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Upper bounds for the function solution of the homogenuous 2D
Bolzmann equation with hard potential

ViLAD BALLY*

Abstract

We deal with f;(dv), solution of the homogenuous 2D Bolzmann equation without cutoff. An
important point is that the initial condition fo(dv) may be any probability distribution (except a
Dirac mass). However, for sufficientely hard potentials, the semigroup has a regularization property
(see [3]): fi(dv) = fi(v)dv for every t > 0. The aim of this paper is to give upper bounds for f;(v),
the more significant one beeing fi(v) < Ct=me=1"" for some n,A> 0.

Keywords: Bolzmann equation without cutoff, Hard potentials, Interpolation criterion, Integration
by parts.

2010 MSC: 60H07, 60J75,82C40.

1 Introduction and main results

We are concerned with the solution of the two dimensional homogenous Boltzmann equation:
w/2
i) = [ dun [ a0l HOROIA) ~ () (1.1)
R —7/2

Here f;(v) is a non negative measure on R? which represents the density of particles with velocity v
in a model for a gas in dimension two, and, with Ry being the rotation of angle 6,

/ UV + Vs UV — Ux ’ UV Uy UV — Vs
= R = — R, .
v 5 + 9( 5 >, Uy 5 9< 5 >

The function b : [-7, $]\{0} verifies the following hypothesis:

(H,) i) 0<c<C st 0 <p@B) <cop0+) (1)
i) VkeNICk st [pP(o)] < ot

The rigorous sense of this equation is given by integrating against a test function - so one considers
weak solutions of (1.1). In [13] one proves that, for every v € (0, 3) and v € (0, 1], the above equation
has a unique weak solution. More precisely: one assumes that (H,) holds and there exists A € (v,2)

such that [ elvl” fo(dv) < oo. Then there exists a unique solution f; of (1.1) which starts from fj.

Furthermore the solution verifies sup,<p J elvl” fi(dv) < oo for every X < A. All over the paper these
hypotheses are in force.

*Université Paris-Est, LAMA (UMR CNRS, UPEMLV, UPEC), INRIA, F-77454 Marne-la-Vallée, France. Email:
bally@univ-mlv.fr



Notice that fo(dv) is a probability distribution which is not assumed to be absolutely continuous with
respect to the Lebesgue measure - we just assume that this is not a Dirac mass d,,(dv) (in this trivial
case the corresponding solution is fi(dv) = fo(dv) = 0y, (dv) for every ¢t > 0). Our first aim is to
give sufficient conditions under which, for every ¢t > 0, one has fi(dv) = fi(v)dv, and to study the
regularity of f;(v). This problem has already been addressed in [5] for the same equation, in [12] for the
three dimensional Bolzmann equation and in [1] for the Bolzmann equation in an arbitrary dimension
(however, in this last paper, fo(dv) is assumed to be absolutely continuous and to have finite entropy).
For the Landau equation (7 = 0) this problem is addressed in [15] and [16] . Our second aim is to
give upper bounds for f;(v) - this type of result seems to be new.

Let us first present our results. We will use the function

1-v)(l+y+a)
1+ v(y+a)

pla) = (1.3)

and we construct the sequences

12(2 + v)

(1t anga) (1.4)

g1 = plag), Kpg1 =k — 1+

with ap = 0 and kg = 0. We notice that ¢ is strictly increasing so that ay T au solution of p(ay) =
(see (3.8) for the explicit value of a.). And oy = (0) > 0 is equivalent with v < ﬁ

In the following we assume that v € (0, 3) and v € (0,1]. We also suppose that fo(dv) is not a Dirac
mass and that for some X € (7,2) one has [ elvl® fo(dv) < co. Moreover, for every X' < X we consider a

function ®), € C*°(R?) such that @/ (v) = el for |v| > 2. The precise form of @y is given in (4.31).

Theorem 1.1 A.Suppose that v < TL Then fi(dv) = fi(v)dv.
B. Let g € {0,1,2},k € N and p > 1 be such that

g2 < dlag A2) = aper A (2). (1.5)

*

Then ®y f; € WIP(R2?) and for every N < X there exists a constant C' > 1 such that

C
1®x fellgp < Jrer (1.6)

Ca Ifv< VL} then @y f; € LP(R2) for every p > 1 and

C . 2 48(2 + v)
/ < — = — . .
[®x < fell, < n with 1 @) =3 ( ” 1> (1.7)

b. Ifﬁlg <v< ﬁ then a, < 2 and @y f; € LP(R?) for every 1 < p < ﬁ
D.alfv< ng then ®y f; € WIP(R?) for every 1 < p < py,q = 1,2 with

21+ v(y+2)) wnd _2(1+v(y+2)

= = 1.8
DL T T i sy P T 130 + 61y (18)
Moreover for every p < pg one has (with n given in (1.7))
C
125 fell, < - (1.9)

b. Ifﬁlg <v< Jm then a, < 3 and @y fy € WHP(R?) for every 1 < p < %



In order to be able to compare this result with the ones in the papers which we quoted before we

take s > 1 and v = :21,7 = i%? : these are the values which are significant in the case of the three
dimensional Bolzmann equation. Our condition v > 0 implies that s > 5 and in the literature this

case is known as the "hard potential” case. With this choice of v and of v we have v < z;’ﬁ iff s >9

and v < ﬁ iff s > 16 + /193 ~ 30. So, although they are not identical, the regularity result in the
above theorem is analogous with the one in [5]. Notice that our result is less performing then the one
in [12] where one deals with the real three dimensional equation and one obtains absolute continuity
for a larger range for s. However our LP estimates are stronger: we obtain ®y x f; € LP(R?) instead
of f; € L?(R?), and bounds depending polynomialy on ¢ | 0 are obtained. The result in [1] is stronger
in the sense that it applies to equations in any dimension but it is supposed that the initial condition
is already a function (so it is not really possible to compare them).

We give now some consequences of the previous result.

Corollary 1.2 Suppose that v < JT Then for every X' < X there exists a constant C > 1 (depending
on ') such that for every R > 1,0 <t <1

Fil{v: ol = BY) < e ™ with (1.10)
5oy = 20 +Z()£1+_V:))(1 )y (1.11)

We give now the upper bound for f; :

Theorem 1.3 Suppose that v < ﬁ. Then p1 > 2 (given in (1.8)) and f; € COX with x = 1 —

p%.MO’/“@O’U@’/“ for every N < A

@) < Selor (1.12)
tn
with 1 given in (1.7). Moreover, for every v,w € R* with |w —v| < 1
C Y
|fe(w) = fr(v)] < m® P Jw — wfX (1.13)

The estimate (1.12) seems to be new as well as the Holder continuity of f; and equation (1.13).
However, in the case of the Landau equation (that is v = 0), some lower and upper bounds for f;
have been obtained in [16]. In the above paper one uses integration by parts techniques based on the
Malliavin calculus for jump processes - this is not directly possible in our framework because of the
indicator function which appears in equation (2.2).

Corollary 1.2 and Theorem 1.3 are the main contributions of our paper. The drawback of our approach
is that our methodology allows to prove these properties for ”very hard potentials” only (s > 9 for
(1.10) respectively s > 30 for (1.12) and (1.13)). Moreover, 7 is not optimal - however this shows that
the blow up is at most polynomial as ¢t — 0.

The proof is based on a ”balance argument” which is interesting in itself so we give a hint here.
Consider a family of random variables F. ~ f.(v)dv,e > 0 and a random variable F. We suppose
that d(F,F.) — 0 and || fz|]]| — oo as € — 0. Here d is some given distance and || f¢|| is some Sobolev
norm (see below). If the convergence to zero is sufficiently faster than the blow up then one may
prove that F' ~ f(v)dv and obtains some regularity for f. This idea first appears in [14] and then
has been used in several papers (see [9] for example). In these papers the "balance” between the
speed of convergence to zero and the blow up is built by using Fourier analysis. Later on in [8] one
introduced a new method based on a Besov space criterion, and this new method turns out to be
significantly more powerful then the one based on Fourier analysis. This is the method used in [12]
in the case of the three dimensional Bolzmann equaton (see also [7]). Finally, in [2] one introduced



a third method which is close to the interpolation theory. The criterion that we use in the present
paper is an improvement of this last one.

In order to present this criterion we need to introduce some notation. For f € COO(Rd), k,h € N and
p > 1 we define

o= D sup [07f(x)], (1.14)
0<|al<k TER!
I llenp = D (E(/ (1 + [z [0°f (2)[P dar)) M/ (1.15)
0<[aj<k 7B
£l =1 lkop =D N0°£l,- (1.16)
0<Jal<k

Here a = (a1, ...,am) € {1,...,d}™, || = m is the length of the multi-index a and 9“ is the derivative
associated to a. Moreover for two measures u, v we consider the distance

) =supd [ fau— [ fav] 17l < 1 (117)

For k = 0 this is the total variation distance and for k = 1 this is the Fortéet Mourier distance. Our
result is the following:

Theorem 1.4 Let q,k,d € N and p > 1 be fired. We consider a family of measures p.(dx) =
fe(z)dz, e > 0 with f. € C®°(RY) and a finite measure p on R which verify the following hypothesis.
There exists €, > 0,8 > 0,a > 0,b>0,Cy > 1 and Qn(q,p) > 1,h € N such that

i) di(pe, 1) < Coe” Ve € (0,e.) (1.18)
i) | fellopsgonp < @ulg,p)e @Mt Ve € (0,e,),Vh € N (1.19)
i) r:=pB—blk+q+d/p.)>0. (1.20)
We denote ) L J
ho=—v (g +a)(ktot /p*)vq;r“. (1.21)
* T

Then, p(dx) = f(x)dx with f € W9P(R®). Moreover, for every § > 0, there exists a constant C > 1,
depending on q,k,d,p, 6,3 and a,b only, such that for every h > h, one has

(1+6) (k+q+d/p«)
) (1.22)

1l < € x Co x (h*Q}/*(q,p)

The upper bound given in (1.7) is based on (1.22).

The paper is organized as follows. In Section 2 we recall some results from [5] which represent the
basic estimates that we use in the sequel (following Tanaka [17] we introduce a stochastic equation
which represents the probabilistic representation of the Bolzmann equation and we construct some
regularized version of this equation; then we estimate the error done by using such a regularization
- this will be used in (1.18); moreover, we employ a Malliavin type calculus in order to build an
integration by parts formula which permits to obtain (1.19). All these non trivial estimates have
already been obtained in [5] and here we just use them. In Section 3 we use the results from Section
2 and Theorem 1.4 in order to prove Theorem 1.1, Corollary 1.2 and Theorem 1.3. Finally, in the
appendix we prove Theorem 1.4. We also develop a strategy based on integration by parts formulae
which allows to obtain the absolute continuity of the law of a random variable as well as upper bounds
for the density, in an abstract framework. This is done in Proposition 4.4 and Corollary 4.8.



2 Preliminary results

In this section we present some results from [5]. Throughout this section we fix v € [0,1),7 € [0, 1]
and A € (v,2) and the corresponding solution f;(dv) (which exists and is unique). Our first goal is to
give the probabilistic interpretation of the equation (1.1). Using the Skorohod representation theorem
we may find a measurable function v; : [0,1] — R? such that for every ¥ : R> — R,

1
/ b(oe(p))dp = / (o) fu(dv). (2.1)
0 R2

In [5] (following the ideas from [17]) one gives the probabilistic interpretation of the equation (1.1).
We recall this now. Let E = [~F, %] x [0,1] and let N(dt,df,dp, du) be a Poisson point measure on
E x R, with intensity measure b(6)df x dp x du. Consider also the matrix

AB) = 1 < cosf —1 —sinf

92\ sing cosf — 1

) - %(Rg _.

We are interested in the equation

t
V=Yoot [ [ AOVe o)L usyvs o Nlds. d8. dp, ) (22)
0 JExR,

with P(Vp € dv) = fo(dv). Proposition 2.1 in [5] asserts that the equation (2.2) has a unique cadlag
solution (V;)i>0 and P(V; € dv) = fi(dv) (in this sense V; represents the probabilistic representation
for fi).

In order to handle the equation (2.2) we face several difficulties: the derivatives of the function
v — |v —vs(p)|” blow up in the neighborhood of vs(p) - so we have to use a regularization procedure.
Moreover, this function is unbounded and so we use a truncation argument. Finally, the measure
9—(+)dh has infinite mass, and it is convenient to use a truncation argument also. We follow here
the ideas and results from [5]. We fix 1 € (1/A,1/(y V v)). Given € € (0,1] we denote I'. = (In1)™
and we notice that since yny < 1 we have, for every C' > 1 and a > 0

Time®eC™ =0 (2.3)
e—0

So €CT? < g7 for sufficiently small €. Moreover, if x > 0 is such that xng > 1, then for every A > 1

Time e =0 (2.4)
e—0

So e s < &4 for sufficiently small €.
We construct the following approximation. We consider a C'*° even non negative function y supported
by [-1,1] and such that [, x(z)dz =1 and we define

oe(z) = /R (v 2e) ar) MEZ W)y, (2.5)

Observe that we have 2e < p.(z) < I'; for every x € R, p-(v) = x for z € (35,I'z: — 1), p.(x) = 2¢ for
x € (0,¢) and p.(z) =I'; for x € (I'z,00). To the cut off function ¢, one associates the equation

t
V;E = ‘/0 + / / A(e)(‘/se_ — US(p))l{u§g03(|VE—vs(p)|)}N(ds’ d@, d,O, du) (26)
0 EXR+ s

We construct now a second approximation: for ( > 0 we consider a smooth cut off function I, (which
is a smooth version of 1;9/~¢}) and the associated equation

t
e Vo [ a0 o, I(O)N(ds, 9, dp,du).  (27)
o JExR, {usee(

Vv
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We state now a property which will be used in the following: given «a € [0,2] and k > 0 there exists
K > 1 such that for every w € R? and every 0 < e < 1

K
(Aak) sup fi(Ball(w,e)) < —&®. (2.8)
to<t<T tO

Since fi(dv) is a probability measure, this property is always verified with K =1, = 0 and s = 0.
In Proposition 2.1 from [5] one proves that the equations (2.6) and (2.7) have a unique solution and

E \Vf’c —VE[ < OpeT x (T x b W< T. (29)

Moreover, if (A, ) holds, then
E|V; — VF| < CpeCTe x et rte s =%y < T. (2.10)

We stress that in [5] the explicit dependence on the time ¢ does not appear in the right hand side of
the above estimates - but a quick glance to the proof shows that we have the dependence on t as in
(2.9) and in (2.10) (and this is important if we look to short time behavior). Moreover, in the same
proposition one proves that for every 0 < X < X there exists some 9 > 0 such that

A/

)=:C(\) < c0. (2.11)

Y Y véeE
sup E(sup(elVt” 4+ V717 4 e‘ K
e<ep t<T

Finally in Theorem 4.1 in [5] one proves an integration by parts formula that we present now. One
defines (see (4.1) and (4.2) in [5]) a random process G which verifies

<@ <1

VSQEISFE_I} — — {Supsst (2.12)

VoS

<P}

{SUPsgt

The precise form of Gf’c is not important here - the only property which we need is (2.12). Moreover
one considers a two dimensional standard normal random variable Z and denotes

Then one proves (see (4.3) and (4.4) in [5]) that for every multi-index 5 € {1,2}7 there exists a random
variable K B(Ff’c, G5 such that for every function ¢ € C(R2)

B(OPp(F)G) = E((F; ) Ka(ES ¢, GP)). (2.13)

One also proves that for every ¢ € N and every k € (n%’ A) one may find a constant C' (depending on
g and ~ only) such that for every p > 1

C

_~ OTY(.—qr-vq —I't ~—2vq
= t%”(12q—4)e (eI 4 e =M. (2.14)

| Katrre 6|

In particular this gives for every function ¢ € C(R?) and every multi-index 8 € {1,2}¢

c vy Ik a9y
|BOP W IG)| < e T 4 TR X (2.15)

The only difference between (2.15) and the inequality proved in Theorem 4.1 in [5] is that here we
give a precise dependence of the upper bound on ¢ (which blows up as ¢ | 0). We do not expect that
this rate of blow up is optimal, but however it ensures that this rate is at most polynomial. In order
to obtain this estimate one has to come back to the analysis done in [5]. There, in order to construct



the weight K B(Ff’C, Gf’c), one uses a Malliavin type calculus (settled in [4]) and the crucial role in
this calculus is played by the ”Malliavin covariance matrix” of Ff’c = ue(t)Z+ Vf’c. We do not give
here the precise form of this matrix but, if one denotes by d; the determinant of this matrix, then we
will need to estimate E(d;?) for p = 3¢ — 1 (see (4.3) and (4.4) in [[5]). This is done in Proposition
4.4 of [5]. There the dependence of the constant Cy, on ¢ is not given precisely but, looking to the
proof of this proposition, one may see that

1/2
E(d;?) < CpeCol? ( / |£|8P-2exp<—ct|s|“/<2+”>>ds> |
3

€R?
Using a change of variable one obtains

1

E(d;?) < Cperl? x e (2.16)
Now, by (4.4) in [5]
[, 659)| < dgi < A,
with '
q J
A=lop| aslre| ey 3 TTjeEe

J=1ki+..+kj<q—ji=1
The precise significance of the quantities which appear in A, is given in [5] but the only thing which
is of interest for us is that for every p > 1

I8l < CeOT g0 4 (T2

This is done in the proof of Theorem 4.1 in [5]. There one takes p = 1 but a short glance to the proof
shows that the same reasoning and the same result holds for every p > 1. So, using Schwarz inequality
and (2.16) we get

1

e, el —(3¢—1) cpr?
HKB(Ft G )Hp = Hdt Hzp [Aqlly, < Cpe™ = x ABg—1)x 2 [Aqlla,

and one obtains (2.14).

3 Proofs

In the following we adapt the results presented in the previous section to our specific goals. We
suppose that (A, ) holds for some o > 0 and x > 0. In order to equilibrate the errors in (2.9) and

(2.10) we take
C _ Ca(e) _ 6(1-1—“/—1—0:)/(1—1/)'

We recall that Ay > 1, so we may choose (and fix) some X € (n%’A)’ We work with a function

) € C°(R?) such that @y (v) > 0 and @y (v) = e for |v| > 2 (the precise definition is given in
(4.31)) Then we define
gi(dv) = Dy (v) fr(dv).

And for € > 0, > 0 we define f;"* and g;"" by
/ $(0) f (dv) = B (F)GHD), gi(dv) = Dy (v) 7 (dv).

7



In (1.3) we introduced the function ¢ which is strictly increasing and which solves the equation

1+v(y+a)

1+y+a—(1+¢() T

~0. (3.1)

We know that (Ap) holds. Our aim now is to employ Corollary 4.8 in order to obtain (A, ) for a
(as large as possible) a.

Lemma 3.1 A. Let ¢ € N,a € [0,2] and £ > 0 be given. Suppose that (Aq ) holds and p(a) > gq.
Then gi(dv) = gi(v)dv. Moreover, for every p > 1 such that

2
q+ . < p(a) (3.2)
there exists C' > 1 such that o
< . .
Hgth,p — tﬁ_l‘f‘ 12(2V+1/) (1+<,D(Oé)) (3 3)
B Suppose that (Aq,x) holds and (o) > 0. Then (Ay ) holds for every o < ¢(a) A2 with
12(2
K=r—1+ %(1 + () (3.4)

C. Let ay, ki, k € N be the sequences defined in (1.4). Suppose that ¢(0) > 0. Then, for each k € N,
the property (Aa,x,) holds for oo < oy A 2.
D. Suppose that ©(0) > 0. Let k,q € N and let p > 1 be such that

2
g+ —< (,D(Oék N 2) = 41 N (,0(2). (35)
Then o
lgellgp < o (3.6)

Proof. We will use Corollary 4.8 with d = 2, and F, = Ef’ca(a),GE = Gi’ca(a). So we verify the
hypothesis there.
Step 1. First, by (2.13) we know that the integration by parts formula (4.19) holds, with Hg, =

Kﬁ(ﬂe’ca(a), Gi’ga(e)). By (2.14) we obtain for every x € (nlo’ A) (with ¢ = (a(e))

C

crl/ .—q — —T% -2
pesrrrvm A I SRR S

sup 1., <
1B81<q

We use (2.3) and (2.4) in order to obtain

eCTe (e79¢7Y 4 ¢ TE¢2IH)) < Ce™((e€¥) 9 + e 104y +a)/(1-v))

for every ¢ > 0 and A > 1. It follows that

C Itv(y+a)
H < 5 xeg X 7
|2‘l‘“1§1)q || B,epr — t2+TV(12q_4)
and this means that (4.20) is verified with
= C b I1+v(y+a)
TRy T -y “



Here we may take ¢ > 0 arbitrary small. Notice that for every § > 0 we may find h(J) such that for
h > h(6) we have

~1/2h C
H2h+Q+d,P = tHTVXm(l_H;) : (37)

Step 2. Let us verify (4.25). Using (2.12) and (2.11)

-], < Priaglzco] o
1ry yeca@ 1/2 ipy A
< (Ce 2°¢ (E(supel * N2 < ez < Qe

s<t

The last inequality is true for any A > 1. This is a consequence of A'ng > 1 and of (2.4).
And by our choice of (,(g) and as a consequence of (2.9),(2.10) and (2.3) we have (for every ¢ > 0)

( vV, — 7Ca(5) ) < tlﬁc_lel-‘r“/-l-a—c.

We conclude that (4.25) holds with

C

Cozt,_i—_y

B=1+v+a—c

Step 3. Now (3.2) ensures that, for sufficiently small ¢ > 0,

2 2 14+v(y+ao
B-b(l+qg+—)=1+y+a—-c—(1+qg+— )L
P+ Dx 1—v
l1+v(y+a)

=0
1—v

>14+v+a—(1+¢(a))

0 (4.28) holds (with d = 2). Now we are able to use Corollary 4.8. Notice that for every § > 1 and
every N < A one may find C such that ®7, < C®y». So (2.11) gives Cy(\) < oo (see (4.33) for the
definition of Cy(X)). So (4.35) and (3.7) give

1/2h (1+0)(1+q+2/p~)
[l < C % Cox CoX) x (BPHY: )
C
- tn—1+2i/ x12(14q+2/p+)(1+5)
C

< 5 )
T L X12(1 () (146)

In the previous inequality we have englobed 6’9()\’ ) and h in the constant C. So A is proved.
Proof of B. Let p > 0 such that p% = a < p(a) A2. We use A with ¢ = 0. By(3.3) [[f2], <

Dy fr], < Ct=" with &/ given in (3.4). Then, using Hélder’s inequality
tlip
fi(Ball(z,v)) < Ct™" x 2P+ = Ot x .

Proof of C. Take first £ = 1. We know that (App) holds, and by hypothesis ¢(0) > 0. Then, by
B, (Ay ) holds for every o < p(0) A2 =03 A2 with ¥’ =0—1+ %;V)(l + ¢(0)) = k1. So our
assertion holds for k = 1.

Suppose now that the property is true for k and let us check it for k£ + 1. Suppose first that ap > 2.
Then, the recurrence hypothesis says that (A, , ) holds for every a < oy A2 = 2. Since K < Kiy1
the property (Aq k) holds as well, and this is true for every a < 2 = ag41 A 2, so our assertion is
proved. Suppose now that oy < 2 and take o/ < ag1 A2 = p(ag) A 2. Since p(a) T (ag) as o T oy,



we may find @ < ap = ai A 2 such that o/ < ¢(a) A 2. By the recurrence hypothesis we know that
(Aa,k,,) holds and then, using B, we obtain (Ay k).

D. By (3.5) we may find a < ay, A 2 such that ¢ + p% < (). And by C we know that (A, 4, ) holds.
Then we may use A and (3.3) gives (3.6). O

Proof of Theorem 1.1. We will work with the sequences aj and kj given in (1.4). We recall that
ag T o, with o, = () and we have

~(+2) /(224G -2 - D)

a, = 5 (3.8)
so that
a,>1 & v< 2
3y+4
2
oy > 2 & V<4fy+9.
If v < m then »(0) > 0 so we may use the point A in Lemma 3.1 with ¢ = 0 and we obtain the

point A in Theorem 1.1. The point B in Theorem 1.1 follows from the point D in Lemma 3.1.
Proof of C.b. If WLQ <v< # we have a, < 2 so that ay < 2 for every k € N. And if p <

2
2—ou
then p% < ay so we may find k£ such that p% < ag4+1 < 2. So, using the point B in Theorem 1.1 we
obtain g; € LP(R?).

Proof of D.b. If Ajﬂ < v < g8 we have a, € (1,2] so that 1 < 35— We take 1 <p < 3

— and

then 1+ p% < ay. We take k sufficiently large in order to have 1 + p—* < aj+1 and then, as above, by
B in Theorem 1.1 we obtain g, € W1P(R?).

C aand D alf v < 5 then o, > 2. We define k. = min{k : oy, > 2}. By C in Lemma 3.1,
for every o < 2 the property (Aa,x, ) holds. We denote (o) = ¢(a) — a. For k < k, we have
agr1 — ap = Y(ag) > ¥(2) (this is because v is decreasing on (0,2) C (0, ay)). This implies that
ke <2/1(2) and then, since 1+ ¢(0) < 4,

< hox (P2 gy -1y < 2 (B )

with 7 given in (1.7).

We use now the point B in Theorem 1.1. Take first ¢ = 0. Since @(ag, A 2) = ¢(2) > 2 > p% (for
every p > 1) we obtain g; € Ny=1LP(R?). If ¢ € {1,2} then we need p% < ¢(2) — ¢, which gives
p <2/(qg+2—¢(2)) =pg with p;,q =1,2 given in (1.8). And we obtain

IN

loelyp < 55 for p<p
O
Proof of Corollary 1.2 Since v < 515 +1 we may find p < oy such that [[®y fif|, < tgl Then
FUBRO) = [ 1330/ (05! )23 (0)fi(e)do

< (/ g (o) (v)e 7T )7 |2y ol

< e‘éRy(/ L oy ()™ 5 11 )/

< ge_lm/

S
O
Proof of Theorem 1.3. This theorem is an immediate consequence of Corollary 4.8 (see (4.37) and
(4.38)). O
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4 Appendix: A regularity criterion based on interpolation

Let us first recall some results obtained in [2] concerning the regularity of a measure p on R We fix
k,q,h € N, with h > 1, and p > 1. Hereafter, we denote by p. = p/(p — 1) the conjugate of p. Recall
that in (1.14) and (1.15) we have defined | f[|; ., and [|f]| and in (1.17) we have defined dj(u,v)
for two measures ju, v on R?.

For a signed finite measure p and for a sequence of absolutely continuous signed finite measures
pn(dz) = fo(z)dz with f, € C?+9(RY), we define

q,h,p

% %
1
71'Ic,q,h,zu(:t% (ﬂn)n) = Z 2ﬂ(k+q+d/p*)dk(,ua /Ln) + Z W ||fTLH2h+q,2h,p (4'1)
n=0 n=0

and
Thghp(1t) = 0Tk g np (1t (n)n) : pn(dz) = fo(x)dz,  fn € C*PMFTIRY)}.

Remark 4.1 Notice that 45 i a particular case of Ty 4 he treated in [2]: just choose the Young
function e(x) = ey(x) = |z|P, giving Be,(t) = tY/P (see Example 1 in [2]). Moreover, Ty qnp is
strongly related to interpolation spaces. More precisely, Ty qnp 15 equivalent with the interpolation
norm of order p = % between the spaces Wk (the dual of W) and W2h+a2hp — [f .
[ follontqonp < o0} (see [6] for exzample). This is proved in [2], see Section 2.4 and Appendiz B. So
the inequality (4.2) below implies that the Sobolev space WP is included in the above interpolation
space. However we prefer to stick to an elementary framework and to derive directly the consequences
of (4.2) - see Lemma 4.3 and Lemma 4.2 below.

The following result is the key point in our approach (this is Proposition 2.5 in [2]):

Lemma 4.2 Let p > 1, k,q € N and h € N, be given. There exists a constant Cy (depending on
k,q,h and p only) such that the following holds. Let p be a finite measure for which Ty qp (1) is
finite. Then u(dx) = f(z)dx with f € WP and

1fllgp < Co X T g,np(1)- (4.2)

The proof of Lemma 4.2 is given in [2], being a particular case (take e = e,) of Proposition A.1 in
Appendix A (see also [3]). We will use the following consequence:

Lemma 4.3 Letp > 1, k,q € N and h € N, be given and set

k+q+ d/p«

- (4.3)

pn(q) ==

We also consider an increasing sequence 0(n) > 1,n € N such that lim, 6(n) = co and (n + 1) <
© x O(n) for some constant © > 1. Let p be a finite measure on R®. Suppose that we may find a
sequence of functions f, € C*"*4(R%),n € N such that

1fnll2h4q,2n,p < 0(0) (4.4)
and, with p,(dz) = fn(x)dz

lim sup d, (1, fn) % 0P7 D1 () < 00 (4.5)

for some n > 0. Then u(dx) = f(x)dx with f € WP,

11



Moreover, for §,m1 > 0 and n, € N, we set

A®) = || (RY) x 21O+ atktd/p)  yirh 1(5) = min{l : 22X T > 1}, (4.6)
°  12(q+k+d/pstn)
B(n) = ookl (4.7)
1=1
Chom, (1) = sup dy (s, 1) x 0795 (). (4.8)
N>Nx
Then
1£1lyp < C<(© + A(8)0(n. )" DU+ B(n)Chp, () (4.9)

with Cy the constant in (4.2) and pr(q) given in (4.3).
Proof of Lemma 4.3. We will produce a sequence of measures v;(dz) = g;(x)dx,l € N such that
Thanp(tts (1)1) < © + A8)0(n.) " DU+ 4 B(n)Chp, (1) < o0,

Then by Lemma 4.2 one gets p(dz) = f(z)dr with f € WP and (4.9) follows from (4.2)). Let us
stress that the v;’s will be given by a suitable subsequence p,(, [ € N.
Step 1. We define
22hl
n(l) = min{n : O(n) > 1—2}

and we notice that
2hl

1 2
50(D) < 0(nll) 1) < =5 < 0. (4.10)
Moreover we recall that n, is given and we define
2hl
l, = min{l: R > 0(n.)}.
Since

0(n(l.)) = = = 6(n.)

*

it follows that n(ly) > n..

We take now £(0) = -2 which gives 5722 = 1+4. And we take () > 1 such that 2/9/(+9) > [ for
T+6 2h—e(9))

[ >1(9) (see (4.6)). Since h > 1 it follows that (5) > % so that, for [ > () we also have 2!¢() > |,
Now we check that

92(h—c(O))l= < 92M(®)g(p). (4.11)
If [, < 1(6) then the inequality is evident (recall that #(n) > 1 for every n). And if I, > [(J) then
2l+(®) > |, By the very definition of [, we have
92h(l.—1)
(e < 0(ny)

so that
22hl* < 22h(l* o 1)29(71*) < 22h % 221*6(6)9(71*)

and, since [(0) > 1, this gives (4.11).
Step 2. We define

=0 4if <l
=gy of 121k
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and we estimate 7y, o »(i, (11);). First, by (4.4) and (4.10)

[e.9] o0

1 1 =1
> oz 1Fawllyranon, < D (D) <0 5 <6.

I=l, 1=l l=lx

Then we write
o0

22(q+k+d/p*)ldk(ﬂayl) — Sl + 512
=1

with
l—1

Sy = 3 20k (4,0), Sy = 3 20PN (1, ).
P 1=l

Since di(p,0) < do(p,0) < |u| (R?) we use (4.11) and we obtain
S1 < |ul (Rd) « 2(atk+d/ple _ M (}Rd) « (22(h—€(5))l*)(Q+k+d/p*)/2(h—e(5))
< |p| (RY) x (22hl(5)9(n*))ﬁh(Q)(1+5) _ A(é)e(n*)ph(q)(l—l-&)‘

If I > I, then n(l) > n(ly) > n, so that, from (4.8),

12 )ph(q)+n Chon. (1) 12(pn(a)+1)

dk(ﬂaﬂn(l)) < Hf’h@*‘—"(n(l)) < Chn, (ﬂ)(w = olgtktd/pa)l X 92hnl

We conclude that
> 12(pr(@)+n)

S2 < Chn, (1) Z T oahl < Chn () X B(n).
1=l
O
We give now a consequence of the above result which is more readable.

Proposition 4.4 Let q,k,d € N and p > 1 be fired. We consider a family of measures p.(dz) =
fe(z)dz, e > 0 with f. € C®°(RY) and a finite measure p on R which verify the following hypothesis.
There exists €, > 0,8 > 0,a > 0,b >0 and Cy > 1,Qn(q,p) > 1,h € N such that

i) di(pe, 1) < Coe” Ve € (0,e.) (4.12)
i) | fellopsgonp < @nlgp)e @Hete) Ve € (0,e,),Vh € N (4.13)
iti) r:=p—-0bk+q+d/p.) >0 (4.14)
We denote ) L J

Then, p(dx) = f(x)dx with f € W9P(R®). Moreover, for every § > 0, there exists a constant C > 1,
depending on q,k,d,p,0,5,r and a,b only (but not on h), such that for every h > h, one has

(1+6)(k+q+d/p«)
1l < € x Co x (12Q) " (a.p))

(4.16)
Proof. All over this proof C' designs a constant which depends on ¢, k,d,p,d, 3,7 and a,b only. We
will use Lemma 4.3. We take

r g+ k+d/ps)

- . A1
T ehtqtra) 2h (4.17)
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For ¢ < e, we have

Qﬁh(q (g, p)eP~(Pn(@+mbhtata)

(ME) )Hj%H2h+q2hp —»Cb q,p)e

Notice that

B — (pr(q) +mb(2h + q +a) = (B — 2hpr(q)b) — pr(q)b(q + a) —nb(2h + q + a)

ST T
=T 73

the last inequality being a consequence of (4.17) and (4.15). So we obtain

di(pie, ) 1= 050 < o@D (g, p) < Co@p @+ (g, p). (4.18)

We take now g, = % and n, = h and we define

g =0 1if n<n,
= fe, if n>n.

We will use Lemma 4.3 for v,(dz) = g,(x)dx so we have to identify the quantities defined there.
We define 8(n) = Qp(q,p)n?@"+9t9) if n > n, and (n) = O(n.) if n < n.. By (4.13) we have
9nllan+q.2np < 0(n) and moreover, for n > n, = h

On+1) 1 o behtete)  gpybate) g

TR = = ¢

We conclude that © < 3. We estimate now B(n) defined in (4.7). Since

1 26(2h+q+a) 2
— = v <C
nh rh g+ k+d/pe) —

we obtain

> 2(g+k+d/patn) 00 4.2(qt+k+d/p«+1)
_/ ————dx
0

B(n) = B 7 R— <
=1

92hnz

1 00 o 2(q+k+d/p«+1)
)/ Y dy < C.
0

- (2nh)1+2(k+atd/p.+1 2
Moreover, since h > %(q + a) it follows that
pr(Q)(1 +0)b(2h + g+ a) < 2(1 4 6)b(k + ¢ + d/p.)
and consequently (recall that n, = h)
0(n., )ph(q (1+6) _ Qph )(149) (q p)nzh(q)(lﬁ) (2h+q+a)

Qph )(1+9) ( p)h2(1+6)b(k+q+d/p*)'
Finally we notice that, by (4.18), the constant C}, ,,, (1) defined in (4.8) verifies

Chn, (1) < CoQP P (g ).

Now we use (4.9) and we obtain

1£1l,, < O+ QPOUT) (g, pyp2 (D) ltard/p) o cu DU (g py)

which gives (4.16). O
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4.1 Link with the integration by parts formula

We consider a family of random variables F. € R? and G. € [0,1],e > 0 and we associate the measures
le given by

/‘pdﬂs = E(p(F:)Ge).
We assume that p. satisfy the integration by parts formula
E(0°p(F.)Ge) = E(p(F.)Hgp:) Vo € Cp°(RY). (4.19)

We also assume that for every ¢ € N and p > 1 there exist some constants fIq,p and a, b, e, > 0 such
that for every 0 < € < &,
sup [[Hge||, < qu5 o), (4.20)
1B1<q
In particular this implies that u.(dv) = p-(v)dv.
For y € R we denote I, = (y,00) if y > 0 and I, = (—o0,y) if y < 0. And for v = (v1, ..., v4) we define

A, =[] 1, (4.21)

Moreover we consider a random variable F' € R? and we denote y the law of F' (so [ ¢dp = E(¢(F))).
We also consider a function ® € C°°(R?) such that ®(v) > 0, dv almost surely. Our aim is to give
sufficient conditions which guarantee that u(dv) = p(v)dv and to obtain estimates for ®p. In order to
do this we give first estimates for ®p., we estimate then di(®u, Pu.), and finally we use Proposition
4.4 in order to conclude.

Lemma 4.5 Let ® € C™®(RY). Assume that (4.19) and (4.20) hold. For every g,h € N and p > 0
there exists a constant C' (depending on q,h,d and p only) such that, for every e € (0,¢e,)

19D 4 1y < CHorap. (E(@g pp(F2)))' /Pt (4.22)
with
p
Bypp(z) = sup / 1+ [ol)"* |0 2(0)] 14, () (4.23)
|B|<qJRd
Proof. By (4.19)
0*(®p)(v) = > V() pe(v) = Y P(v)E@7 6 (Fr — v)Ge)
(B7)=c (By)=c
Z aﬁ@ 1Av( )H(v,l,...,d),e)
(By)=a

so that

0" (@p) @) < Y [OTRWE(, (F)Hs 1, a2)

B)=a

< Y [0%0w)| PYRE € A) | Hipy el
(B)=a

<3 ‘66<P(v)‘ PYP(F. € Ay) x Hypqp, €0+,
181<q
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This gives

~ p
129-l 5 < Clyran. 20 3 ([ (14 11) 0700 E1rea, o)
181<q

= CHyrap, ") (B(® g 5 (F2))) P

(]
We denote Q- = supye(,1)(|®] + [VO[)(AF + (1 — A\)F;) and we define the constants

Ci(2,0) = Sup 1Qcllg (4.24)

Co(®) = sup | (FL)|ly, Cs = [|Flly +sup|[Fe|, .
e>0 e>0

Lemma 4.6 Suppose that the constants in (4.24) are finite and moreover suppose that

11— Gelly + [|F = F-l; < Cos”. (4.25)
Then, for every § > 0
dy (Dpic, Bpu) < Cs(@)eP170) (4.26)
with
C5(®) = Co(1 + Co(®)) + 20502 (@, %)). (4.27)

Proof. Let ¢ with [|¢]|; ., < 1. We estimate first
|E(69)(F2)(1 = G)|) < [0l 1P(FL)lly 11 = Gelly < Co(®)Coe”.

Then we write
1
[E((¢@)(F2) — (9@)(F))] < E/O IV(¢P)(AF + (1 — N F:)(F — F)|dA

< |1ll100 B(Qe |[F — Fo|) < Ik + Jk
with
Ix = E(Qe ‘F - Fe’ 1{Q§K}) < KCOEﬁ
and

2C5C7 T (D,2(0 + 1
Tie = BQ:|F ~ F o) < 205(B(@21 o) ? < 20202 L)

In order to optimize we take K = ¢~ #/040) and we obtain

[E((6®)(F:) — (62)(F))| < (Co + (20507 (@, 2(0 +1)))) x 7757

Then taking § = (1 — )/ we obtain (4.26). O
As an immediate consequence of Proposition 4.4 with k£ = 1 and of the Lemma 4.5 and of Lemma 4.6
we obtain

Proposition 4.7 Let g € N and p > 1 be given. Suppose that (4.19),(4.20) and (4.25) hold and
r=p—-bl+qg+d/p:)>0 (4.28)

Then p(dv) = p(v)dv and for every & > 0 there exists C' (depending on q,d,p,r,5 and § only) such
that

146) (14-g+d/p-
)( )(14-q+d/px) (4.29)

l@pll,, < € x Cs(@) x (BQ;/" (a.p)
with Cs(®) given in (4.27) and with (see (4.22))

Qn(0:1) = Honsqrdp, (B(Poniqonp(F))MP. (4.30)
This inequality holds for every h > h, with hy given in (4.15).
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We discuss now the particular case which appears in our framework: we consider a non decreasing
function p : Ry — R4 such that p(u) = 1 for u € (0,1), p(u) = u for u € (2,00) and p € C®(Ry)
and, for some A > 0 we define

By (v) = PV, (4.31)

Then @) has the following property: for every h,q € N there exist some constants ci, ¢y (depending
on ¢ and h) such that for every multi-index  with |3] < g one has

(1+ [o])" ‘OBCI)A(U)‘ < 102 (v). (4.32)
For 6 > 1 we denote R
Cb(A):=<E(@§(FW)4—@2513033(52)) (4.33)

One easily verifies that the constants defined in (4.24) verify, for some universal constants C' and ¢’
C1(®y,0) + Co(Dy) + C5 < C x Cpr(N)
and consequently (with C from (4.25)), for every 6 > 0 there exist C, 6 and €’ such that
Cs(Py) < C x Cy x CY'(N) (4.34)

Since |z| > |v| for x € A, it follows that the constant defined in (4.23) verifies (with C' and 6 depending
on q,h,p) 4 pp(z) < CPY(). So

E(®opsqonp(Fr)) < CE(®(FL)) < CCy(N)
so finally the constant in (4.30) is

Qn(a:p) = Honsgrdp, X C x Co(N).

Corollary 4.8 A. Let g,h,d € N and p > 1,6 > 0 be given. Suppose that (4.19), (4.20), (4.25) and
(4.28) hold (for these q,d,p and §). Consider also some X\ > 0 such that 6’9()\) < oo for every 6§ > 1.
There exist some constants C > 1 and 0,0' > 1 (depending on q,h,d,p and §) such that for h > h,
(given in (4.15)) one has

[®xpll,, < Talg, hyp)  with (4.35)

>(1+6)(1+q+d/p*)

Ta(q, hyp) = C x Co x CI'(\) x (h%ﬁ” 2h (4.36)

2h+q+d,p«
with Cy given in (4.25) and Cy(\) given in (4.33).

B. Suppose that the hypothesis from the point A holds for ¢ = 1 and p > d. Then p € COX(R?) with
le—% and we have

p(@) < 1@aplly, x e < Ta(1, by p) x el (4.37)
Moreover, for every x,y € R® with |x —y| <1 and every e > 0,

A
p(y) — p(a)] < | @rplly, x eI x|z — y X (4.38)

<Ta(1,hyp) x el s g — ypx
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Proof. The point A is an immediate consequence of Proposition 4.7. Let us prove B. The fact
that p is xy— Holder continuous is a consequence of Morrey’s theorem which also gives ||®yp|l, <
[®xpllcon < Cl|@aplly, so we obtain (4.37).

Note that there exists C' such that |[V®,(y)| < C®}™(z) for every x,y € R? such that |z —y| < 1. Tt
follows that if |z — y| < 1 then |®)(y) — ®x(z)| < CO(2) |z — y| . We write now

(@Ap)(y) — (Pap)(z) = Pa(2)(p(y) — p(2)) + (Pa(y) — Pa(z))p(2)

and this gives

Py (2) [p(y) — p(2)] < [@A(y) — () p(2) + [(P2p)(y) — (PAp)(2)]
< CO e (2)p(x) |= — y| + Talg, hy p) |y
< C(25(z) +Tx(g, h,p)) |z — y|¥

and this gives (4.38). O

Remark 4.9 The above estimates seem interesting even in the following simpler situation. Consider
a random variable F for which the integration by parts formulae

E(0“p(F)) = E(p(F)Ha) Ve € Ci°(RY)

holds for every multi-index o and denote ]?Iq,p = SUP|q|<q HHaHp- Suppose that ﬁqm < oo for everty

g € N,p > 1 and suppose also that Cp()\) := E(69|F|A) < oo for every 0 > 1. Then P(F € dzx) = p(z)dz
and, for every h € N, we have the estimate

p(z) <Ta(1,h,p) x el (4.39)

with Tx(q,h,p) defined in (4.36). Morover, using Morrey’s theorem for arbitrary q € N, we obtain,
for every multi-index « with |a| < g,

19°p(2)| < Ta(g, h.p) x el (4.40)

This imediately follows by taking F. = F (so that dy(F,F.) = 0 and so one may take = oo in the
above reasoning).
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