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Upper bounds for the function solution of the homogenuous 2D

Bolzmann equation with hard potential

Vlad Bally∗

Abstract

We deal with ft(dv), solution of the homogenuous 2D Bolzmann equation without cutoff. An
important point is that the initial condition f0(dv) may be any probability distribution (except a
Dirac mass). However, for sufficientely hard potentials, the semigroup has a regularization property
(see [5]): ft(dv) = ft(v)dv for every t > 0. The aim of this paper is to give upper bounds for ft(v),

the more significant one beeing ft(v) ≤ Ct−ηe−|v|λ for some η, λ > 0.

Keywords: Bolzmann equation without cutoff, Hard potentials, Interpolation criterion, Integration
by parts.

2010 MSC: 60H07, 60J75,82C40.

1 Introduction and main results

We are concerned with the solution of the two dimensional homogenous Boltzmann equation:

∂tft(v) =

∫

R2

dv∗

∫ π/2

−π/2
dθ |v − v∗|γ b(θ)(ft(v′)ft(v′∗)− ft(v)ft(v∗)). (1.1)

Here ft(v) is a non negative measure on R2 which represents the density of particles with velocity v
in a model for a gas in dimension two, and, with Rθ being the rotation of angle θ,

v′ =
v + v∗

2
+Rθ

(
v − v∗

2

)
, v′∗ =

v + v∗
2

−Rθ

(
v − v∗

2

)
.

The function b : [−π
2 ,

π
2 ]8{0} verifies the following hypothesis:

(Hν) i) ∃0 < c < C s.t. cθ−(1+ν) ≤ b(θ) ≤ Cθ−(1+ν) (1.2)

ii) ∀k ∈ N,∃Ck s.t.
∣∣∣b(k)(θ)

∣∣∣ ≤ Ckθ
−(k+1+ν)

The rigorous sense of this equation is given by integrating against a test function - so one considers
weak solutions of (1.1). In [13] one proves that, for every ν ∈ (0, 12) and γ ∈ (0, 1], the above equation
has a unique weak solution. More precisely: one assumes that (Hν) holds and there exists λ ∈ (γ, 2)

such that
∫
e|v|

λ

f0(dv) < ∞. Then there exists a unique solution ft of (1.1) which starts from f0.

Furthermore the solution verifies supt≤T

∫
e|v|

λ′

ft(dv) < ∞ for every λ′ < λ. All over the paper these
hypotheses are in force.
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Notice that f0(dv) is a probability distribution which is not assumed to be absolutely continuous with
respect to the Lebesgue measure - we just assume that this is not a Dirac mass δv0(dv) (in this trivial
case the corresponding solution is ft(dv) = f0(dv) = δv0(dv) for every t > 0). Our first aim is to
give sufficient conditions under which, for every t > 0, one has ft(dv) = ft(v)dv, and to study the
regularity of ft(v). This problem has already been addressed in [5] for the same equation, in [12] for the
three dimensional Bolzmann equation and in [1] for the Bolzmann equation in an arbitrary dimension
(however, in this last paper, f0(dv) is assumed to be absolutely continuous and to have finite entropy).
For the Landau equation (γ = 0) this problem is addressed in [15] and [16] . Our second aim is to
give upper bounds for ft(v) - this type of result seems to be new.
Let us first present our results. We will use the function

ϕ(α) =
(1− ν)(1 + γ + α)

1 + ν(γ + α)
− 1 (1.3)

and we construct the sequences

αk+1 = ϕ(αk), κk+1 = κk − 1 +
12(2 + ν)

ν
(1 + αk+1) (1.4)

with α0 = 0 and κ0 = 0. We notice that ϕ is strictly increasing so that αk ↑ α∗ solution of ϕ(α∗) = α∗

(see (3.8) for the explicit value of α∗). And α1 = ϕ(0) > 0 is equivalent with ν < γ
2γ+1 .

In the following we assume that ν ∈ (0, 12) and γ ∈ (0, 1]. We also suppose that f0(dv) is not a Dirac

mass and that for some λ ∈ (γ, 2) one has
∫
e|v|

λ

f0(dv) <∞. Moreover, for every λ′ < λ we consider a

function Φλ′ ∈ C∞(R2) such that Φλ′(v) = e|v|
λ′

for |v| ≥ 2. The precise form of Φλ′ is given in (4.31).

Theorem 1.1 A.Suppose that ν < γ
2γ+1 . Then ft(dv) = ft(v)dv.

B. Let q ∈ {0, 1, 2}, k ∈ N and p > 1 be such that

q +
2

p∗
< φ(αk ∧ 2) = αk+1 ∧ ϕ(2). (1.5)

Then Φλ′ft ∈W q,p(R2) and for every λ′ < λ there exists a constant C ≥ 1 such that

‖Φλ′ft‖q,p ≤
C

tκk+1
. (1.6)

C a. If ν < γ
4γ+9 then Φλ′ft ∈ Lp(R2) for every p > 1 and

‖Φλ′ × ft‖p ≤
C

tη
with η =

2

ϕ(2)− 2

(
48(2 + ν)

ν
− 1

)
. (1.7)

b. If γ
4γ+9 ≤ ν < γ

2γ+1 then α∗ < 2 and Φλ′ft ∈ Lp(R2) for every 1 < p < 2
2−α∗

.

D.a If ν < γ
4γ+9 then Φλ′ft ∈W q,p(R2) for every 1 < p < pq, q = 1, 2 with

p1 =
2(1 + ν(γ + 2))

1− γ + 11ν + 5νγ
and p2 =

2(1 + ν(γ + 2))

2− γ + 13ν + 6νγ
(1.8)

Moreover for every p < pq one has (with η given in (1.7))

‖Φλ′ × ft‖q,p ≤
C

tη
. (1.9)

b. If γ
4γ+9 ≤ ν < γ

3γ+4 then α∗ < 3 and Φλ′ft ∈W 1,p(R2) for every 1 < p < 2
3−α∗

.
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In order to be able to compare this result with the ones in the papers which we quoted before we
take s > 1 and ν = 2

s−1 , γ = s−5
s−1 : these are the values which are significant in the case of the three

dimensional Bolzmann equation. Our condition γ > 0 implies that s > 5 and in the literature this
case is known as the ”hard potential” case. With this choice of ν and of γ we have ν < γ

2γ+1 iff s > 9

and ν < γ
4γ+9 iff s > 16 +

√
193 ∼ 30. So, although they are not identical, the regularity result in the

above theorem is analogous with the one in [5]. Notice that our result is less performing then the one
in [12] where one deals with the real three dimensional equation and one obtains absolute continuity
for a larger range for s. However our Lp estimates are stronger: we obtain Φλ′ × ft ∈ Lp(R2) instead
of ft ∈ L2(R2), and bounds depending polynomialy on t ↓ 0 are obtained. The result in [1] is stronger
in the sense that it applies to equations in any dimension but it is supposed that the initial condition
is already a function (so it is not really possible to compare them).
We give now some consequences of the previous result.

Corollary 1.2 Suppose that ν < γ
2γ+1 . Then for every λ′ < λ there exists a constant C ≥ 1 (depending

on λ′) such that for every R > 1, 0 < t ≤ 1

ft({v : |v| ≥ R}) ≤ C

tκ
e−Rλ′

with (1.10)

κ = κ1 =
12(2 + ν)(1− ν)(1 + γ)

ν(1 + νγ)
− 1. (1.11)

We give now the upper bound for ft :

Theorem 1.3 Suppose that ν < γ
4γ+9 . Then p1 > 2 (given in (1.8)) and ft ∈ C0,χ with χ = 1 −

2
p1
.Moreover for every λ′ < λ

|ft(v)| ≤
C

tη
e−|v|λ

′

(1.12)

with η given in (1.7). Moreover, for every v,w ∈ R2 with |w − v| ≤ 1

|ft(w)− ft(v)| ≤
C

tη
e−|v|λ

′

|w − v|χ . (1.13)

The estimate (1.12) seems to be new as well as the Hölder continuity of ft and equation (1.13).
However, in the case of the Landau equation (that is γ = 0), some lower and upper bounds for ft
have been obtained in [16]. In the above paper one uses integration by parts techniques based on the
Malliavin calculus for jump processes - this is not directly possible in our framework because of the
indicator function which appears in equation (2.2).
Corollary 1.2 and Theorem 1.3 are the main contributions of our paper. The drawback of our approach
is that our methodology allows to prove these properties for ”very hard potentials” only (s > 9 for
(1.10) respectively s > 30 for (1.12) and (1.13)). Moreover, η is not optimal - however this shows that
the blow up is at most polynomial as t→ 0.
The proof is based on a ”balance argument” which is interesting in itself so we give a hint here.
Consider a family of random variables Fε ∼ fε(v)dv, ε > 0 and a random variable F. We suppose
that d(F,Fε) → 0 and ‖fε‖ → ∞ as ε → 0. Here d is some given distance and ‖fε‖ is some Sobolev
norm (see below). If the convergence to zero is sufficiently faster than the blow up then one may
prove that F ∼ f(v)dv and obtains some regularity for f. This idea first appears in [14] and then
has been used in several papers (see [9] for example). In these papers the ”balance” between the
speed of convergence to zero and the blow up is built by using Fourier analysis. Later on in [8] one
introduced a new method based on a Besov space criterion, and this new method turns out to be
significantly more powerful then the one based on Fourier analysis. This is the method used in [12]
in the case of the three dimensional Bolzmann equaton (see also [7]). Finally, in [2] one introduced
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a third method which is close to the interpolation theory. The criterion that we use in the present
paper is an improvement of this last one.

In order to present this criterion we need to introduce some notation. For f ∈ C∞(Rd), k, h ∈ N and
p > 1 we define

‖f‖k,∞ =
∑

0≤|α|≤k

sup
x∈Rd

|∂αf(x)| , (1.14)

‖f‖k,h,p =
∑

0≤|α|≤k

(E(

∫

Rd

(1 + |x|)h |∂αf(x)|p dx))1/p (1.15)

‖f‖k,p = ‖f‖k,0,p =
∑

0≤|α|≤k

‖∂αf‖p . (1.16)

Here α = (α1, ..., αm) ∈ {1, ..., d}m , |α| = m is the length of the multi-index α and ∂α is the derivative
associated to α. Moreover for two measures µ, ν we consider the distance

dk(µ, ν) = sup{
∣∣∣∣
∫
fdµ−

∫
fdν

∣∣∣∣ : ‖f‖k,∞ ≤ 1}. (1.17)

For k = 0 this is the total variation distance and for k = 1 this is the Fortèt Mourier distance. Our
result is the following:

Theorem 1.4 Let q, k, d ∈ N and p > 1 be fixed. We consider a family of measures µε(dx) =
fε(x)dx, ε > 0 with fε ∈ C∞(Rd) and a finite measure µ on Rd which verify the following hypothesis.
There exists ε∗ > 0, β > 0, a ≥ 0, b ≥ 0, C0 ≥ 1 and Qh(q, p) ≥ 1, h ∈ N such that

i) dk(µε, µ) ≤ C0ε
β ∀ε ∈ (0, ε∗) (1.18)

ii) ‖fε‖2h+q,2h,p ≤ Qh(q, p)ε
−b(2h+q+a) ∀ε ∈ (0, ε∗),∀h ∈ N (1.19)

iii) r := β − b(k + q + d/p∗) > 0. (1.20)

We denote

h∗ =
1

ε∗
∨ b(q + a)(k + q + d/p∗)

r
∨ q + a

2
. (1.21)

Then, µ(dx) = f(x)dx with f ∈ W q,p(Rd). Moreover, for every δ > 0, there exists a constant C ≥ 1,
depending on q, k, d, p, δ, β and a, b only, such that for every h ≥ h∗ one has

‖f‖q,p ≤ C × C0 ×
(
h2bQ

1/2h
h (q, p)

)(1+δ)(k+q+d/p∗)
(1.22)

The upper bound given in (1.7) is based on (1.22).
The paper is organized as follows. In Section 2 we recall some results from [5] which represent the
basic estimates that we use in the sequel (following Tanaka [17] we introduce a stochastic equation
which represents the probabilistic representation of the Bolzmann equation and we construct some
regularized version of this equation; then we estimate the error done by using such a regularization
- this will be used in (1.18); moreover, we employ a Malliavin type calculus in order to build an
integration by parts formula which permits to obtain (1.19). All these non trivial estimates have
already been obtained in [5] and here we just use them. In Section 3 we use the results from Section
2 and Theorem 1.4 in order to prove Theorem 1.1, Corollary 1.2 and Theorem 1.3. Finally, in the
appendix we prove Theorem 1.4. We also develop a strategy based on integration by parts formulae
which allows to obtain the absolute continuity of the law of a random variable as well as upper bounds
for the density, in an abstract framework. This is done in Proposition 4.4 and Corollary 4.8.
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2 Preliminary results

In this section we present some results from [5]. Throughout this section we fix ν ∈ [0, 12), γ ∈ [0, 1]
and λ ∈ (γ, 2) and the corresponding solution ft(dv) (which exists and is unique). Our first goal is to
give the probabilistic interpretation of the equation (1.1). Using the Skorohod representation theorem
we may find a measurable function vt : [0, 1] → R2 such that for every ψ : R2 → R+

∫ 1

0
ψ(vt(ρ))dρ =

∫

R2

ψ(v)ft(dv). (2.1)

In [5] (following the ideas from [17]) one gives the probabilistic interpretation of the equation (1.1).
We recall this now. Let E = [−π

2 ,
π
2 ] × [0, 1] and let N(dt, dθ, dρ, du) be a Poisson point measure on

E ×R+ with intensity measure b(θ)dθ × dρ× du. Consider also the matrix

A(θ) =
1

2

(
cos θ − 1 − sin θ
sin θ cos θ − 1

)
=

1

2
(Rθ − I).

We are interested in the equation

Vt = V0 +

∫ t

0

∫

E×R+

A(θ)(Vs− − vs(ρ))1{u≤|Vs−−vs(ρ)|
γ}N(ds, dθ, dρ, du) (2.2)

with P (V0 ∈ dv) = f0(dv). Proposition 2.1 in [5] asserts that the equation (2.2) has a unique càdlàg
solution (Vt)t≥0 and P (Vt ∈ dv) = ft(dv) (in this sense Vt represents the probabilistic representation
for ft).
In order to handle the equation (2.2) we face several difficulties: the derivatives of the function
v → |v − vs(ρ)|γ blow up in the neighborhood of vs(ρ) - so we have to use a regularization procedure.
Moreover, this function is unbounded and so we use a truncation argument. Finally, the measure
θ−(1+ν)dθ has infinite mass, and it is convenient to use a truncation argument also. We follow here
the ideas and results from [5]. We fix η0 ∈ (1/λ, 1/(γ ∨ ν)). Given ε ∈ (0, 1] we denote Γε = (ln 1

ε )
η0

and we notice that since γη0 < 1 we have, for every C ≥ 1 and a > 0

lim
ε→0

εaeCΓγ
ε = 0 (2.3)

So eCΓγ
ε ≤ ε−a for sufficiently small ε. Moreover, if κ > 0 is such that κη0 > 1, then for every A ≥ 1

lim
ε→0

ε−Ae−Γκ
ε = 0 (2.4)

So e−Γκ
ε ≤ εA for sufficiently small ε.

We construct the following approximation. We consider a C∞ even non negative function χ supported
by [−1, 1] and such that

∫
R χ(x)dx = 1 and we define

ϕε(x) =

∫

R
((y ∨ 2ε) ∧ Γε)

χ((x− y)/ε)

ε
dy. (2.5)

Observe that we have 2ε ≤ ϕε(x) ≤ Γε for every x ∈ R,ϕε(x) = x for x ∈ (3ε,Γε − 1), ϕε(x) = 2ε for
x ∈ (0, ε) and ϕε(x) = Γε for x ∈ (Γε,∞). To the cut off function ϕε one associates the equation

V ε
t = V0 +

∫ t

0

∫

E×R+

A(θ)(V ε
s− − vs(ρ))1{u≤ϕγ

ε (|V ε
s−−vs(ρ)|)}N(ds, dθ, dρ, du). (2.6)

We construct now a second approximation: for ζ > 0 we consider a smooth cut off function Iζ (which
is a smooth version of 1{|θ|>ζ}) and the associated equation

V ε,ζ
t = V0 +

∫ t

0

∫

E×R+

A(θ)(V ε,ζ
s− − vs(ρ))1{u≤ϕγ

ε (
∣

∣

∣
V ε,ζ
s− −vs(ρ)

∣

∣

∣
)}
Iζ(θ)N(ds, dθ, dρ, du). (2.7)
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We state now a property which will be used in the following: given α ∈ [0, 2] and κ ≥ 0 there exists
K ≥ 1 such that for every w ∈ R2 and every 0 < ε < 1

(Aα,κ) sup
t0≤t≤T

ft(Ball(w, ε)) ≤
K

tκ0
εα. (2.8)

Since ft(dv) is a probability measure, this property is always verified with K = 1, α = 0 and κ = 0.
In Proposition 2.1 from [5] one proves that the equations (2.6) and (2.7) have a unique solution and

E
∣∣∣V ε,ζ

t − V ε
t

∣∣∣ ≤ CT e
CΓγ

ε × ζ1−ν × t ∀t ≤ T. (2.9)

Moreover, if (Aα,κ) holds, then

E |Vt − V ε
t | ≤ CT e

CΓγ
ε × ε1+γ+α × t1−κ ∀t ≤ T. (2.10)

We stress that in [5] the explicit dependence on the time t does not appear in the right hand side of
the above estimates - but a quick glance to the proof shows that we have the dependence on t as in
(2.9) and in (2.10) (and this is important if we look to short time behavior). Moreover, in the same
proposition one proves that for every 0 < λ′ < λ there exists some ε0 > 0 such that

sup
ε≤ε0

E(sup
t≤T

(e|Vt|
λ′

+ e|V
ε
t |λ

′

+ e

∣

∣

∣
V ζ,ε
t

∣

∣

∣

λ′

) =: C(λ′) <∞. (2.11)

Finally in Theorem 4.1 in [5] one proves an integration by parts formula that we present now. One

defines (see (4.1) and (4.2) in [5]) a random process Gε,ζ
t which verifies

1
{sups≤t

∣

∣

∣

V ζ,ε
s

∣

∣

∣

≤Γε−1}
≤ Gε,ζ

t ≤ 1
{sups≤t

∣

∣

∣

V ζ,ε
s

∣

∣

∣

≤Γε}
. (2.12)

The precise form of Gε,ζ
t is not important here - the only property which we need is (2.12). Moreover

one considers a two dimensional standard normal random variable Z and denotes

F ε,ζ
t =

√
uζ(t)Z + V ε,ζ

t with uζ(t) = tζ4+ν.

Then one proves (see (4.3) and (4.4) in [5]) that for every multi-index β ∈ {1, 2}q there exists a random

variable Kβ(F
ε,ζ
t , Gε,ζ

t ) such that for every function ψ ∈ Cq(R2)

E(∂βψ(F ε,ζ
t )Gε,ζ

t ) = E(ψ(F ε,ζ
t )Kβ(F

ε,ζ
t , Gε,ζ

t )). (2.13)

One also proves that for every q ∈ N and every κ ∈ ( 1
η0
, λ) one may find a constant C (depending on

q and κ only) such that for every p ≥ 1

∥∥∥Kβ(F
ε,ζ
t , Gε,ζ

t )
∥∥∥
p
≤ C

t
2+ν
ν

(12q−4)
eCΓγ

ε (ε−qζ−νq + e−Γκ
ε ζ−2νq). (2.14)

In particular this gives for every function ψ ∈ Cq(R2) and every multi-index β ∈ {1, 2}q
∣∣∣E(∂βψ(F ε,ζ

t )Gε,ζ
t )

∣∣∣ ≤ C

t
2+ν
ν

(12q−4)
eCΓγ

ε (ε−qζ−νq + e−Γκ
ε ζ−2νq)× ‖ψ‖∞ . (2.15)

The only difference between (2.15) and the inequality proved in Theorem 4.1 in [5] is that here we
give a precise dependence of the upper bound on t (which blows up as t ↓ 0). We do not expect that
this rate of blow up is optimal, but however it ensures that this rate is at most polynomial. In order
to obtain this estimate one has to come back to the analysis done in [5]. There, in order to construct
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the weight Kβ(F
ε,ζ
t , Gε,ζ

t ), one uses a Malliavin type calculus (settled in [4]) and the crucial role in

this calculus is played by the ”Malliavin covariance matrix” of F ε,ζ
t =

√
uζ(t)Z+V ε,ζ

t . We do not give
here the precise form of this matrix but, if one denotes by dt the determinant of this matrix, then we
will need to estimate E(d−p

t ) for p = 3q − 1 (see (4.3) and (4.4) in [[5]). This is done in Proposition
4.4 of [5]. There the dependence of the constant Ct,p on t is not given precisely but, looking to the
proof of this proposition, one may see that

E(d−p
t ) ≤ Cpe

CpΓ
γ
ε

(∫

ξ∈R2

|ξ|8p−2 exp(−ct |ξ|ν/(2+ν))dξ

)1/2

.

Using a change of variable one obtains

E(d−p
t ) ≤ Cpe

CpΓ
γ
ε × 1

t4p×
2+ν
ν

. (2.16)

Now, by (4.4) in [5] ∣∣∣Kβ(F
ε,ζ
t , Gε,ζ

t )
∣∣∣ ≤ C

d3q−1
t

× Λq

with

Λq =
∣∣∣Gε,ζ

t

∣∣∣
q
(1 +

∣∣∣F ε,ζ
t

∣∣∣
q+1

)(1 +

q∑

j=1

∑

k1+...+kj<q−j

j∏

i=1

∣∣∣LF ε,ζ
t

∣∣∣
ki
.

The precise significance of the quantities which appear in Λq is given in [5] but the only thing which
is of interest for us is that for every p ≥ 1

‖Λq‖p ≤ CeCΓγ
ε (ε−qζ−νq + e−Γκ

ε ζ−2νq).

This is done in the proof of Theorem 4.1 in [5]. There one takes p = 1 but a short glance to the proof
shows that the same reasoning and the same result holds for every p ≥ 1. So, using Schwarz inequality
and (2.16) we get

∥∥∥Kβ(F
ε,ζ
t , Gε,ζ

t )
∥∥∥
p
≤

∥∥∥d−(3q−1)
t

∥∥∥
2p
‖Λq‖2p ≤ Cpe

CpΓ
γ
ε × 1

t4(3q−1)× 2+ν
ν

‖Λq‖2p

and one obtains (2.14).

3 Proofs

In the following we adapt the results presented in the previous section to our specific goals. We
suppose that (Aα,κ) holds for some α ≥ 0 and κ ≥ 0. In order to equilibrate the errors in (2.9) and
(2.10) we take

ζ = ζα(ε) = ε(1+γ+α)/(1−ν).

We recall that λη0 > 1, so we may choose (and fix) some λ′ ∈ ( 1
η0
, λ). We work with a function

Φλ′ ∈ C∞(R2) such that Φλ′(v) > 0 and Φλ′(v) = e|v|
λ′

for |v| ≥ 2 (the precise definition is given in
(4.31)) Then we define

gt(dv) = Φλ′(v)ft(dv).

And for ε > 0, α ≥ 0 we define f ε,αt and gε,αt by

∫
ψ(v)f ε,αt (dv) = E(ψ(F

ε,ζα(ε)
t )G

ε,ζα(ε)
t ), gε,αt (dv) = Φλ′(v)f ε,αt (dv).

7



In (1.3) we introduced the function ϕ which is strictly increasing and which solves the equation

1 + γ + α− (1 + ϕ(α))
1 + ν(γ + α)

1− ν
= 0. (3.1)

We know that (A0,0) holds. Our aim now is to employ Corollary 4.8 in order to obtain (Aα,κ) for a
(as large as possible) α.

Lemma 3.1 A. Let q ∈ N,α ∈ [0, 2] and κ ≥ 0 be given. Suppose that (Aα,κ) holds and ϕ(α) > q.
Then gt(dv) = gt(v)dv. Moreover, for every p > 1 such that

q +
2

p∗
< ϕ(α) (3.2)

there exists C ≥ 1 such that

‖gt‖q,p ≤
C

tκ−1+
12(2+ν)

ν
(1+ϕ(α))

. (3.3)

B Suppose that (Aα,κ) holds and ϕ(α) > 0. Then (Aα′,κ′) holds for every α′ < ϕ(α) ∧ 2 with

κ′ = κ− 1 +
12(2 + ν)

ν
(1 + ϕ(α)) (3.4)

C. Let αk, κk, k ∈ N be the sequences defined in (1.4). Suppose that ϕ(0) > 0. Then, for each k ∈ N∗

the property (Aα,κk
) holds for α < αk ∧ 2.

D. Suppose that ϕ(0) > 0. Let k, q ∈ N and let p > 1 be such that

q +
2

p∗
< ϕ(αk ∧ 2) = αk+1 ∧ ϕ(2). (3.5)

Then

‖gt‖q,p ≤
C

tκk+1
. (3.6)

Proof. We will use Corollary 4.8 with d = 2, and Fε = F
ε,ζα(ε)
t , Gε = G

ε,ζα(ε)
t . So we verify the

hypothesis there.
Step 1. First, by (2.13) we know that the integration by parts formula (4.19) holds, with Hβ,ε =

Kβ(F
ε,ζα(ε)
t , G

ε,ζα(ε)
t ). By (2.14) we obtain for every κ ∈ ( 1

η0
, λ) (with ζ = ζα(ε))

sup
|β|≤q

‖Hβ,ε‖p ≤
C

t
2+ν
ν

(12q−4)
eCΓγ

ε (ε−qζ−νq + e−Γκ
ε ζ−2νq).

We use (2.3) and (2.4) in order to obtain

eCΓγ
ε (ε−qζ−νq + e−Γκ

ε ζ−2ν(q+2)) ≤ Cε−c((εζν)−q + εAε−q(4+ζ)(1+γ+α)/(1−ν))

for every c > 0 and A ≥ 1. It follows that

sup
|β|≤q

‖Hβ,ε‖p ≤
C

t
2+ν
ν

(12q−4)
× ε−q×

1+ν(γ+α)
1−ν

−c

and this means that (4.20) is verified with

Ĥq,p =
C

t
2+ν
ν

(12q−4)
, b =

1 + ν(γ + α)

1− ν
, a = c.
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Here we may take c > 0 arbitrary small. Notice that for every δ > 0 we may find h(δ) such that for
h ≥ h(δ) we have

Ĥ
1/2h
2h+q+d,p ≤

C

t
2+ν
ν

×12(1+δ)
. (3.7)

Step 2. Let us verify (4.25). Using (2.12) and (2.11)

∥∥∥1−G
ε,ζα(ε)
t

∥∥∥
2
≤ P 1/2(sup

s≤t

∣∣∣V ε,ζα(ε)
s

∣∣∣ ≥ Γε)

≤ Ce−
1
2
Γλ′

ε (E(sup
s≤t

e

∣

∣

∣

V
ε,ζα(ε)
s

∣

∣

∣

λ′

))1/2 ≤ Ce−
1
2
Γλ′

ε ≤ Cε−A.

The last inequality is true for any A ≥ 1. This is a consequence of λ′η0 > 1 and of (2.4).
And by our choice of ζα(ε) and as a consequence of (2.9),(2.10) and (2.3) we have (for every c > 0)

E(
∣∣∣Vt − F

ε,ζα(ε)
t

∣∣∣) ≤ C

tκ−1
ε1+γ+α−c.

We conclude that (4.25) holds with

C0 =
C

tκ−1
, β = 1 + γ + α− c.

Step 3. Now (3.2) ensures that, for sufficiently small c > 0,

β − b(1 + q +
2

p∗
) = 1 + γ + α− c− (1 + q +

2

p∗
)
1 + ν(γ + α)

1− ν

> 1 + γ + α− (1 + ϕ(α))
1 + ν(γ + α)

1− ν
= 0

so (4.28) holds (with d = 2). Now we are able to use Corollary 4.8. Notice that for every θ ≥ 1 and
every λ′ < λ′′ one may find C such that Φθ

λ′ ≤ CΦλ′′ . So (2.11) gives Ĉθ(λ
′) < ∞ (see (4.33) for the

definition of Ĉθ(λ
′)). So (4.35) and (3.7) give

‖Φλ′fαt ‖q,p ≤ C × C0 × Ĉθ(λ
′)×

(
h2bĤ

1/2h
2h+q+d,p∗

)(1+δ)(1+q+2/p∗)

≤ C

tκ−1+ 2+ν
ν

×12(1+q+2/p∗)(1+δ)

≤ C

tκ−1+ 2+ν
ν

×12(1+ϕ(α))(1+δ)
.

In the previous inequality we have englobed Ĉθ(λ
′) and h in the constant C. So A is proved.

Proof of B. Let p > 0 such that 2
p∗

= α′ < ϕ(α) ∧ 2. We use A with q = 0. By(3.3) ‖fαt ‖p ≤
‖Φλ′fαt ‖p ≤ Ct−κ′

with κ′ given in (3.4). Then, using Hölder’s inequality

ft(Ball(ε, v)) ≤ Ct−κ′ × ε2/p∗ = Ct−κ′ × εα
′

.

Proof of C. Take first k = 1. We know that (A0,0) holds, and by hypothesis ϕ(0) > 0. Then, by

B, (Aα′,κ′) holds for every α′ < ϕ(0) ∧ 2 = α1 ∧ 2 with κ′ = 0 − 1 + 12(2+ν)
ν (1 + ϕ(0)) = κ1. So our

assertion holds for k = 1.
Suppose now that the property is true for k and let us check it for k + 1. Suppose first that αk > 2.
Then, the recurrence hypothesis says that (Aα,κk

) holds for every α < αk ∧ 2 = 2. Since κk < κk+1

the property (Aα,κk+1
) holds as well, and this is true for every α < 2 = αk+1 ∧ 2, so our assertion is

proved. Suppose now that αk ≤ 2 and take α′ < αk+1 ∧ 2 = ϕ(αk) ∧ 2. Since ϕ(α) ↑ ϕ(ak) as α ↑ αk,

9



we may find α < αk = αk ∧ 2 such that α′ < ϕ(α) ∧ 2. By the recurrence hypothesis we know that
(Aα,κk

) holds and then, using B, we obtain (Aα′,κk+1
).

D. By (3.5) we may find α < αk ∧ 2 such that q + 2
p∗
< ϕ(α). And by C we know that (Aα,κk

) holds.
Then we may use A and (3.3) gives (3.6). �
Proof of Theorem 1.1. We will work with the sequences αk and κk given in (1.4). We recall that
αk ↑ α∗ with α∗ = ϕ(α∗) and we have

α∗ =
−(γ + 2) +

√
(γ + 2)2 + 4(γν − 2γ − 1)

2
(3.8)

so that

α∗ > 1 ⇔ ν <
γ

3γ + 4

α∗ > 2 ⇔ ν <
γ

4γ + 9
.

If ν < γ
2γ+1 then ϕ(0) > 0 so we may use the point A in Lemma 3.1 with q = 0 and we obtain the

point A in Theorem 1.1. The point B in Theorem 1.1 follows from the point D in Lemma 3.1.
Proof of C.b. If γ

4γ+9 < ν < γ
2γ+1 we have α∗ ≤ 2 so that αk < 2 for every k ∈ N. And if p < 2

2−α∗

then 2
p∗
< α∗ so we may find k such that 2

p∗
< αk+1 < 2. So, using the point B in Theorem 1.1 we

obtain gt ∈ Lp(R2).
Proof of D.b. If γ

4γ+9 < ν < γ
3γ+4 we have α∗ ∈ (1, 2] so that 1 < 2

3−α∗
. We take 1 < p < 2

3−α∗
and

then 1 + 2
p∗
< α∗. We take k sufficiently large in order to have 1 + 2

p∗
< αk+1 and then, as above, by

B in Theorem 1.1 we obtain gt ∈W 1,p(R2).
C a and D a If ν < γ

4γ+9 then α∗ > 2. We define k∗ = min{k : αk > 2}. By C in Lemma 3.1,
for every α < 2 the property (Aα,κk∗

) holds. We denote ψ(α) = ϕ(α) − α. For k < k∗ we have
αk+1 − αk = ψ(αk) > ψ(2) (this is because ψ is decreasing on (0, 2) ⊂ (0, α∗)). This implies that
k∗ ≤ 2/ψ(2) and then, since 1 + ϕ(0) ≤ 4,

κk∗ ≤ k∗ × (
12(2 + ν)

ν
(1 + ϕ(2)) − 1) ≤ 2

ψ(2)

(
48(2 + ν)

ν
− 1

)
= η

with η given in (1.7).
We use now the point B in Theorem 1.1. Take first q = 0. Since ϕ(αk∗ ∧ 2) = ϕ(2) > 2 > 2

p∗
(for

every p > 1) we obtain gt ∈ ∩p>1L
p(R2). If q ∈ {1, 2} then we need 2

p∗
< ϕ(2) − q, which gives

p < 2/(q + 2− ϕ(2)) = pq with pq, q = 1, 2 given in (1.8). And we obtain

‖gt‖q,p ≤
C

tη
for p < pq.

�

Proof of Corollary 1.2 Since ν < γ
2γ+1 we may find p < α1 such that ‖Φλ′ft‖p ≤ C

tκ1 . Then

ft(B
c
R(0)) =

∫
1Bc

R(0)(v)Φ
−1
λ′ (v)Φλ′(v)ft(v)dv

≤ (

∫
1Bc

R(0)(v)e
−p∗|v|

λ′

dv)1/p∗ ‖Φλ′ft‖p

≤ e−
1
2
Rλ′

(

∫
1Bc

R(0)(v)e
− p∗

2
|v|λ

′

dv)1/p∗
C

tκ1

≤ C

tκ1
e−

1
2
Rλ′

.

�

Proof of Theorem 1.3. This theorem is an immediate consequence of Corollary 4.8 (see (4.37) and
(4.38)). �
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4 Appendix: A regularity criterion based on interpolation

Let us first recall some results obtained in [2] concerning the regularity of a measure µ on R
d. We fix

k, q, h ∈ N, with h ≥ 1, and p > 1. Hereafter, we denote by p∗ = p/(p − 1) the conjugate of p. Recall
that in (1.14) and (1.15) we have defined ‖f‖k,∞ and ‖f‖q,h,p and in (1.17) we have defined dk(µ, ν)

for two measures µ, ν on Rd.
For a signed finite measure µ and for a sequence of absolutely continuous signed finite measures
µn(dx) = fn(x)dx with fn ∈ C2h+q(Rd), we define

πk,q,h,p(µ, (µn)n) =

∞∑

n=0

2n(k+q+d/p∗)dk(µ, µn) +

∞∑

n=0

1

22nh
‖fn‖2h+q,2h,p (4.1)

and
πk,q,h,p(µ) = inf{πk,q,h,p(µ, (µn)n) : µn(dx) = fn(x)dx, fn ∈ C2h+q(Rd)}.

Remark 4.1 Notice that πk,q,h,p is a particular case of πk,q,h,e treated in [2]: just choose the Young
function e(x) ≡ ep(x) = |x|p, giving βep(t) = t1/p∗ (see Example 1 in [2]). Moreover, πk,q,h,p is
strongly related to interpolation spaces. More precisely, πk,q,h,p is equivalent with the interpolation

norm of order ρ = k+q+d/p∗
2h between the spaces W k,∞

∗ (the dual of W k,∞) and W 2h+q,2h,p = {f :
‖fn‖2h+q,2h,p < ∞} (see [6] for example). This is proved in [2], see Section 2.4 and Appendix B. So
the inequality (4.2) below implies that the Sobolev space W q,p is included in the above interpolation
space. However we prefer to stick to an elementary framework and to derive directly the consequences
of (4.2) - see Lemma 4.3 and Lemma 4.2 below.

The following result is the key point in our approach (this is Proposition 2.5 in [2]):

Lemma 4.2 Let p > 1, k, q ∈ N and h ∈ N∗ be given. There exists a constant C∗ (depending on
k, q, h and p only) such that the following holds. Let µ be a finite measure for which πk,q,h,p(µ) is
finite. Then µ(dx) = f(x)dx with f ∈W q,p and

‖f‖q,p ≤ C∗ × πk,q,h,p(µ). (4.2)

The proof of Lemma 4.2 is given in [2], being a particular case (take e = ep) of Proposition A.1 in
Appendix A (see also [3]). We will use the following consequence:

Lemma 4.3 Let p > 1, k, q ∈ N and h ∈ N∗ be given and set

ρh(q) :=
k + q + d/p∗

2h
. (4.3)

We also consider an increasing sequence θ(n) ≥ 1, n ∈ N such that limn θ(n) = ∞ and θ(n + 1) ≤
Θ × θ(n) for some constant Θ ≥ 1. Let µ be a finite measure on Rd. Suppose that we may find a
sequence of functions fn ∈ C2h+q(Rd), n ∈ N such that

‖fn‖2h+q,2h,p ≤ θ(n) (4.4)

and, with µn(dx) = fn(x)dx,

lim sup
n

dk(µ, µn)× θρh(q)+η(n) <∞ (4.5)

for some η > 0. Then µ(dx) = f(x)dx with f ∈W q,p.
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Moreover, for δ, η > 0 and n∗ ∈ N, we set

A(δ) = |µ| (Rd)× 2l(δ)(1+δ)(q+k+d/p∗) with l(δ) = min{l : 2l×
δ

1+δ ≥ l}, (4.6)

B(η) =
∞∑

l=1

l2(q+k+d/p∗+η)

22hηl
, (4.7)

Ch,n∗
(η) = sup

n≥n∗

dk(µ, µn)× θρh(q)+η(n). (4.8)

Then
‖f‖q,p ≤ C∗(Θ +A(δ)θ(n∗)

ρh(q)(1+δ) +B(η)Ch,n∗
(η)) (4.9)

with C∗ the constant in (4.2) and ρh(q) given in (4.3).

Proof of Lemma 4.3. We will produce a sequence of measures νl(dx) = gl(x)dx, l ∈ N such that

πk,q,h,p(µ, (νl)l) ≤ Θ+A(δ)θ(n∗)
ρh(q)(1+δ) +B(η)Ch,n∗

(η) <∞.

Then by Lemma 4.2 one gets µ(dx) = f(x)dx with f ∈ W q,p, and (4.9) follows from (4.2)). Let us
stress that the νl’s will be given by a suitable subsequence µn(l), l ∈ N.
Step 1. We define

n(l) = min{n : θ(n) ≥ 22hl

l2
}

and we notice that
1

Θ
θ(n(l)) ≤ θ(n(l)− 1) <

22hl

l2
≤ θ(n(l)). (4.10)

Moreover we recall that n∗ is given and we define

l∗ = min{l : 2
2hl

l2
≥ θ(n∗)}.

Since

θ(n(l∗)) ≥
22hl∗

l2∗
≥ θ(n∗)

it follows that n(l∗) ≥ n∗.
We take now ε(δ) = hδ

1+δ which gives 2h
2(h−ε(δ)) = 1+ δ. And we take l(δ) ≥ 1 such that 2lδ/(1+δ) ≥ l for

l ≥ l(δ) (see (4.6)). Since h ≥ 1 it follows that ε(δ) ≥ δ
1+δ so that, for l ≥ l(δ) we also have 2lε(δ) ≥ l.

Now we check that
22(h−ε(δ))l∗ ≤ 22hl(δ)θ(n∗). (4.11)

If l∗ ≤ l(δ) then the inequality is evident (recall that θ(n) ≥ 1 for every n). And if l∗ > l(δ) then
2l∗ε(δ) ≥ l∗. By the very definition of l∗ we have

22h(l∗−1)

(l∗ − 1)2
< θ(n∗)

so that
22hl∗ ≤ 22h(l∗ − 1)2θ(n∗) ≤ 22h × 22l∗ε(δ)θ(n∗)

and, since l(δ) ≥ 1, this gives (4.11).
Step 2. We define

νl = 0 if l < l∗

= µn(l) if l ≥ l∗

12



and we estimate πk,q,h,p(µ, (νl)l). First, by (4.4) and (4.10)

∞∑

l=l∗

1

22hl
∥∥fn(l)

∥∥
q+2h,2h,p

≤
∞∑

l=l∗

1

22hl
θ(n(l)) ≤ Θ

∞∑

l=l∗

1

l2
≤ Θ.

Then we write
∞∑

l=1

2(q+k+d/p∗)ldk(µ, νl) = S1 + S2

with

S1 =

l∗−1∑

l=1

2(q+k+d/p∗)ldk(µ, 0), S2 =

∞∑

l=l∗

2(q+k+d/p∗)ldk(µ, µn(l)).

Since dk(µ, 0) ≤ d0(µ, 0) ≤ |µ| (Rd) we use (4.11) and we obtain

S1 ≤ |µ| (Rd)× 2(q+k+d/p∗)l∗ = |µ| (Rd)× (22(h−ε(δ))l∗ )(q+k+d/p∗)/2(h−ε(δ))

≤ |µ| (Rd)× (22hl(δ)θ(n∗))
ρh(q)(1+δ) = A(δ)θ(n∗)

ρh(q)(1+δ).

If l ≥ l∗ then n(l) ≥ n(l∗) ≥ n∗ so that, from (4.8),

dk(µ, µn(l)) ≤
Ch,n∗

(η)

θρh(q)+η(n(l))
≤ Ch,n∗

(η)
( l2

22hl

)ρh(q)+η
=

Ch,n∗
(η)

2(q+k+d/p∗)l
× l2(ρh(q)+η)

22hηl
.

We conclude that

S2 ≤ Ch,n∗
(η)

∞∑

l=l∗

l2(ρh(q)+η)

22ηhl
≤ Ch,n∗

(η)×B(η).

�

We give now a consequence of the above result which is more readable.

Proposition 4.4 Let q, k, d ∈ N and p > 1 be fixed. We consider a family of measures µε(dx) =
fε(x)dx, ε > 0 with fε ∈ C∞(Rd) and a finite measure µ on Rd which verify the following hypothesis.
There exists ε∗ > 0, β > 0, a ≥ 0, b ≥ 0 and C0 ≥ 1, Qh(q, p) ≥ 1, h ∈ N such that

i) dk(µε, µ) ≤ C0ε
β ∀ε ∈ (0, ε∗) (4.12)

ii) ‖fε‖2h+q,2h,p ≤ Qh(q, p)ε
−b(2h+q+a) ∀ε ∈ (0, ε∗),∀h ∈ N (4.13)

iii) r := β − b(k + q + d/p∗) > 0 (4.14)

We denote

h∗ =
1

ε∗
∨ b(q + a)(k + q + d/p∗)

r
∨ q + a

2
. (4.15)

Then, µ(dx) = f(x)dx with f ∈ W q,p(Rd). Moreover, for every δ > 0, there exists a constant C ≥ 1,
depending on q, k, d, p, δ, β, r and a, b only (but not on h), such that for every h ≥ h∗ one has

‖f‖q,p ≤ C × C0 ×
(
h2bQ

1/2h
h (q, p)

)(1+δ)(k+q+d/p∗)
(4.16)

Proof. All over this proof C designs a constant which depends on q, k, d, p, δ, β, r and a, b only. We
will use Lemma 4.3. We take

η =
r

2b(2h+ q + a)
∧ δ(q + k + d/p∗)

2h
. (4.17)
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For ε ≤ ε∗, we have

dk(µε, µ) ‖fε‖ρh(q)+η
2h+q,2h,p ≤ C0Q

ρh(q)+η
h (q, p)εβ−(ρh(q)+η)b(2h+q+a).

Notice that

β − (ρh(q) + η)b(2h + q + a) = (β − 2hρh(q)b)− ρh(q)b(q + a)− ηb(2h + q + a)

≥ r − r

2
− r

2
= 0

the last inequality being a consequence of (4.17) and (4.15). So we obtain

dk(µε, µ) ‖fε‖ρh(q)+η
2h+q,2h,p ≤ C0Q

ρh(q)+η
h (q, p) ≤ C0Q

ρh(q)(1+δ)
h (q, p). (4.18)

We take now εn = 1
n and n∗ = h and we define

gn = 0 if n < n∗

= fεn if n ≥ n∗.

We will use Lemma 4.3 for νn(dx) = gn(x)dx so we have to identify the quantities defined there.
We define θ(n) = Qh(q, p)n

b(2h+q+a) if n ≥ n∗ and θ(n) = θ(n∗) if n ≤ n∗. By (4.13) we have
‖gn‖2h+q,2h,p ≤ θ(n) and moreover, for n ≥ n∗ = h

θ(n+ 1)

θ(n)
= (1 +

1

n
)n×

b(2h+q+a)
n ≤ e2b+

b(q+a)
h ≤ e3b.

We conclude that Θ ≤ e3b. We estimate now B(η) defined in (4.7). Since

1

ηh
=

2b(2h + q + a)

rh
∨ 2

δ(q + k + d/p∗)
≤ C

we obtain

B(η) =

∞∑

l=1

l2(q+k+d/p∗+η)

22hηl
≤

∫ ∞

0

x2(q+k+d/p∗+1)

22hηx
dx

=
1

(2ηh)1+2(k+q+d/p∗+1)

∫ ∞

0

y2(q+k+d/p∗+1)

2y
dy ≤ C.

Moreover, since h ≥ 1
2(q + a) it follows that

ρh(q)(1 + δ)b(2h + q + a) ≤ 2(1 + δ)b(k + q + d/p∗)

and consequently (recall that n∗ = h)

θ(n∗)
ρh(q)(1+δ) = Q

ρh(q)(1+δ)
h (q, p)n

ρh(q)(1+δ)b(2h+q+a)
∗

≤ Q
ρh(q)(1+δ)
h (q, p)h2(1+δ)b(k+q+d/p∗).

Finally we notice that, by (4.18), the constant Ch,n∗
(η) defined in (4.8) verifies

Ch,n∗
(η) ≤ C0Q

ρh(q)(1+δ)
h (q, p).

Now we use (4.9) and we obtain

‖f‖q,p ≤ C(1 +Q
ρh(q)(1+δ)
h (q, p)h2b(1+δ)(k+q+d/p∗) + C0Q

ρh(q)(1+δ)
h (q, p))

which gives (4.16). �
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4.1 Link with the integration by parts formula

We consider a family of random variables Fε ∈ Rd and Gε ∈ [0, 1], ε > 0 and we associate the measures
µε given by ∫

ϕdµε = E(ϕ(Fε)Gε).

We assume that µε satisfy the integration by parts formula

E(∂βϕ(Fε)Gε) = E(ϕ(Fε)Hβ,ε) ∀ϕ ∈ C∞
b (Rd). (4.19)

We also assume that for every q ∈ N and p > 1 there exist some constants Ĥq,p and a, b, ε∗ ≥ 0 such
that for every 0 < ε < ε∗

sup
|β|≤q

‖Hβ,ε‖p ≤ Ĥq,pε
b(q+a). (4.20)

In particular this implies that µε(dv) = pε(v)dv.
For y ∈ R we denote Iy = (y,∞) if y ≥ 0 and Iy = (−∞, y) if y < 0. And for v = (v1, ..., vd) we define

Av =

d∏

i=1

Ivi (4.21)

Moreover we consider a random variable F ∈ Rd and we denote µ the law of F (so
∫
φdµ = E(φ(F ))).

We also consider a function Φ ∈ C∞(Rd) such that Φ(v) > 0, dv almost surely. Our aim is to give
sufficient conditions which guarantee that µ(dv) = p(v)dv and to obtain estimates for Φp. In order to
do this we give first estimates for Φpε, we estimate then d1(Φµ,Φµε), and finally we use Proposition
4.4 in order to conclude.

Lemma 4.5 Let Φ ∈ C∞(Rd). Assume that (4.19) and (4.20) hold. For every q, h ∈ N and p > 0
there exists a constant C (depending on q, h, d and p only) such that, for every ε ∈ (0, ε∗)

‖Φpε‖q,h,p ≤ CĤq+d,p∗(E(Φq,h,p(Fε)))
1/pεb(q+a) (4.22)

with

Φq,h,p(x) := sup
|β|≤q

∫

Rd

(1 + |v|)h
∣∣∣∂βΦ(v)

∣∣∣
p
1Av (x)dv (4.23)

Proof. By (4.19)

∂α(Φpε)(v) =
∑

(β,γ)=α

∂βΦ(v)∂γpε(v) =
∑

(β,γ)=α

∂βΦ(v)E(∂γδ0(Fε − v)Gε)

=
∑

(β,γ)=α

∂βΦ(v)E(1Av (Fε)H(γ,1,...,d),ε)

so that

|∂α(Φpε)(v)| ≤
∑

(β,γ)=α

∣∣∣∂βΦ(v)E(1Av (Fε)H(γ,1,...,d),ε)
∣∣∣

≤
∑

(β,γ)=α

∣∣∣∂βΦ(v)
∣∣∣P 1/p(Fε ∈ Av)

∥∥H(γ,1,...,d),ε

∥∥
p∗

≤
∑

|β|≤q

∣∣∣∂βΦ(v)
∣∣∣P 1/p(Fε ∈ Av)× Ĥq+d,p∗ε

b(q+a).

15



This gives

‖Φpε‖q,h,p ≤ CĤq+d,p∗ε
b(q+a)

∑

|β|≤q

(

∫
(1 + |v|)h

∣∣∣∂βΦ(v)
∣∣∣
p
E(1Fε∈Av)dv)

1/p

= CĤq+d,p∗ε
b(q+a)(E(Φq,h,p(Fε)))

1/p.

�

We denote Qε = supλ∈(0,1)(|Φ|+ |∇Φ|)(λF + (1− λ)Fε) and we define the constants

C1(Φ, θ) = sup
ε>0

‖Qε‖θ (4.24)

C2(Φ) = sup
ε>0

‖Φ(Fε)‖2 , C3 = ‖F‖2 + sup
ε>0

‖Fε‖2 .

Lemma 4.6 Suppose that the constants in (4.24) are finite and moreover suppose that

‖1−Gε‖2 + ‖F − Fε‖1 ≤ C0ε
β . (4.25)

Then, for every δ > 0
d1(Φµε,Φµ) ≤ Cδ(Φ)ε

β(1−δ) (4.26)

with

Cδ(Φ) = C0(1 + C2(Φ)) + 2C3C
1/δ
1 (Φ,

2

δ
)). (4.27)

Proof. Let φ with ‖φ‖1,∞ ≤ 1. We estimate first

|E((φΦ)(Fε)(1 −Gε)|) ≤ ‖φ‖∞ ‖Φ(Fε)‖2 ‖1−Gε‖2 ≤ C2(Φ)C0ε
β .

Then we write

|E((φΦ)(Fε)− (φΦ)(F ))| ≤ E

∫ 1

0
|∇(φΦ)(λF + (1− λ)Fε)(F − Fε)| dλ

≤ ‖φ‖1,∞E(Qε |F − Fε|) ≤ IK + JK

with
IK = E(Qε |F − Fε| 1{Q≤K}) ≤ KC0ε

β

and

JK = E(Qε |F − Fε| 1{Q>K}) ≤ 2C3(E(Q2
ε1{Q>K}))

1/2 ≤ 2C3C
θ+1
1 (Φ, 2(θ + 1))

Kθ
.

In order to optimize we take K = ε−β/(1+θ) and we obtain

|E((φΦ)(Fε)− (φΦ)(F ))| ≤ (C0 + (2C3C
θ+1
1 (Φ, 2(θ + 1)))) × εβ×

θ
1+θ

Then taking θ = (1− δ)/δ we obtain (4.26). �
As an immediate consequence of Proposition 4.4 with k = 1 and of the Lemma 4.5 and of Lemma 4.6
we obtain

Proposition 4.7 Let q ∈ N and p > 1 be given. Suppose that (4.19),(4.20) and (4.25) hold and

r = β − b(1 + q + d/p∗) > 0 (4.28)

Then µ(dv) = p(v)dv and for every δ > 0 there exists C (depending on q, d, p, r, β and δ only) such
that

‖Φp‖q,p ≤ C × Cδ(Φ)×
(
h2bQ

1/2h
h (q, p)

)(1+δ)(1+q+d/p∗)
(4.29)

with Cδ(Φ) given in (4.27) and with (see (4.22))

Qh(q, p) = Ĥ2h+q+d,p∗(E(Φ2h+q,2h,p(Fε)))
1/p. (4.30)

This inequality holds for every h ≥ h∗ with h∗ given in (4.15).
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We discuss now the particular case which appears in our framework: we consider a non decreasing
function ρ : R+ → R+ such that ρ(u) = 1 for u ∈ (0, 1), ρ(u) = u for u ∈ (2,∞) and ρ ∈ C∞(R+)
and, for some λ > 0 we define

Φλ(v) = eρ(|v|
λ). (4.31)

Then Φλ has the following property: for every h, q ∈ N there exist some constants c1, c2 (depending
on q and h) such that for every multi-index β with |β| ≤ q one has

(1 + |v|)h
∣∣∣∂βΦλ(v)

∣∣∣ ≤ c1Φ
c2
λ (v). (4.32)

For θ ≥ 1 we denote
Ĉθ(λ) = E(Φθ

λ(F )) + sup
ε>0

E(Φθ
λ(Fε)) (4.33)

One easily verifies that the constants defined in (4.24) verify, for some universal constants C and θ′

C1(Φλ, θ) + C2(Φλ) + C3 ≤ C × Ĉθ′(λ)

and consequently (with C0 from (4.25)), for every δ > 0 there exist C, θ and θ′ such that

Cδ(Φλ) ≤ C × C0 × Ĉθ′

θ (λ) (4.34)

Since |x| ≥ |v| for x ∈ Av it follows that the constant defined in (4.23) verifies (with C and θ depending
on q, h, p) Φq,h,p(x) ≤ CΦθ

λ(x). So

E(Φ2h+q,2h,p(Fε)) ≤ CE(Φθ
λ(Fε)) ≤ CĈθ(λ)

so finally the constant in (4.30) is

Qh(q, p) = Ĥ2h+q+d,p∗ × C × Ĉθ(λ).

Corollary 4.8 A. Let q, h, d ∈ N and p > 1, δ > 0 be given. Suppose that (4.19), (4.20), (4.25) and
(4.28) hold (for these q, d, p and δ). Consider also some λ ≥ 0 such that Ĉθ(λ) <∞ for every θ ≥ 1.
There exist some constants C ≥ 1 and θ, θ′ ≥ 1 (depending on q, h, d, p and δ) such that for h ≥ h∗
(given in (4.15)) one has

‖Φλp‖q,p ≤ Γλ(q, h, p) with (4.35)

Γλ(q, h, p) := C × C0 × Ĉθ′

θ (λ)×
(
h2bĤ

1/2h
2h+q+d,p∗

)(1+δ)(1+q+d/p∗)
(4.36)

with C0 given in (4.25) and Ĉθ(λ) given in (4.33).
B. Suppose that the hypothesis from the point A holds for q = 1 and p > d. Then p ∈ C0,χ(Rd) with
χ = 1− d

p and we have

p(x) ≤ ‖Φλp‖1,p × e−|x|λ ≤ Γλ(1, h, p) × e−|x|λ. (4.37)

Moreover, for every x, y ∈ Rd with |x− y| ≤ 1 and every ε > 0,

|p(y)− p(x)| ≤ ‖Φλp‖1,p × e−(1−ε)|x|λ × |x− y|χ (4.38)

≤ Γλ(1, h, p) × e−(1−ε)|x|λ × |x− y|χ
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Proof. The point A is an immediate consequence of Proposition 4.7. Let us prove B. The fact
that p is χ− Hölder continuous is a consequence of Morrey’s theorem which also gives ‖Φλp‖∞ ≤
‖Φλp‖C0,χ ≤ C ‖Φλp‖1,p so we obtain (4.37).

Note that there exists C such that |∇Φλ(y)| ≤ CΦ1+ε
λ (x) for every x, y ∈ Rd such that |x− y| ≤ 1. It

follows that if |x− y| ≤ 1 then |Φλ(y)− Φλ(x)| ≤ CΦ1+ε
λ (x) |x− y| . We write now

(Φλp)(y)− (Φλp)(x) = Φλ(x)(p(y)− p(x)) + (Φλ(y)− Φλ(x))p(x)

and this gives

Φλ(x) |p(y)− p(x)| ≤ |Φλ(y)− Φλ(x)| p(x) + |(Φλp)(y)− (Φλp)(x)|
≤ CΦ1+ε

λ (x)p(x) |x− y|+ Γλ(q, h, p) |y|χ

≤ C(Φε
λ(x) + Γλ(q, h, p)) |x− y|χ

and this gives (4.38). �

Remark 4.9 The above estimates seem interesting even in the following simpler situation. Consider
a random variable F for which the integration by parts formulae

E(∂αϕ(F )) = E(ϕ(F )Hα) ∀ϕ ∈ C∞
b (Rd)

holds for every multi-index α and denote Ĥq,p = sup|α|≤q ‖Hα‖p . Suppose that Ĥq,p < ∞ for everty

q ∈ N, p ≥ 1 and suppose also that Ĉθ(λ) := E(eθ|F |λ) <∞ for every θ ≥ 1. Then P (F ∈ dx) = p(x)dx
and, for every h ∈ N∗, we have the estimate

p(x) ≤ Γλ(1, h, p) × e−|x|λ . (4.39)

with Γλ(q, h, p) defined in (4.36). Morover, using Morrey’s theorem for arbitrary q ∈ N, we obtain,
for every multi-index α with |α| ≤ q,

|∂αp(x)| ≤ Γλ(q, h, p) × e−|x|λ (4.40)

This imediately follows by taking Fε = F (so that d1(F,Fε) = 0 and so one may take β = ∞ in the
above reasoning).
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