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bCNRS - IRIF UMR 8243, Université Paris Diderot - Paris 7 (France). E-mail: reza@irif.fr

Abstract

A reformulation of the four-color theorem is to say that K4 is the smallest graph to which every planar
(loop-free) graph admits a homomorphism. Extending this theorem, the second author has proved (using
the four-color theorem) that the Clebsch graph (a well known triangle-free graph on 16 vertices) is a
smallest graph to which every triangle-free planar graph admits a homomorphism. As a further gener-
alization he has proposed that the projective cube of dimension 2k, PC(2k), (that is the Cayley graph
(Z2k

2 , {e1, e2, . . . , e2k, J}, where ei’s are the standard basis and J = e1 +e2 + · · ·+e2k) is a smallest graph
of odd-girth 2k+1 to which every planar graph of odd-girth at least 2k+1 admits a homomorphism. This
conjecture is related to a conjecture of P. Seymour who claims that the fractional edge-chromatic number
of a planar multigraph determines its edge-chromatic number (more precisely, Seymour conjectured that
χ′(G) = dχ′f (G)e for any planar multigraph G). Note that the restriction of Seymour’s conjecture on
cubic (planar) graphs is Tait’s reformulation of the four-color theorem.

Both these conjectures are believed to be true for the larger class of K5-minor-free graphs (which
includes the class of planar graphs). Motivated by these conjectures and in extension of a recent work
of L. Beaudou, F. Foucaud and the second author, which studies homomorphism bounds for the class
of K4-minor-free graphs, in this work we first give a necessary and sufficient condition for a graph B of
odd-girth 2k+ 1 to admit a homomorphism from any partial t-tree of odd-girth at least 2k+ 1. Applying
our results on the class of partial 3-trees, which is a rich subclass of K5-minor-free graphs, we prove that
PC(2k) is in fact a smallest graph of odd-girth 2k + 1 to which every partial 3-tree of odd-girth at least
2k + 1 admits a homomorphism. We then apply this result to show that every planar (2k + 1)-regular
multigraph G whose dual is a partial 3-tree, and whose fractional edge-chromatic number is 2k + 1, is
(2k+1)-edge-colorable. Both these results are the best known supports for the general cases of the above
mentioned conjectures in extension of the four-color theorem.

Key words: Planar graphs, treewidth, homomorphism, minor, edge-coloring.

1. Introduction

Given graphs G and H, a homomorphism of G to H is a mapping of the vertices of G to the vertices
of H which preserves adjacency, that is to say, a mapping h : V (G) → V (H) such that if x and y are
adjacent in G then h(x) and h(y) are adjacent in H. When there exists a homomorphism of G to H we
write G → H and we may say G maps to H. It is easily verified that mapping of G to Kk corresponds
to a k-coloring of G, thus homomorphism generalizes the theory of coloring of graphs. Given a class C
of graphs we say H bounds C if every member of C maps to H. Thus, in this terminology, the four-color
theorem is to say: K4 bounds the class of planar graphs.

Given a graph G, the odd-girth of G is the length of a shortest odd-cycle of G. It can be easily verified
that an odd-cycle of length 2l + 1 maps to an odd-cycle of length 2k + 1 if and only if l ≥ k. Thus we
have the following no-homomorphism lemma:

Lemma 1.1. If G→ H, then odd-girth(G) ≥ odd-girth(H).

In fact a slightly stronger statement can be stated:
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Lemma 1.2. Let G and B be graphs of odd-girth 2k+ 1 and suppose that there is a homomorphism φ of
G to B. Let u and v be two vertices of G which belong to a common (2k+ 1)-cycle of G. Then φ(u) and
φ(v) are on a common (2k + 1)-cycle of B and dG(u, v) = dB(φ(u), φ(v)).

Observe that the odd-girth of a given graph G can be computed in time polynomial in the order of G.
Given a vertex x of G compute, inductively, the set Ni(x) consisting of vertices at distance i from x. The
first i for which Ni(x) induces an edge implies the existence of a closed-walk of length 2i+1 starting at x.
The smallest sa uch closed walk is a shortest odd-cycle of G. Thus this classic no-homomorphism lemma
is among the rare no-homomorphism lemmas which is based on a parameter computable in polynomial
time (in contrast to other well known no-homomorphism lemmas which are based on parameters such as
the clique number, the chromatic number, the fractional or circular chromatic numbers, all of which are
NP-hard to compute).

The simplest use of this lemma concerns loops, that are odd-cycles of length 1. It asserts that when H
is a simple graph and G→ H, then G must have no loops. Hence, in this work we consider only graphs
with no loops. However multi-edges will be considered when dealing with application to edge-coloring.
When multi-edges are allowed, we will use the term multigraph, thus making sure the term graph refers
solely to a simple graph.

In view of this no-homomorphism lemma, the four-color theorem can be restated as follows:

Theorem 1.3 (4CT). The smallest graph with no loop which bounds the class of all planar graphs with
no loop is K4.

The natural question then is to find a (or probably the unique) smallest graph of odd-girth 2k + 1
which bounds the class of all planar graphs of odd-girth at least 2k+1. A conjecture of the second author
which implies, in particular, the order of such a graph must be 22k is discussed in Section 6.

Motivated by this question and the recent work of [2] we consider the question of bounding the class
of partial t-trees of odd-girth at least 2k + 1 by a graph of odd-girth 2k + 1. A necessary and sufficient
condition for a graph B of odd-girth 2k + 1 to admit a homomorphism from all K4-minor-free graphs
of odd-girth at least 2k + 1 is provided in [2]. Extending this work, we give a necessary and sufficient
condition to test if a given graph B of odd-girth 2k + 1 bounds the class of partial t-trees of odd-girth
at least 2k + 1. We will then apply our work to the class of partial 3-trees to obtain results which are
the strongest known support for the general cases of some conjectures in generalization of the four-color
theorem.

The paper is organized as follows. In the next section we present our adaptation of various terminolo-
gies for the class of partial t-trees. In Section 2, extending the notion of odd-girth to weighted graphs,
we build up the required terminologies and provide some classifications. Then in Section 4 we prove a
necessary and sufficient condition for a graph B of odd-girth 2k+1 to bound all partial t-trees of odd-girth
at least 2k+1. In Section 5 we discuss the algorithmic consequences of this necessary sufficient condition.
In Section 6 we discuss a conjecture in generalization of the four-color theorem, then we provide support
for this conjecture by finding an optimal bound of odd-girth 2k+1 for partial 3-trees of odd-girth at least
2k+1. In Section 7 we consider an edge-coloring conjecture of P. Seymour on the edge-chromatic number
of planar graphs which also extends the four-color theorem. We provide support for this conjecture by
proving it for a subclass of multigraphs which are planar and whose duals are partial 3-trees.

2. Partial t-trees

The class of t-trees is a class of graphs built according to the following rules:

• Kt+1 is a t-tree.

• Given a t-tree T and a t-clique C of T , the graph T ′ built from T by adding a vertex which is
adjacent to all the vertices of C is also a t-tree.

After an arbitrary ordering of the vertices of the first Kt+1, this construction induces an ordering
v1, v2, . . . , vn of the vertices which has the following properties: i. the subgraph induced by v1, v2, . . . , vt
is a clique, ii. in the subgraph Hi induced by vertices v1, v2, . . . , vi, i > t, the vertex vi is of degree t
and its neighbors induce a complete graph of order t. Such an ordering of the vertices of a t-tree T
is called a t-tree ordering of T . Given a t-tree T and a t-tree ordering v1, v2, . . . , vn, n > t, let Xi,
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t+ 1 ≤ i ≤ n, be the (t+ 1)-clique induced by vi and all its neighbors in {v1, v2, . . . , vi−1}. The sequence
Xt+1, Xt+2, . . . , Xn, which is uniquely determined by the given t-tree ordering, is called a clique-sequence
of T .

Observe that isomorphic copies of a t-tree might be associated with different t-tree orderings and that
the class of 1-trees is exactly the class of trees, granting the name t-tree.

A partial t-tree is any subgraph of a t-tree. A partial t-tree G might be a subgraph of two or more
non-isomorphic t-trees on a same set V (G) of vertices. Given a partial t-tree G, any t-tree ordering of a
t-tree T , which is built on V (G) and contains G as a subgraph, is also a t-tree ordering of G. We will
denote the class of all partial t-trees by PT t and the subclass of partial t-trees of odd-girth at least 2k+1
by PT t,2k+1.

The class PT t is known under various equivalent definitions. It is most notably known as the class of
graphs of treewidth at most t. It is easily verified that PT t is a minor-closed class of graphs. For t = 1
we have the class of all forests which is identified as the class of graphs with no K3-minor. The class PT 2

is the class of K4-minor-free graphs, for a proof see for example [6]. The next class, PT 3, is the class
of all graphs having none of the four graphs of Figure 1 as a minor, this is proved in [1]. For t ≥ 4 the
full list of forbidden minors is not known, though this list is finite thanks to the Graph-Minor Theorem
of Rebertson-Seymour. One thing sure though: graphs in PT t are Kt+2-minor-free and that Kt+1 is a
member of this class. In particular PT 3 forms a special subclass of K5-minor-free graphs.

Figure 1: Forbidden minors of the class of partial 3-trees

3. Weighted graphs and (2k + 1)-wideness

While previous definitions and notation are standard, here we introduce some notions we have devel-
oped to address our work. Throughout this section and also in the rest of the work, when it is clear from
the context, k is a given positive integer such 2k + 1 is a lower bound on the odd-girth of graphs and
weighted graphs we are working with, notion of odd-girth for weighted graphs being defined below.

A weighted graph (G,w) is a graph together with an assignment w : E(G) → Z+ which assigns a
positive integer w(e) to each edge e of G.

A homomorphism of a weighted graph (G,w1) to a weighted graph (H,w2) is a homomorphism of G
to H which preserves the weights, that is to say f : V (G) → V (H) is a homomorphism of (G,w1) to
(H,w2) if w2(f(x)f(y)) = w1(xy).

Definition 3.1. Given a weighted graph (G,w) satisfying w(e) ≤ 2k, we define (G,w)2k+1 to be a graph
built from G as follows: for each edge uv of G delete the edge uv and add two u− v paths, one of length
w(e) and the other of length 2k + 1− w(e), (all internal vertices of these paths being new and distinct).

We then say (G,w) is (2k + 1)-wide if the graph (G,w)2k+1 is of odd-girth 2k + 1.

Thus whenever we claim (G,w) is (2k + 1)-wide we implicitly imply that w satisfies 1 ≤ w(e) ≤ 2k
for each edge e of G.

Given a weighted graphs (G,w) and (G,w′) with w(e), w′(e) ≤ 2k for each edge of G, if for each edge

e we have w′(e) = w(e) or w′(e) = 2k + 1 − w(e), then (G,w′)2k+1 is isomorphic to (G,w)2k+1. Thus
we may freely assume the weight of each edge is bounded from above by k. However, when dealing with

the parity of a cycle in (G,w)2k+1 going through three or more original vertices of G, we may need to
consider some values of w which are greater than k.

From Lemma 1.2 we can drive the following lemmas:
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Lemma 3.2. Given two weighted graphs (G,w1) and (H,w2) such that w1 and w2 are both bounded from
above by 2k, if (G,w1)→ (H,w2) and (H,w2) is (2k + 1)-wide, then so is (G,w1).

Lemma 3.3. Given two weighted graphs (G,w1) and (H,w2) which are both (2k+ 1)-wide, if (G,w1)→
(H,w2) then (G,w1)2k+1 → (H,w2)2k+1.

Proof. Since homomorphisms must preserve the weights, an edge of weight say p in (G,w1) is mapped to
an edge of weight p in (H,w2). Thus we just need, for each edge, to extend mapping of the end points of
a path of length p to a path of length p and of a path of length 2k+1−p to a path of length 2k+1−p.

The converse of this lemma is true in the following sense:

Lemma 3.4. Given two weighted graphs (G,w1) and (H,w2) which are both (2k + 1)-wide, if φ is

a homomorphism of (G,w1)2k+1 to (H,w2)2k+1 which maps vertices of G to vertices of H, then the
restriction of φ to V (G) is a homomorphism of (G,w1) to (H,w2).

Proof. This is based on the fact that (G,w1) and (H,w2) are both (2k+ 1)-wide. This implies that both

(G,w1)2k+1 and (H,w2)2k+1 are of odd-girth 2k + 1. The claim then follows from the fact that every
mapping of C2k+1 to another cycle of the same length must preserve distances.

Next we would like to introduce procedures using which one can decide whether a given weighted
complete graph is (2k + 1)-wide. We first give two independent procedures for weighted triangles. We
then show that for weighted complete graphs of larger order it is enough to apply one of the procedures to
on all induced triangles. The first test, introduced in [2], applies when we assume all weights are bounded
from above by k.

Proposition 3.5. [2] Let (K3, w) be a weighted triangle with edge weights a, b, c satisfying 1 ≤ a ≤ b ≤
c ≤ k. Then is (2k + 1)-wide if and only if one of the following holds:
(i) a+ b+ c is odd and a+ b+ c ≥ 2k + 1,
(ii) a+ b+ c is even and a+ b ≥ c.

The next procedure is when w is allowed to give also values between k and 2k. We prove this one
here.

Proposition 3.6. Let (K3, w) be a weighted triangle with edge weights a, b, c satisfying 1 ≤ a, b, c ≤ 2k
such that a+ b+ c is odd. Let f2k+1(a, b, c) = 1

2 (a+ b+ c− (2k + 1)). Then (K3, w) is (2k + 1)-wide if
and only if 0 ≤ f2k+1(a, b, c) ≤ min{a, b, c}.

Proof. Suppose (K3, w) is (2k + 1)-wide. By definition, the graph (K3, w)2k+1 is of odd-girth 2k + 1.

Then each odd-cycle of (K3, w)2k+1 has length at least 2k + 1. Let x, y, z be the three vertices of

K3. There are eight cycles in (K3, w)2k+1 containing all the three vertices x, y and z. Exactly four of
these eight cycles are of odd length and they are of length a + b + c, (2k + 1 − a) + (2k + 1 − b) + c,
(2k+1−a)+b+(2k+1−c) and a+(2k+1−b)+(2k+1−c). Since there is an odd-cycle of length a+b+c,
and since we have assumed that all odd-cycles are of length at least 2k + 1, we get a + b + c ≥ 2k + 1,
and thus f2k+1(a, b, c) ≥ 0. The odd-cycle corresponding to the length 2k+ 1− a+ 2k+ 1− b+ c implies
that 2k+ 1− a+ 2k+ 1− b+ c ≥ 2k+ 1, therefore f2k+1(a, b, c) ≤ c. Similarly, we have f2k+1(a, b, c) ≤ b
and f2k+1(a, b, c) ≤ a. So 0 ≤ f2k+1(a, b, c) ≤ min{a, b, c}.

Conversely, assume 0 ≤ f2k+1(a, b, c) ≤ min{a, b, c}. We want to show that (K3, w) is (2k + 1)-wide.

By definition, we need to show that the graph (K3, w)2k+1 is of odd-girth 2k + 1. The odd-cycles in

(K3, w)2k+1 which contain exactly two vertices of K3 are of length 2k + 1. There are four odd-cycles
which contain three vertices of K3. Since a+ b+ c is odd, these four odd-cycles are of length a+ b+ c,
2k+1−a+2k+1−b+c, 2k+1−a+b+2k+1−c and a+2k+1−b+2k+1−c. By the assumption that
f2k+1(a, b, c) ≥ 0, we get a+b+c ≥ 2k+1. Since f2k+1(a, b, c) ≤ c, we have 2k+1−a+2k+1−b+c ≥ 2k+1.
Similarly, we get that the other two odd-cycles have length at least 2k+ 1. This completes the proof.

Next we prove that, given a weighted complete graph (Kt, w) in order to decide whether (Kt, w)
is (2k + 1)-wide, it is enough to apply either any of the two previous propositions on all the induced
triangles.
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Theorem 3.7. A complete weighted graph (Kt, w) is (2k + 1)-wide if and only if each of its induced
triangles is (2k + 1)-wide.

Proof. First we show that the condition is necessary. Assume that (Kt, w) is (2k + 1)-wide. Then, by

definition, 1 ≤ w(e) ≤ 2k for any edge e ∈ E(Kt) and the graph (Kt, w)2k+1 is of odd-girth 2k + 1. Let

(K∗3 , w
∗) be an induced triangle where w∗ is induced by w over the edges of K∗3 . Thus (K∗3 , w

∗)2k+1 is a

subgraph of (Kt, w)2k+1 and, therefore, is also of odd-girth 2k + 1.
To prove that the condition is also sufficient, we assume that (Kt, w) is not (2k + 1)-wide and we

show that there exists a set of three vertices whose induced weighted triangle is not (2k+ 1)-wide. Since

(Kt, w) is not (2k + 1)-wide, there exists an odd-cycle in (Kt, w)2k+1 of length less than 2k + 1. Assume
C is such an odd-cycle with minimum number of vertices from Kt. By construction, C must have at least
three vertices of Kt. If it has three such vertices, then we have found our triangle. Thus we assume that
C has at least four vertices from Kt. Let x, y, z, u be four of these vertices in clockwise direction of C.
Denote the two paths in C connecting x and z by P and Q. We know that the lengths of P and Q have

different parity. There are two threads in (Kt, w)2k+1 which connect x and z, denote them by R1 and
R2. The sum of the length of R1 and R2 is 2k+ 1, so the lengths of R1 and R2 have also different parity.
Without loss of generality, assume that P ∪ R1 and Q ∪ R2 are odd-cycles (if necessary, we relabel R1

and R2). Thus each of P ∪ R1 and Q ∪ R2 induces a cycle of (Kt, w)2k+1 which uses less vertices of Kt

than C. Furthermore, the total length of these two cycles is |C|+ 2k + 1, hence one of them is of length
smaller than 2k + 1. This contradicts the choice of C, thus proving our claim.

In the next theorem we show how to use the previous results to test whether a given weighted t-tree
is (2k + 1)-wide.

Theorem 3.8. Let G be a t-tree with a clique-sequence Xt+1, Xt+2, . . . , Xt+l. Let w be a weighting of G
such that each Xi, together with weights induced by w, is (2k + 1)-wide. Then (G,w) is (2k + 1)-wide.

Proof. We prove our claim by induction on l. If l = 1, then (G,w) = (Xt+1, w) and thus (G,w) is
(2k + 1)-wide. Suppose (G′, w), which is obtained from the clique-sequence Xt+1, Xt+2, . . . , Xt+l−1, is
(2k+1)-wide and let (G,w) be the graph obtained by adding a vertex v joined to t vertices u1, u2, . . . , ut.
Thus u1, u2, . . . , ut together with v induces the (t+1)-clique Xt+l. Furthermore, suppose vui is of weight
ai (i = 1, 2, . . . , t). Since (G′, w) is (2k + 1)-wide, in order to prove that (G,w) is (2k + 1)-wide, we only

need to consider cycles of (G,w)2k+1 which contain v and connect it to two vertices, say u1, u2, among
u1, u2, . . . , ut, by paths of length ai or 2k + 1 − ai, i = 1, 2. Let C be such a cycle, and assume, by
contradiction, that C is an odd-cycle of length smaller than 2k+ 1. Let p be the length of the u1vu2 part
of C and let p′ be the length of the complementary part. Thus p and p′ are of different parity. Suppose

that the (2k + 1)-cycle connecting u1 and u2 in (G,w)2k+1 is separated by u1 and u2 into two paths of
length a and a′, thus a+ a′ = 2k + 1. By symmetry of a and a′, assume p+ a is odd, then p′ + a′ is also

odd. Observe that each of p+ a and p′ + a′ corresponds to the length of a cycle in (G,w)2k+1. Since the
sum of the lengths of these two cycles, (which is |C| + 2k + 1), is less than 2(2k + 1), one of them is of
length smaller than 2k + 1. But p + a being smaller than 2k + 1 will contradict the assumption of the
theorem that each Xi together with weights induced by w is (2k+ 1)-wide, and p′+a′ being smaller than
2k+ 1 contradicts our inductive assumption that (G′, w) is (2k+ 1)-wide. These contradictions complete
our proof.

Combining these results we have the following criteria for a t-tree to be (2k + 1)-wide.

Corollary 3.9. A weighted t-tree (T,w), t ≥ 2, is (2k+ 1)-wide if and only if all of its induced weighted
triangles are (2k + 1)-wide.

3.1. Partial and k-partial distance graphs

In this work we will only consider wighted graph for which the weight function is a specific metric
function defined below.

Let G be a connected graph on n vertices. The complete distance graph of G is the weighted graph
(Kn, dG) where Kn is the complete graph on V (G) and the weight dG(uv) of an edge uv is the distance
in G between u and v. Thus edges of weight 1 induce G. Any spanning (weighted) subgraph of (Kn, dG)
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will then be referred to as a partial distance graph of G or a partial G-distance graph. Thus a partial
G-distance graph (H, dG) has V (G) as its vertex set and each edge uv of H is given the weight dG(u, v),
noting that H may not necessarily contain all edges of G. If, furthermore, we have dG(u, v) ≤ k for each
edge uv of H, then we say that (H, dG) is a k-partial distance graph of G or a k-partial G-distance graph.

A special family of k-partial G-distance graphs is built as follows:

Definition 3.10. Let G be a t-tree and w be an edge-weighting of G with weights from {1, 2, . . . , k}
such that (G,w) is (2k + 1)-wide. Recall that we have associated with (G,w) a graph (G,w)2k+1 whose

vertices contain vertices of G and, furthermore, an edge of G is also an edge of (G,w)2k+1 if and only if

it is of weight 1. Let G∗(w,2k+1) be the weighted graph obtained from (G,w)2k+1 by adding all missing

edges of G. Then edges of (G,w)2k+1 are assigned weight 1 and each other edge e is assigned the weight
w(e). As common edges are of weight 1 this works fine.

Observe that for t ≥ 2, given a partial t-tree and an edge e of it, adding an edge parallel to e and
subdividing it the result is still a partial t-tree. Thus we may claim the following:

Observation 3.11. Given a weighted t-tree (G,w) which is (2k + 1)-wide, the underlying graph of
G∗(w,2k+1) is a partial t-tree.

An example is given in Figure 2. The figure on the right is a weighted graph built from the weighted
K4 presented on the left. The weights of bold edges are the same as corresponding edges of (K4, w) in
the left, and all other edges are of weight 1.
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Figure 2: Examples of (G,w)2k+1 and G∗
(w,2k+1)

As claimed in the following proposition, the condition that (G,w) is (2k + 1)-wide implies that the
extension of (G,w) intoG∗(w,2k+1) transforms the general weight function w to a k-partial distance function

(of (G,w)2k+1). We leave the verification of this claim to the reader.

Proposition 3.12. Given a t-tree G and an edge weighting w with weights from {1, 2, . . . , k} such that

(G,w) is (2k + 1)-wide, the weighted graph G∗(w,2k+1) is a k-partial (G,w)2k+1-distance graph.

3.2. Odd-girth and wideness

Here we will prove that for a complete distance graph of G to be (2k + 1)-wide is equivalent with G
being of odd-girth at least 2k + 1. One direction of this claim is followed from definitions. We prove the
other direction in the following general setting.

Lemma 3.13. If B is of odd-girth 2k + 1, then any partial B-distance graph B̂ is (2k + 1)-wide.

Proof. By the definition of a weighted graph to be (2k+1)-wide, we only need to prove that the complete

B-weighted graph B̃ is (2k + 1)-wide. To do this we need to show that every odd-cycle C̃ of (B̃, w)2k+1
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has length at least 2k + 1. If C̃ has exactly two vertices from B, then the length of C̃ is exactly 2k + 1
by construction. Assume C̃ has at least three vertices from B and denote them by x1, x2, . . . , xt in the
clockwise orientation of C̃. Denote the distance from xi to xi+1 in C̃ by li. If there exist li and lj such

that li, lj ≥ k, then

t∑
s=1

ls ≥ 2k + 1. So the length of C̃ is at least 2k + 1. Suppose that li < k for every

i = 1, 2, . . . , t. Then we know that li = dB(xi, xi+1), so there is a closed-walk of odd length going through

x1, x2, ... xt in B whose length is

t∑
s=1

ls. Since B is of odd-girth 2k + 1, we have

t∑
s=1

ls ≥ 2k + 1. So

the length of C̃ is at least 2k + 1. Finally consider the case where there is exactly one li with li ≥ k.
By symmetry we may assume l1 ≥ k. Hence, li = dB(xi, xi+1) for i = 2, . . . , t. We consider into two
subcases. If l1 = k, then we have l1 = w(x1, x2) = k ≤ dB(x1, x2). By the triangular inequality, we get

l2 + · · · + lt ≥ dB(x1, x2). So

t∑
s=1

ls ≥ k + dB(x1, x2) ≥ 2k. Since

t∑
s=1

ls is odd we have

t∑
s=1

ls ≥ 2k + 1.

If l1 ≥ k + 1, then l1 = 2k + 1 − w(x1, x2). Hence,

t∑
s=1

ls = 2k + 1 − w(x1, x2) + l2 + · · · + lt. Since

w(x1, x2) ≤ dB(x1, x2), by the triangular inequality, we have

t∑
s=1

ls ≥ 2k + 1. We conclude that C̃ has

length at least 2k + 1 in each case.

The following theorem is a key tool of our work. It claims, basically, that a homomorphism of a graph
G to a graph H where both G and H are of odd-girth 2k+1 can be viewed as a mapping which preserves
more than just adjacency. It is only a restatement of Lemma 1.2 using the terminology we have just
developed.

Theorem 3.14. Let G and H be two graphs of odd-girth 2k + 1. Let (G′, w1) be the partial G-distance
graph consisting of all edges xy where x and y belong to a common (2k+ 1)-cycle of G. Similarly, define
(H ′, w2) to be the partial H-distance graph consisting of all edges uv where u and v belong to a common
(2k+1)-cycle of H. Then each homomorphism of G to H is also a homomorphism of (G′, w1) to (H ′, w2).

Proof. This is also an application of the fact that a mapping of C2k+1 to another cycles of the same
length is rather an isomorphism and distances are preserved.

3.3. List of all (2k + 1)-wide complete graphs on t+ 1 vertices

Given positive integers k and t, and toward working with graphs in PT t,2k+1, we will need the list of
all weightings w of the complete graphs on t+ 1 vertices for which (Kt+1, w) is (2k+ 1)-wide. As k and t
are fixed numbers, this list can be easily computed. The computation of this list is further simplified by
Theorem 3.7. We denote the list of such weightings by L(t+1, 2k+1). The total number of weightings on

a Kt+1 whose vertices are labeled, with weight of each edge being an integer between 1 and k, is k(t+1
2 ).

This provides an upper bound on the number of elements of L(t + 1, 2k + 1). This upper bound is not
too far from the exact number of elements by the following observation:

Proposition 3.15. If w is a weighting of Kt+1 satisfying 2k
3 ≤ w(e) ≤ k, then (Kt+1, w) is (2k+1)-wide.

Proof. By Theorem 3.7 it is enough to check that for each triangle the induced weighted triangle is
(2k + 1)-wide. Let a, b, c be weights of a triangle in (Kt+1, w). We use Proposition 3.5 to test if this
triangle is (2k + 1)-wide. If a+ b+ c is odd, then it is at least 2k + 1. If it is even, then a+ b ≥ 4k

3 but
c ≤ k, which implies a+ b ≥ c.

Thus, given k and t, there are at least 1

(t+1
2 )!

(k
3 )(

t+1
2 ) non isomorphic elements in L(t+ 1, 2k+ 1). We

leave finding the exact number of elements of L(t+ 1, 2k+ 1) as an open question. To help with a better
understanding of the notion, in Figure 3, we have provided the full list of 7 non-isomorphic elements of
L(4, 5).

In the next lemma we show that our list L(t + 1, 2k + 1) maintains a weak notion of monotonicity.
That is to say, if in a given (2k + 1)-wide weighting all entries corresponding to a vertex u are raised to
the maximum possible value (which is k), then the result will still be a member of our list.
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Figure 3: The list L(4, 5) of all 5-wide K4’s

Lemma 3.16. Let w be a weighting of Kt+1 such that (Kt+1, w) is (2k + 1)-wide. If we change the
weight of each of the t edges incident to a same vertex to k, then the resulting weighted graph (Kt+1, w

′)
is still (2k + 1)-wide.

Proof. By the assumption, we have w′(e) ≤ k for every e ∈ E(Kt+1). In order to prove that (Kt+1, w
′)

is (2k+ 1)-wide, by the definition of (Kt+1, w′)2k+1, we only need to prove that every odd-cycle C which
contains at least three vertices of Kt+1 has length at least 2k + 1. Let v0 be the vertex for which we
change the weights of its adjacent edges. If v0 ∈ V (C), then the length of C is at least 2k+ 1. Otherwise,

C is an odd-cycle of (Kt+1, w)2k+1. Hence, the length of C is at least 2k + 1.

4. Necessary and sufficient conditions

Here we would like to give a necessary and sufficient condition for a graph B of odd-girth 2k + 1
to bound the class of partial t-trees of odd girth 2k + 1. Our condition is expressed in the form of the
existence of a family of cliques in a partially B-weighted graph. We start with a description of the main
property this set of cliques must satisfy. We point out that deciding if there is a weighting on B for
which such a set of cliques exists, and finding one such a set of cliques, when it exists, can be done in
polynomial time (in terms of the order of B, k and t). Such an algorithm will be given in Section 5.

4.1. (t, 2k + 1)-closed sets of cliques

The following definition is a key property of a set of cliques in a partial B-weighted graph which we
need for B, which is of odd-girth 2k + 1, to bound the class of all partial t-trees of odd-girth at least
2k + 1. We will provide an example to explain it better.

Definition 4.1. Let (G,w) be a weighted (2k + 1)-wide graph. Let W be a collection of (weighted)
(t + 1)-cliques (G,w). Observe that each member of W, without labeling of its vertices, is a member of
L(t+ 1, 2k+ 1). We say W is (t, 2k+ 1)-closed if the following is satisfied for each member W of W: Let
v be a vertex of W and let a1, a2, . . . , at be the weights of the edges of W incident to v (ai = w(vvi)).
Suppose that switching the weights a1, a2, . . . , at to a′1, a

′
2, . . . , a

′
t while keeping all other weights the same

results in another element of L(t+ 1, 2k+ 1). Then there must exist a clique W ′ in W which is obtained
from W by removing the vertex v and adding a vertex v′ where w(v′vi) = a′i for i = 1, 2, . . . , t.

The definition is inspired by the construction of t-trees. Given a (t+ 1)-clique W ′ of a weighted t-tree
G, if a new vertex is added which is joined to t vertices of W ′, and weighted in such a way that the new
graph G′ is also (2k+ 1)-wide, we want to be able to extend any mapping of G to the weighted graph B

8



to a mapping of G′ to B. A (t, 2k + 1)-closed set of (t + 1)-cliques will do exactly this. And as we will
prove, this is also a necessary condition.

For further clarification, we would like to point out a main difference between this definition and the
list L(t+ 1, 2k + 1): a (t, 2k + 1)-closed set is a set of (weighted) cliques in a weighted version of a given
graph, thus in particular its vertices are labeled. In contrast, for the list L(t + 1, 2k + 1) the labeling
of vertices is of no importance. The key here is the edge weights of graphs in the list which helps with
keeping us within the condition of odd-girth at least 2k + 1.

For a better understanding of this definition we use the list of Figure 3. Suppose (B,w) is a weighted
graph which is 5-wide (in a sense it is triangle-free), and let W be a collection of its 4-cliques which is
(3, 5)-closed. Let W1 be a member of W on vertices x, y, z, t and suppose that all edges are of weight 2,
i.e., W1 is isomorphic to the first weighted graph in the list of Figure 3. Consider the triangle induced
by xyz, all whose edges are of weight 2. There are three other weighted K4’s in the list L(4, 5) which
contain triangles all whose edges are of weight 2. Those are the second, fifth and sixth graphs in Figure 3.
Considering the first, the condition of 4.1 is the existence of a vertex u111 which is adjacent to x, y and
z (each edge having weight 1). The fifth element implies the existence of three other vertices: a vertex
u122 which is adjacent to x with an edge of weight 1 and to y and z both with edges of weight 2. Vertices
u212 and u221 are defined similarly. Note that, by our definition, each of the three cliques induced by
{x, y, z, u122}, {x, y, z, u212} and {x, y, z, u221} must be inW. Similarly, there must be three other vertices
u112, u121 and u211 giving cliques isomorphic to the sixth element of the list. We note that each of these
vertices might be used again to satisfy the condition for other triangles of W1 or for elements of W.
Altogether, as we will see later, the smallest 5-wide weighted graph with a nontrivial (3, 5)-closed set of
4-cliques has 16 vertices.

A (t, 2k+1)-closed set of cliques of a weighted graph must then have a large number of (t+1)-cliques.
To find a smallest such set would probably address challenging questions. An easy lower bound on the
number of elements of such a set is the number of elements of L(t + 1, 2k + 1). More precisely, given a
(t, 2k+ 1)-closed set of cliques, if it is nonempty, then it must have one (t+ 1)-clique for each element of
L(t+ 1, 2k + 1) as we prove in the following theorem.

Theorem 4.2. Given a (2k + 1)-wide weighted graph (G,w), if a nonempty collection W of its (t+ 1)-
cliques is (t, 2k+ 1)-closed, then for any weighting w of Kt+1 such that (Kt+1, w) ∈ L(t+ 1, 2k+ 1) there
is an isomorphic copy of (Kt+1, w) in W.

Proof. SinceW is nonempty, there exists an element (Kt+1, w0) inW. Let V (Kt+1) = {v0, v1, . . . , vt}. If
we change the weights of the edges adjacent to v0 to k, then by Lemma 3.16 the resulting (t+ 1)-clique is
(2k+1)-wide. AsW is (t, 2k+1)-closed, there exists a vertex u0 which is adjacent to each of v1, v2, . . . , vt
with an edge of weight k and such that the (t+1)-clique induced by u0, v1, v2, . . . , vt is inW. By repeating
this process we may replace each vi with a vertex ui which is adjacent to the vertices of the current clique
we are working on with edges of weight k. Thus at final step we have a clique in W all whose edges are
of weight k.

In summary, starting with any (2k + 1)-wide (t + 1)-clique in W we get that there is a clique in W
all whose edges are of weight k. However, this is a reversible construction, and starting with one such
clique (where all edges are of weight k) and using the property of being (t, 2k + 1)-closed, we can get an
isomorphic copy of any other member of L(t+ 1, 2k + 1) in W.

4.2. A necessary and sufficient condition

Recall that PT t is the class of partial t-trees, and PT t,2k+1 is the subclass of partial t-trees of odd-
girth at least 2k + 1. We are now ready to state and prove the following theorem, which provides a
necessary and sufficient condition for a graph B of odd-girth 2k + 1 to bound PT t,2k+1. We will give an
algorithm to check this in Section 5.

Theorem 4.3. A graph B of odd-girth 2k + 1 admits a homomorphism from every partial t-tree of odd-
girth at least 2k + 1 if and only if there exists a partial B-distance graph (B̂, w) with a nonempty set W
of (t+ 1)-cliques of (B̂, w) which is (t, 2k + 1)-closed.

Proof. First, we prove the sufficient part. Assume such a weighted graph B̂ and a nonempty set W of
(t+1)-cliques exist. Suppose G is a partial t-tree of odd-girth at least 2k+1. Let G̃ be a t-tree containing
G as a subgraph. We form a weighted graph on G̃ by defining the weight function ϕ : E(G̃)→ {1, 2, . . . , k}

9



by ϕ(xy) = min{dG(x, y), k} for every xy ∈ E(G̃). By Lemma 3.13, we know that (G̃, ϕ) is a (2k+1)-wide
weighted graph. Let X1, X2, . . . , Xs be a (t + 1)-clique-sequence from which G̃ is built. Since X1 is a
subgraph of G̃, we know that (X1, ϕ) is (2k + 1)-wide. By Theorem 4.2, there is an isomorphic copy
of X1 in W, let C1 be this copy. Let h be an isomorphism of X1 to C1. Observe that, in particular,
h is a homomorphism of X1 to C1. Our goal is to extend h to a homomorphism of G̃ to B̂. Let
V (X2) = {x1, x2, . . . , xt, xt+1}. By the definition of partial t-trees, and without loss of generality, assume
x1, x2, . . . , xt ∈ V (X1). Since W is (t, 2k + 1)-closed and X2 is (2k + 1)-wide, there exists y ∈ V (B)
such that {y, h(x1), h(x2), . . . , h(xt)} induces a member of W and the weight of yh(xi) is the same as
the weight of ϕ(xt+1xi) for each i ∈ {1, 2, . . . , t}. Let h(xt+1) = y, hence, this extended mapping h
is a homomorphism of (X1 ∪ X2, ϕ) to B̂. By continuing this process, we eventually extend h to a
homomorphism of (G̃, ϕ) to (B̂, w). Thus for each edge xy of G̃ of weight 1, h(x)h(y) is an edge of B̂ of
weight 1. That is to say, h(x)h(y) is an edge of B. Therefore, h is also a homomorphism of G to B.

Next, we want to prove that the condition is necessary.
We first define B̂ as follows: vertices of B̂ are the same as vertices of B. A pair x, y of vertices is an

edge of B̂ if x and y belong to a common (2k + 1)-cycle of B. Thus B̂ does not necessarily contain all
edges of B, but it does contain each pair that belongs to a common (2k+1)-cycle and thus we may apply
Theorem 3.14. We then define the weight ϕ of an edge xy of B̂ to be the distance between x and y in B.
That is the same as their distance in any (2k + 1)-cycle containing them since B is of odd-girth 2k + 1.
Our aim is to show that (B̂, ϕ) admits a nonempty set W of (t+ 1)-cliques which is (t, 2k + 1)-closed.

Recall that given a t-tree G and a weighting w (1 ≤ w(e) ≤ k) of its edges we have associated with

(G,w) a weighted graph G∗(w,2k+1) which, by Proposition 3.12, is a partial distance graph of (G,w)2k+1.

By Observation 3.11, for t ≥ 2, the underlying graph of G∗(w,2k+1) is a partial t-tree. Since (G,w)2k+1

is a partial t-tree of odd-girth 2k + 1, by our assumption, it admits a homomorphism to B. Thus, by
Theorem 3.14, G∗(w,2k+1) maps to (B̂, ϕ).

Intuitively speaking, the setW of (t+ 1)-cliques we are looking for is a minimal set of (2k+ 1)-cliques
in a weighted version of B which are the images of cliques when mapping (2k+ 1)-wide weighted graphs
to the weighted version of B. More details are as follows.

Let PT ∗t,2k+1 be the set of weighted graphs G∗(w,2k+1), where G is a t-tree such that, together with

edge-weighting w, (G,w) is (2k + 1)-wide. As mentioned above, each member of PT ∗t,2k+1 admits a

homomorphism to (B̂, ϕ). Observe that, in a mapping of any such member G∗(w,2k+1) to (B̂, ϕ), the image

of any (t+ 1)-clique of G∗(w,2k+1) is a weighted (t+ 1)-clique in (B̂, ϕ). Let W be a minimal possible set

of (t+ 1)-cliques in (B̂, ϕ) as the homomorphic images of such a mapping. More precisely, W is a set of
(t + 1)-cliques in (B̂, ϕ) such that (i) for every G∗(w,2k+1) in PT ∗t,2k+1 there exists a homomorphism of

G∗(w,2k+1) to (B̂, ϕ) such each (t+ 1)-clique of G∗(w,2k+1) is mapped to an element of W, and (ii) for each
clique W ∈ W, W −W is not such a set. We will denote the existence of a homomorphism mentioned
in i. by G∗(w,2k+1) → (B̂, ϕ,W). A restatement of (ii) is that for each clique W ∈ W, there exists a

weighted graph G∗(w,2k+1) in PT ∗t,2k+1 such that, in any mapping of G∗(w,2k+1), to (B̂, ϕ,W) at least one

of its (t+ 1)-cliques is mapped to W .
We claim that W satisfies the condition of our theorem, i.e., W is not empty and (t, 2k + 1)-closed.
To see that W is not empty it is enough to take any (2k + 1)-wide Kt+1 as (G,w) and consider the

corresponding G∗(w,2k+1).

To prove thatW is (t, 2k+1)-closed, we take a (t+1)-clique, say C1, we take t vertices v1, v2, . . . , vt from
C1 and assume that adding a vertex x with ϕ(xvi) = ai produces a (t+ 1)-clique which is (2k+ 1)-wide.
Then we need to show that there exists a vertex v ∈ V (B) such that v1, . . . , vt, v induce a (t+ 1)-clique
in W and such that ϕ(vvi) = ai for i = 1, . . . , t. Recall that, by the minimality of W, there exists an
element ĜC1 which admits a (B̂, ϕ,W)-mapping, but in any such a mapping at least one (t+ 1)-clique is
mapped to C1.

Consider all isomorphic copies of C1 in ĜC1
(these are the (t+ 1)-cliques that could potentially map

to C1). For each such t-clique W do as follows: let v1, v2, . . . , vt be vertices of W . Suppose that adding
a vertex v to W and joining v to each vi with an edge of weight ai results in a (t + 1)-clique which is
(2k+1)-wide, i.e., the weighted clique is in L(t+1, 2k+1). Then, for each isomorphic copy of C1 in ĜC1

,
add a new vertex which is joined to vertices in the isomorphic copy with edges of corresponding weight
from a1, a2, . . . , at. Furthermore, for each newly added edge of weight ai, add two paths of respective
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length ai and 2k+ 1− ai connecting the two ends of this edge. Each edge of these two paths is of weight
1. Let G∗ be the new weighted graph. By construction and by Proposition 3.12, the weighted graph G∗

is a member of PT ∗t,2k+1, and, therefore, there exists a homomorphism ρ of G∗ to (B̂, ϕ,W).
Recall that to complete our proof, given a clique C1 in W, we need to show that, if for a vertex v of

C1, the weights of the edges incident to v are changed from a1, a2, . . . , at to a′1, a
′
2, . . . , a

′
t, then there is

a clique C ′1 ∈ W realizing this new set of weights.
Observe that ĜC1

⊆ G∗, thus ρ induces a homomorphism of ĜC1
to (B̂, ϕ,W). By the choice of ĜC1

,
some (t+ 1)-clique of ĜC1 , say K, is mapped to C1. However, in G∗ we have built a clique K ′ such that
t of its vertices are from K and a new vertex x is added which is adjacent to common vertices of K and
K ′ with weights a′1, a

′
2, . . . , a

′
t. The image of x is then the vertex we are looking for and this completes

our proof.

5. Algorithmic implications

Here we discuss how to apply the necessary and sufficient condition of Theorem 4.3 to decide whether
a given graph B of odd-girth 2k + 1 bounds PT t,2k+1. Since t and k are fixed integers, we can assume

that the set L(t + 1, 2k + 1) is already computed. This is a list of order at most k(t+1
2 ) and, therefore,

of a constant size when t and k are fixed integers. We first form a weighted graph B̂ whose vertices are
vertices of B and edges are pairs uv such that u and v belong to a common (2k+1)-cycle of B, the weight
of each such edge being the distance u and v in the graph B. By the condition on the odd-girth of B,
this distance is determined by the distance between u and v in one of the odd-cycles they both belong
to.

Observe that determining if vertices u and v are in a common (2k + 1)-cycle of B is simple: starting
at u, and iteratively, we compute the set Ni(u) which consists of all vertices at distance i from u and,
at each step, we check if v is in Ni(u). If v /∈ Ni(u) for i ≤ k, then we conclude that the pair is in no
common (2k+1)-cycle. Otherwise, we may assume l is the first i such that v ∈ Ni(u) (thus l = dB(u, v)).
We then compute the set N2k+1−2l(v). If this set has no intersection with Nl(u), then u and v do not
belong to a (2k + 1)-cycle. Otherwise we have found such a cycle.

Once we have our weighted graph B̂, we may list, in time at most
(|V (B)|

t+1

)
, the set of all weighted

(t + 1)-cliques of B̂. As t is a fixed number, with respect to the order of B, this list is provided in
polynomial time. Let W be this ordered set of cliques whose elements are labeled W1,W2, . . . ,Wr. Next
we would like to figure out if any subset of this list is (t, 2k+ 1)-closed, and if so to output such a subset.
To this end, given an element Wi ofW, we first check whether W passes the test of being (t, 2k+1)-closed
with respect to Wi. This is done in the following loop:

Let v1, v2, . . . , vt+1 be the vertices of Wi, and let W ′i be a t-clique induced by Wi after deleting a vertex
vj . For simplicity we assume j = t+ 1, but we must do this next inner loop for all vj , j = 1, 2, . . . , t+ 1.
In this inner loop we look for all elements of L(t+ 1, 2k+ 1) which can be regarded as an extension of the
weights of W ′i by adding one more vertex and, for each such element of L(t+ 1, 2k + 1), we consider all
possible extensions. The number of such possibilities is a function of t and k, so it is constant with respect
to our parameter which is the order of B. Consider one such extension ϕ. Thus ϕ is regarded as an edge
weighting of a (t+ 1)-clique, t of whose vertices are labeled v1, v2, . . . , vt and the last vertex is labeled v′

(which is not a vertex of B). Moreover, for each edge vivj , i, j ≤ t, we have ϕ(vivj) = dB(vi, vj). Assume
ϕ(viv

′) = ai, i = 1, 2, . . . , t. What we need to find now is a vertex v of B such that dB(vi, v) = ai for
all i = 1, 2, . . . , t. The existence of such a vertex v then can be checked easily by trying each vertex of
B that is not also a vertex of Wi. If for some vertex v ∈ V (B) \ V (Wi) we have dB(vi, v) = ai, and the
(t+ 1)-clique obtained for W ′i by adding the vertex v is inW, then we consider this step of the inner loop
verified and check the next embedding of W ′i among the members of L(t+ 1, 2k + 1). If we cannot find
any such vertex, then we conclude that Wi cannot be in a set of (t, 2k + 1)-closed cliques. In that case,
we remove Wi from our list W and we start over. If at some point, for any choice of an element W of
W, any choice of an induced t-clique W ′ of W , and any embedding of W ′ in elements of L(t+ 1, 2k+ 1),
we find our required vertex v, then this list W of (t + 1)-cliques is (t, 2k + 1)-closed by definition and,
therefore, it provides a certificate that B (or rather a subgraph of B induced by the edges of weights 1
of cliques in W ) bounds the class PT t,2k+1. If, by repeating our loops and inner loops, we eventually
delete all considered (t+ 1)-cliques, i.e., when we arrive at the case W = ∅, we claim that our weighted
graph B̂ has no nonempty (t, 2k+ 1)-closed set of (t+ 1)-cliques. That is because if there were such a set
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W1, since at the start we considered all (t+ 1)-cliques, we would have W1 ⊆ W. But then each element
of W1 passes all our loops and thus no element of W1 will ever be deleted.

Overall, in the discussion above, we have proved the following facts:

Theorem 5.1. Let t and k be given (fixed) positive integers and let B be a graph of odd-girth 2k + 1.
Then

• we can decide in a finite number of steps if B bounds PT t,2k+1,

• this number of steps is bounded by a polynomial function of |V (B)| whose degree and coefficients
are dependent on t and k,

• if the above steps certifies B as a bound for PT t,2k+1, then it also outputs a (t, 2k + 1)-closed list
of (t+ 1)-cliques that we can use to find a mapping of any member of PT t,2k+1 to B.

There are a few important remarks to make here. First, in order not to underestimate the power of
Theorem 4.3 and its algorithmic application, we would like to mention that, for the same general graph
B of odd-girth 2k + 1, we do not know of any finite algorithm to decide whether B bounds the class of
all planar graphs of odd-girth 2k + 1. While for certain cases, such as when B contains a K4, we have
the trivial YES answer, for a general choice of B, finding such an algorithm may help to deal with some
of the difficult conjectures which we have mentioned in this work. Another note is that, in the discussion
before Theorem 5.1, we only cared to show that the algorithm we provide runs in a time polynomial
in the order of B when t and k are fixed. To actually implement the algorithm, one may also apply
further optimization. For example, having in hand a lower bound for the order of a (t, 2k + 1)-closed set
of (t + 1)-cliques, if the order of W goes below such a threshold, we may stop with a negative answer.
An example of such a lower bound is the number of elements of L(t + 1, 2k + 1). Recall that we must
already have a list of them for our algorithm. The last note worthy comment here is about a weakness
of our algorithm: when B is a bound, our algorithm provides a (t, 2k+ 1)-closed set W of (t+ 1)-cliques
that we can use to map each member of PT t,2k+1 to B. However, the set created here is the largest of
all such sets while, in practice, and toward optimization, we are interested in a smallest of such sets.

6. Projective cubes and bounding partial 3-trees

Theorem 4.3 is an extension of a necessary and sufficient condition provided in [2] to test whether a
given graph of odd-girth 2k+1 bounds the class of K4-minor-free graphs of odd-girth at least 2k+1. The
question of finding a smallest such graph is discussed in that paper, where it is shown that the order of
a smallest such graph must be Θ(k2). One naturally expects that the analogous question would become
more difficult for PT t,2k+1 with t ≥ 3. While generally this might be the case, in this section we show
that the case t = 3 is rather special by providing the optimal answer. Here we give a graph of odd-girth
2k + 1 on 22k vertices which bounds the class PT 3,2k+1, and we point out that there can be no such
graph with smaller order. Our results here can be viewed as the strongest support provided so far for
the general case of a conjecture in extension of the four-color theorem. This conjecture will be restated
after we introduce the necessary definitions.

We first recall the definition of a Cayley graph: let Γ be an additive group and let S be a symmetric
subset of Γ (i.e., for each x ∈ S we have −x ∈ S), furthermore, suppose that 0 is not a member of S.
Then the Cayley graph (Γ, S) is the graph whose vertices are elements of Γ, and where two vertices x
and y are adjacent if and only if x− y ∈ S. The fact that S is symmetric implies that G is a graph and
not a digraph. As we will consider only binary groups here, we have −x = x for each x, and thus all
sets are symmetric here. The important advantage of considering Cayley graphs on binary groups is the
naturally associated edge-coloring. Given a Cayley graph on a binary group, to each edge uv we assign
u+ v = u− v = v − u ∈ S.

The main targets of this section are the following Cayley graphs on the binary group Zk
2 .

Definition 6.1. The projective cube of dimension k is the Cayley graph (Zk
2 , {e1, e2, . . . , ek, J}) where

the ei’s are the vectors of the standard basis and J is the all-1 vector.

Recall that the Cayley graph (Zk
2 , {e1, e2, . . . , ek}) is the well known hypercube H(k), where graph

distances are the same as Hamming distances. Therefore PC(k) is built from H(k) by adding an edge
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between antipodal pairs. It is not hard to see that this graph is also built from H(k + 1) by identifying
antipodal pairs. This projection has given the choice of name “projective cube” for these graphs. However,
they are more often referred to as “folded cube”. It can be easily checked that PC(2k − 1) is bipartite.
On the other hand, PC(2k) is a 4-chromatic graph of odd-girth 2k + 1. It is easily verified that PC(2)
is isomorphic to K4, thus the following conjecture of the second author from [14] is an extension of the
four-color theorem:

Conjecture 6.2. Every planar graph of odd-girth at least 2k + 1 admits a homomorphism to PC(2k).

The conjecture is believed to be true for the larger class of K5-minor-free graphs (see [16]). Even
a further extension using the notion of signed graphs is considered, we refer to [16] for more details.
The conjecture is about finding an optimal bound in the following sense: it is proved in [18] that if the
conjecture is true, then PC(2k) is a smallest graph (both in terms of the number of edges and of the
number of vertices) of odd-girth 2k + 1 which bounds the class of all planar graphs of odd-girth at least
2k+1. That is to say, if B is a graph of odd-girth 2k+1 to which every planar graph of odd-girth at least
2k + 1 admits a homomorphism, then B has at least as many vertices and as many edges as PC(2k).

The case k = 1 of the conjecture is just the four-color theorem, and its extension to the K5-minor-free
graphs is obtained by Wagner’s theorem on decomposition of K5-minor-free graphs. The case k = 2 is
proved in [14] (using the four-color theorem) and its extension to K5-minor-free graphs is given in [19].
The case k = 3 follows from recent results on edge-coloring of planar multigraphs which are also based
on the four-color theorem (see [16]).

For larger values of k the conjecture remains open, and the best known support was a verification
for the class of K4-minor-free graphs proved in [2]. Here, as an application of our work, we show that
the conjecture holds for the larger class of partial 3-trees of odd-girth at least 2k + 1. We note that
this is a subclass of K5-minor-free graphs, but it does contain some non-planar graphs. Thus our result
here provides the strongest evidence so far in support of the conjecture. To proceed we need to establish
some notation and prove some properties of PC(2k). To this end we will have to provide proofs for some
already known facts about projective cubes and then strengthen such results.

We start by recalling a general fact about Cayley graphs on binary groups. Let G be a Cayley graph
on a binary group and let φ be the associated edge-coloring. Suppose v1, v2, . . . , vl, v1 is a closed-walk of
G (with this order of vertices). Then φ(v1v2) + φ(v2v3) + · · · + φ(vlv1) = 2(v1 + v2 + · · · + vl) = 0. In
particular this is the case for all cycles.

Consider the set S2k = {e1, e2, . . . , e2k, J}. The only linear relations among elements of S2k are 2x = 0

for every x and
∑

x∈S2k

x = 0. This fact, together with the previous observation, partitions the set of cycles

of PC(2k) into two types: (i) cycles C where φ(v1v2) +φ(v2v3) + · · ·+φ(vlv1) = 0 because every element
of S2k appears an even number of times as a color on the edges of C (0 as an even number is also allowed),

and (ii) cycles C where φ(v1v2) + φ(v2v3) + · · · + φ(vlv1) =
∑

x∈S2k

x = 0, that is to say every element of

S2k appears as color on edges of C an odd number of times. As S2k has an odd number of elements, this
second type of cycles then correspond to the class of odd-cycles of PC(2k) while the first type correspond
exactly the class of even-cycles. As a consequence, we get that PC(2k) has odd-girth 2k+ 1. But in fact
a stronger statement follows, based on the following notation:

Let u and v be two vertices of PC(2k), P be a shortest u − v path and Suv be the set of the colors
of edges of P (thus Suv ⊂ S2k).

Theorem 6.3. Given PC(2k) and any two vertices u and v, the set Suv corresponding to the colors of
the edges of a shortest u−v path P is independent of the choice of P and thus well defined. Furthermore,
given a u − v path P ′ of length 2k + 1 − d(u, v), the set of colors of the edges of P ′ is S̄uv = S2k \ Suv

and is thus independent of the choice of P ′.

Proof. Let P be a u− v path of length d(u, v) and let Suv be the set of colors of the edges of P . Our first
claim is that |Suv| = d(u, v). Let s1, s2, . . . , sl be the elements of Suv that appear an odd number of times
on the edges of P . If l = d(u, v), then each si must appear exactly once and we are done. Otherwise,
consider the path ux1x2 . . . xl, with x1 = u+ s1 and xi = xi−1 + si for i = 2, . . . l. It follows that xl = v
and that this is a shorter u− v path.

Next we claim that for S′uv = S2k \ Suv there is a u − v path P ′ of length 2k + 1 − d(u, v) whose
set of colors is S′uv. Labeling elements of S′uv as s′1, s

′
2, . . . , s

′
r, one such a path P ′ is uy1y2 . . . yr, with
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y1 = u+ s′1 and yi = yi−1 + s′i for i = 2, . . . , r, noting that yr must be v.
Observe that the color sets corresponding to the two paths P and P ′ form a partition of S2k into Suv

(of size d(u, v)) and its complement S′uv (of size 2k + 1− d(u, v)). Now, as every u− v path Q of length
d together with P ′ forms a closed walk of length 2k + 1, and since PC(2k) has odd-girth 2k + 1, the set
of colors corresponding to the edges of Q must be the complement of S′uv, that is Suv. Similarly, every
u− v path Q′ of length 2k + 1− d must have the complement of Suv as its color set.

This leads to the following labeling of the edges of the complete graph on 22k vertices using PC(2k).

Definition 6.4. The PC(2k)-edge-labeled complete graph is the complete graph on vertices of PC(2k)
where each edge uv is labeled by the partition {Suv, S̄uv}.

Observe that by replacing each such label with the order of Suv (that is the smallest of the two
orders), we obtain the complete PC(2k)-distance graph which is (2k + 1)-wide since PC(2k) is of odd-
girth 2k + 1. Before we use this labeling to apply Theorem 4.3 on the complete PC(2k)-distance graph,
we use it to prove a high level of symmetry in PC(2k). To this end, we will need the following property
of the complete PC(2k)-distance graph.

Proposition 6.5. Let x, y and z be three vertices of the PC(2k)-edge-labeled complete graph. Let
A ∈ {Sxy, S̄xy}, B ∈ {Sxz, S̄xz} and C ∈ {Syz, S̄yz}. Depending on the parity of |A| + |B| + |C|, one of
the following holds:

• Each element of S2k appears in an even number of the sets A, B or C, that is to say, either it
appears in none of them, or in exactly two of them (this is the case when |A|+ |B|+ |C| is even).

• Each element of S2k appears in an odd number of the sets A, B or C, that is to say, it appears
either in exactly one of them, or in all three of them (this is the case when |A|+ |B|+ |C| is odd).

Proof. Observe that the choice of A corresponds to the colors of the edges of an x−y path PA. Similarly,
the choice of B and C corresponds to x−z path PB and y−z path PC , respectively. Thus |A|+ |B|+ |C|
corresponds to the length of the closed-walk starting at x and traversing PA, then PC and then returning
to x through PB . Thus the sum of the elements of A and B and C is 0. This means that if a color comes
an odd-number of times in the closed-walk, then so do all other colors, and thus |A|+ |B|+ |C| is an odd
number. Otherwise all colors appear an even number of times, which means |A|+ |B|+ |C| is also even
number.

Corollary 6.6. Given subsets A, B and C of the previous proposition such that |A|+ |B|+ |C| is odd,
the number of elements that appears in all three of them is 1

2 (|A|+ |B|+ |C| − (2k + 1)).

This corollary is of importance for two main reasons: The first reason is that |A|, |B| and |C| are the
edge weights of a weighted triangle in the complete PC(2k)-distance graph induced by x, y and z. Thus
this triangle is (2k + 1)-wide and the value 1

2 (|A| + |B| + |C| − (2k + 1)) of this corollary corresponds
to the value f2k+1(|A|, |B|, |C|) of Proposition 3.6. The second reason is that the number of elements
appearing in all three sets A, B and C is a function of the order of A, B and C and does not depend on
the choice of A, B, C. This implies a very high level of symmetry as we will discuss below.

A graph G is said to be distance transitive if for every two pairs (u, v) and (x, y) of vertices, if
dG(u, v) = dG(x, y), then there is an automorphism of G which maps u to x and v to y. Furthermore,
G is said to be triple transitive if for every two triples (u, v, w) and (x, y, z), if dG(u, v) = dG(x, y),
dG(u,w) = dG(x, z), dG(v, w) = dG(y, z), then there is an automorphism ζ of G such that ζ(u) = x,
ζ(v) = y and ζ(w) = z. In the next theorem we give a proof of a result of [13] (see also [3]) using the
terminology we have developed here which claims that PC(2k) is triple transitive. The ideas developed
in this proof are essential for the proof of Theorem 6.8.

Theorem 6.7. The graph PC(2k) is triple-transitive.

Proof. In order to prove this we need to introduce automorphisms of this graph. To this end, similar to
the labeling of the edges of the complete PC(2k)-labeled graph on 22k vertices, and using this labeling
of edges, we label the vertices of PC(2k) also by partitions of S2k. To start with, we label the vertex 0
by the trivial partition {∅, S2k}. Then the vertex u receives the label of the edge 0u, that is {S0u, S̄0u}.
Using this labeling, one easily observes that every permutation of S2k is an automorphism of the complete
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PC(2k)-labeled graph and, therefore, also an automorphism of PC(2k). In fact this is the full list of
automorphisms that has 0 as its fixed point, but we do not need to prove this fact here. Given a set
A ⊂ {e1, e2, . . . , e2k}, one may get an automorphism of the complete PC(2k)-labeled graph (and thus of
PC(2k)) by mapping the vertex labeled {X, X̄} to the vertex labeled {X ⊕A, X̄ ⊕A} (if a is the vector
in Z2k

2 whose support is A, then this automorphism corresponds to the mapping u → u + a). Unless A
is the empty set, this automorphism never fixes the vertex 0. By composing two of the automorphisms
described above one clearly gets an automorphism of the complete PC(2k)-labeled graph and thus of
PC(2k). This is indeed the full list of automorphisms of this graph, but we do not need to prove this
stronger statement here either.

To prove the claim of the theorem, let {x, y, z} and {u, v, w} be two triples of vertices of PC(2k) such
that dPC(2k)(x, y) = dPC(2k)(u, v), dPC(2k)(x, z) = dPC(2k)(u,w) and dPC(2k)(y, z) = dPC(2k)(v, w). Note
that by taking a symmetric difference, one may easily map the vertex u to the vertex x. If v and w are
mapped to v′ and w′ by this automorphism, then it is enough to prove that the triple {x, v′, w′} can be
mapped to {x, y, z} by an automorphism of PC(2k), so we may assume u = x in the rest of this proof.

The assumption of dPC(2k)(x, y) = dPC(2k)(x, v), dPC(2k)(x, z) = dPC(2k)(x,w) and dPC(2k)(y, z) =
dPC(2k)(v, w) implies that |Sxy| = |Sxv|, |Sxz| = |Sxw| and |Syz| = |Svw|. Consider the triangle induced
by the vertices x, y, z in the complete PC(2k)-labeled graph. The edges of this triangle are labeled by
{Sxy, S̄xy}, {Sxz, S̄xz} and {Syz, S̄yz}. Let A ∈ {Sxy, S̄xy}, B ∈ {Sxz, S̄xz}, and C ∈ {Syz, S̄yz} be such
that |A| + |B| + |C| is odd. Noting that |Sxy| ≤ k < S̄xy, let A′ be the element of {Sxv, S̄xv} which
is of the same order as A and define similarly B′ and C ′. To complete the proof it is enough to find a
permutation of S2k which maps A to A′, B to B′ and C to C ′.

Thanks to Corollary 6.6, we know that A, B, C have 1
2 (|A|+ |B|+ |C| − (2k + 1)) common elements

(each appearing in all three of them) and every other element of S2k appears exactly in one of them. The
same holds for A′, B′ and C ′. As |A| = |A′|, |B| = |B′| and |C| = |C ′|, the three sets A, B and C have
as many common elements as A′, B′ and C ′. Thus it is enough (and necessary) to choose a permutation
of S2k which maps the common elements of A, B, C to the common elements of A′, B′, C ′.

We are now ready to prove that the projective cube of dimension 2k satisfies the conditions of Theo-
rem 4.3 for t = 3 and odd-girth 2k + 1.

Theorem 6.8. The set W of all the 4-cliques of the complete PC(2k)-distance graph is (3, 2k+1)-closed.

Proof. Our proof is based on Theorem 6.7, and on the terminology developed in this section and in the
proof of Theorem 6.7. Since the projective cube PC(2k) is triple-transitive, we only need to prove that,
for each (2k + 1)-wide weighted graph (K4, w), there is an isomorphic copy of (K4, w) in W.

Let (K4, w) be a (2k + 1)-wide graph with vertices x, y, z, t. Suppose that w(xy) = a′, w(xz) =
b′, w(xt) = c′, w(zt) = a,w(yt) = b and w(yz) = c. To show that there exists at least one isomorphic
copy of this graph in the PC(2k)-distance graph, using the development in the proof of the previous
theorem, it is be enough to find subsets Sx, Sy, Sz and St of S2k such that the symmetric difference of
any two of them, or the complement of this set, has the same order as the weight on the corresponding
edge. For example, we want the symmetric difference Sx ⊕ Sy to be of order either a′ or 2k + 1− a′.

We recall that, by Proposition 6.5, with such a choice of the three subsets Sx, Sy and Sz, the three
symmetric differences corresponding to the edges of the xyz-triangle, i.e., Sx ⊕ Sy, Sy ⊕ Sz and Sz ⊕ Sx,
have the property that each element of S2k is in an odd number of them, that is to say, each element is
either exactly in one or in all three of them. Thus to prove our theorem, in what follows, we show how
to make this property hold for each triangle of the K4.

If necessary, we change the weight of an edge to its complementary weight 2k + 1 − w to make sure
that the elements of each pair {a, a′}, {b, b′}, {c, c′} are of the same parity and the sum a+ b+ c is odd.
Therefore, the weight sum of the four triangles of (K4, w) are a + b + c, a + b′ + c′, a′ + b + c′ and
a′ + b′ + c, each being an odd number. Let fx = 1

2 (a + b + c − 2k − 1), fy = 1
2 (a + b′ + c′ − 2k − 1),

fz = 1
2 (a′+b+c′−2k−1), and ft = 1

2 (a′+b′+c−2k−1). Since (K4, w) is (2k+1)-wide, by Theorem 3.7,
each of its four triangles is (2k + 1)-wide. Then by Proposition 3.6, we conclude that each of the four
values fv, v ∈ {x, y, z, t}, is a nonnegative integer not larger than the minimum of the three elements
defining it.

Next, we will assign a subset Avv′ of S2k = {e1, e2, . . . , e2k, J} to each edge vv′ of K4 such that |Avv′ |
(the order of Avv′) is either w(vv′) or 2k + 1 − w(vv′) and such that, for each triangle uvw of K4, each
element of {e1, e2, . . . , e2k, J} appears either in exactly one of Auv, Auw, Avw or in all of them, in order
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to satisfy Proposition 6.5 (here, u, v and w can be any triple among x, y, z, t; similarly v, v′ can be any
pair of vertices chosen from these four vertices).

Without loss of generality, assume that fx = min{fx, fy, fz, ft}. Our idea is to choose the six subsets
Avv′ of S2k (v and v′ being two distinct vertices of (K4, w)) in such a way that an fx number of the
elements of S2k belong to all six of them (unlike the other conditions, this is not the only way, depending
on the weight function w of (K4, w), there could be other types of solutions). Then, for the three edges
not incident to x (i.e., the edges of the triangle yzt), we will partition the remaining elements of S2k

according to the weight of the corresponding edges. Next, for each of the three triangles, namely xyz,
xyt and xzt, we need to pick, respectively, ft − fx, fz − fx and fy − fx more common elements. The
details of the whole process is as follows.

Let Sx be a subset of S2k = {e1, e2, . . . , e2k, J} of order fx. We partition the set S2k \ Sx into three
disjoint subsets Syz, Syt and Szt of order |Syz| = c−fx, |Syt| = b−fx, and |Szt| = a−fx. Observe that one
of these sets might be empty, but we cannot have two of them empty. For example, if c−fx = b−fx = 0,

then c =
1

2
(a + b + c − (2k + 1)) and b =

1

2
(a + b + c − (2k + 1)). Adding up these two identities we

conclude that a = 2k + 1, but we are restricted to the weights from 1 to 2k. Define Ayz = Syz ∪ Sx,
Ayt = Syt ∪ Sx and Azt = Szt ∪ Sx.

Let S′y, S′z and S′t be subsets of S2k such that S′y ⊂ Szt and |S′y| = fy−fx, S′z ⊂ Syt and |S′z| = fz−fx,
S′t ⊂ Syz and |S′t| = ft−fx. The set Sy = S′y∪Sx is of order fy, Sz = S′z∪Sx is of order fz and St = S′t∪Sx

is of order ft. Let Atx = (Syz −S′t)∪Sy ∪Sz, Azx = (Syt−S′z)∪Sy ∪St and Ayx = (Szt−S′y)∪Sz ∪St.
In summary, we have built subsets Azt, Ayt, Ayz, Atx, Azx and Ayx such that: (1) |Ayz| = c,

|Ayt| = b, |Atz| = a, |Atx| = c′, |Azx| = b′, |Ayx| = a′, (2) for each triangle induced by three vertices
among {x, y, z, t}, in the three sets corresponding to the three edges, each element of S2k appears either
once or three times.

With these choices of Avv′ , we may choose the following set of four vertices in PC(2k)-distance graph.

The first vertex, say x, can be any vertex. The vertices y, z and t are defined as follows: y = x+
∑

si∈Axy

si,

z = x +
∑

si∈Axz

si, t = x +
∑

si∈Axt

si, where the addition is done in Z2k
2 . The fact that every element of

S2k is in either all three of Axy, Axz and Ayz or just in one of them, implies that z = y +
∑

si∈Ayz

si. For

the same reason, similar relations hold between any two of the four vertices, that is to say, their binary
difference is equal to the sum of the elements of the set associated with the corresponding edge.

Recall that the size of Auv is either d(u, v) or 2k+ 1− d(u, v). Thus the four vertices x, y, z, t we have
defined above will have distances in PC(2k) equal to the corresponding weights in (K4, w) that we have
started with. This completes the proof.

Remark In the proof of this theorem we chose Sx to be a subset of all the sets Auv. Depending on
the weight function w, other solutions may exist. This shows that PC(2k) being triple transitive is the
limit of the symmetries of this graph and that PC(2k) is not 4-tuple transitive.

In support of Conjecture 6.2, we have the following theorem which is an immediate corollary of
Theorem 4.3 and Theorem 6.8.

Theorem 6.9. The projective cube of dimension 2k, PC(2k), is a graph of odd-girth 2k+1 which bounds
the class of partial 3-trees of odd-girth at least 2k + 1.

Next we claim that PC(2k) is a smallest graph of odd-girth 2k + 1 which may satisfy the statement
of the previous theorem. This claim is implicitly proved in [18] based on the following notation.

Definition 6.10. Given a graph G of odd-girth 2k + 1 and an integer l, l < k, the walk power G(2l+1)

of G is defined to be the graph on V (G) where vertices u and v are adjacent if and only if there is a
(u− v)-walk of length 2l + 1.

Given an odd number 2l+ 1, traversing an edge uv an odd number of times is a (u−v)-walk of length
2l + 1. Thus G is a subgraph of G(2l+1) for any choice of l. This is one of the main reasons because of
which we only considered walks of odd-length in this definition. The other reason is that the choice of an
odd number 2l+ 1 together with the condition of G being of odd-girth at least 2l+ 3 insure that G(2l+1)

has no loop. The following easy lemma is the main interest of this definition for us:
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Lemma 6.11. Let G and H be two graphs of odd-girth at least 2k + 1 and let φ : V (G) → V (H) be a
homomorphism of G to H. Then φ is also a homomorphism of G(2k−1) to H(2k−1).

Thus, if a graph B of odd-girth 2k + 1 bounds a class C of graphs, then |V (B)| is an upper bound
on the order of clique number of graphs in {G(2k−1)|G ∈ C}. To prove that PC(2k) has the smallest
order among graphs of odd-girth 2k+ 1 bounding PT 3,2k+1, we prove that this class of graphs has some
weak sense of perfectness. That is to say, there is a graph G ∈ PT 3,2k+1 for which the clique number
of G(2k−1) is 22k. This approach was introduced in [18], where a planar graph G of odd-girth 2k + 1
satisfying w(G(2k−1)) = 22k was built. Our observation here is that the construction given there is also
a partial 3-tree. Thus we only describe the construction to verify that the result is a partial 3-tree, and
refer the reader to [18] for the verification of w(G(2k−1)) = 22k.

Theorem 6.12. There exists a partial 3-tree G of odd-girth 2k+1 for which the graph G(2k−1) has clique
number 22k.

Sketch of proof: We consider the following construction of a planar graph G of odd-girth 2k+1 whose
walk power 2k − 1 has a clique of order 22k. The graph G is built iteratively, starting with a particular
subdivision G0 of K4 such, in a planar embedding, all four faces are odd-cycles of order 2k + 1. It is
shown that for any such subdivision, the walk power 2k−1 is a complete graph on 4k+ 2 vertices. Given
an already constructed graph Gi, if there is a u− v path P all of whose internal vertices are of degree 2,
then first add a new u− v path P ′ of the same length as P , and parallel to P so P and P ′ make a new
face of the plane graph, and then an internal vertex of P ′ is connected to a particular internal vertex
of P in such a way that the PP ′ face is split into two faces, each being a (2k + 1)-cycle, the result is

the graph Gi+1. If G
(2k−1)
i has a clique that uses l internal vertices of P , then we will find an extension

of it in G
(2k−1)
i+1 which uses l more vertices. With a specific choice of a subdivision of K4 and a specific

rule on connecting P and P ′, at the end of this process we will have a graph G for which G(2k−1) has a
22k-clique.

What we observe furthermore are a few easy facts whose proofs we leave to the reader:

* K4 is the first 3-tree.

* If G is a partial 3-tree and e is an edge of G, the any subdivision of e results in a partial 3-tree.

* If G is a partial 3-tree and P is a path whose internal vertices are of degree 2, then adding a vertex
which is joined to (only) three internal vertices of P is also a partial 3-tree.

One can view the construction of [18], sketched above, as repeated applications of these three steps.
Thus the resulting graph at each step, and in particular at the final step, beside being a planar graph is
also a partial 3-tree. We have thus constructed a partial 3-tree G of odd-girth 2k + 1 for which G(2k−1)

has clique number at least 22k. That the clique number of G(2k−1) is indeed 22k and not bigger follows
from the fact that G maps to PC(2k) by Theorem 6.9 (this fact was not verified in [18]).

In summary we have proved:

Theorem 6.13. The projective cube of dimension 2k, PC(2k), is a smallest graph, in terms of the
number of vertices, of odd-girth 2k + 1 which bounds the class PT 3,2k+1.

7. Application to edge-coloring

The edge-chromatic number of a multigraph G, denoted χ′(G), is the smallest number of matchings
into which E(G) can be partitioned. The fractional edge-chromatic number of G, denoted χ′f (G), is the
smallest total sum of nonnegative weights assigned to the matchings of G such that total weight of the
matchings containing each given edge is at least one. Given a subset S of an odd number of vertices, it

can be verified that
2|E(G[S])|
|S| − 1

is a lower bound for χ′f (G). Let Λ(G) = max
|S|odd

{2|E(G[S])|
|S| − 1

}. We refer to

the text book [21] for more on fractional coloring and for a proof and references to the following theorem:

Theorem 7.1. Given a multigraph G we have χ′f (G) = max{∆(G),Λ(G)}.
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Using this theorem, it can be easily verified that a cubic multigraph has fractional edge-chromatic
number exactly 3 if and only if it is bridgeless. Thus Tait’s classic reformulation of the four-color theorem
([25], then a conjecture) is to say that the edge-chromatic number of a cubic bridgeless planar multigraph
is equal to its fractional edge-chromatic number. With such a view, P. Seymour proposed the following
strong generalization:

Conjecture 7.2. [22] For every planar multigraph we have χ′(G) = dχ′f (G)e.

The conjecture is proved for K4-minor-free graphs in [24] (a different proof is provided in [9]), and
using this result it is proved in [12] for the larger class of K−5 -minor-free graphs, where K−5 is the graph
obtained from K5 by removing one edge. As a direct generalization of Tait’s statement, the case of
k-regular planar multigraphs satisfying χ′f (G) = k has got more attention. After verifying a condition
under which a k-regular multigraph satisfies χ′f (G) = k, this special case of the conjecture can be restated
as:

Conjecture 7.3. If G is a planar k-regular multigraph in which any set X of an odd number of vertices
is connected to V (G) \X by at least k edges, then G is k-edge-colorable.

The cases k = 4, 5 of this conjecture are proved in [10], the case k = 6 in [7], the case k = 7 in [8]
(see also [4]) and the case k = 8 in [5]. Proofs are based on induction on k, thus dependent on the case
of k = 3 which is equivalent to the four-color theorem. The case k = 4 is known to imply the four-color
theorem and one cannot expect an independent proof, however, it is not known whether the cases k ≥ 5
are stronger than the four-color theorem, though we expect them to be.

In this section, providing support for the general case of Conjecture 7.3, and as an application of our
work, we prove that Conjecture 7.3 holds on the subclass of (2k + 1)-regular planar multigraphs whose
duals are partial 3-trees. This subclass of planar graphs can be characterized as a minor closed family of
graphs with four forbidden minors given in Figure 4. Observe that two of these forbidden minors are K5

and K3,3, whose absence as a minor implies planarity, and that the other two are duals of the two planar
graphs of Figure 1.

Figure 4: Forbidden minors of the class of planar graphs whose duals are partial 3-trees

Theorem 7.4. Let G be a planar (2k+1)-regular multigraph whose dual is a partial 3-tree. Furthermore,
assume that for each subset X of an odd number of vertices, the number of edges connecting X to V (G)\X
is at least 2k + 1. Then χ′(G) = 2k + 1.

Proof. Let G be a planar (2k+ 1)-regular multigraph, together with a planar embedding, and GD be its
duals together with the corresponding planar drawing. Let X be a set of vertices of G and let δ(X) be
the set of edges with one end in X and another end in V (G) \ X. Each vertex of G corresponds to a
facial cycle of GD, which is a cycle of length 2k+ 1. More generally, given a set X of vertices of G, δ(X)
corresponds to a cycle CX of length |δ(X)| which bounds |X| faces of GD. As all of the facial cycles are
of odd-length, the parity of CX is determined by the parity of |X|. In other words, CX is an odd-cycle if
and only if X contains an odd number of the vertices of G. Thus the condition on G that for every set
X of an odd number of vertices δ(X) has at least 2k + 1 edges is equivalent to the statement that GD

has odd-girth 2k + 1.
Since GD has odd-girth 2k + 1, and since we have assumed it is a partial 3-tree, by Theorem 6.9

it admits a homomorphism to PC(2k). Under any such mapping, the image of each (2k + 1)-cycle of
GD is a (2k + 1)-cycle of PC(2k). Recall that the edges of PC(2k) are colored by the elements of the
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(2k + 1)-set S2k = {e1, e2, . . . , e2k, J}, where each (2k + 1)-cycle receives each color exactly once. Let φ
be a mapping of GD to PC(2k); we color the edges of GD using S2k as the color set, assigning to each
edge e the color of φ(e) in PC(2k). Consider a facial cycle Cv corresponding to a vertex v of G. As v
is of degree 2k + 1, Cv is a (2k + 1)-cycle which maps to a (2k + 1)-cycle of PC(2k). By Theorem 6.3,
the set of colors assigned to Cv is the whole set S2k having each color used exactly once. We may now
color the edges of G by assigning to each edge the color of its corresponding edge in GD. As the edges
incident to a vertex v correspond to the edges of a (2k+ 1)-cycle of GD, they receive distinct colors.

We restate the theorem also using the set of four forbidden minors:

Theorem 7.5. Let G be a (2k + 1)-regular multigraph which does not contain any of the four graphs
of Figure 4 as a minor. Furthermore, assume that for each subset X of an odd number of vertices, the
number of edges connecting X to V (G) \X is at least 2k + 1. Then χ′(G) = 2k + 1.

8. Remarks and discussion

At the end we have a few remarks:
1. We gave an independent proof that PC(2k) is triple-transitive. The proof was based on the fact

that given triples x, y, z and subsets A, B and C of S2k corresponding to three edges of the triangle
induced by xyz in PC(2k)-distance complete graph, if |A| + |B| + |C| is odd, then each element of S2k

is either in all three of them or exactly in one of them. Furthermore, the number of elements in all
three of them is only a function of the distances between x, y and z. But if a set of four vertices is
selected, then the common elements among six sets corresponding to the six edges of K4 is no longer
determined uniquely by the distances between the six pairs. Thus we can easily show that PC(2k) is not
4-tuple-transitive. When viewed as signed graphs, these properties extend to PC(2k − 1) as well. This
will be addressed in forthcoming work.

2. We find it rather surprising that a sort of perfectness holds for the class of partial 3-trees in
the following sense. The order of a smallest graph of odd-girth 2k + 1 to which every partial 3-tree of
odd-girth at least 2k+ 1 admits a homomorphism, the largest chromatic number of G(2k−1) when G is a
partial 3-tree of odd-girth at least 2k + 1 and the largest clique number of G(2k−1) when G is a partial
3-tree of odd-girth at least 2k + 1 are all 22k. This is not necessarily the case for the class of partial
t-trees, t 6= 3. For example, for the class of partial 2-trees, which is the same as the class of K4-minor-free
graphs, the smallest triangle-free graph to which every triangle-free graph with no K4-minor admits a
homomorphism is of order 8, but the largest clique one can find in a G(3) where G is a triangle-free graph
with no K4-minor is 6 (ongoing work of W. He, second author and Q. Sun, [11]).

3. We showed that PC(2k) has the smallest number of vertices among all graphs of odd-girth 2k + 1
which bounds all partial 3-trees of odd-girth at least 2k+ 1. It follows from a simple construction in [15]
that any such minimal bound must be of minimum degree at least 2k + 1. Thus PC(2k) is also optimal
in term of the number of edges.

4. Using terminology and discussions of [16] and [17], the question of bounding signed bipartite partial
t-trees will be addressed in a forthcoming work. Using such results, we will be able to present a 2k-regular
analogue of Theorem 7.4.
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