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Abstract: The beef cattle industry is facing multiple problems, from the unequal distribution of 
added value to the poor matching of its product with fast-changing demand. Therefore, the aim of 
this study was to examine the interactions between the main variables, evaluating the nutritional 
and organoleptic properties of meat and cattle performances, including carcass properties, to assess 
a new method of managing the trade-off between these four performance goals. For this purpose, 
each variable evaluating the parameters of interest has been statistically modeled and based on data 
collected on 30 Blonde d’Aquitaine heifers. The variables were obtained after a statistical pre-
treatment (clustering of variables) to reduce the redundancy of the 62 initial variables. The 
sensitivity analysis evaluated the importance of each independent variable in the models, and a 
graphical approach completed the analysis of the relationships between the variables. Then, the 
models were used to generate virtual animals and study the relationships between the nutritional 
and organoleptic quality. No apparent link between the nutritional and organoleptic properties of 
meat (r = −0.17) was established, indicating that no important trade-off between these two qualities 
was needed. The 30 best and worst profiles were selected based on nutritional and organoleptic 
expectations set by a group of experts from the INRA (French National Institute for Agricultural 
Research) and Institut de l’Elevage (French Livestock Institute). The comparison between the two 
extreme profiles showed that heavier and fatter carcasses led to low nutritional and organoleptic 
quality. 

Keywords: trade-off; meat quality; beef performances; modeling 
 

1. Introduction 

The meat sector is facing various challenges in France, due to a current context of high quality 
demand and competiveness. Indeed, consumers expect homogeneous organoleptic quality, and more 
recently, consumers’ expectations in terms of healthiness and the nutritional quality of food are 
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increasing. The beef sector is obviously concerned, due to the lower meat consumption in the past 
few years [1]. In addition, farmers and retailers are facing low margins in a competitive sector. 
Therefore, to preserve the beef cattle industry in the territory, the sustainability of these main actors 
has to be enhanced by rearing more efficient animals to decrease the cost of production and provide 
standardized carcasses of high quality. Despite the stakes, few studies have been carried out to tackle 
the problem as a whole, describing the relation between these four parameters of interest: animal 
performances, carcass properties, nutritional qualities, and organoleptic qualities. Among these 
studies, a creative approach proceeding to a double dimension reduction (via a clustering of variables 
followed by a principal component analysis) on a dataset made of multiple variables measuring 
carcass value, fatty acid profile, and sensory tasting descriptors concluded that there is no 
relationship between the nutritional and sensory quality of the meat produced by young bulls [2]. 
Furthermore, other studies have highlighted some correlations (positive and negative) between these 
two qualities. For instance, it has been reported that a high amount of intramuscular fat enhances the 
flavor, the juiciness, and the tenderness of the meat [3,4], but reduces the proportion of 
polyunsaturated fatty acid (PUFA), whereas saturated (SFA) and monounsaturated fatty acids 
(MUFA) proportions increase [5]. The first objective of the present work was to integrate these four 
parameters of interest to analyze the relationships between them. A second aim was to set up a 
method of managing the trade-off to help the beef cattle industry design specifications that take the 
possible interaction between the nutritional and organoleptic qualities of the meat into account. 

2. Materials and Methods  

The whole method is based on a dataset of 30 animals, which will be described further. First, 62 
variables measured on those animals were pre-treated to reduce the redundancy between them and 
keep the best indicators to evaluate the parameters of interest. From the output variables of this pre-
treatment, as many models as variables were created to explain each variable by the other ones. Then, 
those models were evaluated with statistical tools, and the relationships that were observed with 
these models were compared to the two-by-two relationships described in the literature. After 
evaluating the modeling part, models were used to create a virtual population of animals to study 
the relationships between the modeled variables with more accuracy. To compare the nutritional and 
sensory quality of the meat, a set of importance weights was proposed to aggregate the variables 
evaluating those qualities and create a synthetic index for each parameter. The correlation between 
both of those indexes was calculated to study their relation. Finally, the 30 best and worst profiles 
(based on an objective of balance between nutritional and organoleptic quality) were studied to 
compare their main trait differences.  

2.1. Data 

2.1.1. Animals  

Data were collected in a research project named “Lipivimus” (ANR-06-PNRA-018) investigating 
the effects of several lipids sources in the animal feeding on the nutritional and organoleptic qualities 
of the meat. Experimental procedures and animal-holding facilities respected French animal 
protection legislation, including the licensing of experimenters. They were controlled and approved 
by the French Veterinary Services (the abattoir and cattle experimental facilities license numbers were 
#63 345 01 and #63 345 17, respectively). A total of 30 Blonde d’Aquitaine heifers, which were 
homogeneous in terms of initial age (28 ± 1.3 months), live weight (540 ± 13 kg), and body condition 
score (2.2 ± 0.05) were raised during a finishing period of 100 days. Animals were assigned at random 
to one of the four rations that were i) isoenergetic on a net energy basis at a level of 1.71 Mcal of net 
energy/kg dry matter (DM) and ii) isonitrogenous on a metabolizable protein basis expressed in 
Protein Digestible in the small Intestine (PDI) units (defined by the French National Institute for 
Agricultural Research, or INRA, tables [6]). A lipid treatment (40 g/kg DM) was added to the basal 
diet made of molasses straw (30%) and concentrate (70%). The control group (n = 8) received the basal 
diet without any lipid source supplements, the flaxseed group (n = 8) received the basal diet added 
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with extruded flaxseed, the rapeseed group (n = 6) received a mixture composed of extruded flaxseed 
(1/3) and rapeseed (2/3), and the palmitostearate group (n = 8) received palmitostearate. Two of the 
eight initial heifers of the rapeseed diet group are missing in the database: one for health problems 
was removed from the group, and the other one had not been tasted by the panel of degustation; 
thus, numerous data were missing for this animal. Average daily gain (ADG) was calculated based 
on the difference between the end and the beginning weights of the fattening period. The dry matter 
intake was measured daily for each pen to calculate the feed conversion ration per pen (FCR), based 
on a mean ADG of the animals of each pen.   

2.1.2. Animal Slaughtering Process 

Animals were slaughtered at the slaughterhouse of the Société Vitréenne d’Abattage (SVA) in 
Vitré, France, at the mean live weight of 693 kg (± 10 kg), with a body fat score of three (± 0.1) on a 
scale varying from one (very lean) to five (very fat). Overall, average daily gain was 1528 g/day (± 53 
g/day) for the 100 day-finishing period with no significant variations between diets. Slaughtering was 
performed in compliance with French welfare regulations. The carcasses were not electrically 
stimulated, and they were chilled and stored at 4 °C until 24 h post mortem. Ultimate pH was 
recorded between the sixth and seventh rib using a pH meter equipped with a glass electrode at 24 h 
post mortem. Cold carcass weight, fat score, and conformation were measured at slaughter based on 
the EUROP grading system [7]. The fat, muscle, and bone proportions were estimated from the 
regression equations base on the dissection of the sixth rib [8]. Various fat tissues (kidney fat, pelvic 
fat, trimming fat) were also weighed. Professional experts from the Institut de l’Elevage scored each 
carcass for the intermuscular and intramuscular fat developments of the Longissimus thoracis muscle 
(LT) on two scales varying either from zero (absence of intermuscular fat) to five (strong 
intermuscular fat) based on an Institut de l’Elevage grading system, or from three (no intramuscular 
fat visible) to 12 (high intramuscular fat) [9], respectively. Meat color was monitored at the 
slaughterhouse on the LT muscle, at the sixth rib level twice, with a visual evaluation based on an 
Institut de l’Elevage grade varying from 1 (meat very light) to 4 (meat very dark) and using a portable 
colorimeter (CR400 MINOLTA) and D65 as the illuminant, because it closely approximates daylight 
[10]. Color coordinates were calculated in the CIELAB system [11]: L* (lightness), a* (redness) and b* 
(yellowness). The chroma (as C* = (a*² + b*²)1/2) and hue angle (h* = arctan(b*/a*)) were also calculated. 
Measurements were taken at three locations on each steak and averaged. 

2.1.3. Nutritional Quality Measurement 

Samples of LT muscles (100−120 g) were collected one day post mortem at the level of the 9th 
and 10th ribs, cut into small pieces, frozen in liquid N2, and stored at −80 °C. Just before analysis, the 
frozen samples were mixed in liquid N2 in an analytical mill (modelM-20, IKA-Werke, Stouten, 
Germany) to obtain fine powder. Muscle lipids and fatty acids were extracted and quantified as 
previously described by Habeanu et al. [12]. Briefly, total lipids were extracted according to the 
method of Folch et al. [13] by mixing the LT muscle powder with a 2/1 chloroform/methanol mixture 
(v/v) and quantified by gravimetry. Fatty acid extraction and transmethylation into fatty acid methyl 
esters (FAME) were subsequently performed according the methods of Bauchart et al. [14]. Fatty acid 
methyl ester analysis was performed with gas liquid chromatography using a Peri 2100-
chromatography system (Perichrom Society, Saulx-les-Chartreux, France) fitted with a CP-Sil 88 glass 
capillary column (Varian, Palo Alto, CA, USA; length = 100 m; diameter = 0.25 mm). The carrier gas 
was H2, and the oven and flame ionization detector temperatures described by Scislowski et al. [15] 
were used. Total fatty acid (FA) was quantified using C19:0 as an internal standard. The identification 
of each individual FAME and the calculation of the response coefficients for each individual FAME 
were performed using the quantitative mix C4–C24 Fame (Supelco, Bellafonte, PA, USA). 

2.1.4. Organoleptic Quality Measurement 
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At 48 h post mortem, the Longissimus thoracis muscle samples that were used for organoleptic 
evaluation were removed from carcasses (7e and 8e rib), placed in sealed plastic bags under vacuum, 
and kept at 4 °C without light for aging for 10 days. Then, each sample was frozen and stored at −20 
°C awaiting organoleptic evaluation. Samples were thawed, without stacking or overlapping, for 24 
h before cooking and organoleptic assessment. Then, they were cut into mini-roasts (50-g cubes, 4 cm 
thick). Each mini-roast was baked (thermolyne muffle furnace, Model 6000, Bioblock Scientific, 
Illkirch Graffenstaden, France) without dressing. There were heated to 310 °C for seven minutes, and 
cut into four bites that were immediately served in another porcelain plate to 12 trained panelists. 
The panelists rated the sample on a 10-cm unstructured line scale (from 0 to 100) measured in mm 
for the following texture attributes: global tenderness defined as the ease of chewing the sample 
between teeth: from extremely tough (0) to extremely tender (100), juiciness defined as the amount 
of moisture released in the mouth: from extremely dry (0) to extremely juicy (100), and global 
intensity of flavor from low intensity (0) to very high intensity (100). Height descriptors of flavor were 
also used, from low intensity (0) to very high intensity (100): sweet flavor, acid flavor, bitter flavor, 
fatty flavor, metallic flavor, rancid flavor, fish flavor, and blood flavor. The sessions were carried out 
in a room equipped with individual booths under artificial red light to reduce the influence of the 
appearance of the samples. At each session, a monadic presentation of a maximum of 12 samples was 
done, with each sample being selected in random order. 

2.2. Modelization 

2.2.1. Pre-Treatment of the Variables 

This experiment resulted in the collection of 62 variables (described in Appendix A), which were 
centered and reduced by the standard deviation. The variables were classified into one of the four 
parameters of interest (i.e., animal performances, carcass properties, nutritional quality, and 
organoleptic quality of meat). Then, a clustering of the variables was performed with the variables 
evaluating each parameter to reduce the redundancy among the variables and only keep a small set 
of indicators to evaluate those parameters. Clusters of correlated variables were formed with this 
statistical tool [16], and a criteria was calculated to evaluate the cohesiveness of those clusters (the 
closer the criteria was to 100%, the more correlated the variables that were gathered into each clusters 
were to each other). Then, the authors decided to resume the clusters by either a linear combination 
of the variables of the cluster (first component of the principal component analysis (PCA) on the 
variables of the cluster) or by one of the variables from the cluster. These choices are assumed to be 
subjective, but were based on the literature and the main indicators that were used to describe the 
carcass traits [17], the nutritional quality [18–20], and the organoleptic quality [21]. 

2.2.2. Variable Relations Modeling  

To study the relations between the four parameters of interest, each variable was modeled with 
the set of all the variables that were evaluating another parameter of interest other than the one that 
the variable was to model. To clear the notation, let’s define Mvar to denote the model built to explain 
the dependent variable var. 

To determine the most relevant model as possible, several types of regression models (linear 
model (lm), random forest (rf), sliced inverse regression (sir), ridge regression, and partial least 
square regression (plsr)) were compared using modvarsel R package [22]. The underlying 
methodology used in this package is entirely computational, generating a training sample several 
times (n = 50), to build models that were then evaluated with a mean square error (MSE) criteria 
calculated on the corresponding test dataset sample. This package also provides a tool to measure 
the importance of each independent variable in the corresponding regression model, and then select 
the best ones to build the most accurate model. The quality of the model was evaluated with the 
adjusted coefficient of determination (adjusted coefficient of determination (adjR²) is a R² penalized 
by the number of independent variables into the model) calculated twice: first on the training data, 
which were used to build the model, and then a second time with a method developed by Harrell et 
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al. [23] based on bootstrap resampling (B = 100) to evaluate without overfitting the accuracy of the 
model. The combination of both methods enables estimating model overfitting.  

2.2.3. Study of the Relationships Modeled 

Two strategies were set up to analyze the relationships between the dependent variable and the 
independent variables. As mixed parametric and non-parametric models complicate the 
quantification of the importance of each independent variable in the prediction models, a common 
method was used to evaluate this importance, mobilizing the decomposition of the variance [24] in 
the sensitivity R package [25] by calculating a sensitivity index (Si ∈ [0, 1]). A sensitivity index was 
assigned to each indicator into the model: the most influential ones were associated with a value close 
to one and the less influential was assigned a value close to zero. The second strategy to analyze the 
model behavior was to visualize the variations of the model predictions where all the (centered and 
reduced) independent variables were set to their mean zero, except for one that was taking a range 
of values in 0 ± 2σ (i.e. [–2, 2] as σ = 1). This procedure was repeated as many times as the number of 
independent variables of the model. 

2.3. Trade-Offs Methodology 

2.3.1. Aggregation of the Variable Evaluating the Parameters of Interest 

Several variables were used to evaluate each parameter of interest. Therefore, to compare the 
nutritional and organoleptic quality, a synthetic index was created for both. Those indexes were 
calculated by a linear combination of the variables evaluating the parameters of interest weighted by 
their importance. The importance weights (Table 1) were proposed by a set of experts from the INRA 
(French National Institute for Agricultural Research) and Institut de l’Elevage (French Livestock 
Institute) based on their knowledge and the literature. For organoleptic quality, the weights were 
mainly based on the Meat Quality 4 (MQ4) [21] but for the nutritional quality, even if there are some 
considerations about the studied indicators in the literature, no objective equation has been created 
so far [18–20]. 

Table 1. Importance weights related to each variable evaluating the nutritional and organoleptic 
qualities.  

Parameter of Interest NQ Weights Parameter of interest OQ Weights 
lipid content −0.15 tenderness +0.425 

long FA +0.05 juiciness +0.150 
C16:0/C18:0 ratio −0.15 flavor intensity +0.175 

n-6/n-3 ratio −0.25 bitter flavor −0.025 
PUFA/MUFA ratio +0.25 rancid and fish flavors −0.125 

CLA 0.1 fatty vs. metal −0.050 
trans FA −0.05 blood and acid flavors −0.050 

Total (in absolute value) 1 Total (in absolute value) 1 
CLA: conjugated linoleic acids, FA: fatty acid, MUFA: monounsaturated fatty acids, PUFA: 
polyunsaturated fatty acid, NQ: nutritional quality, OQ: organoleptic quality. 

2.3.2. Generation of Virtual Animals 

Facing a low number of animals, the models of prediction were used to create virtual animals (n 
= 500). The aim of this approach was to study the interactions between the parameters of interest 
based on the models and not the real animals (which have only been used to create the models). 
However, it was assumed that the virtual animals were built to be realistic (i.e., those animals could 
be real), even if the bias of the models has to be taken into account. 

The (simplified) algorithm to generate virtual animals is given in Appendix B. First, one of the 
parameters of interest was chosen to set the value of its variables. Each variable could vary from −2 
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to 2 (0 ± 2σ) with a step of 0.1. To prevent unrealistic combinations of the variables from that chosen 
parameter of interest, simple linear regressions were computed between these variables. A 
confidence interval at 95% based on those regression were decided if the combination were realistic 
or not. Then, all the variables that were not in the chosen parameter of interest were estimated 
through the prediction models. Since the models were dependent all together and the estimation of 
the variables made successively, all the estimation were initially set to 0. The estimations of all the 
variables were made several times (n = 10), with an order of the estimation randomly assigned, to 
converge to a stable state. 

2.3.3. Statistical Analysis 

After their generation, the virtual animals were aggregated following the procedure described 
in Section 2.3.1. The correlation between the two synthetic indexes was computed to evaluate the link 
between the nutritional and the organoleptic qualities. 

The trade-off method consisted of picking the best animal based on its performances regarding 
both of the qualities studied. To determine the best animals, a targeted point was set, and the 30 
closest animals to this point were selected. The targeted point was set at the coordinate (NQ = 2, OQ 
= 2) corresponding to two standard deviations of the synthetic indexes (which means that only a few 
animals would reach such performances). The same procedure was applied to select the 30 worst 
animals close to the opposite targeted point (NQ = −2, OQ = −2). 

Then, the best and worst selected virtual animals were analyzed. The distribution of their traits 
was compared by using the Wilcoxon test (robust non-parametric test which does not need to verify 
the normality assumption) on each variable. 

3. Results  

3.1. Pre-Treatment of the Variables 

The selection of the relevant variables evaluating the parameters of interest are explained in this 
section. The cluster affectation of each variable’s information and the correlation with the linear 
combination of all the variables of the cluster are given in Appendix A. A clustering of variables was 
performed for each parameter of interest, except for Animal Performances (APs) since the (only) three 
variables evaluating this parameter were uncorrelated.  

For Carcass Properties (CP), six clusters were created, which had good cohesiveness (63.7%). 
Intermuscular fat score and carcass fat development were associated in the same cluster, whereas the 
amount of the different fats (such as abdominal, fifth quarter, etc.) were all associated in another 
cluster. Thus, intermuscular fat appears to be only weakly linked to removed fat. This distribution of 
fat variables is consistent with results of Yang et al. [26], who indicated that intermuscular fat is 
independent from the other fat deposits. Therefore, two linear combinations were chosen to represent 
these two clusters (Table 2). Logically, the color variables of a*, b*, and C* were positively linked, 
confirming the correlations already established by Mancini and Hunt [27]. The clustering of h* and L* 
color variables with fat proportion might be explained by the impact of fat on muscle color 
perception. Two linear combinations were also computed to represent both of these color aspects. Let 
us also mention that cluster CP1 was gathering carcass weight and bone proportion (logically 
negatively correlated) and pH. Since pH is an important indicator for the meat quality, it was 
proposed to separate the pH from the two other variables, which were informing more on the carcass 
weight. Finally, to summarize this cluster, pH and the carcass weight variables were kept as output 
variables of the pre-treatment operation.  

The Nutritional Quality (NQ) of the meat was evaluated by 28 variables: the lipid content and 
27 fatty acid measures or the ratio/sum of them. Therefore, the decision was made to withdraw the 
lipid content from the analysis (because the information of this indicator is also important to compare 
with intramuscular fat, for example), and perform the clustering of variables only on the fatty acid 
variables. The cohesiveness of the six clusters was higher than that for CP (around 72%). Two clusters 
were not explicitly clear. The NQ3 cluster regrouped variables describing the opposition between n-
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3 and n-6 fatty acids. The presence of SFA and C16:0 in this cluster could be explained by a link 
between the low amount of n-3 in proportion when SFA (mainly C16:0) is high. For this cluster, it 
was proposed to take the n-6/n-3 ratio, which is a strong nutritional indicator, into the ANSES 
recommendations [28]. The NQ4 cluster was also not clear, but on the whole, it appeared to be 
describing the opposition between MUFA and PUFA. For this cluster, the linear combination of the 
variable was taken and renamed as the ratio PUFA/MUFA. 

Organoleptic Quality (OQ) is usually described in the literature with three main indicators: 
tenderness, juiciness, and flavor. The sensory variables available in this experiment gave a larger 
analysis of the flavor aspect. Therefore, the clustering of variables was performed only with these 
variables. Five clusters were formed with a cohesiveness equal to 63.6%. The synthetic index that was 
chosen was strongly correlated with the input variables, meaning that a small amount of information 
was lost in the dimension reduction step.  

Table 2. Output variables of the pre-treatment operation describing the four parameters of interest 
(PI).  

PI Cluster 
Codification 

Output Variables 
Name/Abbreviation  Output Variables Description 

Animal 
Performances 

(AP) 

- Slaughter weight Slaughter weight 

- ADG 
Average daily gain during the finishing 

period 

- FCR 
Feed conversion ratio (ADG/feed intake 

(DM)) 

Carcass 
properties (CP) 

CP1 
Carcass weight Carcass weight 

pH Ultimate pH at 24 h post mortem 
CP2 Conformation Carcass conformation 

CP3 h*L* 
Aggregation of hue (h*), luminosity (L*) of 

carcass lean, and expert evaluation of 
carcass muscle color 

CP4 Fat development 
Aggregation of several fat tissues (in the 

fifth quarter, carcass fat, etc.) 

CP5 
Fat proportion 

 

Fat percentage relative to the other 
components of the carcass (bone and 

muscle), aggregate with intermuscular and 
intramuscular fat score 

CP6 a*b*C* a*, b*, and chroma (C*) of carcass lean 

Nutritional 
Quality of meat 

(NQ) 

- Lipid content Lipid content 

NQ1 Long FA 
Long-chain fatty acid amount and 

proportion 
NQ2 C16:0/C18:0 C16:0/C18:0 ratio 
NQ3 n-6/n-3 n-6/n-3 ratio 

NQ4 PUFA/MUFA 
Polyunsaturated fatty 

acids/Monounsaturated fatty acids ratio 
NQ5 CLA Conjugated linoleic acids 
NQ6 Trans FA Trans fatty acids 

Organoleptic 
Quality (OQ) 

- Tenderness Tenderness 
- Juiciness Juiciness 

OQ1 Flavor intensity Flavor intensity 
OQ2 Bitter flavor Bitter flavor 
OQ3 Rancid fish Flavors rancid and fish flavors 
OQ4 Fatty vs metal Fatty versus metallic flavors 
OQ5 Blood acid flavors Blood acid flavors 

ADG: average daily gain, FCR: feed conversion ration per pen. 

3.2. Choice and Quality of the Prediction Models 
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A synthesis of the 24 models’ quality is represented in Figure 1. Random forest was chosen most 
of the time (18 green intervals) before ridge regression (five red intervals) and the linear regression 
(one blue interval). Regarding the accuracy of the models, the adjusted R² (adjR²) values were higher 
than 0.8 in most of the prediction models. However, some models were characterized by low or very 
low adjR² values, especially MADG, MpH, MCLA, and Mjuiciness, which denote unreliable models.  

The correction of the adjusted R² (cor_adjR²) enabled taking the overfitting of the models into 
account, and thus estimating the true accuracy of the model on unknown data. For example, the 
cor_adjR² of the MFCR model was only around 0.33 when the adjR² was higher than 0.9. Similarly, the 
Ma*b*C* and Mlong FA appeared to be less accurate when considering their cor_adjR² (0.35 and 0.38, 
respectively) compared to their adjR2 (0.95 and 0.90, respectively). It is interesting to notice that the 
models with high overfitting were all random forest models.  

 
Figure 1. Quality of the 24 prediction models based on the adjusted coefficient of determination 
calculated twice, represented by vertical segments. The upper (respectively lower) limit of the interval 
corresponds to the adjusted R² (calculated on the training data) (respectively corrected adjusted R² 
estimate with a bootstrap approach [23]). The color indicates the model selected from the five 
competing regression models (lm = linear model, rf = random forest, ridge, sir = slice inverse 
regression, plsr = partial least square regression). 

3.3. Examination of Models Behavior 

Some of the 24 multivariate regression models that were built were analyzed in this section. The 
aim of this analysis was to show the main relations between the variables to compare and discuss 
them further with the current knowledge (Section 4.2.). All the relations are summarized in Figure 2 
by the sensitivity index (Si) of every dependent variable into each model. Only the selected variables 
with the modvarsel method were used to build the model and thus have a corresponding square on 
the row of the model. It would be too long to describe all the results in Figure 2 one by one, but to 
take an example, the MFCR is mainly influenced by the pH (Si = 0.20), the conformation (Si = 0.20), and 
the CLA (Si = 0.22). The rest of the independent variables seem to be not strongly linked to the feed 
efficiency. 
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Figure 2. Heat map of the sensitivity index for each variable used (column) in each model (row). Green 
indicates values that are higher in the sensitivity index. If there is no square, the variable was not used 
in the corresponding model. 

The second method that was used to describe the models’ behavior gave complementary 
information to the sensitivity indexes. The Mfat proportion seemed to be mainly influenced by the lipid 
content (Si = 0.90), but the graphical approach also showed that the ADG significantly influenced the 
model predictions (Figure 2a), even though the sensitivity index was low (Si = 0.05). As observed in 
Figure 2a, a low growth rate was associated with a high portion of fat and a high amount of 
intramuscular and intermuscular fat deposits. This example highlighted a contradiction between the 
two methods, which will be discussed further (Section 4.1.).  

The graphical approach was also a tool to describe the shape of the variations of the prediction. 
MPUFA/MUFA was quite exclusively influenced by fat proportion (Si = 0.86), even if nine other variables 
were selected as predictors in model construction. However, it was only thanks to the graphical 
approach that the relation appeared to be clearly negative. Combining the previous information, it 
was possible to conclude that a thin carcass was characterized by a higher portion of PUFA (relatively 
to MUFA) than fatter carcasses. Nevertheless, this relation seemed to not be linear in the model 
(Figure 2b).  

Curious variations were sometimes observed. The Mn-6/n-3 was built with seven independent 
variables, including the FCR (Si = 0.20) and the fat proportion (Si = 0.42), which were the most 
influential. The n-6/n-3 prediction was low for the intermediate values of FCR and fat proportions, 
and higher when the variables were getting close to the edges of the values tested (Figure 2c).  

MTenderness appeared to be mainly linked to the amount of fat (Si = 0.55) and the weight of the 
animal (Si = 0.15) or of its carcass (Si = 0.19). The sum of all the independent variables was not exactly 
equal to one. This observation was almost always true for all the model analyses, and will therefore 
be discussed further (Section 4.1.). The influence of fat development was not very clear in Figure 2d. 
The highest tenderness seems to be reached for intermediate fat development. The tenderness seemed 
to be also very low when the animals were very fat.  

Although some of the models were difficult to interpret with biological certitude, there were 
models where the conclusions were simpler. For instance, the Mrancid and fish flavors value was mostly 
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affected by the PUFA/MUFA (Si = 0.81). In Figure 2(e), it is clearly shown that after reaching a certain 
proportion of PUFA (relatively to MUFA), the level of unwanted flavors dramatically increased.  

Likewise, the Mflavor intensity was highly impacted by fat proportion (Si = 0.48) with a high intensity 
when the measure was high (Figure 2f). Therefore, the flavor intensity was easily linked to the 
intermuscular and the intramuscular fat, which partly composed the cluster and thus the linear 
combination calculated from it.  

3.4. Global Relation between Nutritional and Organoleptic Quality 

The Organoleptic Quality (OQ) and the Nutritional Quality (NQ) indexes of the virtual animals 
(points) are displayed in Figure 3, and overlapped by the 30 real animals (triangles) used to build the 
models. A slight negative correlation was observed between NQ and OQ (r = −0.17) for the indexes 
calculated with the virtual animals. The same correlation with the real animals was a little bit higher 
(r = −0.25), but stayed very low, indicating that these two parameters are only weakly linked. The 
correlation test indicates that the correlation between the synthetic indexes calculated with the virtual 
animals was significantly different from zero. This test does not show the strength of the correlation 
and is highly influenced by the number of observations, as it can be observed with a higher p value 
for the real animal, even though the correlation seemed to be stronger. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 3. (a) Prediction of the fat proportion and the lipid content versus the ADG (average daily 
gain) variations; (b) Prediction of the PUFA/MUFA (polyunsaturated fatty acid/monounsaturated 
fatty acid)ratio versus the fat proportion variations; (c) Prediction of the n-6/n-3 ratio versus the FCR 
(feed conversion ratio) and fat proportion variations; (d) Prediction of the tenderness versus the fat 
development variation; (e) Prediction of the unwanted rancid-fish flavor versus the PUFA/MUFA 
ratio variations; (f) Prediction of the flavor intensity versus the ADG and the fat proportion variations. 

3.5. Comparison between the Best and the Worst Profile 

Among the virtual animals (Figure 4), the traits of the 30 best (blue points) and worst (red points) 
animals were compared in Figure 5. Overlapped on the boxplots, three real animals for each category 
(best and worst) were also selected (black triangles) in Figure 4 and compared with virtual ones in 
Figure 5 (blue and red triangles). Since they were selected for their nutritional and organoleptic 
quality, the best animals naturally have better traits regarding these qualities.  

 

Figure 4. Nutritional and organoleptic indexes of the virtual (points) and real (triangles) animals. The 
correlation of the virtual (respectively real) animals is given in grey (respectively in black) in the top 
left corner. Regression (NQ~OQ) line for both virtual and real animals is added to visualize the 
correlation. Two targeted green crosses T were set to select the closest best (blue) and worst (red) 
virtual animals (and real animals filled in black for both categories). 
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(a) (b) 

  
(c) (d) 

Figure 5. Comparison (boxplots) of the virtual animals traits between the worst (red) and the best 
(blue) profiles selected. The three best and worst real animals are added on the boxplots with 
triangles. For each variable, the result of a Wilcoxon test is provided (ns: no significant, **: p value < 
0.01, ***: p value < 0.001, ****: p value < 0.0001). a: animal performances; b: carcass properties; c: 
nutritional quality; d: organoleptic quality. 

Regarding the organoleptic quality (Figure 4d), the best animals had a better tenderness and 
flavor intensity than the worst animals. Even though the models were useless for the juiciness 
(predicting only the mean juiciness, because the model does not fit the variation of the juiciness at 
all), the best real animals (triangles) seemed to have a better juiciness than the worst real animals 
selected. On the abnormal flavor side, the best animals seemed to be more bitter than the worst 
animals, but the fatty/metal taste was stronger for the worst animals. No significant difference was 
reported for the rancid/fish and blood/acid flavor between the two extremes.  

Regarding nutritional quality, the best animals had lower lipid content (Figure 5c). Logically, 
the C16:0 proportion was lower, meaning probably that the SFA content was also lower. In addition, 
PUFA/MUFA was higher, which also seems logical when the SFA is low. Among the higher 
proportion of PUFA, the n-3 fatty acid seemed to have a higher proportion in comparison to the n-6. 
Associated with higher PUFA proportions, trans fatty acids were also higher. No significant 
difference between CLA proportions was observed, but the proportion of long fatty acids was higher 
for the best animals. 

Although not selected for this parameter of interest, the worst animals seemed to have fatter 
carcasses that were heavier and had conformations (Figure 5b). Those fatter carcasses seemed to have 
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an impact on the luminescence (L*) of the meat, but not on the a*b*C* indicator, where no difference 
was observed. The pH of the virtual animals seemed higher for the best virtual animals, even though 
this result was in contradiction with the six real animals selected. 

Related to these observations on the carcass traits, the slaughter weight of the best animals was 
lighter. To produce fatter carcasses, it seems that the worst animals also had a lower feed efficiency 
(Figure 5a). No difference between the average daily gain was observed even if best real animals 
tended to be better. 

4. Discussion 

4.1. Modeling and Analytic Choices 

All the approaches were based on a reliable modeling of the relations between the variables 
evaluating the parameters of interest. Some of the models were clearly not reliable. The worst case 
was that of the juiciness, which had very low adjusted R² values, and seemed not able to predict 
anything other than the juiciness mean (as can be seen in Figure 5d). 

The results coming out the modvarsel package will also be discussed, especially regarding the 
type of model selection. Among the five considered regression models in the modvarsel R package, 
two model types have never been selected: plsr and sir (see Figure 1). This could be explained by a 
lack of (linear) structure regarding the variables and the relatively low number of observations 
(animals) compared to the relatively high number of independent variable candidates. Thus, the 
dimension reduction techniques were affected and not better than the other competitive fully 
parametric or non-parametric regression models. Linear regression was selected only once. In 
contrast, random forest (a purely non-parametric approach) gave a good accuracy in this kind of 
situation, which explained the high rate of random forest model selected by modvarsel. 

Linear regression was selected to predict the carcass weight, which was strongly correlated with 
the animal’s body weight before slaughter. Curiously, the slaughter weight was not fitted by a linear 
regression model, in which carcass weight would be the main independent variable in return. Indeed, 
it appears that a higher number of variables was selected by modvarsel to fit the slaughter weight 
(carcass weight, fat development, C16:0/C18:0 ratio, and PUFA/MUFA ratio) than to fit the carcass 
weight (slaughter weight and ADG). Some slight correlations between the four variables were 
observed, such as between carcass weight and fat development (r = 0.67, p value < 0.001) for instance, 
which might explain the use of penalized regression to build a more stable model, as aimed by the 
modvarsel algorithm. The low number of observations (n = 30) with influential points could also be 
the source of instability (high variance of the parameters’ estimation) in the linear model fitting 
slaughter weight. 

As it was noticed in the results (Section 3.2.), all 18 random forest models had high overfitting. 
This is related to the non-parametric nature of the algorithm, which is known to produce high 
overfitting when the number of observations is low compared to the number of independent variable 
[29]. For instance, it was interesting to notice that the Mn-6/n-3 variations were characterized by a kind 
of “wave”, where the ratio was favorable for intermediate values of FCR and fat proportion. These 
relations did not have a clear biological explanation. Nevertheless, increasing the size of the training 
dataset might prevent the overfitting problem, with the robustness of the non-parametric models 
being based on the law of large numbers. 

As noticed in Section 3.3, when analyzing the models, contradictions appeared between the two 
methods (i.e., the sensitivity indexes (Si) and the graphical approach). For instance, regarding the Mfat 

proportion value, the ADG had a low sensitivity index, but was responsible for a significant part of the 
variations with the graphical method. In general, those contradictions appeared when the number of 
independent variables into the model was important, and the accuracy of the model was low. When 
both of these conditions were met, it could lead to difficulties regarding obtaining a reliable 
sensitivity index. Furthermore, the graphical approach was based on the variation of only one 
independent variable, and the other one was set to the mean (i.e., 0). Therefore, interaction 
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phenomena were factored out of the analysis, which could also explain the opposition between both 
of the methods’ results. 

4.2. Outcome from the Holistic Approach 

First, this original approach has shown that there is not a strong antagonism (r = −0.17) between 
nutritional and organoleptic quality. Moreover, the best profiles selected had very satisfying meat 
quality regarding the quality based on the initial population of 30 animals. This observation 
consolidated a previous work [2], where Ellies-Oury et al. indicated that these two parameters were 
orthogonal to each other and thus linearly independent. These results were obtained in a population 
of heterogeneous animals, which came from three different breeds (Angus, Limousine, Blonde 
d’Aquitaine), whereas in the present work, the results were obtained on a homogenous population 
of Blonde d’Aquitaine females. The lack of a strong linkage between the two parameters of interest 
(NQ and OQ) means that a trade-off is not fully necessary to maximize NQ and OQ simultaneously. 

Going deeper in the best profiles analysis, the thin carcasses with a low proportion of fat seemed 
to drive to high PUFA and w3 proportions in the meat, as well as a higher intensity of flavor and 
tender meat. In contrast, the fattest carcasses seemed to produce meat with high lipids content that 
lacked PUFA and had an imbalanced n-6/n-3 ratio. The models explain these results. In Section 3.2, a 
negative relation was shown between the fat proportion and the PUFA/MUFA ratio. This result 
support those from Warren et al. [30] indicating that muscles with higher lipid content have a lower 
proportion of PUFA compared to MUFA and SFA. These could be explained by a higher de novo 
synthesis of fatty acid, which was mostly saturated and monounsaturated. In leaner meat, the 
triglycerides/phospholipids ratio was higher, and it is well known that PUFA mainly esterified on 
phospholipids [31].  

In the literature, studies have shown a positive relation between fat and tenderness [32]. 
However, the model built in this study was different. As noticed in Figure 2d, the tenderness 
optimum is reached when the fat development is between −1 and 0 (which means that the animal is 
close to the mean or lower by one standard deviation), and the worst tenderness predicted was 
obtained with an upper fat development that was one standard deviation over the mean. This result 
was also observed in the best and worst profiles. The contradiction between this model and the 
literature cannot be explained by a low model quality, because the accuracy of the Mtenderness is quite 
satisfying (adjR² = 0.85 and cor_adjR² = 0.60). However, the model was fit on a specific population of 
30 Blonde d’Aquitaine heifers. This breed is well known to produce very lean meat in comparison to 
the other suckling breeds [33], which could explain the different relationship between this fat 
indicator and the tenderness of the meat. 

As previously shown, the best animals had higher PUFA/MUFA in the meat. However, high 
PUFA content can also lead to the risk of unwanted flavor (e.g., the fish flavor indicated in Figure 2e). 
This effect seems to be related to PUFA oxidation [5]. Nevertheless, the higher level of PUFA in the 
best profile meat did not cause this kind of abnormal flavor.  

Finally, these results confirmed that meat with higher intramuscular and intermuscular fat 
increases the flavor intensity [4], indicating that intramuscular fat is a precursor of many aromatic 
compounds formed, notably, during cooking processes.  

4.3. Limits and Perspectives of the Trade-Off Method 

Generating virtual observations is unusual in the animal research field, and might raise 
interrogations and doubts regarding the results for the reader. However, there are no statistical 
aberrations, because this study did not try to show the impact of one factor (the diet effect for 
instance) on the beef performances or meat qualities or the strength of relation between two variables. 
All the probabilistic tests that were performed in this paper (the Wilcoxon test of comparison between 
the best and worst profiles traits) should not be interpreted literally; they only demonstrate that with 
the relation modeled in this study, the best profiles are significantly different than the worst ones 
regarding various traits.  
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Aside from this innovative approach, the trade-off method seemed to be highly sensitive to the 
weighting granted for each variable by the experts. For instance, tenderness (whose weighting is 
significant) was the highest among the best profiles (and lowest among the worst profiles). Then, the 
result of optimizing was clearly dependent on the expertise provided for the relative importance of 
each variable evaluating the parameters of interest. Therefore, the choice of variable weights has to 
be carried out carefully and wisely to manage the trade-offs as efficiently as possible.  

The weighting dependence can also be related to the method used to aggregate the variables, 
considering its numerous disadvantages. The linear combination calculated here to aggregate the 
variables led to compensation between them. For instance, a high proportion of PUFA would 
compensate for a high trans fatty acid proportion. No threshold was taken into account as a way to 
prefer a more balanced animal compared to an animal performing well on only a few indicators. 
More complex methods exist to resolve these problems such as outranking methods, but suffer from 
less clarity and are difficult to assess [34]. In addition, the weight-related techniques need variables 
varying in the same scale and the same direction. In the case of some of them, such as the carcass 
weight, the optimum value is not a maximum or a minimum weight, but rather a homogeneous 
weight distributed around a target value. 

5. Conclusion 

The present paper has exposed a very innovative approach to assess the trade-off between 
parameters of interest in the beef cattle industry. It showed that there is no antagonism between 
organoleptic quality and nutritional quality. The modeling approach has also been very interesting 
to highlight the relation between the variables and show that they are interconnected, and not only 
by two-by-two relations. This knowledge should be taken into account when designing new product 
brand or label expectations. 

However, the very strong influence of the weight setting and the aggregation method on the 
results of the trade-off was observed. This should encourage the meat beef industry to clarify their 
own expectations regarding these two parameters of interest in order to set consensual indicators 
with associated hierarchy to measure the organoleptic and nutritional quality. 

Moreover, the significance of these results is only relevant in the particular context of the data 
in terms of the animals’ breed, age, diets, fattening duration, muscle, etc. Thus, the extrapolation of 
the present results has to be done with caution. 
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Appendix A 

Table A1. Variables in the initial dataset with the clustering assignment and the associated coefficient 
of correlation between the variables and the synthetic index (calculated as the first component of the 
principal analysis component (PCA) with all the variables in the cluster). 
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Variable Precision and Units 
Cluster 

Codification 
Correlation with the 

Cluster Synthetic Index 
Slaughter weight Slaughter day weight - - 

ADG 
Average daily gain (kg/day) during the fattening 

period (100 days)  
- - 

FCR Feed conversion ratio (DM intake/ADG) - - 
Carcass weight Carcass weight (kg) CP1 −0.96 
Conformation EUROP conformation (from 1 (P−) to 15 (E+)) CP2 1 
Body fat score Body fat score at slaughter (from 1 to 5) CP3 −0.74 

Pelvis fat (kg) CP4 0.79 
Kidney fat (kg) CP4 0.92 

Trimming fat (kg) CP4 0.84 
Total fat (kg) CP4 0.99 

Eliminated fat (kg) CP4 0.98 
Intramuscular fat 

score 
Score from 3 (no trace of fat) to 12 (extremely fat) CP5 −0.75 

Intermuscular fat 
score 

Score from 0 (without intermuscular fat) to 5 (high 
intermuscular fat) 

CP5 −0.87 

pH pH CP1 0.81 
Meat color score Score from 1 (very light) to 4 (very red) CP3 0.74 

L* 
from black (0) to white (100) of the CIE L*a*b* 

coordinates system  
CP3 −0.81 

a* 
from green (−) to red (+) of the CIE L*a*b* 

coordinates system 
CP6 0.99 

b* 
from blue (−) to yellow (+) of the CIE L*a*b* 

coordinates system 
CP6 0.98 

C* The chroma of the CIE L*C*h* coordinates system CP6 1 

h* 
The hue angle of the CIE L*C*h* coordinates 

system  
CP3 −0.85 

Muscle proportion Muscle proportion into the carcass CP5 0.91 
Fat proportion Fat proportion into the carcass CP5 −0.95 

Bone proportion Bone proportion into the carcass CP1 0.97 
Lipid content Lipid content into LT muscle - - 

C16:0 (%/total FA) NQ3 −0.88 
C18:0 (%/total FA) NQ2 0.95 
SFA  (%/total FA) NQ3 -0.86 

C18:1 cis9 (%/total FA) NQ4 −0.94 
MUFA cis Sum of all MUFAcis (%/total FA) NQ4 −0.93 
C18:1 tr9 (%/total FA) NQ5 0.61 

C18:1 tr10 (%/total FA) NQ6 0.98 
C18:1 tr11 (%/total FA) NQ5 0.92 

MUFA trans Sum of all MUFA trans (%/total FA) NQ6 0.98 
Total MUFA Sum of all MUFA (%/total FA) NQ4 −0.92 

LA Linoleic acid C18:2 n-6 en (%/total FA) NQ4 0.95 
C20:4 n-6 C20:4 n-6 (%/total FA) NQ4 0.80 
Total n-6 Sum of all PUFA n-6 (%/total FA) NQ4 0.97 

ALA Linolenic acid C18:3 n-3 (%/total FA) NQ3 0.92 
EPA C14:0 (%/total FA) NQ4 0.93 
DPA C14:0 (%/total FA) NQ4 0.89 

Total n-3 LC Sum of all long-chain FA n-3 (%/total FA) NQ4 0.91 
Total n-3  Sum of all FA n-3 (%/total FA) NQ3 0.90 

LC FA content Content of all the long-chain FA NQ1 0.98 
LC FA prop Sum of all the long chain FA (%/total FA) NQ1 0.98 

CLA 
Conjugated linoleic acid C18:2 9cis 11trans 

(%/total FA) 
NQ5 0.97 

total CLA  Sum of all the conjugated FA (%/total FA) NQ5 0.96 
Total PUFA  Sum of PUFA (%/total FA) NQ4 0.94 

n-6/n-3  n-6 PUFA/n-3 PUFA ratio (%/total FA) NQ3 −0.89 
LA/ALA C18:2 n-6/C18:3 n-3 ratio (%/total FA) NQ3 −0.87 

PUFA /SFA PUFA/SFA ratio (%/total FA) NQ4 0.93 
C16:0/C18:0 C16:0/C18:0 ratio (%/total FA) NQ2 −0.95 

Tenderness intensity Score from 1 (very hard) to 100 (very tender) - - 
Juiciness intensity Score from 1 (very dry) to 100 (very juicy) - - 

Flavor intensity Score from 1 (low intensity) to 100 (high intensity) OQ1 −0.82 
Sweet Score from 1 (not sweet) to 100 (very sweet) OQ1 −0.82 
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Acid Score from 1 (not acid) to 100 (very acid) OQ5 −0.85 
Bitter Score from 1 (no bitter) to 100 (very bitter) OQ2 1 

Metallic taste 
Score from 1 (low metallic taste) to 100 (strong 

metallic taste) 
OQ4 0.80 

Rancid taste  
Score from 1 (low rancid taste) to 100 (strong 

rancid taste) 
OQ3 0.88 

Fat taste 
Score from 1 (low metallic fat) to 100 (strong fat 

taste) 
OQ4 −0.80 

Fish taste 
Score from 1 (low fish taste) to 100 (strong fish 

taste) 
OQ3 0.88 

Blood taste 
Score from 1 (low blood taste) to 100 (strong blood 

taste) 
OQ5 −0.85 

CPi: carcass property cluster i; NQi: nutritional quality cluster i; OQi: organoleptic quality cluster i. 

Appendix B 

 
Figure A1. Algorithm to generate a virtual animal. The pseudo code was inspired from the R code. 
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