
HAL Id: hal-02429432
https://hal.science/hal-02429432v1

Submitted on 6 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Structure of Small Strength-2 Covering Arrays
Janne I Kokkala, Karen Meagher, Reza Naserasr, Kari J Nurmela, Patric R J

Östergård, Brett Stevens

To cite this version:
Janne I Kokkala, Karen Meagher, Reza Naserasr, Kari J Nurmela, Patric R J Östergård, et al.. On
the Structure of Small Strength-2 Covering Arrays. Journal of Combinatorial Designs, 2019, 28 (1),
pp.5-24. �10.1002/jcd.21671�. �hal-02429432�

https://hal.science/hal-02429432v1
https://hal.archives-ouvertes.fr

On the Structure of Small Strength-2 Covering
Arrays

Janne I. Kokkala∗

Department of Communications and Networking
Aalto University School of Electrical Engineering

P.O. Box 15400, 00076 Aalto, Finland

Karen Meagher†

Department of Mathematics and Statistics
University of Regina
Regina, SK, S4S 0A2

Canada

Reza Naserasr‡

Institut de Recherche en Informatique Fondamentale
Bâtiment Sophie Germain
8 place Aurélie Nemours

75013 Paris, France

Kari J. Nurmela§, Patric R. J. Österg̊ard¶

Department of Communications and Networking
Aalto University School of Electrical Engineering

P.O. Box 15400, 00076 Aalto, Finland

Brett Stevens‖

School of Mathematics and Statistics
Carleton University

1125 Colonel By Drive
Ottawa, ON, K1S 5B6

Canada

1

Abstract

A covering array CA(N ; t, k, v) of strength t is an N × k array of
symbols from an alphabet of size v such that in every N × t subarray,
every t-tuple occurs in at least one row. A covering array is optimal if
it has the smallest possible N for given t, k, and v, and uniform if every
symbol occurs bN/vc or dN/ve times in every column. Prior to this
paper the only known optimal covering arrays for t = 2 were orthog-
onal arrays, covering arrays with v = 2 constructed from Sperner’s
Theorem and the Erdős-Ko-Rado Theorem, and eleven other param-
eter sets with v > 2 and N > v2. In all these cases, there is a uniform
covering array with the optimal size. It has been conjectured that
there exists a uniform covering array of optimal size for all parame-
ters. In this paper a new lower bound as well as structural constraints
for small uniform strength-2 covering arrays are given. Moreover, cov-
ering arrays with small parameters are studied computationally. The
size of an optimal strength-2 covering array with v > 2 and N > v2 is
now known for 21 parameter sets. Our constructive results continue
to support the conjecture.

1 Introduction

A covering array CA(N ; t, k, v) of strength t is an N × k array of symbols
from an alphabet of size v such that in every N × t subarray, every t-tuple
occurs in at least one row. We will use Zv = {0, 1, . . . , v − 1} as the alpha-
bet for all of our covering arrays. A covering array is optimal if it has the
smallest possible N for given t, k, and v, and uniform if every symbol occurs
either bN/vc or dN/ve times in every column. A uniform CA(N ; t, k, v) is de-
noted by UCA(N ; t, k, v). The smallest value of N for which a CA(N ; t, k, v)
(respectively UCA(N ; t, k, v)) exists is denoted by CAN(t, k, v) (respectively
UCAN(t, k, v)).

Covering arrays are extensively studied designs with many applications.
There are several surveys of covering arrays [4,11,19]; for more recent studies
see [1,5,6,10,34,43,45]. Uniform covering arrays are particularly useful since

∗Supported by the Aalto ELEC Doctoral School, Nokia Foundation, and Academy
of Finland, Project #289002. Present address: Department of Theoretical Computer
Science, School of Electrical Engineering and Computer Science, KTH Royal Institute of
Technology, SE-100 44 Stockholm, Sweden.
†Supported in part by an NSERC discovery grant.
‡ANR-17-CE40-0022
§Present address: Mankkaanmalmi 8 A, 02180 Espoo, Finland
¶Supported in part by the Academy of Finland, Project #289002.
‖Supported in part by an NSERC discovery grant.

2

they are used in some constructions to create larger covering arrays [8,10,33,
46]. In this work, we only consider strength-2 covering arrays; thus we omit
the parameter t for brevity, and write CA(N ; k, v) and UCA(N ; k, v) instead
of CA(N ; 2, k, v) and UCA(N ; 2, k, v), respectively. We also use CAN(k, v)
and UCAN(k, v) for CAN(2, k, v) and UCAN(2, k, v).

A covering array with N = v2 is an orthogonal array and it is necessarily
both uniform and optimal. For v = 2 it is known ([16,17]) that CAN(k, 2) =
n, where (

n− 2

d(n− 1)/2e

)
< k ≤

(
n− 1

dn/2e

)
.

Moreover, for v = 2 and all k, there is a uniform covering array of optimal
size, so UCAN(k, 2) = CAN(k, 2) (this is a consequence of a graph homo-
morphism and graph core result [23, Theorem 5]).

Prior to this work, as far as we have been able to verify, the other optimal
values known when N > v2 were CAN(5, 3) = 11, CAN(6, 3) = CAN(7, 3) =
12, CAN(8, 3) = CAN(9, 3) = 13, CAN(10, 3) = 14, CAN(6, 4) = 19,
CAN(7, 4) = 21, CAN(7, 5) = 29, CAN(4, 6) = 37, and CAN(5, 6) = 39
(see Table 2 in the current paper for references). In all these cases, there
exists an optimal covering array that is also uniform. In fact, to date there
has not been a single set of parameters found for which none of the optimal
covering arrays is uniform. This has led the second and sixth author of the
current paper to make the following conjecture [23, Conjecture 1].

Conjecture 1. If there exists a CA(N ; k, v) then there exists a UCA(N ; k, v).

Recently, Torres-Jimenez [42] found examples of optimal, but not uni-
form, covering arrays with the additional property that the array has the
maximum number of columns (maximum k) for the given number of rows
(given N). One generalization of covering arrays is covering arrays avoiding
forbidden edges where certain pairs of symbols in certain columns are for-
bidden [9]. There exists an arc-transitive 4-partite graph where the unique
optimal covering array avoiding the edges of the graph cannot be uniform
[37]. This does not refute the conjecture but it does show that placing even
highly symmetric constraints on covering arrays can force non-uniformity of
optimal arrays.

An analogous problem has also been studied for covering and packing
(error-correcting) codes. For binary covering codes, there are sets of pa-
rameters for which all optimal codes are nonuniform [30]. For binary error-
correcting codes, there are even sets of parameters for which all optimal codes
have a nonuniform distribution of coordinate values in all coordinates [31].

The main challenge in studying Conjecture 1—in searching for a counter-
example—is to determine CAN(k, v). This can be done via a lower bound

3

and a constructive upper bound that meet. There are some well-known con-
structions for covering arrays. Specific covering arrays can be found by meta-
heuristic search techniques [3,27], using constraint programming models [12]
or by applying post-optimization techniques to known constructions [25]. In
practice, however, strong enough bounds are in general available only for
limited sets of parameters [12,36]

A new lower bound on the size of covering arrays is proved in this paper.
Analytical methods can be augmented with computational techniques, which
will be utilized in the current work to determine CAN(k, v) up to the limits
set by the available algorithms and computational resources.

In this paper, new lower bounds and structural constraints on uniform
covering arrays are given in Section 2. Computational methods, including
exhaustive search and classification procedures, are described in Section 3.
Equivalent covering arrays can be made from permuting columns, rows, or
symbols. A central aspect of efficient exhaustive search in general and clas-
sification in particular is avoiding finding different copies of the same array;
this process is called isomorph rejection. These concepts are discussed in
more detail in Section 3. An extensive table of classification results is given
in Section 3.2. Finally, our computational results are discussed in Section 4,
which also contains updated tables of bounds on CAN(k, v) and UCAN(k, v)
for 4 ≤ k ≤ 10 and 3 ≤ v ≤ 6.

2 Bounds for small covering arrays

2.1 A lower bound for uniform covering arrays

The following theorem can be used to get a lower bound on the size of a
uniform covering array.

Theorem 1. Let C be a UCA(N ; k, v). Let d = bN/vc and i = N − vd.
Then

(k2−3k+2v)N2−v(k(2v−1)−2)(k−1)N+k(k(v4−v3+vi−i2)−(v4−v3+3vi−3i2)) ≥ 0

and a necessary condition for equality is that every pair of rows in C agree
in at least one and at most two columns.

Proof. Let C be a UCA(N ; k, v), d = bN/vc, and i = N − vd. To arrive at
the inequality, we will find an upper and a lower bound for the number of
pairs of rows which agree in at least one position. An upper bound is the
total number of pairs of rows,

(
N
2

)
.

4

To get a lower bound on the number of pairs of rows we introduce two new
parameters. Define M1 to be the number of triples (r, r′, c) for which rows r
and r′ agree in column c. Further define M2 to be the number of quadruples
(r, r′, c, c′) for which rows r and r′ agree in columns c and c′. Then M1−M2

is a lower bound on the number of pairs of rows which agree in at least one
position. (Indeed, M1−M2 consists of the first two terms in the summation
using the principle of inclusion and exclusion.)

This gives us the bound

M1 −M2 ≤
(
N

2

)
, (1)

which is tight if and only if every pair of rows in C agree in at least one and
at most two columns.

Since the array is uniform, in every column there are i symbols which
appear d + 1 times and v − i symbols which appear only d times. Thus the
contribution to M1 from any column is i

(
d+1
2

)
+ (v − i)

(
d
2

)
and the sum of

these over all columns is

M1 = k

(
i

(
d+ 1

2

)
+ (v − i)

(
d

2

))
=
kd(N − v + i)

2
. (2)

Next, we find an upper bound for M2. Consider columns c and c′. Let
λc,c

′
x,y be the number of rows r such that Cr,c = x and Cr,c′ = y, and let µc,c′

x

be the number of pairs of rows r and r′ such that Cr,c = Cr′,c = x and
Cr,c′ = Cr′,c′ . It follows from the definition that

µc,c′

x =
∑
y

(
λc,c

′
x,y

2

)
. (3)

The number of pairs of rows that agree in columns c and c′ is then
∑

x µ
c,c′
x .

For each x, let mc
x be the number of times x occurs in column c. Since∑

y λ
c,c′
x,y = mc

x and λc,c
′

x,y ≥ 1 for all y, it can be seen that Equation (3) is

maximized for each x when there is a yx such that λc,c
′

x,yx = mc
x + 1 − v, and

λc,c
′

x,y = 1 for all y 6= yx. This gives

∑
x

µc,c′

x ≤
∑
x

(
mc

x + 1− v
2

)
= i

(
d+ 2− v

2

)
+ (v − i)

(
d+ 1− v

2

)
. (4)

The last equality follows from the fact that i symbols occur d + 1 times
in column c, and v − i symbols occur d times in column c. This bound is
attained if and only if there is a permutation π of {0, 1, . . . , v− 1} such that

5

the number of times x appears in column c equals the number of times π(x)
appears in column c′ for each x, and λx,y = 1 whenever y 6= π(x).

Summing (4) over all pairs of columns gives us an upper bound for M2,

M2 =
∑
c,c′

∑
x

µc,c′

x ≤ k(k − 1)(d+ 1− v)(N − v2 + i)

4
. (5)

Applying (2) and (5) to (1) and multiplying both sides by 4v yields the
bound from the theorem.

Theorem 1 is particularly useful for small k.

Corollary 2. If there exists a UCA(N ; v+2, v), then N ≥ v2+v−1. Further,
if N = v2 + v − 1, then every pair of rows must agree in either one or two
positions, and in each pair of columns there are exactly v − 1 disjoint pairs
of symbols that appear twice.

Similarly we can apply Theorem 1 to covering arrays with few columns.

Corollary 3. Assume that there exists a UCA(N ; v + j, v).

1. If j = 3, then N > v2 + 3v/2 − 5/2. If additionally 2 < v ≤ 11, then
N > v2 + 3v/2− 2.

2. If j = 4 then, N > v2 + 2v − 5. If additionally v ≤ 6, then N ≥
v2 + 2v − 4.

3. If j = 5, then N > v2 + 7v/3− 13/2.

4. If j = 6, then N > v2 + 8v/3− 21/2.

5. If j = 7, then N > v2 + 3v − 15.

In the previous corollary, there are similar improvements possible in the
constant term in the lower bound on N when v is sufficiently small for j ≥ 5.
We only state the improved bounds for j = 3 and 4.

The form of the bound in Theorem 1 does not let us easily identify its be-
haviour as a function of k, but, by losing the accuracy given by the residue of
N mod v, we can obtain a weaker bound that has a more directly computable
form.

Corollary 4. Let

b = (2v − 3)k2 + (−2v + 5)k + (−4v + 2),

a = 2k2 − 6k + 4v, and

D = k4 + (8v2 − 16v + 2)k3 + (−8v3 + 24v − 3)k2 + (8v3 − 8v2 − 8v − 4)k + 4.

6

If there exists a UCA(N ; k, v), then

N ≥ v

(
b+
√
D

a

)
(6)

Proof. Consider a uniform covering array CA(N ; k, v). Let N ′ be the least
multiple of v that is at least N . This means that N ′ ≤ N + v − 1 and the
uniform CA(N ; k, v) can be extended to a CA(N ′; k, v) in which each column
has each symbol occurring exactly N ′/k times. Theorem 1 can be applied to
the CA(N ′; k, v), to get that

2vN ′(N ′ − 1) ≥ k
(
2(N ′)(N ′ − v)− (k − 1)(N ′ − v2 + v)(N ′ − v2)

)
.

This reduces to

0 ≤ (k2 − 3k + 2v)(N ′)2 − v(k − 1)(2kv − k − 2)N ′ − k(k − 1)(v4 − v3) ≤ 0

Then N ′ must be bounded below by the quadratic’s larger root. The result
follows since N ′ − (v − 1) ≤ N .

By taking the derivative of Inequality (6) with respect to k and approxi-
mating its roots we compute that this bound reaches it maximum at a value
of k less than, but close to

kmax ≈
16v2 − 20v − 15

8v − 16
= 2v +

3

2
+

9

8v − 16
.

The error in this approximation is less then 0.5 after v = 16. The value of
the bound at this maximum point is approximately

Nv = UCAN(2, kmax, v) ≥ 2.4142v − 1.17678− 3.5026v + 10.2260

8v2 + 8v − 4
.

That is, for k > kmax the value of the bound from Corollary 4 is smaller than
Nv. Since we know that UCAN(2, k+1, v) ≥ UCAN(2, k, v), the bound from
Corollary 4 loses its utility for any k > kmax. The maximum useful k for the
bound of Theorem 1 must also be close to this kmax. In our classification
results six uniform covering arrays meet the bound from Theorem 1. Five
have k = v + 2 and one, UCA(21; 7, 4), has k = v + 3.

2.2 Constraints on covering arrays with v + 2 columns

The strongest structural conditions implied by equality in Theorem 1 happen
when k = v + 2 and N = v2 + v − 1. We further investigate covering arrays

7

with these parameters. First we introduce some notation. In a uniform
covering array UCA(v2 + v − 1; k, v), in each column every symbol occurs
either v times or v + 1 times. An entry in a UCA(N ; k, v) is called a high
frequency entry if the symbol in the entry occurs at least v + 1 times in the
entry’s column.

Theorem 5. Let C be a UCA(v2 + v − 1; v + 2, v) and let ai be the number
of rows that contain exactly i high frequency entries. Then

v+2∑
i=0

ai = v2 + v − 1, (7)

v+2∑
i=0

iai = (v + 2)(v − 1)(v + 1), (8)

v+2∑
i=0

i2ai = (v + 2)(v + 1)2(v − 1). (9)

Further, a0 ≤ 1, and a1 = a2 = 0.

Proof. Let C be a UCA(v2 + v − 1; v + 2, v). For a column, c, denote by Sc

the set of symbols in high frequency entries. We know |Sc| = v − 1.
Equation (7) is established by simply counting the rows of C. Equa-

tion (8) is established by computing the cardinality of the set

{(x, c, r) | 0 ≤ c < v + 2, Cr,c = x ∈ Sc}.

Equation (9) is established by computing the cardinality of the set

{(x, c, y, c′, r) | 0 ≤ c 6= c′ < v + 2, Cr,c = x ∈ Sc, Cr,c′ = y ∈ Sc′}.

There is exactly one symbol per column that is repeated exactly v times.
So if two rows had no high frequency entries, then both rows would only
contain the symbols that occur exactly v times. This would mean that a
pair of such symbols is repeated and C could not be a covering array. Thus
a0 ≤ 1.

To establish that a1 = a2 = 0, let r be a fixed row containing i symbols
which appear v + 1 times in their column. For any of the other v2 + v − 2
rows b, let µr,b be the number of columns where rows r and b agree. Counting
the flags (c, b) with 0 ≤ c < v + 2, b 6= r and Cb,c = Cr,c we have∑

b6=r

µr,b = v2 + v − 2 + i, (10)

µ =
v2 + v − 2 + i

v2 + v − 2
. (11)

8

Counting the flags (c, c′, b) such that 0 ≤ c 6= c′ < v + 2, Cb,c = Cr,c, and
Cb,c′ = Cr,c′ we have ∑

b 6=r

(
µr,b

2

)
≤
(
i

2

)
, (12)

(this follows since only high frequency entries can occur twice). Using Equa-
tion (10), this implies that∑

b6=r

µ2
r,b ≤ v2 + v − 2 + i2. (13)

Now we get

0 ≤
∑
b6=r

(µr,b − µ)2

= −µ2(v2 + v − 2) +
∑
b6=r

µ2
r,b

≤ i
i(v2 + v − 3)− (2v2 + 2v − 4)

v2 + v − 2
.

Which implies that i = 0 or i ≥ d2 + 2/(v2 + v − 3)e = 3.

Corollary 6. Let C be a UCA(v2 + v − 1; v + 2, v) and let ai be the number
of rows that have exactly i high frequency entries. If a0 = 1, then av+1 =
v2 + v − 2 and ai = 0 for all other i.

Proof. If a0 = 1 then (7), (8) and (9) imply that the average i is i = v + 1.
The variance in the distribution of i 6= 0 is equal to 0, since

v+2∑
i=1

(i− i)2 = −i2(v + 2)(v − 1) +
v+2∑
i=1

i2ai

= (v + 2)(v − 1)(v + 1)2 − (v + 2)(v − 1)(v + 1)2.

All this leaves open the possible existence of a CA(N ; v+ 2, v) with N <
v2 + v − 1 (and thus smaller than those described in Corollary 3) if only the
covering array is not uniform. However some constraints exist even in this
case for CA(N ; v+2, v). In [36], the following result is proved using a similar
counting method.

Theorem 7. Assume that there exists a CA(N ; k, v) that has a row that
contains at most two high frequency entries. If k = v+2, then N ≥ v2+v−1;
and if k ≥ v + 3, then N ≥ v2 + v.

Assume that there exists a CA(N ; k, v) that has a row that contains at
most three high frequency entries. If k ≥ v + 2, then N ≥ v2 + v − 1.

9

3 Classifying covering arrays

In all of our computer-aided studies of covering arrays, we fix the parameters
of the array: the order, v; the degree, k; and the size, N . We further consider
covering arrays as multisets of their rows. (Given two multisets, S and T ,
the multiset sum S] T is the set for which the multiplicity of each element
is the sum of its multiplicities in S and T .) Two covering arrays are then
said to be equivalent if one can be obtained from the other by a permutation
of the columns and by column-wise permutations of the elements of Zv. A
transformation that maps a covering array C onto itself is an automorphism,
and the set of all automorphisms form the (full) automorphism group of C,
denoted by Aut(C). Our computer search builds all inequivalent covering
arrays with a given parameter set.

For isomorph rejection, we represent covering arrays as colored graphs
(this is described below) and, using nauty [22], we may also determine the
automorphism group for graphs and thereby the corresponding arrays. The
colored graph G corresponding to a covering array C is constructed in the
following standard way [32].

The vertices of G will be colored with two colors. Colourings of graphs
are the mechanism that nauty [22] uses to forbid certain mappings between
vertices; they need not be proper colourings. First, G contains k disjoint
copies of the complete graph of order v; all of these vertices are colored with
the first color. These vertices represent the entries in the columns of the CA;
the ith copy of the complete graph corresponds to the ith column and the jth
vertex in each copy corresponds to the symbol j in that column. Further, G
contains N vertices, representing the rows of C, all colored with the second
color. Each such vertex is connected to the k vertices corresponding to the
column-symbol pairs that occur in that row. Note that the obvious homo-
morphism Aut(G) → Aut(C) has a nontrivial kernel if there are duplicate
rows.

Our main method, presented in Section 3.1, constructs one representative
from each equivalence class of covering arrays, CA(N ; k, v). This is done by
starting with a set of representatives of the equivalence classes of covering
arrays CA(N ; 2, v), and sequentially adding columns, rejecting equivalent
covering arrays after every step. Canonical augmentation [14, Sect. 4.2.3],
[21] is used when extending representatives of covering arrays CA(N ; k′, v) to
representatives of covering arrays CA(N ; k′ + 1, v); this part is described in
detail in Section 3.1.2. Further, since our goal is to classify all CA(N ; k, v) for
certain k but not necessarily those that have a smaller number of columns,
we can occasionally speed up the search by rejecting some partial arrays
that cannot be extended to a full k-column covering array; the method is

10

described in Section 3.1.3. When studying only uniform covering arrays, it
is easy to modify the algorithm to require uniformity.

3.1 Algorithm

In this section, we describe the algorithm for classifying all covering arrays
CA(N ; k + 1, v), starting from a set of equivalence class representatives of
covering arrays CA(N ; k, v). To apply such an algorithm, we need a base
case, which here is a classification of the covering arrays CA(N ; 2, v). Since
all v2 pairs of symbols must occur in the two columns of those covering arrays,
we may focus on the N − v2 excess rows and just the equivalence issue. For
the excess part in the first column, the symbol distributions are in one-to-one
correspondence to the integer partitions of N − v2 into at most v parts. In
the second column we may take obvious symmetries into account to reduce
the number of candidates considered. Finally, equivalent arrays are rejected.

3.1.1 Extending covering arrays

Consider a covering array C ′ obtained by adding a column to a covering
array C. The symbols in the new column in C ′ induce a partition of the
rows of C into covering arrays of strength 1. We call a subset of C that is
a covering array of strength 1 a cover of C. If no proper subset of a cover
of C is a cover of C, we call it a minimal cover of C. Each cover of C has
one or more subsets that are minimal covers. For a cover D, we denote the
lexicographically smallest subset that is a minimal cover by φ(D).

When extending covering arrays, we first determine D, the set of all
minimal covers of C. Then we find all sets {D1, D2, . . . , Dv} of v minimal
covers that pack inside C, that is,

⊎
iDi ⊆ C. For each such set, we generate

all full partitions {C1, C2, . . . , Cv} of C, where Di ⊆ Ci for all i, by adding
the remaining rows in the sets Di in all possible ways. To avoid repetition,
we reject in the search all partitions for which Di 6= φ(Ci). To get a covering
array from an unlabeled partition, we map the symbols to the parts such
that the resulting covering array is lexicographically smallest; this mapping
from partitions to covering arrays is required in the sequel.

3.1.2 Isomorph rejection

Having generated all extensions of C up to permutation of symbols in the
last column, canonical augmentation is used for isomorph rejection in two
phases. The first phase rejects some arrays and ensures that two remaining
arrays can be equivalent only if they were generated from the same C, and

11

further that there is an automorphism of C that maps one onto another. The
second phase then accepts precisely one array from each equivalence class.
Actually the two phases can be carried out in arbitrary order, and in our
implementation Condition 3 below is checked first to help in validating the
results, to be discussed later.

In the first phase, we use the v-tuple consisting of the counts of each
symbol in that column sorted in descending order as an invariant of a column.
For example, if a column contains three entries equal to 0, six entries equal
to 1, and three entries equal to 2, then the invariant is (6, 3, 3). A covering
array C ′ passes the first phase of canonical augmentation if:

1. no other column has lexicographically smaller invariant than the last
column, and

2. out of those columns with the same invariant as the last column, the
last column is in the orbit that gets the smallest label in a canonical
labeling by nauty.

Let µ be the largest multiplicity of a symbol in the column of C that has
the smallest invariant. The first condition ensures that in a canonically
augmented C ′, there is no symbol in the new column with multiplicity larger
than µ. This allows us to remove from D all minimal covers with size larger
than µ before the search begins and also not consider full partitions of C for
which one part has size larger than µ.

For the second phase, we treat the array C ′ as a partition of C. Let c be
an arbitrarily chosen row of C which has multiplicity 1 and is held fixed for
the search of extensions of C. Let C be the orbit of C ′ under the action of
Aut(C), and let χ(C ′, c) = φ(A) where A is the part in C ′ that contains c.
An array C ′ passes the second phase if

3. χ(C ′, c) ≤ χ(C ′′, c) for all C ′′ ∈ C, and

4. C ′ is the smallest in the set {C ′′ ∈ C : χ(C ′′, c) = χ(C ′, c)}, in terms of
lexicographical ordering of the corresponding arrays.

Condition 3 allows us to reject from D all minimal covers D that contain c
for which there is a g ∈ Aut(C) such that c ∈ gD and gD < D. To this end,
the row c is selected to be the one that maximizes the number of minimal
covers that are rejected from D.

3.1.3 A pruning condition

Let N and v be integers with N < v(v + 1). Let C be a CA(N ; k, v) and let
C ′ be a CA(N ; k′, v) that is obtained by adding δ = k′ − k columns to C.

12

Since N is strictly less than v2 + v, each of the last δ columns of C ′ contain
at least one symbol of multiplicity v, each of which corresponds to a cover
of size v in C. For each pair of columns and each symbol of multiplicity v,
the two covers intersect in exactly one row (considering duplicate rows as
separate elements). Thus C has a set of δ covers of size v which pairwise
intersect in only one row.

If we are interested only in covering arrays CA(N ; k′, v) and not in cov-
ering arrays CA(N ; k′′, v) for any k < k′′ < k′, we can restrict our search to
the covering arrays CA(N ; k, v) that satisfy this property. We gain further
speedup by running the search for each possible way to fix the set of δ covers
of size v that intersect in the desired way, as fixing the set allows rejecting
many covers in D immediately.

3.1.4 Some implementation details

A core subroutine of the algorithm is that of finding subsets of D that pack
inside C. This was implemented in two different ways, one using Cliquer [26]
and one using libexact [15]. The simpler approach using Cliquer is faster in
some cases, but in most cases, the approach using libexact is faster.

To use Cliquer we define G to be a graph with a vertex for every cover
in D and an edge between two covers if their multiset sum is a subset of C.
A packing corresponds to a clique of size v in G, but a clique may not be
a valid packing if there are not enough duplicate rows in C. Further, when
N ≥ v(v + 1), two covers in a packing may be identical, so elements in D
for which all rows have multiplicity greater than 1 in C must be represented
with duplicated vertices in G.

The library libexact is used to find all solutions to a system of linear
equations Ax = b with 0 ≤ xj ≤ uj where A is a (0, 1)-matrix. We set up
the instance as follows. For each cover in D, we have a variable whose value
is the multiplicity of the cover in the packing. For each different row in C,
we then have an inequality; namely, the row should occur in the packing at
most as many times as it occurs in C. To encode this as an equality, we
add a variable for each row that whose value is the slack in that inequality
(that is, how many instances of the row in C are not covered by the packing).
Further, to force a solution to have exactly v covers, we add a condition that
the sum of variables corresponding to covers in D must be equal to v. The
upper bounds of each variable are directly obtained from the equalities, as
all variables are nonnegative.

We introduce further slack variables to account for conditions on the sizes
of covers in the packing. These slack variables have no effect on the solutions
but they speed up the search by identifying some branches that cannot lead

13

to a solution. For a valid packing, let Mv be the number of covers of size v,
let Mv+1 be the number of covers of size v+ 1, and let M≥v+2 be the number
of covers of size at least v + 2. We have

Mv ≤ v, (14)

vMv + (v + 1)Mv+1 + (v + 2)M≥v+2 ≤ N. (15)

Here (15) is obtained by counting the rows in each cover. We define s1 and
s2 to be the slack variables in (14) and (15), respectively, giving

s1 +Mv = v, (16)

s1 + s2 +M≥v+2 = N − v2, (17)

where we used Mv + Mv+1 + M≥v+2 = v to get (17). These equations can
be directly implemented by writing Mv and M≥v+2 as sums of the variables
corresponding to covers of size v or at least v + 2, respectively. The upper
bound of s1 and s2 in the libexact instance is set to N − v2, which follows
from (17).

3.2 Computational results

A classification is here carried out for v = 3, 4, 5, 6 and values of N up to
the computational limit. The listed times refer to a single logical core of an
Intel Xeon E5 family processor with multi-threading enabled. Specifically,
CA(N ; k, v) are classified for 10 ≤ N ≤ 14 when v = 3, for 17 ≤ N ≤ 20
when v = 4, for 26 ≤ N ≤ 29 when v = 5, and for 37 ≤ N ≤ 40 when v = 6.
The full classification is performed for all possible values of k, except for the
cases of CA(29; k, 5) and CA(40; k, 6), where some values of k were skipped
using the method described in Section 3.1.3 to get to the cases of CA(29; 7, 5)
and CA(40; 6, 6); the latter has 0 solutions so a CA(40; k, 6) exists exactly
when k ≤ 5.

Due to the computational time, we are unable to carry out a complete
classification in the following cases: CA(21; k, 4) with k ∈ {3, . . . , 8}; CA(30; k, 5)
with k ∈ {3, . . . , 8}; and CA(41; k, 6) with k ∈ {3, . . . , 7}. For example, we
predict that classifying CA(21, 7, 4) would take 130 core-years.

In all these cases, the number of uniform arrays is also obtained. Finally,
in the uniform cases, the classification of UCA(21; k, 4) and UCA(30; k, 5) is
performed exhaustively and for UCA(41; k, 6) partially, skipping levels to get
to UCA(41; 7, 6); the latter has 0 solutions so a UCA(41; k, 6) exists exactly
when k ≤ 6.

A complete table of results obtained for CA(N ; k, v) and UCA(N ; k, v)
is given in Table 1. When δ is not given, all covering arrays and uniform

14

covering arrays are classified. When δ is given, the stated quantities are the
numbers of covering arrays or uniform covering arrays obtained using the
method in Section 3.1.3 with the given δ. These quantities are lower bounds
for the numbers of all covering arrays and uniform covering arrays. In cases
where the count of all covering arrays is not given, only uniform covering
arrays are classified. Cliquer is used in the cases marked with †, and libexact
is used in all other cases.

Because a covering array occurs as a subset of a covering array with more
rows, the classification results of smaller N could be obtained from the results
of larger N ; however, the running times are reported separately to give an
idea of how the running time of the algorithm depends on N . The method to
generate inequivalent 2-column arrays is not optimized and the time is not
comparable to the other times so the time for k = 2 is not reported; in all
cases the generation takes less than 10 seconds.

Table 1: Detailed computational results

v N k δ # CA # UCA CPU time
3 10 2 1 1
3 10 3 3 3 < 0.01 s
3 10 4 2 2 < 0.01 s
3 10 5 0 0 < 0.01 s
3 11 2 3 1
3 11 3 20 9 0.01 s
3 11 4 27 8 0.02 s
3 11 5 3 3 0.01 s
3 11 6 0 0 < 0.01 s
3 12 2 7 1
3 12 3 134 9 0.02 s
3 12 4 987 53 0.16 s
3 12 5 891 125 0.38 s
3 12 6 13 11 0.10 s
3 12 7 1 1 < 0.01 s
3 12 8 0 0 < 0.01 s
3 13 2 16 3
3 13 3 937 151 0.09 s
3 13 4 53 523 12 747 6.0 s
3 13 5 739 845 302 524 144.5 s
3 13 6 752 165 506 680 940.8 s
3 13 7 24 934 22 539 600.9 s
3 13 8 5 5 11.4 s

15

Table 1: Detailed computational results (cont.)

v N k δ # CA # UCA CPU time
3 13 9 4 4 < 0.01 s
3 13 10 0 0 < 0.01 s
3 14 2 32 4
3 14 3 5 973 476 0.51 s
3 14 4 2 212 568 214 630 580.2 s
3 14 5 325 046 812 43 473 308 29.9 h
3 14 6 7 759 008 032 1 516 020 148 54.1 d
3 14 7 18 844 482 204 5 827 703 442 446.8 d
3 14 8 2 790 300 754 1 429 724 866 519.7 d
3 14 9 17 068 936 12 725 845 43.4 d
3 14 10 4 490 4 117 4.1 h
3 14 11 0 0 3.3 s
4 17 2 1 1
4 17 3 6 6 0.03 s
4 17 4 3 3 < 0.01 s
4 17 5 4 4 < 0.01 s
4 17 6 0 0 < 0.01 s
4 18 2 3 1
4 18 3 79 42 0.08 s
4 18 4 79 31 0.13 s
4 18 5 201 67 0.08 s
4 18 6 0 0 0.04 s
4 19 2 7 1
4 19 3 1 365 191 0.51 s
4 19 4 12 368 1 995 4.7 s
4 19 5 74 113 1 495 16.1 s
4 19 6 4 4 20.1 s
4 19 7 0 0 < 0.01 s
4 20 2 21 1
4 20 3 30 334 183 16.0 s
4 20 4 6 409 721 65 517 2265.4 s
4 20 5 57 544 941 214 717 12.1 h
4 20 6 25 760 745 32.6 h
4 20 7 0 0
4 21 2 47 3
4 21 3 25 763 12.1 s †
4 21 4 246 546 229 21.7 h †
4 21 5 19 419 386 435 228.0 d †

16

Table 1: Detailed computational results (cont.)

v N k δ # CA # UCA CPU time
4 21 6 3 100 200 221 2326.4 d †
4 21 7 1 005 135.4 d †
4 21 8 0 2.9 s †
5 26 2 1 1
5 26 3 15 15 0.87 s
5 26 4 3 3 0.07 s
5 26 5 6 6 < 0.01 s
5 26 6 6 6 0.01 s
5 26 7 0 0 < 0.01 s
5 27 2 3 1
5 27 3 540 347 16.0 s
5 27 4 385 193 7.2 s
5 27 5 3 104 1 240 2.9 s
5 27 6 11 603 3 463 14.1 s
5 27 7 0 0 22.3 s
5 28 2 7 1
5 28 3 34 318 8 042 224.9 s
5 28 4 263 321 70 992 894.5 s
5 28 5 4 388 439 210 311 2874.9 s
5 28 6 75 720 344 1 455 113 12.7 h
5 28 7 0 0 54.5 h
5 29 2 21 1
5 29 3 2 243 097 69 891 5808.2 s
5 29 4 3 148 843 19 884 44.3 h
5 29 5 2 36 022 31 315 1565.3 s
5 29 6 1 120 074 119 047 403.5 s
5 29 7 281 258 412.5 s
5 29 8 0 0 1.0 s
5 30 2 54 1
5 30 3 78 086 3947.2 s
5 30 4 3 002 015 967 60.8 d
5 30 5 5 501 626 305 645.8 d
5 30 6 197 049 834 211.8 d
5 30 7 18 857 165.0 h
5 30 8 0 72.9 s
6 37 2 1 1
6 37 3 231 231 6.0 h
6 37 4 13 13 6.2 s

17

Table 1: Detailed computational results (cont.)

v N k δ # CA # UCA CPU time
6 37 5 0 0 0.10 s
6 38 2 3 1
6 38 3 30 491 21 371 156.0 h
6 38 4 8 865 6 215 1074.0 s
6 38 5 0 0 143.7 s
6 39 2 7 1
6 39 3 5 128 096 1 644 791 82.1 d
6 39 4 48 249 923 19 197 035 211.7 h
6 39 5 289 158 248.1 h
6 39 6 0 0 4.3 s
6 40 2 21 1
6 40 3 747 865 015 57 025 160 362.3 d
6 40 4 2 471 192 731 85 773 975 19213.0 d
6 40 5 1 388 128 192.1 d
6 40 6 0 0 10.9 s
6 41 2 54 1
6 41 3 581 769 269 756.9 d
6 41 4 3 1 771 354 037 3750.0 d †
6 41 5 2 61 351 541.7 d †
6 41 6 1 16 1154.5 s †
6 41 7 0 0.33 s

3.3 Double counting

To increase confidence in the computational results, we perform a consis-
tency check of the results by double counting. After the search starting
from CA(N ; k, v) is performed, we count in two ways the total number of
CA(N ; k + 1, v) that obey the restrictions used, that is, in some cases we
count only uniform arrays and in some cases only arrays that have δ covers
of size v that intersect pairwise in exactly one row.

The first way is to use the classification results to and the orbit-stabilizer
theorem to obtain ∑

C′

(k + 1)!v!k+1

|Aut(C ′)|
,

where (k + 1)!v!k+1 is the order of the group of symmetries in that case and
the sum is taken over equivalence class representatives C ′ of that case.

The second way is to use numbers that were stored during the search.

18

Consider first a modified search that starts from all k-column arrays instead
of equivalence class representatives and considers all possible permutations of
symbols in the last column for each partition. If the techniques for rejecting
candidates of D in Section 3.1.2 would not be used, then every (k+1)-column
covering array would appear exactly once when adding one more column.

If the additional condition on the largest multiplicity of a symbol in the
last column is taken into account, then the proportion of (k+1)-column arrays
equivalent to C ′ that enter the isomorph rejection phase is the proportion
of columns in C ′ for which the largest multiplicity of a symbol is smallest,
denoted by α(C ′). Further, in the search starting from a fixed k-column
array C, let β(C,C ′) be the proportion of all partitions equivalent to C ′ that
pass the check 3 in Section 3.1.2; this can be obtained at the stage in the
search when all partitions of C equivalent to C ′ are considered. The total
count of (k + 1)-column arrays would now be∑

C,C′

1

α(C ′)β(C,C ′)
,

where the sum is taken over all k-column arrays C and all C ′ that are exten-
sions of C and pass the check for Condition 3. The remaining techniques for
rejecting covers in D described in Section 3.1.2 do not reject any candidates
that satisfy Condition 3, so including them in the search does not change
this count.

In the modified search, arrays C ′ which differ only by a permutation of
symbols in the last column contribute the same amount in the sum, and the
searches starting from two equivalent C contribute the same amount to the
sum. Let S(C ′) be the number of ways to assign the symbols to the last
column (this equals v! if no two parts in the corresponding partition of C ′

are equal). Further, the size of the equivalence class of C is k!v!k/|Aut(C)|.
In the actual search, the count is then obtained as∑

C,C′

k!v!k

|Aut(C)|
S(C ′)

1

α(C ′)β(C,C ′)
,

where the sum is taken over the k-column arrays C that are used in the search,
and all C ′ that are extensions of C and pass the check for Condition 3.

4 Discussion of results

A summary of the current knowledge of the sizes of optimal coverings array
for small k and v is given in Table 2. In the table there are captions for

19

v k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
3 9 j11i l12c c12k a13c c13k a14h

4 16 16 l19k a21k c21–22c c21–22f c21–24h

5 25 25 25 l29k b30–33h c30–35h c30–36e

6 m37k a39d b41h c41–42c c41–42h c41–46g c41–48n

Unmarked entries: orthogonal arrays. Captions: a) This paper, preliminarily
announced in [28], b) This paper, c) CAN(k, v) ≤ CAN(k+1, v), d) [3], e) L.
Rouse-Lamarre, reported in [7], f) [20], g) [24], h) [27], i) [29], j) Applegate,
reported in [35], k) [39], l) [40], m) [41], n) [13]

Table 2: Values of CAN(k, v) for 4 ≤ k ≤ 10 and 3 ≤ v ≤ 6

all bounds, except those that follow from orthogonal arrays: CAN(k, v) =
v2 when v is a prime power and k ≤ v + 1. Some of the lower bounds
attributed to the current work were obtained about two decades before this
paper appears in print. Those bounds, which were announced at a conference
in 2000 [28], are given a caption of their own to clarify priority issues. Some
of those results have later been rediscovered [2, 7, 42, 43]. Additionally our
computer search established that a CA(14; 11, 3) does not exist. The fourth
author found a CA(15; 20, 3) [27] so we additionally know that CAN(k, 3) =
15 for 11 ≤ k ≤ 20.

In the process of preparing this paper we noticed that the bound sources
listed in Table 2 of [27] are not the same as those in Table 1 but this difference
is not articulated in that article. To the best of our knowledge in Table 2 of
[27], b refers to [36], c is [27] and d is [38]. On page 149 of [27], “giving the
bounds marked with d in the tables” should read “giving the bounds marked
with b in Table 1 and c in Table 2”.

In every case in which we determined the size of an optimal covering array
by construction, we also determined that there exists a uniform covering
array of the same size. These results continue to support the conjecture that
optimal covering arrays can be found amongst the uniform covering arrays.

For the parameters CA(11; 5, 3), CA(12; 7, 3), CA(13; 8, 3), CA(13; 9, 3),
CA(19; 6, 4), and CA(37; 4, 6) every optimal array is also uniform. How-
ever for the optimal parameters, CA(12; 6, 3), CA(14; 10, 3), CA(29; 7, 5),
and CA(39; 5, 6) both uniform and non-uniform examples exist. Finally, for
the optimal parameters CA(21; 7, 4) and CA(41; 6, 6) we know that uniform
arrays exist, but we do not know if non-uniform examples also exist.

For the four optimal parameter sets where both uniform and non-uniform
arrays exist, CA(12; 6, 3), CA(14; 10, 3), CA(29; 7, 5), and CA(39; 5, 6), the

20

v k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
3 9 11 12 12 13 13 14
4 16 16 19 21 22 22 22
5 25 25 25 29 31 32 32
6 37 39 41 42 42 44 45

Table 3: Lower bounds on UCAN(k, v) for 4 ≤ k ≤ 10 and 3 ≤ v ≤ 6

percentages of non-isomorphic arrays that are uniform are 84.61, 91.69, 91.81,
and 54.67, respectively. Combined with the optimal parameter sets where
every array is uniform we can see some provisional trends. The smallest
optimal parameter set for which non-uniform arrays exist is CA(12; 6, 3), for
which N is the smallest for the given k, but k is not the maximal possible
given N . We guess that non-uniform arrays will be more abundant when k is
not maximal for a given N . The second potential trend is that for a fixed v,
as N and k increase there are likely to be more non-uniform optimal arrays.
These are only limited observations from few data.

Table 3 shows the current state of knowledge for uniform covering arrays.
All entries are lower bounds, bold entries show arrays known to exist, and
underlined entries indicate a lower bound matching Theorem 1. The lower
bounds from Theorem 1 meet six known uniform covering arrays.

A lower bound in Table 2 that is smaller than the corresponding lower
bound in Table 3 indicates a candidate for a covering array that would refute
Conjecture 1.

Conjecture 1 and Corollary 2 would imply that CAN(v+2, v) ≥ v2+v−1,
which has also been conjectured in [36]. When v is a prime power, this would
mean that CAN(v+2, v)−CAN(v+1, v) ≥ v−1, which is a very large jump
for only adding a single column. In the case of v = 6, from Table 2 we can
see that the value of CAN(v+1, v) may be close to the value of CAN(v+2, v)
when v is not a prime power.

One exciting possibility is that CAN(8, 6) could be 41, meeting the bound
from Theorem 1; CAN(8, 6) is no more than 42. This suggests that the influ-
ence of the prime power status of v disappears very rapidly as k increases past
v + 1. However, none of the UCA(41; 6, 6) covering arrays can be extended
to a CA(41; 8, 6), so if they exist, then no subarray with six columns can be
uniform. This implies that at least three columns of a possible CA(41; 8, 6)
must be non-uniform. Since there are six non-uniform partitions of 41 into
six parts of size at least 6 there are 57 different partition patterns if only three

21

columns are non-uniform. If more columns are non-uniform, the number of
cases increases. This indicates that exploiting this structure in an exhaustive
search may not be efficient. Exploiting it with a metaheuristic search could
be an option.

Conjecture 1 predicts that for every covering array, there a uniform cov-
ering array with the same parameters. We have seen examples of optimal
covering arrays which are not uniform, so we know that not every optimal
covering array is uniform. But we can ask for which parameters are all the
optimal covering arrays uniform? In this paper we found many examples, but
our examples are in cases where the number of rows is relatively small. When
v is a prime power it is possible to construct a CA(v2 + i(v2−v), vi(v+ 1), v)
for any i using a recursive construction and starting with an orthogonal ar-
ray (see, for example, [36]). We suspect that these parameters could be good
candidates for having every optimal covering arrays be a uniform covering
array.

A significant result from our work is that the number of known optimal
covering arrays for v > 2 and N > v2 is now 21 whereas before it was eleven.
Additionally the UCA(21; 7, 4) meet the bound from Theorem 1. This is the
first example of tightness and the implied structure, when k > v + 2. The
classification results from our searches are available at [18].

In this paper we only consider strength-2 covering arrays. Many of the
questions addressed in the paper may be interesting for higher strength cover-
ing arrays. The definition of “uniform” applies to covering arrays of any size
and it is interesting to ask if it is always possible to find an optimal covering
array, of any strength, that is also uniform. Extending Theorem 1 to strength
t would require counting pairs of rows which agree in at most t− 1 positions
and would be an interesting investigation. For strength t > 2, extending an
array with an additional column requires determining all of the strength t−1
subarrays which is more computationally demanding as t increase. The use
of nauty to compute automorphism groups depends mainly on the sizes of
the arrays and is not inherently more complicated as the strength increases.
For classification and fully understanding the structure of optimal arrays, we
do not see better options than exhaustive search.

Acknowledgment

The authors wish to thank the referees for useful comments that helped
improve this article.

22

References

[1] Y. Akhtar, S. Maity, and R. C. Chandrasekharan, Covering arrays of strength four
and software testing, in: R. N. Mohapatra, D. R. Chowdhury, and D. Giri (Eds.),
Mathematics and Computing, Springer Proc. Math. Stat. 139, Springer, New Delhi,
2015, pp. 391–398.

[2] M.B. Cohen, personal communication 2014.

[3] M.B. Cohen, Designing test suites for software interaction testing, Ph.D. Thesis,
University of Auckland, 2004.

[4] C. J. Colbourn, Combinatorial aspects of covering arrays, Le Matematiche (Catania),
59 (2006), 125–172.

[5] C. J. Colbourn, Augmentation of covering arrays of strength two, Graphs Combin.
31 (2015), 2137–2147.

[6] C. J. Colbourn, Suitable permutations, binary covering arrays, and Paley matrices,
Springer Proc. Math. Stat. 133 (2015), 29–42.

[7] C. J. Colbourn, G. Kéri, P. P. R. Soriano, and J.-C. Schlage-Puchta, Covering and
radius-covering arrays: constructions and classification, Discrete Appl. Math. 158
(2010), 1158–1180.

[8] C. J. Colbourn, K. Sarkar, and E. Lanus, Asymptotic and constructive methods for
covering perfect hash families and covering arrays, Des. Codes Cryptogr. 86 (2018),
907–937.

[9] P. Danziger, E. Mendelsohn, L. Moura, and B. Stevens, Covering arrays avoiding
forbidden edges, Theoret. Comput. Sci. 410 (2009), 5403–5414.

[10] N. Francetić and B. Stevens, Asymptotic size of covering arrays: an application of
entropy compression, J. Combin. Des. 25 (2017), 243–257.

[11] A. Hartman, Software and hardware testing using combinatorial covering suites, in:
M. C. Golumbic and I. B.-A. Hartman (Eds.), Graph Theory, Combinatorics and
Algorithms, Springer, New York, 2005, pp. 237–266.

[12] B. Hnich, S. D. Prestwich, E. Selensky, and B. M. Smith, Constraint models for the
covering test problem, Constraints 11 (2006), 199–219.

[13] I. Izquierdo-Marquez, J. Torres-Jimenez, and H. Avila-George, New upper bounds
for pairwise senary test-suites, submitted for publication.

[14] P. Kaski and P. R. J. Österg̊ard, Classification Algorithms for Codes and Designs,
Springer, Berlin, 2006.

[15] P. Kaski and O. Pottonen, libexact user’s guide, Version 1.0, Helsinki Institute for
Information Technology HIIT, Helsinki, 2008.

[16] G. O. H. Katona, Two applications (for search theory and truth functions) of Sperner
type theorems, Period. Math. Hungar. 3 (1973), 19–26.

[17] D. J. Kleitman and J. Spencer, Families of k-independent sets, Discrete Math. 6
(1973), 255–262.

23

[18] J. I. Kokkala, K. Meagher, R. Naserasr, K. J. Nurmela, P. R. J. Österg̊ard, and B.
Stevens, Dataset for On the structure of small strength-2 covering arrays [Dataset].
Zenodo. https://doi.org/10.5281/zenodo.1476059 (October 31, 2018).

[19] J. Lawrence, R. N. Kacker, Y. Lei, D. R. Kuhn, and M. Forbes, A survey of binary
covering arrays, Electron. J. Combin. 18 (2011), P84.

[20] J. R. Lobb, C. J. Colbourn, P. Danziger, B. Stevens, and J. Torres-Jimenez, Cover
starters for covering arrays of strength two, Discrete Math. 312 (2012), 943–956.

[21] B. D. McKay, Isomorph-free exhaustive generation, J. Algorithms 26 (1998), 306–
324.

[22] B. D. McKay and A. Piperno, Practical graph isomorphism, II, J. Symbolic Comput.
60 (2014), 94–112.

[23] K. Meagher and B. Stevens, Covering arrays on graphs, J. Combin. Theory Ser. B
95 (2005), 134–151.

[24] K. Meagher and B. Stevens, Group construction of covering arrays, J. Combin. Des.
13 (2005), 70–77.

[25] P. Nayeri, C. J. Colbourn, and G. Konjevod, Randomized post-optimization of cov-
ering arrays, European J. Combin. 34 (2013), 91–103.

[26] S. Niskanen, P. R. J. Österg̊ard, Cliquer User’s Guide, Version 1.0, Tech. Rep. T48,
Communications Laboratory, Helsinki University of Technology, Espoo, 2003.

[27] K. J. Nurmela, Upper bounds for covering arrays by tabu search, Discrete Appl.
Math. 138 (2004), 143–152.

[28] K. J. Nurmela and P. R. J. Österg̊ard, Lower bounds on 2-covering arrays by ex-
haustive search, presented at the 25th Australasian Conference on Combinatorial
Mathematics and Combinatorial Computing (Christchurch, New Zealand, Decem-
ber 4–8, 2000).

[29] P. R. J. Österg̊ard, Constructions of mixed covering codes, Research Report A18,
Digital Systems Laboratory, Helsinki University of Technology, Espoo, 1991.

[30] P. R. J. Österg̊ard, Disproof of a conjecture on the existence of balanced optimal
covering codes, IEEE Trans. Inform. Theory 49 (2003), 487–488.

[31] P. R. J. Österg̊ard, On optimal binary codes with unbalanced coordinates, Appl.
Algebra Engrg. Comm. Comput. 24 (2013), 197–200.

[32] P. R. J. Österg̊ard, T. Baicheva, and E. Kolev, Optimal binary one-error-correcting
codes of length 10 have 72 codewords, IEEE Trans. Inform. Theory 45 (1999), 1229–
1231.

[33] K. Sarkar and C. J Colbourn, Upper bounds on the size of covering arrays, SIAM
J. Discrete Math. 31 (2017), 1277–1293.

[34] K. Sarkar, C. J. Colbourn, A. de Bonis, and U. Vaccaro, Partial covering arrays:
algorithms and asymptotics, in: V. Mäkinen, S. J. Puglisi and L. Salmela (Eds.),
Combinatorial Algorithms, LNCS 9843, Springer, Cham, 2016, pp. 437–448.

[35] N. J. A. Sloane, Covering arrays and intersecting codes, J. Combin. Des. 1 (1993),
51–63.

24

[36] B. Stevens, Transversal Covers and Packings, Ph.D. Thesis, University of Toronto,
Toronto, 1998.

[37] B. Stevens, Non-uniform covering array with symmetric forbidden edge constraints,
preprint available at https://arxiv.org/abs/1901.02479, submitted for publica-
tion.

[38] B. Stevens, A. Ling and E. Mendelsohn, A direct construction of transversal covers
using group divisible designs, Ars Combin. 63 (2002), 145–159.

[39] B. Stevens and E. Mendelsohn, New recursive methods for transversal covers, J.
Combin. Des. 7 (1999), 185–203.

[40] B. Stevens, L. Moura, and E. Mendelsohn, Lower bounds for transversal covers, Des.
Codes Cryptogr. 15 (1999), 279–299.

[41] G. Tarry, Le Problèm des 36 Officiers, C. R. Assoc. Fr. Av. Sci. 29(2) (1900), 170–
203.

[42] J. Torres-Jimenez, personal communication, 2016.

[43] J. Torres-Jimenez and I. Izquierdo-Marquez, Construction of non-isomorphic cover-
ing arrays, Discrete Math. Algorithms Appl. 8 (2016), 1650033.

[44] J. Torres-Jimenez and E. Rodriguez-Tello, New bounds for binary covering arrays
using simulated annealing, Inform. Sci. 185 (2012), 137–152.

[45] G. Tzanakis, L. Moura, D. Panario, and B. Stevens, Covering arrays from
m-sequences and character sums, Des. Codes Cryptogr. 85 (2017), 437–456.

[46] R. Yuan, Z. Koch, and A. Godbole, Covering array bounds using analytical tech-
niques, Congr. Numer. 222 (2014), 65–73.

25

