Judd-Ofelt analysis and crystal field calculations of Er³⁺ ions in new oxyfluorogermanotellurite glasses and glass-ceramics

Hayat Zanane^{*,a,c}, Matias Velázquez^b, Dominique Denux^a, Jean-René Duclère^d, Julie Cornette^d, AïchaKermaoui^c, Hamid Kellou^c, Michel Lahaye^e, Sonia Buffière^a

^a CNRS, Université de Bordeaux, ICMCB, UMR 5026, 87 avenue du Dr. A. Schweitzer, 33608 Pessac cedex, France
 ^bUniv. Grenoble Alpes, CNRS, Grenoble INP, SIMAP, 38000 Grenoble, France
 ^cFaculté de Physique, Laboratoire d'Électronique Quantique, USTHB, BP 32 El alia, 16111 Bab Ezzouar, Alger, Algeria
 ^d IRCER – Centre Européen de la Céramique – 12 Rue Atlantis – 87068 LIMOGES Cedex Atlantis, Limoges, France
 ^e PLACAMAT, UMS 3626, CNRS-Université Bordeaux, 87 avenue du Dr. A. Schweitzer, 33600 Pessac, France
 * Corresponding author: Hayat Zanane, <u>hzanane@usthb.dz</u>

Samples	30 TeO ₂ -30 GeO ₂ -3 La ₂ O ₃ -15 ZnO-10			30 TeO ₂ -30	GeO ₂ -3 La ₂ O ₃	-15 ZnO-10
	$Na_2CO_3-10 CaF_2-2 ErF_3$			Na ₂ CO ₃ -10 CaF ₂ -4 ErF ₃		
	Number of	% Weight _{theo}	% Weight _{exp}	Number of	% Weight _{theo}	% Weight _{exp}
	atoms			atoms		
Те	30	30.84	32.40	30	29.76	32.12
Ge	30	17.55	17.18	30	16.94	17.02
Zn	10	7.90	9.31	10	7.62	8.77
Na	20	3.70	4.71	20	3.57	5.43
Ca	10	3.23	3.66	10	3.12	3.43
La	3	6.71	6.34	3	6.48	5.93
Yb/Er	2	2.69	3.14	4	5.20	5.98
0	174	22.42	20.71	174	21.64	20.62
F	26	3.98	2.54	32	4.73	0.69
С	10	0.97		10	0.93	

Table 1. Average EPMA/WDS elemental analysis of 2 and 4 % Er³⁺-doped glass samples.

Transition	λ (nm)	$A_{JJ'}^{DE}$ (s ⁻¹)	$A_{JJ'}^{DM}$ (s ⁻¹)	$\beta_{JJ'}^{Rad}$	$ au_J^{Rad}$ (ms)
$^{4}I_{13/2} \rightarrow ^{4}I_{15/2}$	1518.67	153.98271	68.0428	1	4.504
$^{4}I_{11/2} \rightarrow ^{4}I_{15/2}$	977.8	209.34227	0	0.81613	3.899
\rightarrow ⁴ I _{13/2}	2745.7	31.35886	15.80412	0.18387	
$^{4}I_{9/2} \rightarrow ^{4}I_{15/2}$	801.4	380.75234	0	0.86117	2.262
\rightarrow ⁴ $I_{13/2}$	1696.6	57.7191	0	0.13055	
\rightarrow ⁴ $I_{11/2}$	4442.1	1.64077	2.02268	8.28582*10 ⁻³	
${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$	654.2	3.13497*10 ³	0	0.91605	0.292
\rightarrow ⁴ I _{13/2}	1149.4	178.46509	0	0.05215	
\rightarrow ⁴ $I_{11/2}$	1977.1	85.84768	9.8042	0.02795	
$\rightarrow^4 I_{9/2}$	3562.5	8.98671	4.19094	3.85057*10 ⁻³	
$^{2}S_{3/2} + ^{2}H_{11/2}$					0.021
\rightarrow ⁴ I _{15/2}	541.4	4.58652*10 ⁴	0	0.94644	
\rightarrow ⁴ $I_{13/2}$	841.3	1.25756*10 ³	256.83136	0.03125	
\rightarrow ⁴ $I_{11/2}$	1213.0	437.00276	29.53878	9.6272*10 ⁻³	
$\rightarrow^4 I_{9/2}$	1668.6	513.42648	2.2084	0.01064	
\rightarrow ⁴ F _{9/2}	3138.7	98.58376	0.34803	2.04148*10 ⁻³	
${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}$	487.1	3.02103*10 ³	0	0.66504	0.220
$\rightarrow^4 I_{13/2}$	717.1	968.64386	0	0.21323	
\rightarrow ⁴ I _{11/2}	970.6	364.06393	0	0.08014	
$\rightarrow^4 I_{9/2}$	1241.9	144.99676	12.87815	0.03475	
\rightarrow ⁴ F _{9/2}	1906.6	11.99307	14.18934	5.76368*10 ⁻³	
$\rightarrow^2 S_{3/2} + ^2 H_{11/2}$	4856.7	4.86265	0	1.07044*10 ⁻³	
$\Omega_{1} = 7.275 \times 10^{-20} \text{ sm}^2$ $\Omega_{2} = 2.805 \times 10^{-20} \text{ sm}^2$ $\Omega_{2} = 0.822 \times 10^{-20} \text{ sm}^2$ $S_{2} = -1.022$					

 $\begin{array}{c} \Omega_2 = 7.275 \times 10^{-20} \text{ cm}^2, \ \Omega_4 = 2.805 \times 10^{-20} \text{ cm}^2, \ \Omega_6 = 0.832 \times 10^{-20} \text{ cm}^2, \ \delta_{\text{RMS}} = 1.033 \\ \hline \textbf{Table 2. Judd-Ofelt parameters and spectroscopic factors of } Er^{3+} \text{ cations in "} 2ErF_3 \text{"-doped and heat-treated sample at728 K for } 2 \text{ h obtained by the standard (unnormalized) procedure with the } ^4I_{15/2} \rightarrow ^4G_{11/2} \text{ transition included in the Judd-Ofelt analysis.} \end{array}$

Figure 1. (a) TEM, (b) HRTEM image. (c) SAED pattern of "2ErF₃"-doped and heat-treated sample at 728 K for 2 h.

Transition	Transition	Calc.S ^{ED} /Exp.S ^{ED}
$^{4}I_{15/2} \rightarrow$	number	
⁴ I _{13/2}	1	0.87
⁴ I _{11/2}	2	0.85
⁴ l _{9/2}	3	0.91
⁴ F _{9/2}	4	1.11
⁴ S _{3/2} , ² H _{11/2}	5	1.21
⁴ F _{7/2}	6	1.04
⁴ F _{5/2} , ⁴ F _{3/2}	7	1.13
² H _{9/2}	8	0.96
⁴ G _{11/2} , ⁴ G _{9/2} , ² K _{15/2}	9	0.72

Table 5. The ratios of calculated electric-dipole transition strengths over measured ones.

Transition	λ (nm)	$A_{JJ'}^{DE}$ (s ⁻¹)	$A_{JJ'}^{DM}$ (s ⁻¹)	$\beta_{JJ'}^{Rad}$	$ au_J^{Rad}$ (ms)
$^{4}I_{13/2} \rightarrow ^{4}I_{15/2}$	1518.67	156.99537	68.0428	1	4.444
${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$	977.8	209.53961	0	0.82125	3.919
\rightarrow ⁴ I _{13/2}	2745.7	29.80241	15.80412	0.17875	
$^{4}I_{9/2} \rightarrow ^{4}I_{15/2}$	801.4	260.62857	0	0.79178	3.038
\rightarrow ⁴ I _{13/2}	1696.6	65.10145	0	0.19778	
\rightarrow ⁴ $I_{11/2}$	4442.1	1.41548	2.02268	0.01045	
${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$	654.2	2.42251*10 ³	0	0.90973	0.376
\rightarrow ⁴ $I_{13/2}$	1149.4	132.74652	0	0.04985	
\rightarrow ⁴ $I_{11/2}$	1977.1	86.84275	9.8042	0.03629	
$\rightarrow^4 I_{9/2}$	3562.5	6.78256	4.19094	4.12092*10 ⁻³	
$^{2}S_{3/2} + ^{2}H_{11/2}$					0.027
\rightarrow ⁴ I _{15/2}	541.4	3.41079*10 ⁴	0	0.93764	
\rightarrow ⁴ I _{13/2}	841.3	1.15812*10 ³	256.83136	0.0389	
\rightarrow ⁴ I _{11/2}	1213.0	332.57986	29.53878	9.95482*10 ⁻³	
$\rightarrow^4 I_{9/2}$	1668.6	415.86498	2.2084	0.01149	
\rightarrow ⁴ F _{9/2}	3138.7	72.84873	0.34803	2.01221*10 ⁻³	
${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}$	487.1	2.84137	0	0.72032	0.254
\rightarrow ⁴ I _{13/2}	717.1	657.47074	0	0.16668	
\rightarrow ⁴ I _{11/2}	970.6	272.88015	0	0.06918	
\rightarrow ⁴ I _{9/2}	1241.9	133.01793	12.87815	0.03699	
\rightarrow ⁴ F _{9/2}	1906.6	8.69542	14.18934	5.80156*10 ⁻³	
$\rightarrow^2 S_{3/2} + ^2 H_{11/2}$	4856.7	4.08256	0	1.03498*10 ⁻³	
$Q_{2}=5.367 \times 10^{-20} \text{ cm}^{2}$ $Q_{4}=1.904 \times 10^{-20} \text{ cm}^{2}$ $Q_{5}=0.955 \times 10^{-20} \text{ cm}^{2}$ $\delta_{DMC}=6.037$					

 $\Omega_2 = 5.367 \times 10^{-20} \text{ cm}^2, \ \Omega_4 = 1.904 \times 10^{-20} \text{ cm}^2, \ \Omega_6 = 0.955 \times 10^{-20} \text{ cm}^2, \ \delta_{\text{RMS}} = 6.03 \text{ /}$ **Table 3.** Judd–Ofelt parameters and spectroscopic factors of Er^{3+} cations in "2 ErF_3 "-doped and heat-treated sample at 728 K for 2 h obtained by the normalized procedure without the ${}^{4}I_{15/2} \rightarrow {}^{4}G_{11/2}$ transition included in the Judd-Ofelt analysis.

Transition	λ (nm)	A^{DE} (c ⁻¹)	Λ^{DM} (c ⁻¹)	Rad	τ^{Rad} (ms)
4	1519.67			<i>Pjji</i>	
$I_{13/2} \rightarrow I_{15/2}$	1518.67	175.54898	68.0428	1	4.105
${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$	977.8	235.64476	0	0.83109	3.527
\rightarrow ⁴ I _{13/2}	2745.7	32.08902	15.80412	0.16891	
$^{4}I_{9/2} \rightarrow ^{4}I_{15/2}$	801.4	209.12911	0	0.72369	3.460
\rightarrow ⁴ $I_{13/2}$	1696.6	76.40806	0	0.26441	
\rightarrow ⁴ I _{11/2}	4442.1	1.41534	2.02268	0.0119	
${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$	654.2	2.2049*10 ³	0	0.90313	0.410
\rightarrow ⁴ $I_{13/2}$	1149.4	117.93287	0	0.04831	
\rightarrow ⁴ $I_{11/2}$	1977.1	97.98107	9.8042	0.04415	
$\rightarrow^4 I_{9/2}$	3562.5	6.6008	4.19094	4.42029*10 ⁻³	
$^{2}S_{3/2} + ^{2}H_{11/2}$					0.029
\rightarrow ⁴ $I_{15/2}$	541.4	3.23346*10 ⁴	0	0.93321	
\rightarrow ⁴ $I_{13/2}$	841.3	1.23111*10 ³	256.83136	0.04294	
\rightarrow ⁴ $I_{11/2}$	1213.0	308.38139	29.53878	9.75267*10 ⁻³	
$\rightarrow^4 I_{9/2}$	1668.6	416.01528	2.2084	0.01207	
\rightarrow ⁴ F _{9/2}	3138.7	69.89129	0.34803	2.02717*10 ⁻³	
${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}$	487.1	3.00999*10 ³	0	0.76137	0.253
\rightarrow ⁴ $I_{13/2}$	717.1	522.29402	0	0.13211	
\rightarrow ⁴ $I_{11/2}$	970.6	241.93102	0	0.0612	
$\rightarrow^4 I_{9/2}$	1241.9	140.06415	12.87815	0.03869	
\rightarrow ⁴ F _{9/2}	1906.6	7.80838	14.18934	5.5643*10 ⁻³	
$\rightarrow^2 S_{3/2} + ^2 H_{11/2}$	4856.7	4.2135	0	1.0658*10 ⁻³	
$\Omega_2 = 5.157 \times 10^{-20} \text{ cm}^2$, $\Omega_4 = 1.512 \times 10^{-20} \text{ cm}^2$, $\Omega_6 = 0.129 \times 10^{-20} \text{ cm}^2$, $\delta_{\text{RMS}} = 0.081$					

Table 4. Judd–Ofelt parameters and spectroscopic factors of Er^{3+} cations in "2 ErF_3 "-doped and heat-treated sample at 728 K for 2 h obtained by the standard (unnormalized) procedure without the ${}^{4}I_{15/2} \rightarrow {}^{4}G_{11/2}$ transition included in the Judd-Ofelt analysis.

Figure 2. "2 *ErF*₃"-doped and untreated glass excitationand emission spectra recorded at 80, 120, 200 and 300 K. The peak positions remain unchanged from 300 to 80 K.

Figure 3. "2 ErF_3 "-doped glass annealed at 728 K for 2 h excitation and emission spectra recorded at 300 K. Same spectra for the "4 ErF_3 "-doped and thermally untreated glass. The peak positions remain unchanged by the thermal annealing or the Er^{3+} -concentration increase.

Figure 4. Er^{3+} ions fluorescence decays at λ_{em} =456 (⁴S_{3/2}), 980 (⁴I_{11/2}) and 1545 (⁴I_{13/2}) nm in "2 ErF₃"-doped and annealed at 728 *K* for 2*h* sample as a function of temperature.

Figure 5. Er^{3+} ions fluorescence decays at $\lambda_{em}=456$ (${}^{4}S_{3/2}$), 980 (${}^{4}I_{11/2}$) and 1545 (${}^{4}I_{13/2}$) nm in the "4 ErF_{3} "-doped and untreated glass as a function of temperature.

Figure 6. Integrated emission intensity of the Er^{3+} cations ${}^{4}I_{13/2}$ level (1533 nm) as a function of temperature in the untreated and heat-treated (728 K, 2 h) "2 ErF₃"-doped glass materials. The integrated intensity is normalized to the 80 K-value.