specific assumptions. Up to our best knowledge, very few results are avail-
able for non-linear long-range dependent trawl processes. The rate of a wavelet based semi-
parametric estimator of the long-range dependence parameter is studied in [Fay et al., 2007]
for so called Infinite source Poisson, which can be seen as a specific trawl process with Pois-
son seed. A first step for future work could be to study the asymptotic behavior of such an

estimator.
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