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Basis for high order divergence-free finite element spaces

A method classically used in the lower polynomial degree for the construction of a finite element basis of the space of divergence-free functions is here extended to any polynomial degree fora bounded domain without topological restrictions. The method uses graphs associated with two differential operators: the gradient and the divergence, and selects the basis using a spanning tree of the first graph. It can be applied for the two main families of degrees of freedom, weights and moments, used to express finite element differential forms.

Introduction

Graph techniques, and in particular the so-called tree-cotree decomposition, are widely used in computational electromagnetics. It was first introduced in [START_REF] Albanese | Integral formulation for 3d eddy-current computation using edge elements[END_REF] (see also [START_REF] Albanese | Magnetostatic field computations in terms of two-component vector potentials[END_REF]) and since then many works have adapted and extended this technique; see, for instance, Section 5.3 of the book of Bossavit [START_REF] Bossavit | Computational electromagnetism. Electromagnetism[END_REF] and the references therein. These works are based on the graph induced by vertices and edges of the mesh and for this reason it is not easy the extension to high order finite elements. The use of the degrees of freedom introduced in [START_REF] Rapetti | Geometrical localisation of the degrees of freedom for whitney elements of higher order[END_REF][START_REF] Rapetti | Whitney forms of higher degree[END_REF], the weights, leads to a natural extension because they have a straightforward geometrical visualization as a graph. This fact suggests how to proceed when using more classical degrees of freedom, the moments. For the latters the graph structure is not geometrically evident.

In this work we focus on the construction of a basis of the space of divergence free Raviart-Thomas finite elements of any polynomial degree using tree-cotree techniques.

The first results for finite elements of degree one are those of Hecht [START_REF] Hecht | Construction d'une base de fonctions P 1 non conforme à divergence nulle dans R 3[END_REF], Dubois [START_REF] Dubois | Discrete vector potential representation of a divergence-free vector field in threedimensional domains: numerical analysis of a model problem[END_REF] and Scheichl [START_REF] Scheichl | Decoupling three-dimensional mixed problems using divergence-free finite elements[END_REF], These authors assume that the computational domain is simply connected with connected boundary. This approach has been extended in [START_REF] Rapetti | Discrete vector potentials for nonsimply connected three-dimensional domains[END_REF] and [START_REF] Alonso Rodríguez | Finite element potentials[END_REF] to general computational domains for finite elements of degree one and our aim is to do so for finite elements of any polynomial degree. We will use the Finite Element Exterior Calculus (FEEC) formalism. It unifies the notation for the different finite element spaces involved in the construction and clarifies the important role that the de Rham complex and the homology of Ω play in the construction of the basis.

Let T be a tetrahedral mesh of a bounded polyhedral domain Ω ⊂ R 3 . We will denote P - r+1 Λ k (T ) the space of Whitney k-differential forms of degree r + 1 (see e.g. [START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF]). They can be identified with L r+1 , the Lagrange finite elements of degree r + 1, if k = 0, with N r+1 , the first family of Nédélec finite elements of degree r + 1, if k = 1, with RT r+1 , the Raviart-Thomas finite elements of degree r + 1, if k = 2, and with P r , the space of discontinuous piecewise polynomial functions of degree r, if k = 3. When using the lowest order Whitney elements on a simplicial complex, P - 1 Λ k (T ), with k = 0, 1, 2, 3, the degrees of freedom are supported on the vertices (V), edges (E), faces (F) and tetrahedra (T) of the mesh respectively. It is well known (see e.g. [START_REF] Bossavit | Computational Electromagnetism[END_REF]) that given an orientation to edges, faces and tetrahedra of the mesh, the matrices describing the differential operators d : P - 1 Λ k (T ) → P - 1 Λ k+1 (T ) in terms of the degrees of freedom are the transposed of the matrices of the boundary operators ∂ : C k+1 (T , Z) → C k (T , Z) being C k (T , Z) the group of k-chains in T . Figure 1 represents the de Rham's complex as in [START_REF] Bossavit | Magnetostatic problems in multiply connected regions: some properties of the curl operator[END_REF]. It summarizes these facts in both the continuous and the discrete case, with H k denoting the cohomology groups for k ∈ {0, 1, 2}. Since the boundary of an edge consists in two vertices, and any face belongs to the boundary of one or two tetrahedra, from the point of view of graph theory we observe that: i) the matrix associated with the gradient is the transposed of the all-nodes incidence matrix of a directed and connected graph having a node for each vertex and an arc for each (oriented) edge of the mesh; ii) the matrix associated with the divergence operator is an incidence matrix of a directed and connected graph having a node for each tetrahedra plus an additional node associated with the exterior of the domain, and an arc for each face. These facts have been used in different contexts as tree-cotree gauge (see [START_REF] Albanese | Magnetostatic field computations in terms of two-component vector potentials[END_REF], [START_REF] Albanese | Finite element methods for the solution of 3D eddy current problems[END_REF], [START_REF] Ren | Boundary edge elements and spanning tree technique in threedimensional electromagnetic field computation[END_REF], [START_REF] Manges | Tree-cotree decompositions for first-order complete tangential vector finite elements[END_REF]), construction of bases of the space of divergence-free Raviart-Thomas finite elements (see [START_REF] Alotto | Mixed finite element methods and tree-cotree implicit condensation[END_REF], [START_REF] Scheichl | Decoupling three-dimensional mixed problems using divergence-free finite elements[END_REF], [START_REF] Alonso Rodríguez | Graphs, spanning trees and divergence-free finite elements in domains of general topology[END_REF]) or the construction of discrete potentials (see [START_REF] Webb | A single scalar potential method for 3D magnetostatics using edge elements[END_REF], [START_REF] Alonso Rodríguez | Finite element potentials[END_REF]).

These two properties hold true also for r > 0 when using weights as degrees of freedom for u ∈ P - r+1 Λ k (T ) and a particular realizations of the moments (see e.g. [START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF])

u → S Tr S (u) ∧ η, η ∈ P r-(dim S-k) Λ dim S-k (S) ,
being S any subsimplex of the mesh and Tr S the trace operator on S. The key point is to use Bernstein polynomials to identify a basis of P r-(dim S-k) Λ dim S-k (S), following the approach in [START_REF] Ainsworth | Bernstein-Bézier finite elements of arbitrary order and optimal assembly procedures[END_REF] (see also [START_REF] Ainsworth | Bernstein-Bézier bases for tetrahedral finite elements[END_REF] where Bernstein polynomials are used to express a set of basis of P - r+1 Λ k (T )). In particular this result allows to extend to the high order case (r > 0) the two approaches presented in [START_REF] Alonso Rodríguez | Graphs, spanning trees and divergence-free finite elements in domains of general topology[END_REF] for the construction of a basis of the space of divergence-free Raviart-Thomas finite elements, RT 0 r+1 , in a general topological domain: to compute directly a basis of the kernel of the matrix associated with the divergence operator, or to compute it starting from a basis of the image of the matrix associated with the curl operator. In this second approach, if the boundary of the domain has p + 1 connected components with p > 0, it is necessary to complete this set with p discrete representatives of a basis of the second de Rham cohomology group (divergence free functions that are not curls). The extension of the first approach has been analyzed in [START_REF] Alonso Rodríguez | A graph approach for the construction of high order divergence-free raviart-thomas finite elements[END_REF].

In this paper we analyze the second approach that, if the boundary of the domain is connected, provides the moments of a basis of RT 0 r+1 by selecting some elements of a cardinal basis of N r+1 and computing their curls. More precisely the elements corresponding to the moments in a belted tree (a spanning tree if the domain is simply connected) of the graph associated with the gradient operator.

For the case r = 0 the use of a spanning tree of the graph associated with the gradient operator to identify a maximal set of linearly independent columns for the curl has been first proposed by Scheichl in a simply connected polyhedral domain Ω without cavities (see [START_REF] Scheichl | Decoupling three-dimensional mixed problems using divergence-free finite elements[END_REF] and [START_REF] Scheichl | Iterative solution of saddle point problems using divergence-free finite elements with applications to groundwater flow[END_REF]) and extended to domains with an arbitrary topology in [START_REF] Alonso Rodríguez | Graphs, spanning trees and divergence-free finite elements in domains of general topology[END_REF]. In R 2 , where the kernel of the curl operator reduces to constant functions, a basis of RT 0 r+1 for r ≥ 0, can be obtained computing the curl of a nodal basis of the space of continuous piecewise polynomial finite elements like in [START_REF] Wang | A robust numerical method for Stokes equations based on divergence-free H(div) finite element methods[END_REF].

Since PDEs have boundary condition we analyze how the construction has to be modified in order to take it into account. In this case we limit the analysis to simply connected computational domains.

This paper is organized as follows in Section 2 we introduce the notation concerning polynomial differential forms and the basic definitions for graphs. In Section 3 we precise the two families of degrees of freedom that will be considered in the sequel by relying on the notation for finite element exterior calculus. In Section 4 we first recall the dimension of the space RT 0 r+1 taking into account the homology of the domain Ω. Then we construct a basis of the range of the curl operator, that is suitably completed to obtain the desired basis when the boundary of Ω is not simply connected. Section 5 contains the construction of a basis of the space of divergence free finite element functions with zero trace on ∂Ω in the case of simply connected domains and some heuristics for the general case. Few conclusions are given in Section 6.

Notation and basic tools

We introduce the notation concerning polynomial differential forms and some basic definitions for graphs. Note that, depending on the notion, we will be working on either the whole simplicial mesh T or on the single element T of T .

Simplices and barycentric coordinates

Let j, l, m, n be integers such that 0 ≤ l -j ≤ n -m. By Σ(j : l, m : n) we denote the set of increasing maps from {j, . . . , l} to {m, . . . , n}, that is Σ(j : l, m : n) = {σ : {j, . . . , l} -→ {m, . . . , n} : σ(j) < σ(j + 1)

< • • • < σ(l)}.
We use multi-index notation and consider the sets

I(d + 1, r) := {α = (α 0 , . . . , α d ) ∈ N d+1 : |α| = r} being |α| = d i=0 α i .
The sum of multi-indexes of the same length is defined in the natural way. Let T ∈ R 3 be an 3-simplex with vertices x 0 , x 1 , x 2 , x 3 in general position. We let ∆(T ) denote all the subsimplices, or faces, of T , while ∆ k (T ) is the set of subsimplices of T of dimension k, for any selected value of k between 0 and 3. For each σ ∈ Σ(j : l, 0 : 3), we let f σ be the (oriented) closed convex hull of the vertices x σ(j) , . . . , x σ(l) which we henceforth denote by f σ = [x σ(j) , . . . , x σ(l) ]. There is a one-to-one correspondence between ∆ k (T ) and Σ(0 : k, 0 : 3).

Let L k be the set of indices ℓ such that s ℓ ∈ ∆ k (T ). By assigning an integer number a ℓ to each simplex s ℓ , we can define the k-chain c = ℓ∈L k a ℓ s ℓ , i.e. a formal weighted sum of k-simplices s ℓ in T . We denote by

C k (T ) := ℓ∈L k a ℓ s ℓ : s ℓ ∈ ∆ k (T ) and a ℓ ∈ Z
The boundary operator ∂ k takes a k-simplex s and returns the sum of all its (k -1)-faces f with coefficient 1 or -1 depending of whether the orientation of the (k -1)-face f matches or not with the orientation induced by that of the simplex s on f . The notion of boundary can be extended to a k-chain c by linearity, namely

∂ k c = ∂ k ( ℓ∈L k a ℓ s ℓ ) = ℓ∈L k a ℓ ∂ k (s ℓ ). Note that ∂ k is linear mapping from C k (T ) to C k-1 (T ) and we have ∂ 0 ∂ 1 ∂ 2 ∂ 3 0 ←-C 0 (T ) ←-C 1 (T ) ←-C 2 (T ) ←-C 3 (T )
From the property ∂ k ∂ k+1 = 0, it follows that Im ∂ k+1 ⊂ Ker ∂ k . The homology spaces H k (T ; Z) are defined as the quotient spaces

H k (T ; Z) = Ker ∂ k /Im ∂ k+1 , β k := dim H k (T , Z), k = 0, 1, 2.
Let P r (T ) denote the space of polynomials in n variables of degree at most r. In the following, λ T,0 , λ T,1 , . . . , λ T,n are the barycentric coordinate functions with respect to T . Each function λ T,i ∈ P 1 (T ) is determined by the equations λ T,i (x j ) = δ i,j , 0 ≤ i, j ≤ n, being δ .,. the Kronecker's symbol. All together, the functions λ T,i form a basis of P 1 (T ), are non-negative on T , and sum to 1 identically on T . To make for the higher order r ≥ 1, we introduce the Bernstein basis of the space P r (T ): it consists of all monomials of degree r in the variables λ T,i . We have

P r (T ) = span{λ α T : α ∈ I(n + 1, r)}, λ α T := λ α0 T,0 λ α1 T,1 . . . λ αn T,n .
Whenever a fixed simplex T is understood, we may simplify the notation by writing

λ i ≡ λ T,i , λ α ≡ λ α T .

Polynomial Differential Forms

We denote by Λ k (T ) the space of differential k-forms over T with smooth bounded coefficients. For k = 0, the set Λ 0 (T ) = C ∞ (T ) is the space of smooth functions over T with uniformly bounded derivatives of all orders. Furthermore, Λ k (T ) ̸ = {0} for 0 ≤ k ≤ n. We recall the exterior product ω ∧ η ∈ Λ k+l (T ) for ω ∈ Λ k (T ) and η ∈ Λ l (T ). Let d : Λ k (T ) → Λ k+1 (T ) denote the exterior derivative operator. We write dλ 0 , dλ 1 , . . . , dλ n ∈ Λ 1 (T ) for the exterior derivatives of the barycentric coordinate functions. Clearly

dλ 0 + dλ 1 + • • • + dλ n = 0, on T since n i=0 λ i = 1. If σ ∈ Σ(j : l, m : n), we set dλ σ := dλ σ(j) ∧ • • • ∧ dλ σ(l)
. For k > 0 any element ω of Λ k (T ) can be written as

ω = σ∈Σ(0:k-1,1:n) a σ dλ σ ,
where a σ ∈ C ∞ (T ). Taking a σ ∈ P r (T ) we obtain the space P r Λ k (T ) of polynomial differential k-forms of polynomial degree at most r. Moreover P r Λ 0 (T ) coincides with P r (T ).

For k > 0,

P 0 Λ k (T ) = span{dλ σ : σ ∈ Σ(0 : k -1, 1 : n)}.
Furthermore, if 0 < k < n, we can write

P r Λ k (T ) = span{λ α dλ σ : σ ∈ Σ(0 : k -1, 1 : n) and α ∈ I(n + 1, r)}. The set BP r Λ k (T ) := {λ α dλ σ : σ ∈ Σ(0 : k -1, 1 : n) and α ∈ I(n + 1, r)} (1) 
is a basis of P r Λ k (T ).

For k = 0 BP r Λ 0 (T ) := {λ α : α ∈ I(n + 1, r)} is a basis of P r Λ 0 (T ) while for k = n

BP r Λ n (T ) := {λ α dλ 1 ∧ • • • ∧ dλ n : α ∈ I(n + 1, r)}
is a basis of P r Λ n (T ).

A particular set of polynomial differential k-forms of polynomial degree 1 are the Whitney's differential forms. They are associated with the k-simplices f of T . If k = n then f = T and the Whitney's differential form w T is the volume form, of polynomial degree 0. Definition 1. Let k ≥ 0 and f ∈ ∆ k (T ). The Whitney's differential form w f associated with the subsimplex f is defined as follows:

• if k = 0 then f is a vertex of T , namely, f = [x i ] for i = 0, . . . , n, and w f = w [xi] = λ i ; • if k > 0 then f = f σ for a σ ∈ Σ(0 : k, 0 : n) and w fσ = k i=0 (-1) i λ σ(i) dw fσ\[x σ(i) ] being f σ \ [x σ(i) ] ∈ ∆ k-1 (T ) the oriented (k -1)-face of T with the vertices of f σ except x σ(i) .
We can write f σ \ [x σ(i) ] = [x σ(0) , . . . , x σ(i) , . . . , x σ(k) ], where the widehat means that the underlying term is omitted from the list. For each σ ∈ Σ(0 : k, 0 : n) it holds that

dw fσ = (k + 1)! dλ σ = (k + 1)! dλ σ(0) ∧ • • • ∧ dλ σ(k) .
Then

w fσ = k i=0 (-1) i λ σ(i) dw fσ\[x σ(i) ] = k! k i=0 (-1) i λ σ(i) dλ σ(0) ∧ • • • ∧ dλ σ(i) ∧ • • • ∧ dλ σ(k) .
In finite element exterior calculus, the space of Whitney's differential k-forms on T is denoted by

P - 1 Λ k (T ) := span{w f : f ∈ ∆ k (T )}.
Since there is a one to one correspondence between ∆ k (T ) and Σ(0 : k, 0 : n) we can also write

P - 1 Λ k (T ) := span{w fσ : σ ∈ Σ(0 : k, 0 : n)}.
Definition 2. Whitney's differential k-forms of polynomial degree r + 1 are the elements of the space

P - r+1 Λ k (T ) := span{λ α w fσ : σ ∈ Σ(0 : k, 0 : n) and α ∈ I(n + 1, r)}.
For k > 0, the space

P - r+1 Λ k (T ) ⊊ P r+1 Λ k (T ). For k = 0 P - r+1 Λ 0 (T ) = span{λ α λ i : i ∈ {0, . . . , n} and α ∈ I(n + 1, r)} = span{λ α : α ∈ I(n + 1, r + 1)} = P r+1 Λ 0 (T ).
For k = n

P - r+1 Λ n (T ) = span{λ α dλ 1 ∧ • • • ∧ dλ n : α ∈ I(n + 1, r)} = P r Λ n (T ).
Remark 3. It is worth noting that, in the n-simplex T with vertices x 0 , x 1 , . . . , x n , the elements belonging to the set

{λ α w fσ : σ ∈ Σ(0 : k, 0 : n), α ∈ I(n + 1, r)}
are not linearly independent. As an example, for n = 2, if k = 1, and r = 1, it can be veryfied that

λ 0 w [x1,x2] -λ 1 w [x0,x2] + λ 2 w [x0,x1] = 0. ( 2 
)
Given σ ∈ Σ(0 : k, 0 : n) we set

I σ (n + 1, r) := {α ∈ I(n + 1, r) : α i = 0 ∀ i < σ(0)}. When k = 0 then f σ is a vertex of T , namely, f σ = [x j ] being σ(0) = j.
In this case, to be clearer, we will sometimes use the notation

I [xj ] (n + 1, r) instead of I σ (n + 1, r). A basis of P - r+1 Λ k (T ) is BP - r+1 Λ k (T ) = {λ α w fσ : σ ∈ Σ(0 : k, 0 : n) and α ∈ I σ (n + 1, r)}.
For n = 2, k = 1 and r = 1, the 8 elements of

BP - 2 Λ 1 (T ), with T = [x 0 , x 1 , x 2 ], are λ i w [x0,x1] = λ i ( λ 0 dλ 1 -λ 1 dλ 0 ), i = 0, 1, 2, λ i w [x0,x2] = λ i ( λ 0 dλ 2 -λ 2 dλ 0 ), i = 0, 1, 2, λ i w [x1,x2] = λ i ( λ 1 dλ 2 -λ 2 dλ 1 ), i = 1, 2 .
The condition α ∈ I σ (3, 1) prevents λ 0 w [x1,x2] from being in the set BP - 2 Λ 1 (T ).

Graphs

We now introduce some basic definitions and results of graph theory that will be used in the sequel (they can be found, for instance, in [START_REF] Thulasiraman | Graphs: theory and algorithms[END_REF]).

A graph M = (N , A) consists of two sets: a finite set N = {n i } n i=1 of nodes and a finite set A = {a j } m j=1 of arcs. Each arc is identified with a pair of nodes. The two end nodes defining an arc need not be distinct. If the arc a j has the two end points equal to the same node n i then it is called a self-loop at node n i . If the arcs of M are identified with ordered pairs of nodes, then M is called a directed or an oriented graph. Otherwise M is called an undirected or a non-oriented graph. The following definitions concern both directed and undirected graphs.

A walk is a finite alternating sequence of nodes and arcs n i0 , a j1 , n i1 , a j2 , n i2 , . . . ,

n i K-1 , a j K , n i K , such that, for k ∈ {1, . . . , K}, the arc a j k is identifieed with the pair of nodes n i k-1 , n i k .
This walk is usually called a n i0 -n i K walk with n i0 and n i K referred to as the end or terminal nodes of this walk. A walk is open if its end nodes, n i0 , n i K are distinct; otherwise it is closed. A walk is a trail if all its arcs are distinct. An open trail is a path if all its nodes are distinct. A closed trail is a circuit if all its nodes except the end nodes are distinct. A graph is said to be acyclic if it has no circuits.

Two nodes n i , n i ′ are said to be connected in a graph M if there exists a n i -n i ′ path in M. A graph M is connected if there exists a path between every pair of nodes in M.

Finally we recall the definition of a spanning tree in a graph M = (N , A).

Definition 4. A tree in a graph M = (N , A) is a connected acyclic subgraph of M. A spanning tree S is a tree in M containing all its nodes.

It is worth noting that if S is a spanning tree of M = (N , A), then S = (N , B) with B ⊂ A. Moreover B has exactly n -1 arcs. If M is not connected, then it has not spanning trees. We recall also the definition of the all-nodes incidence matrix of a directed graph.

Definition 5. The all-nodes incidence matrix M e ∈ Z n×m of a directed graph M = (N , A), with n nodes N = {n i } n i=1 , m arcs A = {a j } m j=1 and with no self-loop, is the matrix with entries

[M e ] i,j =   
1 if a j is incident on n i and oriented away from it, -1 if a j is incident on n i and oriented toward it, 0 if a j is not incident on n i .

Weights and moments

We recall the two families of degrees of freedom that will be considered in the sequel by relying on the FEEC form.

Small simplices and weights

The concepts of small simplices and weights for polynomial differential forms in P - r+1 Λ k (T ), were born in [START_REF] Rapetti | Geometrical localisation of the degrees of freedom for whitney elements of higher order[END_REF][START_REF] Rapetti | Whitney forms of higher degree[END_REF], for any order k and any polynomial degree r ≥ 0, to solve the difficulty raised in [START_REF] Bossavit | Generating whitney forms of polynomial degree one and higher[END_REF]: "The main problem with such forms is the interpretation of DoFs" in geometrical terms. We recall these concepts here below with a notation adapted to the isomorphism we want to state between these new DoFs, the weights, and the classical ones, moments, introduced in [START_REF] Nédélec | Mixed finite elements in R 3[END_REF][START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF].

In the n-simplex T with vertices x 0 , x 1 , . . . , x n the principal lattice of order r + 1 (r ≥ 0) in T is the set of points defined by their barycentric coordinates with respect to the vertices of T as follows

S r+1 (T ) = x ∈ T : λ i (x) ∈ 0, 1 r + 1 , . . . , r r + 1
, 1 for each i ∈ {0, . . . , n} .

To each multi-index α ∈ I(n + 1, r) we associate an affine function,

τ α : T -→ T , such that τ α (λ i (x)) = λi(x)+αi r+1 . If f σ is a face of T then τ α (f σ ) := {τ α (x) : x ∈ f σ }.
Definition 6. The small k-simplexes of order r in T are the elements of the set

S k r (T ) = {τ α (f σ ) : f σ ∈ ∆ k (T ) and α ∈ I(n + 1, r)} = {τ α (f σ ) : σ ∈ Σ(0 : k, 0 : n) and α ∈ I(n + 1, r)}.
For k > 0, they are 1/(r + 1)-homothetic to k-faces of T , with vertices in S r+1 (T ). For k = 0, we have S 0 r (T ) = S r+1 (T ).

For k > 0 there is a one-to-one correspondence between the elements of S k r (T ) and the couples (σ, α) with σ ∈ Σ(0 : k, 0 : n) and α ∈ I(n + 1, r). In fact, if α, α ′ ∈ I(n + 1, r) and α ̸ = α ′ then τ α (T ) ∩ τ α ′ (T ) is either empty or an element of S 0 r (T ).

x 0 x 1 x 2
Figure 2: Points of the principal lattice for P - 4 Λ 0 (T ), where T is a 2-simplex. The node with barycentric coordinates ( 14 , 1 4 , 2 4 ) in T is shared by the three gray small triangles.

The weight of ω ∈ Λ k (T ) on a k-simplex s contained in T is denoted by s ω. If k = 0, for ω ∈ C ∞ (T ) and s ∈ T we have s ω = ω(s).
In particular we are interested in the following set of weights.

Definition 7. Let ω ∈ Λ k (T ), σ ∈ Σ(0 : k, 0 : n) and α ∈ I(n + 1, r). W σ,α (ω) := τα(fσ) ω. (3) 
The weights of Definition 7 are determinant in P - r+1 Λ k (T ), namely, if ω ∈ P - r+1 Λ k (T ) and s ω = 0 for all s ∈ S k r (T ) then ω = 0 (see [START_REF] Christiansen | On high order finite element spaces of differential forms[END_REF] for a proof). However, for 0 < k < n, the cardinality of the set of weights {W σ,α (ω) : σ ∈ Σ(0 : k, 0 : n), α ∈ I(n + 1, r)} is greater than the dimension of P - r+1 Λ k (T ). Hence in the sequel we often consider the following set of weights:

W k := {W σ,α (ω) : σ ∈ Σ(0 : k, 0 : n), α ∈ I σ (n + 1, r)}. (4) 
It is worth noting that W k is determinant (see [START_REF] Alonso Rodríguez | Towards nonuniform distributions of unisolvent weights for high-order Whitney edge elements[END_REF]) and its cardinality coincides with the dimension of P - r+1 Λ k (T ).

Remark 8. Only one of the three representations for the small node shared by the three gray small triangles in Figure 2 verifies the condition α i = 0 for all i < σ(0) required to support a weight of the set defined in (4). The first representation fails the condition (in the up-left gray small triangle, α 0 ̸ = 0 with 0 < σ(0) = 1), the second satisfies it (in the up-right gray small triangle, α 1 ̸ = 0 with 1 > σ(0) = 0), the third fails too (in the bottom-center gray small triangle, α 0 ̸ = 0 with 0 < σ(0) = 2).

Moments associated with a basis of polynomial differential forms

Let ω be a differential k-form defined on

T ⊂ R n . For each d-face f ζ of T , with ζ ∈ Σ(0 : d, 0 : n) and k ≤ d ≤ n, the moments of ω in f ζ of degree r -(d -k) are M ζ,η (ω) := f ζ Tr f ζ ω ∧ η, ∀ η ∈ P r-(d-k) Λ d-k (f ζ ) , (5) 
where Tr f ζ is the trace operator on f ζ . It is well known that these moments are determinant in P - r+1 Λ k (T ). Taking η in a basis of each space P r-(d-k) Λ d-k (f ζ ), one obtains a determinant set of moments with cardinality equal to the dimension of P - r+1 Λ k (T ) (see [START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF] and [START_REF] Christiansen | On high order finite element spaces of differential forms[END_REF], for two different proofs). The goal of the present work is to point out an isomorphism between moments and weights which is consistent in a sense specified in the next sections with the exterior derivative operator. To do that, we will consider a particular basis of the space P r-(d-k) Λ d-k (f ζ ) in [START_REF] Albanese | Finite element methods for the solution of 3D eddy current problems[END_REF].

• If d = k we adopt the Bernstein's basis of the space P r (f ζ ), namely

BP r Λ 0 (f ζ ) = {λ β f ζ : β ∈ I(d + 1, r)},
where

λ β f ζ = λ β0 f ζ ,0 . . . λ β d f ζ ,d = λ β0 T,ζ(0) . . . λ β d T,ζ(d) .
• If d > k we rely on the basis indicated in (1), namely,

BP r-(d-k) Λ d-k (f ζ ) = {λ β f ζ (dλ f ζ ) ρ : ρ ∈ Σ(0 : d -(k + 1), 1 : d), β ∈ I(d + 1, r -(d -k))}.
Here (dλ

f ζ ) ρ = dλ f ζ ,ρ(0) ∧ • • • ∧ dλ f ζ ,ρ(d-(k+1)) = dλ T,ζ(ρ(0)) ∧ • • • ∧ dλ T,ζ(ρ(d-(k+1))) .
With these choices of basis we obtain the following moments for ω ∈ Λ k (T ): for each ζ ∈ Σ(0 : k, 0 : n), and

β ∈ I(k + 1, r) M ζ,∅,β (ω) := f ζ Tr f ζ ω ∧ λ β f ζ ; (6) for each d > k, ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d -(k + 1), 1 : d) and β ∈ I(d + 1, r -(d -k)) M ζ,ρ,β (ω) := f ζ Tr f ζ ω ∧ λ β f ζ (dλ f ζ ) ρ . (7) 
We use the notation "ρ = ∅" when d = k since Σ(0 : d -(k + 1), 1 : d) has not been defined for d = k. We thus have the following set of moments for ω ∈ P - r+1 Λ k (T ):

M k := {M ζ,ρ,β (ω) : ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d -(k + 1), 1 : d),
and

β ∈ I(d + 1, r -(d -k)) with k ≤ d ≤ n}. (8) 
Remark 9. If ω ∈ Λ 0 (T ), then

• when d = k = 0, then ζ ∈ Σ(0 : 0, 0 : n), so f ζ = [x j ]
for some j ∈ {0, . . . , n}; moreover I(1, r) has a unique element, hence β = (r) and we have

M ζ,∅,β (ω) = ω(x j ) • when d > 0, then ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d -1, 1 : d) and β ∈ I(d + 1, r -d). It is worth noting that Σ(0 : d-1, 1 : d) has a unique element and (dλ f ζ ) ρ = dλ ζ(1) ∧• • •∧dλ ζ(d) , namely M ζ,ρ,β (ω) = f ζ Tr f ζ ω ∧ λ β f ζ (dλ ζ(1) ∧ • • • ∧ dλ ζ(d) ).
4 A basis of the space of divergence-free finite elements

The dimension

The de Rham diagram in terms of functional spaces and corresponding conforming finite element spaces reads

0 → H 1 (Ω) -→ H(curl; Ω) -→ H(div; Ω) -→ L 2 (Ω) grad curl div 0 → L r+1 (T ) -→ N r+1 (T ) -→ RT r+1 (T ) -→ P r (T )
where → is the inclusion. Our aim is to construct a basis in RT r+1 (T ) of Ker(div).

In terms of forms, the de Rham diagram reads

0 → Λ 0 (Ω) -→ Λ 1 (Ω) -→ Λ 2 (Ω) -→ Λ 3 (Ω) d 0 d 1 d 2 0 → P - r+1 Λ 0 (T ) -→ P - r+1 Λ 1 (T ) -→ P - r+1 Λ 2 (T ) -→ P - r+1 Λ 3 (T )
The differential operators grad, curl, and div correspond to d 0 , d 1 , and d 2 respectively. The spaces P - r+1 Λ k (T ) for k ∈ {0, 1, 2, 3} are spaces of "trimmed" polynomial differentilal k-forms.

The cohomology spaces H k (Ω) are defined as

H k (Ω) = Ker d k /Im d k-1 , β k := dim H k (Ω), k = 1, 2; β 0 = dim(Ker d 0 ).
If Ω is connected then

β 0 = 1. In P - r+1 Λ k (T ) one obtains dim (Ker d k ) = β k + dim (Im d k-1 )
.

By the rank theorem, we have

dim (Im d k-1 ) = dim P - r+1 Λ k-1 (T ) -dim (Ker d k-1 )
.

By relying on recursivity,

dim (Ker d 1 ) = β 1 + dim (Im d 0 ) = β 1 + dim P - r+1 Λ 0 (T ) -dim (Ker d 0 ) = β 1 + dim P - r+1 Λ 0 (T ) -β 0 . It thus holds dim (Ker d 2 ) = dim P - r+1 Λ 1 (T ) -dim P - r+1 Λ 0 (T ) + β 2 -β 1 + β 0 .
We are interested in the case k = 2 that in terms of functional spaces reads

dim (Ker div) = β 2 + dim (Im curl) = dim (N r+1 (T )) -dim (L r+1 (T )) + β 2 -β 1 + β 0 .
We will start by constructing a basis of Im(curl).

Construction of a basis of RT r+1 (T ) ∩ Im(curl)

A classical approach for the low order finite element spaces (r = 0) uses the graph defined by vertices and edges of the mesh. It is based in the construction of a spanning tree, if β 1 = 0 (see, [START_REF] Scheichl | Decoupling three-dimensional mixed problems using divergence-free finite elements[END_REF]) or a belted tree, if β 1 ̸ = 0, of this graph (see, [START_REF] Rapetti | Discrete vector potentials for nonsimply connected three-dimensional domains[END_REF], [START_REF] Alonso Rodríguez | Finite element potentials[END_REF]). In the sequel we will study how to extend this approach to high order finite element spaces (r > 0). If β 1 = 0 the extension is natural once one has a set {DoF k j } j∈J k , k ∈ {0, 1} of unisolvent degrees of freedom in P - r+1 Λ k (T ) with the following property: Property 1. For each j ∈ J 1 there exist exactly two elements ini(j), end(j) ∈ J 0 such that

DoF 1 j (d 0 ω) = DoF 0 end(j) (ω) -DoF 0 ini(j) (ω), ∀ ω ∈ P - r+1 Λ 0 (T ).
Let {ω k j } j∈J k be the cardinal basis of P - r+1 Λ k (T ) for a set of degrees of freedom verifying Property 1. For the construction of such a basis see, e. g., [START_REF] Bonazzoli | High-order finite elements in numerical electromagnetism: degrees of freedom and generators in duality[END_REF].

If ϕ ∈ P - r+1 Λ 0 (T ) then ϕ = i∈J0 DoF 0 i (ϕ) ω 0 i and d 0 ϕ ∈ P - r+1 Λ 1 (T ). We thus have

d 0 ϕ = j∈J1 DoF 1 j (d 0 ϕ) ω 1 j = j∈J1 DoF 0 end(j) (ϕ) -DoF 0 ini(j) (ϕ) ω 1 j .
This means that the matrix of the operator d 0 : P - r+1 Λ 0 (T ) -→ P - r+1 Λ 1 (T ), when using these bases, is the transpose of the all nodes incidence matrix of an oriented graph M r+1 = (N r+1 , A r+1 ) where each degree of freedom DoF 0 i of (P - r+1 Λ 0 (T )) * corresponds with a node of the graph and each degree of freedom DoF 1 j of (P - r+1 Λ 1 (T )) * corresponds with an arc of the graph. We thus have, card(N r+1 ) = dim(P - r+1 Λ 0 (T )) and card(A r+1 ) = dim(P - r+1 Λ 1 (T )). The arc DoF 1 j goes from the node DoF 0 ini(j) to the node DoF 0 end(j) if and only if DoF 1 j (dω) = DoF 0 end(j) (ω) -DoF 0 ini(j) (ω) for any ω ∈ P - r+1 Λ 0 (T ). We are interested in two different families of degrees of freedom that satisfy Property 1: weights, {W k j } j∈J k , and moments, {M k j } j∈J k . In the low order case (r = 0) weights and moments coincide and it is natural to identify the graph M 1 with the graph defined by vertices and edges of the mesh. Indeed, natural degrees of freedom for P - 1 Λ k (T ) are the values on the vertices of the mesh for k = 0 and the circulation along the (oriented) edges of the mesh for k = 1.

In the high order case (r > 0) the situation is similar when using weights. In fact, it is natural to identify the graph M r+1 with the graph defined by the small vertices and those small edges chosen to obtain a unisolvent set of degrees of freedom. Also in this case there is a one to one correspondence between weights and geometrical (small) objects.

In the case of moments the geometrical realization of the graph M r+1 is more abstract because the degrees of freedom can be associated with geometrical objects of any dimension. For this reason it is useful to rely on the canonical isomorphism between weights and moments described in [START_REF] Alonso Rodríguez | Weights for moments' geometrical localization: a canonical isomorphism[END_REF] that preserves the matrix of the d 0 operator. In other words, with this isomorphism it turns out that the graphs of weights and moments coincide.

We recall that the graph M 1 allows to organize the set of indices in such a way that it is easy to identify the degrees of freedom that correspond with the kernel of the operator d 1 . In the following we will show that the graph M r+1 can be used similarly for r > 0.

Let us consider a spanning tree S r+1 = (N r+1,S , A r+1,S ) of this graph M r+1 . Then we have that card(A r+1,S ) = card(N r+1,S )-1 = dim P - r+1 Λ 0 (T ) -1; the arcs in A r+1,C = A r+1 \A r+1,S belong to the cotree and card(A r+1,C ) = card(A r+1 ) -card(A r+1,S ) = dim P - r+1 Λ 1 (T )dim P - r+1 Λ 0 (T ) + 1. A spanning tree of the graph M r+1 can be constructed as explained in [START_REF] De Los Santos | Construction of a spanning tree for high-order edge elements[END_REF] for weights. Then, its construction can be done also for moments, by relying on the canonical isomorphism defined in [START_REF] Alonso Rodríguez | Weights for moments' geometrical localization: a canonical isomorphism[END_REF].

Proposition 1. Let {DoF 1 j } j∈J1 be a set of unisolvent dofs in N r+1 (T ) and {DoF 0 j } j∈J1 a set of unisolvent dofs in L r+1 (T ) verifying Property 1. If the associated graph M r+1 = (N r+1 , A r+1 ) is connected, let S r+1 = (N r+1 , A r+1,S ) be a spanning tree of M r+1 . Let J S 1 := {j ∈ J 1 : DoF 1 j ∈ A r+1,S } and J C 1 = J 1 \ J S 1 . Let {ω j } j∈J1 be the cardinal basis for the set {DoF 1 j } j∈J1 of degrees of freedom of N r+1 (T ). If β 1 = 0 then the set {curl ω j } j∈J C 1 is linearly independent. If, in addition, β 2 = 0 then it is a basis of RT r+1 (T ) ∩ H 0 (div; Ω).

Proof. First we will prove that if j∈J C 1 c j curl ω j = 0 and β 1 = 0 then the coefficient c j = 0 for all j ∈ J C 1 . We have

0 = j∈J C 1 c j curl ω j = curl   j∈J C 1 c j ω j   β1=0 =⇒ j∈J C 1 c j ω j = grad ϕ (9) 
for some ϕ ∈ L r+1 (T ). To conclude the proof, we will show that in fact grad ϕ = 0; since {ω j } j∈J1 is a basis of N r+1 (T ) this imply that c j = 0 for all j ∈ J C 1 .

Since {ω j } j∈J1 is the cardinal basis of N r+1 (T ) for the set of degrees of freedom {DoF 1 j } j∈J1 , then DoF 1 j ′ (ω j ) = δ j,j ′ for all j, j ′ ∈ J 1 . Moreover, J S 1 ∩ J C 1 = ∅, hence we have

DoF 1 j ′ (grad ϕ) = DoF 1 j ′   j∈J C 1 c j ω j   = j∈J C 1 c j DoF 1 j ′ (ω j ) = j∈J C 1 c j δ j,j ′ = 0 for each j ′ ∈ J S 1 .
Using Property 1 it follows that

0 = DoF 1 j ′ (grad ϕ) = DoF 0 end(j ′ ) (ϕ) -DoF 0 ini(j ′ ) (ϕ) for each j ′ ∈ J S 1 .
Since S is a spanning tree of M which is connected, it follows that there exists c ∈ R such that DoF 0 i (ϕ) = c for all i ∈ J 0 . Then in fact DoF 1 j (grad ϕ) = DoF 0 end(j) (ϕ) -DoF 0 ini(j) (ϕ) = 0 for all j ∈ J 1 and grad ϕ = 0 because {DoF 1 j } j∈J1 is a set of unisolvent dofs in N r+1 (T ). Therefore DoF 1 j (dϕ) = 0 for all j ∈ J 1 and then dϕ = 0 because this set of degrees of freedom is unisolvent. Recalling that dϕ = j∈J C 1 c j ω j it follows that c j = 0 for all j ∈ J C 1 because {ω j } j∈J1 is a basis of P - r+1 Λ 1 (T ).

If β 1 ̸ = 0, namely, if Ω is not simply connected, there exist curl free functions that are not gradients and the implication in ( 9) is not true.

A polynomial differential form ω ∈ P - r+1 Λ 1 (T ) is exact, namely, ω = d 0 φ for some φ ∈ P - r+1 Λ 0 (T ), if and only if γ ω = 0 for any 1-chain γ = e∈E a e e with a e ∈ Z of oriented edges of the mesh T such that

∂ 1 γ = e∈E a e ∂ 1 e = 0.
In terms of weights, we get 

r! α! λ α α! := α 0 ! • • • α n ! Then γ ω = e∈supp(γ) a e e ω = e∈supp(γ) a e α∈I(2,r) e ω ∧ r! α! λ α = r! e∈supp(γ) a e α∈I(2,r) e ω ∧ 1 α! λ α = r! e∈supp(γ) a e α∈I(2,r) M e,∅,α (ω)
where the last term is the sum of moments [START_REF] Albanese | Finite element methods for the solution of 3D eddy current problems[END_REF] for

ω ∈ P - r+1 Λ 1 (T ) in f ζ = e, with d = k = 1 and η = 1 α! λ α .
Our aim is to extend to the high order case the notion of belted tree (see e.g. [START_REF] Kettunen | Formulation of the eddy current problem in multiply connected regions in terms of h[END_REF], [START_REF] Ren | Boundary edge elements and spanning tree technique in threedimensional electromagnetic field computation[END_REF], [START_REF] Rapetti | Discrete vector potentials for nonsimply connected three-dimensional domains[END_REF]). We start by recalling the definition of belted tree for the graph M 1 given by vertices and edges of the mesh T .

To this end we assume to know a set of β 1 polygonal loops in T , {σ l } β1 l=1 , mutually disjoint and without self-intersection, representing a basis of H 1 (T ; Z). Each loop σ l can be written as σ l = e∈E σ l,e e with σ l,e ∈ {-1, 0, 1}. For each l = {1, . . . , β 1 }, select one edge e * l belonging to σ l . The set ∪ β1 l=1 (supp(σ l ) \ {e * l }) is therefore a tree and it is possible to construct a spanning tree S 1 = (N 1 , A 1,S ) of the graph M 1 = (N 1 , A 1 ) such that all the edges of each σ l \ {e * l } belong to this spanning tree, while the edges {e * l } β1 l=1 belong to the cotree. The subgraph

B 1 = (N 1 , A 1,S ∪ {e * l } β1 l=1
) is called belted tree of the graph M 1 . We are doing an abuse of notation since the arcs in the graph M 1 are in fact degrees of freedom. So, instead of e we should write W e (ω) or M e (ω), being W e (ω) = M e (ω) = e ω and the loop in M 1 should be in reality σ l = e∈E σ l,e W e (•) = e∈E σ l,e M e (•).

When we are in the graph M r+1 the corresponding loops read G W l = e∈E σ l,e α∈I(2,r) W e,α (•) or G M l = e∈E σ l,e α∈I(2,r) M e,∅,α (•) (we use G l when it is not necessary to specify the type of degrees of freedom). The coefficients σ l,e are those of the geometrical loop σ l while the multi-indices α take care of the higher polynomial degree. Moreover when using weights one has G W l (ω) = e∈E σ l,e α∈I(2,r) W e,α (ω) = σ l ω and when using moments G M l (ω) = e∈E σ l,e α∈I(2,r) M e,∅,α (ω) = 1 r! σ l ω. The definition of a belted tree of the graph M r+1 for any r ≥ 0 is a straightforward extension of that done in the geometrical graph (the one defined by the vertices and edges of the mesh).

The arcs of G l are identified by a couple ϵ = (e, α) with e ∈ E and α ∈ I(2, r) and the support of G l is supp(G l ) := {ϵ = (e, α) : σ e,l ̸ = 0}. For each l = {1, . . . , β 1 }, select one arc (for weights, one small edge) ϵ * l ∈ supp(G l ). The set ∪ β1 l=1 (supp(G l ) \ {ϵ * l }) is therefore a tree and it is possible to construct a spanning tree S r+1 = (N r+1 , A r+1,S ) of the graph M r+1 = (N r+1 , A r+1 ) such that all the arcs of each supp(G l ) \ {ϵ * l } belong to this spanning tree, while the arcs {ϵ * l } β1 l=1 belong to the cotree. The subgraph

B r+1 = (N r+1 , A r+1,S ∪ {ϵ * l } β1 l=1 ) is called belted tree of the graph M r+1 . It is worth noting that supp(G l ) ⊂ A r+1,S ∪ {ϵ * l } β1 l=1 for all l ∈ {1, . . . , l}. Let J B 1 := {j ∈ J 1 : DoF 1 j ∈ A r+1,S ∪{ϵ * l }} and J CB 1 = J 1 \J B 1 . If {ω j } j∈J1 is the cardinal basis for the set {DoF 1 j } j∈J1 then DoF 1 i (ω j ) = 0 if i ∈ J B 1 and j ∈ J CB 1 . Hence, G l (ω j ) = 0 for all j ∈ J CB 1 .
Moreover we recall that A r+1,BC = A r+1 \ (A r+1,S ∪ {ϵ * l } β1 l=1 ) and thus card(A r+1,BC ) = card(A r+1 ) -card(A r+1,S ) -

β 1 = dim(P - r+1 Λ 1 (T )) -dim(P - r+1 Λ 0 (T )) + 1 -β 1 .
Proposition 2. Let {ω j } j∈J1 be the cardinal basis of N r+1 (T ) for either weights {W 1 j } j∈J1 or moments {M 1 j } j∈J1 . The set {curl ω j } j∈J CB 1 is linearly independent and its cardinality coincides with the dimension of RT r+1 (T ) ∩ Im(curl), thus it is a basis for the latter space. If β 2 = 0 then it is a basis of RT r+1 (T ) ∩ H 0 (div; Ω).

Proof. We will proceed as in the proof of Proposition 1. If Moreover from the definition of J CB 1 and taking again into account that ω j is the cardinal basis for the degrees of freedom, {DoF 1 j } j∈J 1 , it is clear that for l ∈ {1, . . . , β 1 }. For weights we have

σ l j∈J CB 1 c j ω j = j∈J CB 1 c j σ l ω j = j∈J CB 1 c j G W l (ω j ) = 0
and similarly for moments we obtain

σ l j∈J CB 1 c j ω j = j∈J CB 1 c j σ l ω j = r! j∈J CB 1 c j G M l (ω j ) = 0.
In conclusion γ j∈J CB 1 c j ω j = 0 for any 1-chain γ of T with ∂γ = 0. Then Poincaré duality yields j∈J CB 1 c j ω j = grad ϕ for some ϕ ∈ L r+1 (T ). Then, the proof ends by the same mathematical steps done to prove Proposition 1.

If β 2 = 0, then card(A CB ) is the dimension of RT r+1 (T ) ∩ H 0 (div; Ω) and the "recipe" to construct a basis of RT r+1 (T ) ∩ H 0 (div; Ω) is given in Algorithm 1.

Algorithm 1 (case β 2 = 0) 1. Select a basis {ν j } j∈J1 of N r+1 (T ).

Select a set {DoF 1

j } j∈J1 of unisolvent dofs in N r+1 (T ) and a set {DoF 0 j } j∈J1 of unisolvent dofs in L r+1 (T ) verifying Property 1.

3. Construct the cardinal basis {ω j } j∈J1 for the set {DoF 1 j } j∈J1 in terms of the basis {ν j } j∈J1 .

Construct the associated graph

M r+1 = (N r+1 , A r+1 ).
5. Construct a belted spanning tree B r+1 = (N r+1 , A r+1,B ).

6. Compute curl ω j , for each index j associated with an arc not in A r+1,B .

Note that if β 1 = 0 then B r+1 is in fact a spanning tree of the graph M r+1 .

Making for a basis of RT

r+1 (T ) ∩ H 0 (div; Ω) when β 2 ̸ = 0
If β 2 ̸ = 0 then the space of divergence-free Raviart-Thomas finite elements that are not the curl of Nédélec finite elements is non trivial and has dimension β 2 . So we have to add, for each n = 1, . . . , β 2 , one solution z h,n ∈ RT r+1 (T ) of div z h,n = 0 in Ω

(∂Ω) ℓ z h,n • n Ω = δ n,ℓ ℓ = 1 . . . , β 2 , (10) 
where (∂Ω) ℓ , for ℓ ∈ {0, 1, . . . , β 2 } are the connected components of ∂Ω being (∂Ω) 0 the external one. Each one of these problems has solution and it is unique up to a curl. For any choice of z h,n the set {z h,n } β2 n=1 is linearly independent. In fact, if

β2 n=1 c n z h,n = 0 then for any ℓ ∈ {1, . . . , β 2 } one has 0 = (∂Ω) ℓ β2 n=1 c n z h,n • n Ω = β2 n=1 c n (∂Ω) ℓ z h,n • n Ω = β2 n=1 c n δ n,ℓ = c ℓ .
Proposition 3. Let {ω j } j∈J1 be the cardinal basis of N r+1 (T ) for either weights {W 1 j } j∈J1 or moments {M 1 j } j∈J1 . For each n ∈ {1, . . . , β 2 }, let z h,n be a solution of [START_REF] Alonso Rodríguez | A graph approach for the construction of high order divergence-free raviart-thomas finite elements[END_REF]. The set

{curl ω j } j∈J CB 1 ∪ {z h,n } β2 n=1 is a basis of RT r+1 (T ) ∩ H 0 (div; Ω).
Proof. First we notice that the cardinality of the set {curl

ω j } j∈J CB 1 ∪ {z h,n } β2 n=1 is equal to dim(P - r+1 Λ 1 (T )) -dim(P - r+1 Λ 0 (T )) + 1 -β 1 + β 2 .
It remains to prove that the set {curl

ω j } j∈J CB 1 ∪ {z h,n } β2 n=1 is linearly independent. If j∈J CB 1 ĉj curl ω j + β2 n=1 c n z h,n = 0 then, by Stokes' theorem 0 = (∂Ω) ℓ   j∈J CB 1 ĉj curl ω j + β2 n=1 c n z h,n   • n Ω = (∂Ω) ℓ β2 n=1 c n z h,n • n Ω = c ℓ
for all ℓ ∈ {1, . . . , β 2 }. Thus j∈J CB 1 ĉj curl ω j = 0. In Proposition 2 we have proved that the set {curl ω j } j∈J CB 1 is linearly independent so, also the coefficients ĉj are equal to zero.

It is possible to consider solutions of Problem [START_REF] Alonso Rodríguez | A graph approach for the construction of high order divergence-free raviart-thomas finite elements[END_REF] in RT 1 (T ) ⊂ RT r+1 (T ). This case has been studied in [START_REF] Alonso Rodríguez | Finite element potentials[END_REF] Section 5 where it is proposed a very efficient algorithm for the computation of the solution. The algorithm uses the dual mesh of T . It is an elimination procedure that follows the arcs of a spanning tree of the graph defined by the dual vertices (the barycenters of the elements) and the dual edges (one associated to each face of the mesh). This algorithm has been extended to the case r > 0 in [START_REF] Alonso Rodríguez | A graph approach for the construction of high order divergence-free raviart-thomas finite elements[END_REF] relying on the use of the weights as degrees of freedom for both RT r+1 (T ) and P r (T ). It follows the arcs of a spanning tree of the graph with nodes the barycenters of the small elements and arcs associated to the small faces chosen to obtain a unisolvent set of degrees of freedom for RT r+1 (T ) (see Figure 3). In Figure 4, we summarizes the situation. Due to the property that d 1 d 0 = 0, we cannot construct a divergence-free basis of RT 0 r+1 starting from the curl of a basis of N r+1 because they are not linear independent. However, the spanning (eventually belted) tree for the gradient of function L r+1 allows to identify the set (associated with the corresponding co-tree) of indices K * = • J1,CB of columns in G ⊤ that will provide a part of this basis, once we apply on them the curl operator (see Proposition 4). If β 2 (Ω) ̸ = 0, the basis has to be completed by hands, by adding the generators of H 2 (see Proposition 6), namely the solution of problem [START_REF] Alonso Rodríguez | A graph approach for the construction of high order divergence-free raviart-thomas finite elements[END_REF], for each l = 1, ..., β 2 (Ω) + 1. 5 On the construction of a basis of RT r+1 ∩ H 0 (div 0 ; Ω)

If z ∈ RT r+1 ∩ H(div 0 ; Ω) and Tr ∂Ω z = 0 then z = curl u for some u ∈ H * (curl; Ω) = {u ∈ H(curl; Ω) : curl u • n Ω = 0 in ∂Ω} = {u ∈ H(curl; Ω) : curl τ (n Ω × u × n Ω ) = 0 on ∂Ω}.
So our aim is to construct a basis of curl(N r+1 ∩ H * (curl; Ω)). Clearly H 0 (curl; Ω) ⊂ H * (curl; Ω). First we will construct a basis of curl(N r+1 ∩ H 0 (curl; Ω)) and then we will complete it to obtain the desired basis.

In the following, for both Lagrange and Nédélec elements we distinguish boundary and internal degrees of freedom. The boundary degrees of freedom are "supported" by subsimplices completely contained on ∂Ω. The internal degrees of freedom are those that are not boundary degree of freedom. We set

• J 1 = J 1 \ J ∂
1 where J ∂ 1 denotes the set of indices corresponding to Nédélec internal degrees of freedom. Similarly • J 0 = J 0 \ J ∂ 0 with J ∂ 0 the set of indices corresponding to Lagrange internal degrees of freedom.

By the rank theorem

dim (curl(N r+1 ∩ H 0 (curl; Ω))) = dim(N r+1 ∩ H 0 (curl; Ω)) -dim(N r+1 ∩ H 0 (curl 0 ; Ω)).
We recall that N r+1 ∩ H 0 (curl 0 ; Ω) = grad(L r+1 ∩ H 1 * (Ω)) being

H 1 * (Ω) = ϕ ∈ H 1 (Ω) : ϕ |(∂Ω)n is constant ∀ n ∈ {1, . . . , β 2 (Ω)} .
The dimension of L r+1 ∩ H 1 * (Ω) is equal to the dimension of L r+1 ∩ H 1 0 (Ω) plus the number of connected components of ∂Ω namely,

β 2 (Ω) + 1. Moreover dim grad(L r+1 ∩ H 1 * (Ω) = dim(L r+1 ∩ H 1 * (Ω)) -1 (with the -1 since constants have zero gradient), hence dim (curl(N r+1 ∩ H 0 (curl; Ω))) = dim(N r+1 ∩ H 0 (curl; Ω)) -(dim(L r+1 ∩ H 1 0 (Ω)) + β 2 (Ω)). We obtain dim (curl(N r+1 ∩ H 0 (curl; Ω))) = card • J 1 -card • J 0 -β 2 (Ω).
To construct a basis of RT r+1 ∩ curl(H 0 (curl; Ω)) = curl(N r+1 ∩ H 0 (curl; Ω)) the idea is to contract to a single node the nodes of the graph M r+1 that correspond to Lagrange degrees of freedom supported in the same connected component of the ∂Ω. The incidence matrix of the new graph

• Mr+1= ( • N r+1 , • Ar+1 
) is computed by replacing all the rows of the incidence matrix of M r+1 related to Lagrange degrees of freedom supported on a connected component of ∂Ω with a single row equal to their sum, and removing the columns with all the entries equal to zero that are those of the contracted arcs. The number of arcs in 

• J 0 ) + β 2 (Ω) + 1. Let • Sr+1= ( • N r+1,S , • Ar+1,S) be a spanning tree of • Mr+1. We denote • J 1,S := {j ∈ • J 1 : DoF 1 j ∈ • Ar+1,S} and • J 1,C = • J 1 \ • J 1,S . We recall that, being • Sr+1 a spanning tree of • Mr+1, it holds that card( • J 1,S ) = card( • N r+1,S ) -1 = card( • J 0 ) + β 2 (Ω).
Proposition 4. Let {ω j } j∈J1 be the cardinal basis of N r+1 (T ) for either weights {W

1 j } j∈J1 or moments {M 1 j } j∈J1 . The set {curl ω j } j∈ • J 1,C is a basis of curl(N r+1 ∩ H 0 (curl; Ω)).
Proof. First we notice that card(

• J 1,C ) = card • J 1 -card( • J 1,S ) = card • J 1 -(card • J 0 +β 2 (Ω)) = dim (curl(N r+1 ∩ H 0 (curl; Ω))) .
Then we prove that the set {curl ω j } j∈ 

• J 1,C is linearly independent, namely, if j∈ • J 1,C c j curl ω j = 0 then the coefficient c j = 0 for all j ∈ • J 1 
= j∈ • J 1,C c j curl ω j = curl    j∈ • J 1,C c j ω j    it holds that j∈ • J 1,C c j ω j = grad ϕ
for some ϕ ∈ L r+1 (T ). Now the proof follows as that for Proposition 1.

If β 1 (Ω) = 0 then H * (curl; Ω) = H 0 (curl; Ω). We thus have the following.

Corollary 10. If β 1 (Ω) = 0, the set {curl ω j } j∈ • J 1,C
is a basis of RT r+1 ∩ H 0 (div 0 ; Ω)).

If β 1 (Ω) ̸ = 0 this basis has to be completed with β 1 (Ω) elements that are the curl of functions that are in N r+1 ∩ (H * (curl; Ω) \ H 0 (curl; Ω)). We don't know an efficient algorithm based on graphs to construct these functions. Methods using other strategies can be found in [START_REF] Bermúdez | A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations[END_REF], [START_REF] Lara | Spectral approximation of the curl operator in multiply connected domains[END_REF], [START_REF] Alonso Rodríguez | A graph-based algorithm for the approximation of the spectrum of the curl operator[END_REF] or [START_REF] Alonso Rodríguez | Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems[END_REF]. For the sake of completeness in the sequel we provide some insights on these functions. It is worth noting that these finite element functions could be chosen of polynomial degree lower than r + 1, in particular of polynomial degree one.

The first step to understand the nature of these functions is to characterize the subspace of functions in H * (curl; Ω) that are not in H 0 (curl; Ω) (see Figure 5). It is clear that H(curl 0 ; Ω) ⊂ H * (curl; Ω) but the functions of H(curl 0 ; Ω) do not contribute to the construction of a basis of curl(N r+1 ∩ H * (curl; Ω)). So we are interested in functions of H * (curl; Ω) \ [H 0 (curl; Ω) ∪ H(curl 0 ; Ω)]. For the sake of simplicity in the following we assume β 2 (Ω) = 0. Let D be a parallelepiped in R 3 such that Ω is strongly contained in D. Let us denote Ω ′ = D \ Ω (the domain Ω ′ is connected when β 2 (Ω) = 0). If β 1 (Ω) ̸ = 0 there exist 1-chains lying on ∂Ω such that they are the boundary of 2-chains of T but they are not the boundary of any surface contained in Ω ′ . The maximum number of 1-chains with this property, that are homologically independent on ∂Ω, is equal to β 1 (Ω). For the construction see [START_REF] Hiptmair | Generators of H 1 (Γ h , Z) for triangulated surfaces: construction and classification[END_REF] and [START_REF] Alonso Rodríguez | Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems[END_REF]. For each 1-chain γ of this type, there exist functions ρ ∈ H(curl 0 ; Ω ′ ) such that γ ρ = 1 and Tr ∂Ω (ρ) ∈ Tr ∂Ω (N r+1 (T )) (see e.g. [START_REF] Alonso Rodríguez | Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems[END_REF]). It is worth noting that the trace on ∂Ω of ρ ∈ H(curl 0 ; Ω ′ ) is not zero since γ ρ = 1 and γ lies on ∂Ω. would belong to H(curl 0 , D) hence it would be a gradient. This is not possible because γ ρ ̸ = 0. Hence ρ ∈ N r+1 (T ) ∩ H * (curl; Ω) \ H 0 (curl; Ω) ∪ H(curl 0 ; Ω) . This construction has to be done for each element of a set {γ l } β1(Ω) l=1

of 1-cycles homologically independent on ∂Ω and homologically trivial in Ω. We will denote ρ γ l the function on H(curl 0 ; Ω ′ ) with γn ρ γ l = 1δ n,l .

The following heuristic resume this construction:

Heuristic reasoning to build a basis of the space curl(N r+1 (T ) ∩ H * (curl; Ω)). is a basis of curl(N r+1 (T ) ∩ H * (curl; Ω)).

Conclusions

We have constructed a basis of the finite element space RT r+1 ∩ H(div 0 ; Ω) using the tree-cotree technique that is well-known when r = 0. We have extended the technique to the case r > 0 without any restriction on the homology of the computational domain. The algorithm can be applied to the two families of degrees of freedom used in this framework: weights and moments.

The key point in the extension of the graph techniques to high order finite elements is the visualization of the graph associated with the degrees of freedom that the use of weights provides.

We have also considered the case of functions with zero trace, namely the space RT r+1 ∩ H 0 (div 0 ; Ω). Also in this case we propose an algorithm based on the tree-cotree decomposition of a suitable graph to construct a basis when β 1 (Ω) = 0. When β 1 ̸ = 0 to have a basis it is necessary to complete the set obtained using the tree-cotree decomposition with β 1 functions associated to 1-cycles on ∂Ω that do not bound any surface contained in R 3 \ Ω, the complementary of Ω.

In the future we will work to design an efficient algorithm to compute a basis of RT r+1 ∩ H 0 (div 0 ; Ω) without any restriction on the homology of the computational domain. We can connect M L v me(0) ,∅,α ′ with a node of G e while the second one M L v me (1) ,∅,α ′ connects with a node of G e hence G * e is connected. For each e ∈ E, G * e is a path connecting the Lagrange moments associated with the vertices of the mesh in ∆ 0 (e). Hence if Ω is connected the graph ∪ e∈E G * e is connected. To conclude the proof we notice that we have an arc of M G = (M L , M N ) that connects a node of G f with a node of G f -[v m f (2) ] and an arc that connects a node of G t with a node of G t-[v m t (3) ] . Since each node of M G belongs to a subgraph of the type G * e or G f or G t this prove that M G is connected.
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 1 Figure 1: The de Rham complex for the continuous spaces (left) and for Whitney differential forms (right).
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  e,α (ω) being supp(γ) = {e ∈ E : a e ̸ = 0}. In terms of moments, we first recall that
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 111 j curl ω j = 0 then clearly curl j∈J CB j ω j = 0 and, by Poincaré duality, γ j∈J j ω j = 0 for all γ that is the boundary of a 2-chain of T .

Figure 3 :

 3 Figure 3: (Taken from [7]) Example of spanning tree in the (dual) graph, namely a selection of acyclic paths made of arcs, visiting all the nodes of the (dual) graph (r = 1, left and r = 2, right).

Figure 4 :

 4 Figure 4: A graphical summary of the structure of the basis of RT 0 r+1 and its construction (in the case β 2 (Ω) = 0). Here, K * = • J1,CB and K = J 1,CB , with or without B depending on β 1 (Ω).
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  Mr+1 is equal to the number of internal Nédélec degrees of freedom, namely card( • J 1 ) while the number of nodes in • Mr+1 is equal to the number of internal Lagrange degrees of freedom plus the number of connected components of ∂Ω, namely card(

  ,C . The arcs of the graph • Mr+1 are the internal degrees of freedom of N r+1 hence we have that Tr ∂Ω j∈ • J 1,C c j ω j = 0. Then, if 0

Figure 5 :

 5 Figure 5: A visualization of the subspaces we consider in H * (curl; Ω). All the functions in the rectangle are in H(curl 0 ; Ω)) = ∇ H 1 (Ω) ⊕ H 1 (Ω). Here, ∇ H 1 * (Ω) ⊂ ∇ H 1 (Ω), moreover ∇ H 1 * (Ω) ⊂ H 0 (curl; Ω)∩H(curl 0 ; Ω) since the elements of ∇ H 1 * (Ω) are gradients, with a constant value on each connected component of ∂Ω.

  It is possible to construct a finite element extension of this trace in N r+1 (T ), namely a function ρ ∈ N r+1 (T ) such that Tr ∂Ω ( ρ) = Tr ∂Ω (ρ). Clearly ρ ∈ H * (curl; Ω) because curl ρ • n ∂Ω = curl τ (T r ∂Ω ( ρ)) = curl τ (T r ∂Ω (ρ)) = curl ρ•n ∂Ω = 0. However ρ ̸ ∈ H 0 (curl; Ω) since Tr ∂Ω (ρ) ̸ = 0, and curl ρ ̸ = 0 because otherwise the function R = ρ in Ω ρ in Ω ′

1 .. 2 .

 12 Construct a basis {curl ω j } j∈ • J 1,C of curl(N r+1 (T ) ∩ H 0 (curl; Ω)) using a cotree of the graph • Mr+1Compute a set {γ l } β1(Ω) l=1of 1-cycles homologically independent on ∂Ω and homologically trivial in Ω. These cycles generate H 1 (Ω ′ ).

3 . 4 .

 34 For each l ∈ {1, • • • , β 1 (Ω)} (i) compute the traces Tr ∂Ω ρ γ l ;(ii) compute an extension ρ γ l := ext(Tr ρ γ l ) to N r+1 (T ) of the traces in (i). The set {curl ω j }

Figure 6 :

 6 Figure 6: On the top an example of edge subgraph G *e . On the bottom, in blue, an example of face subgraph G f ; in red and green the three subgraphs of the edges on the boundary of f , in black, other arcs of the graph that are not on any face or edge sugraph.
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Appendix

For the sake of completeness, we report here, in terms of the new notation, the proof of Proposition 2.1, presented in [START_REF] De Los | Divergence-Free Finite Elements in General Topological Domains and Applications[END_REF], that the graph M r+1 is connected. Thiis a fundamental property for all the propositions stated in the previous sections.

the matrix that computes, from the moments of φ h , the moments of grad φ h then G ⊤ is the all-nodes incidence matrix of a directed graph M G with a node for each Lagrange moment and an arc for each Nédélec moment: M G = (M L , M N ). This graph is connected.

Proof. We have proven in [START_REF] Alonso Rodríguez | Weights for moments' geometrical localization: a canonical isomorphism[END_REF] that the matrix G ∈ R d N ×d L has two elements different from zero, one equal 1 and one equal -1, on each row hence G ⊤ is the all-nodes incidence matrix of a directed graph M G = (M L , M N ). To prove that it is connected we decompose it in edge, face and tetrahedra subgraphs (see Figure 6). . Hence it is possible to construct a path with

ζ,ρ,δ ′ : δ ′ ∈ I(4, r -3), ζ ∈ (0 : n, 0 : n), ρ ∈ Σ(0 : n -2, 1 : n)} and arcs A t = ∪ 1≤i<j≤3 {M N ζ,ρ,γ : γ ∈ I(4, r -2) with γ l ̸ = 0 if l ̸ ∈ {i, j}}. Procceding as for edges and faces it is easy to check that G t is connected.