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Abstract

The stability properties of matrix-valued Riccati diffusions are investigated. The matrix-
valued Riccati diffusion processes considered in this work are of interest in their own right, as a
rather prototypical model of a matrix-valued quadratic stochastic process. Under rather natural
observability and controllability conditions, we derive time-uniform moment and fluctuation
estimates and exponential contraction inequalities. Our approach combines spectral theory with
nonlinear semigroup methods and stochastic matrix calculus. This analysis seem to be the
first of its kind for this class of matrix-valued stochastic differential equation. This class of
stochastic models arise in signal processing and data assimilation, and more particularly in
ensemble Kalman-Bucy filtering theory. In this context, the Riccati diffusion represents the flow
of the sample covariance matrices associated with McKean-Vlasov-type interacting Kalman-Bucy
filters. The analysis developed here applies to filtering problems with unstable signals.
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1 Introduction

We introduce some matrix notation needed from the onset. Let Mr be the set of (r × r) real
matrices with r ≥ 1. Let Sr ⊂Mr be the subset of symmetric matrices, and S0r , and S+r the subsets
of positive semi-definite and definite matrices respectively. We write A ≥ B when A−B ∈ S0r ; and
A > B when A−B ∈ S+r . We denote by 0 and I the null and identity matrices, for any r ≥ 1. Given
R ∈ ∂S+r := S0r −S+r we denote by R1/2 a (non-unique) symmetric square root of R. When R ∈ S+r
we choose the unique symmetric square root. We write A′ the transpose of A, and Asym = (A+A′)/2
its symmetric part. We denote by Absc(A) := max {Re(λ) : λ ∈ Spec(A)} its spectral abscissa. We
also denote by Tr(A) the trace. When A ∈ Sr we let λ1(A) ≥ . . . ≥ λr(A) denote the ordered
eigenvalues of A. We equipMr with the spectral norm ‖A‖ = ‖A‖2 =

√
λ1(AA′) or the Frobenius

norm ‖A‖ = ‖A‖Frob =
√

Tr(AA′). Let µ(A) = λ1(Asym) denote the (2-)logarithmic “norm” (which
can be < 0). We have µ(·) ≥ Absc(·).

1.1 Description of the Model

We associate with some given matrices (A,R, S) ∈ (Mr×S0r ×S0r ) the Riccati drift function Θ from
Sr into itself defined by the matrix concave function

Θ(P ) := (A− PS)P + P (A− PS)′ +Σ1,0(P ) with Σ1,0(P ) := R+ PSP (1.1)

which may be written in canonical form, Θ(P ) = AP + PA′ +R− PSP .
If the matrix pair (A,R1/2) is stabilisable, and the pair (A,S1/2) is detectable [3, 4, 40], then

there exists a unique matrix:

P∞ ∈ S0r s.t. Θ(P∞) = 0 and (A−P∞S) is stable, i.e. Absc(A−P∞S) < 0 (1.2)

If (A,R1/2) is controllable, then P∞ ∈ S+r . See [38, 44, 40].
The matrix-valued Riccati diffusions discussed in this article are defined by the stochastic model

dQt = Θ(Qt) dt + ǫ dMt (1.3)

with t ∈ [0,∞[, Q0 = Q ∈ S0r , and some noise parameter ǫ ≥ 0. The matrix-valued martingale is
defined by

dMt :=
[
Q

1/2
t dWt Σ

1/2
κ,̟ (Qt)

]
sym

(1.4)

where throughout Wt denotes an (r × r)-matrix with independent Brownian entries. The non-
negative map Σκ,̟ : Sr → S0r is defined by

Σκ,̟(P ) := R+ κ (P +̟I)S (P +̟I) (1.5)

for some finite ̟ ≥ 0 and some (binary) parameter κ ∈ {0, 1}.
For example, if κ = 0, then Σ0,̟ = Σ0,0 = R and thus dMt = [Q

1/2
t dWtR

1/2]sym or, explicitly

dQt = (AQt +QtA
′ +R−QtSQt) dt +

ǫ

2

[
Q

1/2
t dWtR

1/2 +R1/2 dW ′
tQ

1/2
t

]

This special case (κ = 0) defines, in some sense, a minimal prototype of a forward-in-time matrix-
valued Riccati diffusion in the space of symmetric positive (semi-)definite matrices.

We let φǫt(Q) := Qt be the stochastic flow of the matrix diffusion equation (1.3) with Q0 = Q.
Whenever it exists, the inverse stochastic flow of (1.3) is denoted by φ−ǫ

t (Q) := Q−1
t . For any
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0 ≤ s ≤ t, we let Eǫs,t(Q) be the transition semigroup associated with the flow of random matrices
[A− φǫt(Q)S], i.e. the solution of the forward and backward equations

∂tEǫs,t(Q) = [A− φǫt(Q)S] Eǫs,t(Q) and ∂sEǫs,t(Q) = −Eǫs,t(Q) [A− φǫs(Q)S] (1.6)

with Eǫt,t(Q) = I. When s = 0 we write Eǫt (Q) instead of Eǫ0,t(Q). We write φt(Q) and Es,t(Q) instead

of φ0t (Q), and E0s,t(Q), to denote the flow of the deterministic matrix Riccati differential equation
when ǫ = 0, and the exponential semigroup defined via φt(Q).

1.2 Background and Motivation

The main concern in this article is the matrix-valued Riccati diffusion in (1.3) and its, time-uniform,
moment boundedness and fluctuation behaviour, along with its stability and contraction properties.

Positive semi-definite matrix diffusions in a specialized form of (1.3) also arise in multivariate
statistics, econometrics and financial mathematics. For example, the Wishart process considered
in [16, 18] corresponds to the choice of parameters Σ0,0 = R, S = 0 and A stable. In financial
mathematics, Wishart-type processes are used to model multivariate stochastic volatility in equity
and fixed income models. The article [19] also considers a general class of affine processes in the
cone of positive semi-definite matrices. These processes combine Wishart diffusions and pure jump
processes with a compensator of affine-type. The Feller properties of the transition semigroup of
affine processes are developed in the articles [19, 34]. The main feature of these processes is that
the characteristic functions and the moment generating functions are explicitly known. For more
details on the mathematical analysis of affine processes we refer to [19, 34, 42], and the references
therein. To the best of our knowledge, whenever they exist, such explicit formulae are unknown for
general matrix-valued Riccati diffusions of the form (1.3), as soon as S 6= 0.

In the context of filtering of conditionally Gaussian signal-observation models [41, 31], the asso-
ciated conditional covariance matrix of the posterior (filtering) distribution is random and satisfies
a type of Riccati diffusion equation, see [31].

We remark that different models involving backward matrix Riccati diffusions arise in linear-
quadratic optimal control problems with random coefficients; see e.g. [14, 32, 36]. Another class of
random Riccati equations, different from the diffusion equation (1.3), arises in network control and
filtering with random observation losses; see for instance [46]. The details of these works are beyond
the scope of the forward-in-time Riccati diffusions considered herein.

1.2.1 Ensemble Kalman-Bucy-Type Filters

The stochastic Riccati equations defined by (1.3) may be motivated by applications in signal pro-
cessing and data assimilation problems, and more particularly in the stochastic analysis of ensemble
Kalman-Bucy-type filters (abbreviated EnKF) [26, 45].

In this context, up to a change of probability space, the matrix-valued Riccati diffusion (1.3)
describes the evolution of the sample covariance associated with these filters. With this application,
the general form of (1.5) accommodates two popular EnKF filter models (determined by the binary
switch κ ∈ {0, 1}) [26, 45]; as well as accommodating a class of inflation-based regularization methods
(determined by ̟ ≥ 0) [13]. The case ̟ = 0 in (1.5) corresponds to non-regularized models. We
refer to Section 3 for further discussion on these particle-type filters and on inflation-regularisation.

In the context of state estimation, the difference between the EnKF sample mean and the true
signal state (i.e. the estimation error) is described by a stochastic Ornstein-Uhlenbeck-type vector-
valued process of the form,

dXt = (A−QtS)Xt dt+ (Σǫ
κ,̟(Qt))

1/2 dWt (1.7)
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where Wt is an r-dimensional Wiener process independent of Wt, and (Σǫ
κ,̟)

1/2 denotes the square
root of the non-negative map Σǫ

κ,̟ from Sr into S0r defined by,

Σǫ
κ,̟ := Σ1,̟ + ǫ2Σκ,̟ (1.8)

where ǫ = ǫ/
√
4 + ǫ2 < ǫ.

Whenever ǫ = 0 = ̟, the diffusion process (1.7) resumes to the difference (i.e. error) between
the classical Kalman-Bucy filter [8] and the true signal state of an auxiliary linear-Gaussian process
with drift matrix A and diffusion matrix R. In this case we have

dXt = (A−PtS)Xt dt+Σ
1/2
1,0 (Pt) dWt with the Riccati equation ∂tPt = Θ(Pt) (1.9)

Note that Pt = E(XtX
′
t) coincides with the covariance matrix of the state estimation error defined

by the Ornstein-Uhlenbeck process in the l.h.s. of (1.9) and φt(Q) = Pt when P0 = Q.
Under appropriate controllability and observability conditions, one of the main features of the

Kalman-Bucy filter is that it delivers a stable state estimate of the underlying signal with unstable
drift matrix A and uniformly w.r.t. the time parameter. In particular, when the pair of matrices
(A,R1/2) is stabilisable, and (A,S1/2) is detectable, then the error Xt is a stable process in the sense
that (A−PtS) delivers a uniformly exponentially stable linear (time-varying) system [8]. Moreover,
φt(Q) →t→∞ P∞ exponentially fast for any Q ∈ S0r , where P∞ ∈ S0r is the stabilising fixed point
defined in (1.2). See [38, 44, 40], and the convergence results in [39, 17]. In this situation, the
second moments of the diffusion process (1.9), as well as the solution of the deterministic Riccati
equation are uniformly bounded w.r.t. the time horizon. For further discussion on these stability
properties we refer to [8, 10] and the references therein. We point to [3, 4, 40] for precise definitions
of controllable, stabilizable, and their duals, observable, detectable.

In some cases (later), we may ask for a stronger stability property; i.e. µ(A −P∞S) < 0. We
claim this condition requires an even stronger notion of observability and controllability. A crude,
yet sufficient, example here is to suppose a change of basis such that A is symmetric and S ∝ I.

The stability of (A−PtS), and of φt(Q)→t→∞ P∞, is directly related [8, 10] to the contractive
properties of the deterministic semigroup Es,t(Q). The stochastic equation (1.7) implies that the
stability properties of EnKF state estimators with ̟ = 0 depend on the stability properties of the
stochastic exponential semigroup Eǫs,t(Q).

Section 3 examines the stability of these ensemble filtering methods in detail (with any ̟ ≥ 0,
κ ∈ {0, 1}), and in relation to our main results on Riccati diffusions of the form (1.3). We also relate
the contractive properties of Eǫs,t(Q) to the stability of the state estimation error flow Xt in (1.7).

1.3 General Statements of the Main Results

We make the standing assumption throughout that (A,R1/2) is stabilizable and (A,S1/2) is de-
tectable; see [39, 4, 40]. The main concern in this article is the general matrix-valued Riccati diffu-
sion in (1.3). This includes as a special case the minimal prototype for this type of matrix-valued
quadratic stochastic differential equation that arises when κ = 0. In particular, we are interested
in the stability of the flow φǫt(Q) and the contraction properties of the associated exponential semi-
group Eǫs,t(Q). We also consider moment estimates on φǫt(Q) and the fluctuation properties of φǫt(Q)
about the deterministic Riccati flow φt(Q). Later we also consider applications of this work to EnKF

theory, and we consider the stability of the associated Ornstein-Uhlenbeck-type flow Xt.
The analysis of Riccati diffusions of the form (1.3) with the parameters (κ,̟) = (1, 0) has

been started in [12, 23]. In these articles, the authors provide several uniform convergence results
when S is proportional to the identity and when A is a stable matrix. In [12] we also provide a
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complete Taylor-type stochastic expansion of the Riccati flow with estimates given at any order
with bounded remainder terms, and with a fluctuation analysis considered over the entire path
space of the matrix-valued stochastic Riccati flow. We remark that in the scalar case we also have a
complete time-uniform fluctuation and stability analysis of one-dimensional Riccati diffusions in [11].
Nevertheless, the understanding of the long time behaviour of matrix-valued Riccati diffusions with
arbitrary matrices A seems lacking, and requires the development of new mathematical techniques.

To address this problem, we develop a novel stability and fluctuation analysis for (1.3) combining
spectral theory with nonlinear semigroup techniques in matrix spaces. The present article thus
complements the recent article [11] dedicated to the stability and fluctuation properties of general
one-dimensional Riccati diffusions. And this article extends [12, 23] in a number of directions, and
corrects some claims in [23].

The main contributions of this work are listed succinctly below and discussed throughout the
remainder. For more precise statements, we refer to the series of theorems stated in Section 2.
• As shown in [11], for one-dimensional models the equation (1.3) has a unique strong solution

in S01 = [0,∞[. In addition, the origin is repellent as soon as R > 0, for any ǫ ≥ 0. To the best of
our knowledge, the extension of this result in the multivariate case is unknown.

In the present article, we show that the existence and uniqueness of a weak solution in S0r of
equation (1.3) is ensured for any time horizon and any fluctuation parameter ǫ ≥ 0; see Theorem 2.1.

Up to a change of probability space, the sample covariance matrices of ensemble Kalman-Bucy
filters with N+1 particles satisfies (1.3) with ǫ ∝ 1/

√
N . The rank of a sample covariance matrix Qt

is thus at most N , and with N < r, it follows that Qt ∈ ∂S+r is a unique weak solution of equation
(1.3). We refer to Section 3 for a more precise discussion of ensemble Kalman-Bucy filters.
• Whenever S ∈ ∂S+r , without additional regularity properties, the solution of (1.3) may blow

up when the matrix A is unstable as the time horizon t → ∞. Nevertheless, when the pair of
matrices (A,R1/2) is stabilisable, and (A,S1/2) is detectable [40], for any t ≥ 0 and any ǫ ≥ 0, we
prove the following uniform under bias estimate

E [φǫt(Q)] ≤ φt (Q) ≤ c (1 + ‖Q‖) I (1.10)

for a finite constant c <∞ that doesn’t depend on the time horizon. In addition, the above estimate
does not depend on ‖Q‖ when t ≥ υ for any υ > 0 and with some parameter c dependent on υ. The
l.h.s. under bias estimate is a consequence of the inequality (4.5); see also Theorem 1.3 in [12]. The
proof of the r.h.s. uniform estimate is in [8, 10]; e.g. it is easy to verify ‖φt(Q)‖ ≤ c (‖P∞‖ ∨ ‖Q‖).
See also the refined uniform bias estimates in Theorem 2.3.

The uniform moment estimates (1.10) ensure that the stochastic Riccati diffusion (1.3) is uni-
formly tight. By Prohorov’s theorem, this implies that the distributions of the random states (Qt)t≥0

is relatively compact so there exists at least one limiting invariant distribution Γǫ
∞ on S0r and a se-

quence of random times tn such that

Πǫ
tn(P, dQ)

weakly
−−−−−−−→n→∞ Γǫ

∞(dQ)

where Πǫ
t denotes a Markov semigroup for Qt, defined more formally later. We remark however,

that at this level of generality, it is difficult to ensure the uniqueness of the invariant measure and
the stability properties of matrix Riccati diffusions.
• One central question towards this goal is to analyze the regularity properties of the transition

semigroup associated with the Riccati diffusion (1.3). Firstly, observe that the positive map Σκ,̟

defined in (1.5) satisfies the inequality

Σκ,̟(P ) ≤ U + PV P with (U, V ) :=
(
R+ κ̟ S(S +̟I), κ(S +̟I)

)
(1.11)
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Notice that when ̟ = 0, the estimate (1.11) resumes to the formula

Σκ,0(P ) = U + PV P =⇒ (U, V ) = (R,κS) ∈ {(R,S), (R, 0)} (1.12)

Note implicitly that (U, V ) are (κ,̟)-indexed. The introduction of these matrices allows us to
control the positive diffusion map Σκ,̟(P ) in terms of a single quadratic-type form on P . From
(1.12), this control trivially holds when ̟ = 0.

Now we introduce a fluctuation parameter of the form,

ε0 := sup

{
ǫ ≥ 0 : Rǫ := R− ǫ2

4
(r + 1)U ≥ 0 and Sǫ := S − ǫ2

4
(r + 1)V ≥ 0

}
(1.13)

with the matrices (U, V ) defined in (1.11). Notice that this condition may simplify significantly,

̟ = 0 =⇒ (U, V ) ∈ {(R,S), (R, 0)} =⇒ ε0 := 2/
√
r + 1

With ǫ ≤ ε0, we prove that the matrix Riccati diffusion (1.3) has a unique strong solution in S+r
and that it never hits the boundary ∂S+r on any positive time horizon.

In addition, the transition semigroup of Qt is strongly Feller, and admits a smooth positive
density w.r.t. the Lebesgue measure on S+r ; thus, it is irreducible (cf. Theorem 2.1).

The uniqueness of the invariant measure Γǫ
∞ now follows via the fact the semigroup transitions

are mutually absolutely continuous. This also ensures that Γǫ
∞ has a positive density on S+r .

• To quantify the convergence to equilibrium we need to quantify in more detail the moments
of the Riccati flow and its inverse. We need the additional fluctuation parameters,

εn(V ) := sup

{
ǫ ≥ 0 :

ǫ2

2
r (n− 1)λ1(V ) < λr(S)

}

εn(U, V ) := sup

{
ǫ ∈ [0, ε0] :

ǫ2

2

[
(1 + nr)λ1(U) +

λ1(V )

4
r

]
< λr (R)

} (1.14)

Observe that S ∈ S+r =⇒ ε1(V ) =∞. If κ = 0 and S ∈ S+r then εn(V ) =∞ for all n ≥ 1. Actually,
we have εn(V ) > 0 if and only if S ∈ S+r and εn(U, V ) > 0 if and only if R ∈ S+r .

When ǫ ≤ εn(V ) ∧ εn(U, V ) we prove that the n-th moments of Qt and its inverse matrix Q−1
t

are uniformly bounded w.r.t. the time horizon. In addition these moments are uniformly bounded
w.r.t. the initial state for strictly positive time horizons; see Theorem 2.2.
• When ǫ ≤ ε1(V ) ∧ ε1(U, V ) we also show that the function Λ(P ) := ‖P‖2 + ‖P−1‖2 is a

Lyapunov function on S+r with compact level sets. In this situation, the distribution of Qt converges
exponentially fast to the unique invariant probability measure Γǫ

∞; see Theorem 2.4.
• This article is also concerned with uniform fluctuation estimates of φǫt(Q) about the limiting

object φt(Q), and w.r.t. the time horizon. For instance, when S ∈ S+r and κ = 0 in (1.5), then for
any fluctuation parameter ǫ ≥ 0 and any n ≥ 1 we have the uniform estimates

sup
t≥0

E [‖φǫt(Q)− φt(Q)‖n]1/n ≤ cn(Q) ǫ

for some constant cn(Q) whose values only depends on n and Q; see Theorem 2.3.
• These latter uniform fluctuation estimates allow one to quantity with some precision the

exponential decay of the exponential semigroups Eǫs,t(Q) as discussed further in Section 2.2.1.
To get some intuition on the complexity of matrix Riccati diffusion models, we mention that the

evolution model of the eigenvalues of Qt is generally not closed, in the sense that it also depends
on the random eigenvectors of the Riccati diffusion. We note however, that for diagonal matrices

6



(A,R, S), the solution Pt of the deterministic matrix Riccati differential equation in (1.9) is diago-
nal as soon as P0 is diagonal. In addition, when (A,R, S) are proportional to the identity, we have
Pt proportional to the identity with a time-varying proportionality constant that solves a naturally
associated univariate (scalar) Riccati differential equation. Even in this simplified (identity propor-
tional) setting, these elementary properties fail for the matrix diffusion (1.3) as soon as ǫ > 0. To
be more precise, when r > 1 the evolution of the eigenvalues of Qt is associated with an additional
repulsion force that prevents the collision of eigenvalues. These logarithmic Coulomb repulsion forces
are dictated by the second order Hadamard variational formula, the strength of repulsion is inversely
proportional to their separation. The interacting diffusion model discussed above is closely related
to the Dyson-Brownian motion model that represents the evolution of the eigenvalues of Gaussian
orthogonal ensembles (Wt+W ′

t). For example, in the simple setting A = R = S = I and ̟ = κ = 0,
and ǫ ≤ ε0, the ordered eigenvalues 0 < λr(t) < . . . < λ1(t) of the Riccati diffusion matrix Qt satisfy
the Dyson-type diffusion equation

dλi(t) =


2λi(t) + 1− λi(t)2 +

ǫ2

4

∑

j 6=i

λi(t) + λj(t)

λi(t)− λj(t)


 dt+ ǫ

√
λi(t) dW

i
t (1.15)

for some sequence W i
t of independent Brownian motions. We refer to Section 4.4 for a more detailed

and general discussion on these Dyson-type equations. For background details on Dyson-Brownian
motions we refer to [25, 43, 2, 47]. Most of these studies are primarily concerned with the behaviour of
eigenvalues for isotropic-type Gaussian models, when r →∞. The literature on positive semidefinite
matrix diffusions is also mainly concerned with the existence and numerical approximation schemes
on finite time horizon. In contrast with these works, the present article is concerned with the
fluctuation and the stability analysis of these models over long time horizons t→∞.

1.3.1 Article Organisation

The main contributions of the article are presented in Section 2. In Section 3 we illustrate the im-
pact of our results in the context of ensemble Kalman-Bucy filters, including inflation-regularization
methodologies. Section 4 presents some pivotal results concerning Riccati flows, including a char-
acterisation of inverse matrix-valued Riccati diffusions, a matrix-comparison lemma and Liouville
determinant-type formulae for Riccati diffusion flows. The end of the section is concerned with the
derivation of the Dyson-type equations associated with the evolution of the eigenvalues of this class
of matrix diffusions. Section 5 is dedicated to the proof of the main results stated in Section 2.

1.4 Some Basic Notation

This section presents some basic notation and preliminary results necessary for the statement of our
main results.

Throughout, we write c, cn, cυ, cυ,n, cυ,n(x), cυ,n(Q), cυ,n(Q,x) . . . for some positive universal con-
stants whose values may vary from line to line, but which only depend on some parameters n, υ, x,Q,
etc, as well as on the parameters of the Riccati process (A,R, S,U, V ). Importantly, these constants
do not depend on the time horizon t, nor on the fluctuation parameters (ǫ, ǫ).

Given a suitably regular matrix-valued stochastic process t 7→ At ∈Mr, for any t ≥ 0 and n ≥ 1
we set

|||At|||n = E [‖At‖n]1/n

We denote by Πǫ
t the Markov semigroup of Qt defined for any bounded measurable function

F ∈ B(Sr) and Q ∈ S0r by
Πǫ

t(F )(Q) := E [F (φǫt(Q))]

7



We consider the symmetric tensor products on S0r defined by

P1 ⊗s P2 :=
1

2
(P1 ⊗ P2 + P2 ⊗ P1)

P1⊗s P2 :=
1

2
(P1⊗P2 + P2⊗P1)

P1
⌢⊗ P2 :=

1

2
(P1 ⊗s P2 + P1⊗s P2) ≥ 0

with the tensor products

(P1⊗P2)((i, j), (k, l)) := (P1 ⊗ P2)((i, j), (l, k)) = P1(i, l)P2(j, k)

In this notation, we have (I ⊗ I)(H) = H ′. In addition, the angle bracket of the matrix-valued
martingale Mt = (Mt(i, j))1≤i,j≤r defined in (1.3) is given by the formula

∂t〈M(i, j) | M(k, l)〉t =
(
Qt

⌢⊗ Σκ,̟(Qt)
)
((i, j), (k, l)) (1.16)

We set r := r(r + 1)/2 and we equip the product space R
r with the inner product

〈x, y〉r =
∑

1≤i≤r

xi,iyi,i + 2
∑

1≤i<j≤r

xi,jyi,j

where x, y ∈ R
r and where we index these vectors via x = (xi,j)1≤i≤j≤r and y = (yi,j)1≤i≤j≤r. We

equip R
r with the rescaled Lebesgue measure,

γr(dx) := 2−r(r−1)/4
∏

1≤i≤j≤r

dxi,j

Let Ei,j with 1 ≤ i, j ≤ r be the (r× r)-matrices with entries Ei,j(k, l) = 1(i,j)=(k,l). For any H ∈ Sr
we have,

H =
∑

1≤i≤r

Hi,i E
s
i,i +

∑

1≤i<j≤r

√
2Hi,j E

s
i,j =

∑

1≤i≤j≤r

〈H,Es
i,j〉Frob Es

i,j

with the orthonormal basis of Sr given by

Es
i,i = Ei,i and Es

i,j :=
Ei,j + Ej,i√

2
1i<j

The above decomposition yields the isomorphism ς : (Sr, 〈·, ·〉Frob) 7→
(
R
r, 〈·, ·〉r

)
defined by

(ς(H))′ =
((
H1,1,

√
2H1,2, . . . ,

√
2H1,r

)
, . . .

(
Hi,i,

√
2Hi,i+1, . . . ,

√
2Hi,r

)
, . . . ,Hr,r

)

=⇒ 〈H1,H2〉Frob := Tr(H1H2) = (ς(H1))
′ (ς(H2)) := 〈ς(H1), ς(H2)〉r

Note the set Dr := ς(S+r ) is an open smooth manifold embedded in R
r with boundary ∂Dr = ς(∂S+r )

of γr-null measure on R
r and parametrised by the equation det(ς−1(·)) = 0.

We define the Lebesgue measure on Sr using ς−1 and γr according to the natural relationship
Γr := γr ◦ς−1. The Markov semigroup πǫt(p, dq) of the process qt := ς(Qt) is defined for any bounded
measurable function f ∈ B(Rr) and any q ∈ ς(S0r ) ⊂ R

r by the formula

πǫt(f)(q) := Πǫ
t(f ◦ ς)(ς−1(q)) ⇐⇒ Πǫ

t(F )(Q) = πǫt(F ◦ ς−1)(ς(Q))
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The symmetric tensor product P1 ⊗s P2 can be identified with the matrix {P1 ⊗s P2} ∈ R
r×r

defined by

{P1 ⊗s P2} := ς ◦ (P1 ⊗s P2) ◦ ς−1 =⇒ {P1 ⊗s P2}1/2 = ς ◦ (P1 ⊗s P2)
1/2 ◦ ς−1 (1.17)

and we have the estimate

λr(P1)λr(P2) I ≤ {P1 ⊗s P2} ≤ λ1(P1)λ1(P2) I (1.18)

The proof of the above tensor product formulae are provided in the Appendix.
Finally, define the optimal matching distance between the spectrum of matrices A,B ∈ Mr by

d (Spec(A),Spec(B)) = min
perm(·)

max
1≤i≤r

|λi(A)− λperm(i)(B)| (1.19)

where the minimum is taken over the set of r! permutations of {1, . . . , r}. Recall also the Krause
[37] and Friedland [28] inequalities,

d (Spec(A),Spec(B)) ∨ |det(A)− det(B)|1/r ≤ c [‖A‖ ∨ ‖B‖]1−1/r ‖A−B‖1/r (1.20)

for any A,B ∈ Mr. For any A,B ∈ Sr we also have [27] the Hoffman-Wielandt inequality

∑

1≤i≤r

(λi(A)− λi(B))2 ≤ ‖A−B‖2 (1.21)

2 Formal Statement of the Main Results: Regularity and Stability

Recall that throughout we make the standing assumption that (A,R1/2) is stabilizable and (A,S1/2)
is detectable; see [39, 4, 40].

2.1 Regularity Properties and Fluctuation Estimates

Theorem 2.1. For any ǫ ≥ 0 the Riccati diffusion (1.3) has an unique weak solution on S0r . For
ǫ ≤ ε0 there exists an unique strong solution on S+r . In this situation, we have

dQt
law
= Θ(Qt) dt+ ǫ (Qt ⊗s Σκ,̟(Qt))

1/2 dVt,sym (2.1)

where Vt,sym denotes a symmetric Brownian matrix with entries

Vt,sym(i, i) =Wt(i, i) and Vt,sym(i, j) =Wt(i, j)/
√
2 for any i < j.

When ǫ ≤ ε0, the process qt := ς(Qt) ∈ Dr satisfies the r-dimensional diffusion equation

dqt = θ(qt) dt+ǫ σ(qt) dvt with θ = ς ◦Θ◦ς−1 and σ(q) :=
{
ς−1(q)⊗s Σκ,̟(ς

−1(q))
}1/2

(2.2)

where vt denotes an r-dimensional Brownian motion. In addition, there exists a smooth positive
density ρǫ ∈ C∞(]0,∞[×D2

r ) such that for any t > 0 and p ∈ Dr we have

πǫt(p, dq) = ρǫt(p, q) γr(dq) (2.3)
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The proof of the above Theorem is provided in Section 5.1. Using (2.3) we check that πǫt(p, dq)
and Πǫ

t(P, dQ) are strongly Feller and irreducible semigroups. Thus, they have an unique invariant
probability measure γǫ∞ and Γǫ

∞ on Dr and S+r . In addition γǫ∞ and Γǫ
∞ have a positive density

w.r.t. γr and Γr.
The next theorem concerns some time-uniform moment estimates on the stochastic Riccati flow

in (1.3) itself and on its inverse flow.

Theorem 2.2. Assume that S ∈ S+r . In this situation, for any n ≥ 1, t ≥ 0, and any ǫ1 < εn(V )
and ǫ2 < εn(U, V ) we have the uniform estimates

|||φǫ1t (Q)|||n ≤ cn (1 + ‖Q‖) and
∣∣∣∣∣∣φ−ǫ2

t (Q)
∣∣∣∣∣∣

n
≤ cn

(
1 + ‖Q‖+ ‖Q−1‖

)
(2.4)

Furthermore, for any time horizon t ≥ υ > 0 we also have the uniform estimates

|||φǫ1t (Q)|||n ≤ cυ,n and
∣∣∣∣∣∣φ−ǫ2

t (Q)
∣∣∣∣∣∣

n
≤ cυ,n (2.5)

In addition, if κ = 0, then for any ǫ ≥ 0, t ≥ 0 and any s ≥ υ > 0 we have the refined estimates,

|||φǫt(Q)|||n ≤ c (1 + ‖Q‖) (1 + ǫ
√
n) and |||φǫs(Q)|||n ≤ cυ (1 + ǫ

√
n) (2.6)

The proof of the above Theorem is provided in Section 5.2. A more precise description of the
parameters cn, cυ,n, c, cυ are provided in (5.1) and in (5.2). The first estimates stated in (2.4) also
hold if S = V = 0 when µ(A) < 0. The proof of this Theorem is based on a reduction of (1.3) to a
scalar Riccati diffusion, a novel representation of its n-th powers, and a comparison of its moments
to a judiciously designed deterministic scalar Riccati equation. We note the proof is conservative by
nature (due to the scalar reduction and comparison).

From (2.5), for any t ≥ υ > 0 there exists some matrices Φ
ǫ
υ,Φ

ǫ
υ > 0 such that

ǫ ≤ ε1(V ) ∧ ε1(U, V ) =⇒ Φǫ
υ ≤ E (φǫt(Q)) ≤ Φ

ǫ
υ

This estimate in a sense generalises the well-known bounds Φυ ≤ φt(Q) ≤ Φυ for some Φυ,Φυ > 0
and t ≥ υ > 0; see e.g. [8, 10].

Note that the uniform estimates independent of the initial condition stated throughout, involve
some arbitrarily small, positive time parameter υ, which is related to the notion of a so-called
observability/controllability interval; for further details on this topic we refer to [8].

Now we turn to quantifying the fluctuations of the matrix Riccati diffusions around their limiting
values when the diffusion parameter ǫ tends to 0. The next theorem extends (in some directions)
the uniform fluctuation estimates obtained in [12]. In some results in [12] time-uniform estimates
were obtained only with A stable, whereas here we accommodate more general matrix models with
possibly unstable modes.

Theorem 2.3. We have that (1.10) holds. Assume further that S ∈ S+r . In this situation, for any
time horizon t ≥ 0 and ǫ ≤ ε10(V ) we also have the refined uniform bias estimates

0 ≤ φt (Q)− E [φǫt(Q)] ≤ c ǫ2 (1 + ‖Q‖5) (λ1(U) + λ1(V ) ‖Q‖2) I (2.7)

Furthermore, for any n ≥ 1 and ǫ ≤ ε10n(V ) we have the uniform estimates

|||φǫt(Q)− φt(Q)|||n ≤ cn ǫ (1 + ‖Q‖7) (2.8)

In addition, if κ = 0, then for any ǫ ≥ 0 and n ≥ 1 we have

|||φǫt(Q)− φt(Q)|||n ≤ c ǫ (1 + ‖Q‖5) (1 + ǫ
√
n)5 (2.9)
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The proof of the preceding Theorem is provided in Section 5.3. Recall that the proof of (1.10) is
an easy consequence of the inequality (4.5), see also Theorem 1.3 in [12], and the uniform estimates
in [8, 10]. The rest of the proof is based simply on a second-order expansion of the stochastic flow
φǫt about the deterministic flow φt and then an appropriate bounding of the first and second order
stochastic terms; see also [12] for details on the decomposition of φǫt in terms of φt plus stochastic
terms of any desired order (in ǫ).

Observe that the condition S ∈ S+r ensures that for any n ≥ 1, the n-th moments of the
trace of the Riccati diffusion are uniformly bounded w.r.t. the time horizon (when the fluctuation
parameter is small enough) even when the matrix A is unstable. This condition may be thought of
as a strengthening of the detectability/observability condition.

Several spectral estimates can be deduced from the estimates (2.7), (2.8) and (2.9). For example,
let κ = 0 and ǫ ∈ [0, ε0], then combining (2.9) with the n-version of the Hoffman-Wielandt inequality
(1.21) we have the uniform estimates

sup
1≤i≤r

|||λi (φǫt(Q))− λi (φt(Q))|||n ≤ c ǫ (1 + ‖Q‖5) (1 + ǫ
√
n)5

The uniform estimates (2.8) can also be used to analyse the fluctuation of the inverse flow φ−ǫ
t (Q).

For instance, for any n ≥ 1 and any ǫ ≤ ε2n(U, V ) ∧ ε20n(V ) we have the uniform
∣∣∣
∣∣∣
∣∣∣φ−ǫ

t (Q)− φt (Q)−1
∣∣∣
∣∣∣
∣∣∣
n
≤ cn ǫ (1 + ‖Q‖+ ‖Q−1‖)8 (2.10)

A proof of this estimate is provided in the Appendix.

2.2 Stability Estimates

We set Λ(P ) := ‖P‖2 + ‖P−1‖2 and we consider the collection of Λ-norms on the set of probability
measures Γ1,Γ2 ∈ P(S+r ) on S+r , indexed by ι > 0, and defined by

‖Γ1 − Γ2‖ι,Λ := sup

{
|Γ1(F )− Γ2(F )| : F ∈ B(S+r ) s.t. ‖F‖Λ := sup

P∈S+
r

|F (P )|
1 + ιΛ(P )

≤ 1

}

Theorem 2.4. Assume that the fluctuation parameter ǫ ≤ ε1(V )∧ε1(U, V ). Then, there exists some
parameters α <∞ and β, ι > 0 such that for any t ≥ 0 and probability measures Γ1,Γ2 ∈ P(S+r ) we
have the Λ-norm contraction inequality

‖Γ1 Π
ǫ
t − Γ2Π

ǫ
t‖ι,Λ ≤ α e−β t ‖Γ1 − Γ2‖ι,Λ (2.11)

The proof of the above theorem is provided in Section 5.4 and is based on matrix-valued Lyapunov
(choosing the function Λ(·)) and minorisation conditions.

For one-dimensional models, the article [11] provides explicit analytical expressions for the re-
versible measure of Qt in terms of the model parameters. As expected, heavy tailed reversible
measures arise when κ = 1, and weighted Gaussian distributions when κ = 0; see the examples in
[11]. The article [11] also provides sharp exponential decay rates to equilibrium, in the sense that
the decay rates tend to those of the limiting deterministic Riccati equation when ǫ tends to 0.

2.2.1 Contraction Properties of Exponential Semigroups

The stochastic flow of the matrix Riccati diffusion (1.3) is given implicitly by

φǫt(Q) = Eǫs,t(Q)φǫs(Q) Eǫs,t(Q)′ +

∫ t

s
Eǫu,t(Q)Σ1,0(φ

ǫ
u(Q)) Eǫu,t(Q)′ du+ ǫ

∫ t

s
Eǫu,t(Q)dMuEǫu,t(Q)′

(2.12)
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for any s ≤ t. This formula intuitively illustrates that the regularity properties of the matrix Riccati
diffusion (1.3) are also intimately connected to the contraction properties of Eǫs,t(Q).

The stability properties of the deterministic (ǫ = 0) semigroups Es,t(Q) and φt(Q) are rather
well understood; e.g. see [8, 10]. We begin this section with a brief review on this topic and some
key contraction inequalities. Firstly, for any t ≥ 0 and Q ∈ S0r we have

‖Et(Q)‖ ≤ c (1 + ‖Q‖) ‖Et(P∞)‖ and ‖Et(P∞)‖ ≤ α e−β t for some α, β > 0. (2.13)

with P∞ from (1.2). In addition, there exists some parameter υ > 0 such that for any s ≥ 0 and
any t ≥ υ > 0 we have the uniform estimates,

‖Es,s+t(Q)‖ ≤ cυ ‖Es(P∞)‖ (2.14)

Proof of the above inequalities follows from [8, 10].
Let P1, P2 ∈ S0r . Then, for any t ≥ 0, using (2.13) we find

‖φt(P1)− φt(P2)‖ ≤ c (1 + ‖P1‖2 + ‖P2‖2) ‖Et(P∞)‖2 ‖P1 − P2‖ (2.15)

and similarly, using (2.14), for any s ≥ 0 and any t ≥ υ > 0, we have

‖φs,s+t(P1)− φs,s+t(P2)‖ ≤ cυ ‖Et(P∞)‖2 ‖P1 − P2‖ (2.16)

Note that both (2.15) and (2.16) imply immediately that φt(Q)→t→∞ P∞ for any Q ∈ S0r . Again,
the proof of these estimates follows from [8, 10]. We emphasise that in the deterministic case (ǫ = 0),
stability of the matrix-valued Riccati differential equation, e.g. as in (2.15), follows directly from
the contraction properties of Es,t(Q) in (2.13); see [8, 10] for the derivation.

We come now to the contractive properties of Eǫs,t(Q). Firstly, we remark that if S ∈ S+r , then
up to a change of basis we can always assume that S = I. Moreover, for any s, t ∈ [0,∞[ we
immediately have the rather crude almost sure estimate

µ (A) < 0 =⇒ ‖Eǫs,s+t(Q)‖2 ≤ exp [t µ (A))] −→t→∞ 0 (2.17)

In general, asking for A to be stable in this form is a very strong and restrictive condition. We
typically seek contraction results on Eǫs,t(Q) that accomodate arbitrary A ∈ Mr matrices. To this
end, fix the matrix Q ∈ S0r and consider the process Aǫ defined by

Aǫ : t ∈ [0,∞[ 7→ Aǫ
t := A− φǫt(Q)S (2.18)

We write A for the analogous process driven by φt(Q), i.e. with ǫ = 0.
In this notation, for example when κ = 0, combining (2.6) (2.9) and (2.14) with Krause’s

inequality (1.20) for any nr ≥ 1 we also have the uniform estimate

||| d (Spec(At),Spec(Aǫ
t)) |||nr ≤ cn(Q) ǫ (2.19)

In addition, for any t ≥ υ > 0, using the Lipschitz estimates discussed above we also have

A∞ := A−P∞S =⇒ d (Spec(At),Spec(A∞)) ≤ c exp [−2βt/r] ‖Q−P∞‖1/r (2.20)

with the parameter β coming from (2.13). These spectral estimates are of interest on their own, but
are not immediately usable for controlling the contraction properties of the exponential semigroups.

By Theorem 2.2 and Theorem 2.3, with S ∈ S+r , the collection of processes (A,Aǫ) introduced
in (2.18) satisfy the following regularity properties:
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• Case κ ∈ {1, 0}: For any n ≥ 1 and ǫ ≤ ε10n(V ) and any t ≥ 0 we have the uniform estimates

ǫ−1 |||At −Aǫ
t|||n ≤ cn (1 + ‖Q‖7)

• Case κ = 0:

For any n ≥ 1 and any ǫ ≥ 0 and any t ≥ 0 we have the uniform estimates

ǫ−1 |||At −Aǫ
t |||n ≤ c (1 + ‖Q‖5) (1 + ǫ

√
n)5 and |||Aǫ

t |||n ≤ c (1 + ‖Q‖) (1 + ǫ
√
n)

with the parameter κ ∈ {0, 1} introduced in (1.5).
The stability properties of stochastic semigroups associated with a collection of stochastic flows

(A,Aǫ) satisfying the above properties have been developed in our prior work [9]. Several local-type
contraction estimates can be derived. For instance, the stochastic semigroup Eǫs,t(Q) exhibits the
following stability properties derived as immediate corollaries of our work in [9]:

Corollary 2.5. Let κ ∈ {1, 0}. The semigroup Eǫs,t(Q) is asymptotically stable in probability if
µ(A∞) < 0. That is, for any increasing sequence of times 0 ≤ s ≤ tk ↑k→∞ ∞, the probability of
the following event

lim sup
k→∞

1

tk
log ‖Eǫs,tk(Q)‖ < 1

2
µ(A−P∞S) is greater than 1− ν (2.21)

for any ν ∈]0, 1[, as soon as ǫn ≤ cn ν for some n ≥ 1.

This log-Lyapunov estimate (2.21) immediately implies the semigroup Eǫs,tk(Q) may be exponen-
tially contracting with a high probability; given strong observability and controllability conditions
that imply µ(A−P∞S) < 0. A number of reformulations of this result that shed insight individually
are worth highlighting:

• Let κ ∈ {1, 0}. For any 0 ≤ s ≤ tk1 ↑k1→∞ ∞, there exists a sequence ǫk2 ↓k2→∞ 0 such that
we have the almost sure Lyapunov estimate

lim sup
k2→∞

lim sup
k1→∞

1

tk1
log ‖Eǫk2s,s+tk1

(Q))‖ < 1

2
µ(A−P∞S) (2.22)

• Let κ ∈ {1, 0}. Then, for any increasing sequence of times 0 ≤ s ≤ tk ↑k→∞ ∞, the probability
of the following event,





∀0 < ν2 ≤ 1 ∃l ≥ 1 such that ∀k ≥ l it holds that

1

tk
log ‖Eǫs,tk(Q)‖ ≤ 1

2
(1− ν2)µ(A−P∞S)





(2.23)

is greater than 1− ν1, for any ν1 ∈]0, 1[, as soon as ǫn ≤ cn ν for some n ≥ 1.

• Let κ ∈ {1, 0}. Consider any s ≥ 0, any increasing sequence of time horizons tk ↑k1→∞ ∞,
and any sequence ǫk2 ↓k2→∞ 0 such that

∑
k2≥1 ǫ

n
k2
< ∞ for some n ≥ 1. Then, we have the

almost sure Lyapunov estimate,




∀0 < ν ≤ 1 ∃l1, l2 ≥ 1 such that ∀k1 ≥ l1, ∀k2 ≥ l2 it holds that

1

tk1
log ‖Eǫk2s,s+tk1

(Q)‖ ≤ 1

2
(1− ν)µ(A−P∞S)





(2.24)
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The first dot-point result captured by (2.22) is derived from (2.21) in Corollary 2.5 via the Borel-
Cantelli lemma. The next two dot-point results provide some reformulation of the supremum limit
estimates (2.21) and (2.22) in terms of random relaxation time horizons and random relaxation-type
fluctuation parameters. The first reformulation in (2.23) shows that with a high probability, the
semigroup Eǫs,t(Q) is stable after some possibly random relaxation time horizon, as soon as ǫ is chosen
sufficiently small and µ(A∞) < 0. The last reformulation in (2.24) underlines the fact that after
some random time (i.e. determined by l1), and given some randomly sufficiently small perturbation
(determined by l2) the semigroup Eǫs,t(Q) is exponentially contractive. We have no direct control
over the parameters l1 and l2 in (2.24) which depend on the randomness in any realisation.

Additional results are applicable if we restrict κ = 0. We have the following immediate corollary
of our prior work in [9]:

Corollary 2.6. Assume κ = 0. If µ(A∞) < 0, then the semigroup Eǫs,t(Q) is asymptotically Ln-
stable for any n ≥ 1 over time horizons with lengths controlled by ǫ. More specifically, for any n ≥ 1,
s ≥ 0, there exists some time horizons tn < tǫn −→ǫ→0 ∞ such that for any tn ≤ t ≤ tǫn we have

1

t
logE

(
‖Eǫs,s+t(Q)‖n

)
≤ n

4
µ(A−P∞S) (2.25)

whenever ǫ ≤ εn,t where here εn,t is the largest parameter ǫ such that tǫn > tn; see [9] for more details
on these time parameters.

Importantly, in this last result we have tǫn −→ǫ→0 ∞ and thus we can control the horizon on
which the semigroup Eǫs,t(Q) is asymptotically Ln-stable for any n ≥ 1 when κ = 0. In other words,
the estimate (2.25) ensures that the stochastic semigroup Eǫs,t(Q) is stable on arbitrary long finite
time horizons, as soon as κ = 0, and when the perturbation parameter is chosen sufficiently small.
We have the following fact immediate from Corollary 2.6:

• Assume κ = 0. For any n ≥ 1, s ≥ 0, we have

lim sup
ǫ→0

1

tǫn
logE

(
‖Eǫs,s+tǫn

(Q)‖n
)
≤ n

4
µ(A−P∞S)

Finally, we also have the following new result which extends the exponential decay results for
one-dimensional models presented in [11] to the determinant of the matrix-valued Riccati diffusions
considered herein.

Theorem 2.7 (Stochastic Liouville Formula). For any Q ∈ S+r consider the parameters n > 1 and
ǫ ≤ ε2nr(V ) such that

Rǫ
n := Rǫ − nǫ

2

2
U > 0 and Sǫ

n := Sǫ − nǫ
2

2
V > 0 (2.26)

where (U, V ) and (Rǫ, Sǫ) are defined as in (1.11) and (1.13). Then, we have the exponential decay
estimate

E [det(Eǫt (Q))n]1/n = E

(
exp

[
n

∫ t

0
Tr(A− φǫs(Q)S) ds

])1/n

≤ cn(Q) exp
[
−t
√

Tr (Rǫ
nS

ǫ
n)
]

(2.27)
In addition, the exists some function limǫ→0 ~n(ǫ) = 0 such that

E [det(Eǫt (Q))n]1/n ≤ cn(Q) exp
[
−t
√

Tr(A)2 + Tr(RS)(1− ~n(ǫ))
]

(2.28)

The proof of this theorem is given in Section 5.5. In the one-dimensional case, r = 1, this result
collapses to capture the strong exponential contraction results presented in [11] on the semigroups
Eǫt associated with a scalar-valued Riccati diffusion. In the scalar case, strong stability results on
the stochastic Riccati flow φǫt analogous to the deterministic setting, e.g. (2.15), also follow; see [11].
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3 Ensemble Kalman-Bucy Filters

Because of their practical importance, this section is dedicated to the illustration of our main results
within the EnKF framework [26, 45]. Consider a time-invariant linear-Gaussian filtering model of the
following form,

dXt = AXt dt+R
1/2
1 dWt and dYt = BXt dt+R

1/2
2 dVt, (3.1)

where (Wt,Vt) is an (r+ r)-dimensional Brownian motion, X0 is an r-dimensional Gaussian random
variable with mean and variance (E(X0), P0) (independent of (Wt,Vt)), (A,B) ∈ (Mr × Mr,r),
(R1, R2) ∈ (S+r ×S+r ), Y0 = 0. To simplify, and relate the notation here to our general analysis, set

R := R1 and S := B′R−1
2 B

We let Yt = σ (Ys, s ≤ t) be the σ-algebra filtration generated by the observations. The con-
ditional distribution ηt = Law (Xt | Yt) of the signal internal states Xt given Yt is a Gaussian
distribution with a conditional mean and a conditional variance given by

Mt := E (Xt | Yt) and Pt := E
(
[Xt − E (Xt | Yt)] [Xt − E (Xt | Yt)]′ | Yt

)
.

3.1 McKean-Vlasov Interpretations

Ensemble Kalman-Bucy filters can be interpreted as a (non-unique) mean field particle approxima-
tion of the Kalman-Bucy filtering equation. To describe with some precision these models we need
to introduce some terminology. For any probability measure η on R

r we let Pη be the η-covariance
matrix

Pη := η
(
[e− η(e)][e − η(e)]′

)
with e(x) = x

We now consider two [26, 45] different classes of conditional nonlinear McKean-Vlasov-type diffusion
processes

(1) dX t = A X t dt + R1/2 dW t + Pηt B′R−1
2

[
dYt −

(
B X t dt+R

1/2
2 dV t

)]
;

(2) dX t = A X t dt + R1/2 dW t + Pηt B′R−1
2

[
dYt −B

(X t + ηt(e)

2

)
dt

] (3.2)

In all cases (W t, V t,X 0) are independent copies of (Wt,Vt,X0) (thus independent of the signal and
the observation path) and

ηt = Law(X t | Yt). (3.3)

These diffusions are time-varying Ornstein-Uhlenbeck processes [23] and consequently ηt is Gaussian;
see also [8]. These Gaussian distributions have the same conditional mean Mt = ηt(e) and the same
conditional variance Pt = Pηt = Pηt . They satisfy the Kalman-Bucy filter

dMt = (A−PtS) Mt dt+ Pt B
′R−1

2 dYt with the Riccati equation ∂tPt = Θ(Pt) . (3.4)

Ensemble Kalman-Bucy filters coincide with the mean-field particle interpretation of the nonlin-

ear diffusion processes defined in (3.2). To be more precise, let (W
i
t, V

i
t,X

i
0)1≤i≤N+1 be (N + 1)

independent copies of (W t, V t,X0).
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The EnKF associated with the nonlinear processes X t defined in (3.2) are given by the Mckean-
Vlasov-type interacting diffusion processes

(1) dX i
t = A X i

t dt+R1/2 dW
i
t + P̂t B

′R−1
2

[
dYt −

(
B X i

t dt+Σ1/2 dV
i
t

)]

(2) dX i
t = A X i

t dt+R1/2 dW
i
t + P̂t B

′R−1
2

[
dYt − 2−1 B

(
X i

t + ηNt (e)
)
dt
] (3.5)

with 1 ≤ i ≤ N + 1, N ≥ 1, and the rescaled particle variance

P̂t :=
(
1 +N−1

)
PηNt with ηNt := (N + 1)−1

∑

1≤i≤N+1

δ
X

i

t

. (3.6)

Following the arguments as those provided in the beginning of Section 5.1, we can check that the
interacting diffusions discussed above have a unique weak solution on R

r for any time horizon.
Let M̂t = ηNt (e) be the particle estimate of the conditional mean Mt. From [23], and via the

representation Theorem (e.g. Theorem 4.2 [33]; see also [24]), there exists a filtered probability space
enlargement under which we have

dP̂t = Θ(P̂t) dt+ ǫ
(
P̂

1/2
t dWt Σ

1/2
κ,0 (P̂t)

)
sym

dM̂t = (A− P̂tS) M̂t dt+ P̂t B
′R−1

2 dYt + ǫ Σ
1/2
κ,0 (P̂t) dŴt,

(3.7)

with the parameters

ǫ :=
2√
N

=⇒ ǫ :=
ǫ√

ǫ2 + 4
=

1√
N + 1

and from (1.5) the function

Σκ,0(Q) := R+ κQSQ with κ =

{
1 in case (1)
0 in case (2)

.

In the above displayWt and Ŵt denotes an (r×r) and an r-dimensional Wiener process respectively,

with Wt is independent of (Vt,Wt, Ŵt). Observe that

d(M̂t −Xt) = (A− P̂tS)
(
M̂t −Xt

)
dt+ P̂t B

′R
−1/2
2 dVt −R1/2 dWt + ǫ Σ

1/2
κ,0 (P̂t) dŴt

law
= (A− P̂tS)

(
M̂t −Xt

)
dt+ (Σǫ

κ,0(P̂t))
1/2 dWt (3.8)

for some r-dimensional Wiener process Wt independent of Wt and with Σǫ
κ,0, as in (1.8), inheriting

the parameter κ from Σκ,0 in (3.7) in the following manner,

Σǫ
κ,0 := Σ1,0 + ǫ2 Σκ,0

Note that one of the equations in (3.5) and the sample mean and covariance in (3.6) constitute
the (continuous-time) ensemble Kalman-Bucy filter (EnKF) methodology for state estimation in (3.1).
The Riccati diffusion in (3.7) itself does not explicitly appear in the method/algorithm as applied
[26, 45]; nor does the diffusion describing the flow of the sample mean in (3.7).

In typical applications of the EnKF, the dimension r is very large, while N is rather moderately
sized for computational reasons [26]. Typically also the signal (and perhaps observation) process
in (3.1) is nonlinear. This nonlinearity requires a straightforward methodological modification in
(3.5), see [26]. The sample covariance, for example, in this latter case will not satisfy a Riccati-type
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diffusion equation like in (3.7) and the analysis of the EnKF behaviour in that case is more delicate;
e.g. see [20]. We point to the introduction in our prior work [11, 12] for further literature pointers
on the analysis of the EnKF and its variants.

We conclude that (P̂t, (M̂t −Xt)) coincides with the processes (Qt,Xt) introduced in (1.3) and
(1.7) with (1.5) and (1.8) given in the forms noted above (with ̟ = 0 and κ ∈ {0, 1}, which switches
if case (1) or case (2) is considered). Thus, all the (fluctuation and stability) estimates in Section 2

on P̂t, and the exponential semigroup generated by (A− P̂tS), apply immediately to this class of

state estimator. We consider the stability of (M̂t−Xt) more explicitly later. We also underline that

(M̂t −Xt)− (Mt −Xt) = M̂t −Mt

In this non-regularised (̟ = 0) EnKF context, the condition ǫ ≤ ε0 in (1.13) resumes to the
(almost) natural condition N ≥ (r + 1).

3.2 Regularized Ensemble Kalman-Bucy Filters

This section is concerned with some applications of the results developed in the article to the analysis
of the regularized EnKF filters discussed in [13]. We only consider an inflation-type regularisation
often discussed in the EnKF literature [1, 30, 26]. In its simplest form, the inflation regularisation

method involves replacing in (3.2) and (3.5) the covariance matrices Pηt and P̂t with some inflated

matrices Pηt + ̟I and P̂t + ̟I for some judiciously chosen parameter ̟ > 0. This inflation
translates into (3.4) and into (3.7) and (3.8).

3.2.1 McKean-Vlasov Diffusions of Type (1)

In this case κ = 1. Following the proof of Theorem 3.1 in [23] we check that the sample covariance

matrix P̂t,̟ associated with the regularised interacting particle system (3.5), satisfies (1.3) with
κ = 1 in (1.5), and with the replacement of (A,Σ1,0) in (1.1) by (A1,̟,Σ1,̟) with

A1,̟ := (A−̟S)

used in in (1.3). Note that in this case we have

(A1,̟ − PS)P + P (A1,̟ − PS)′ +Σ1,̟(P ) = AP + PA′ + (R +̟2S)− PSP

Since we accommodate arbitrary matrices A ∈ Mr in (1.3), the latter replacement is covered. Thus
again, all the estimates presented in Section 2 immediately apply to the sample covariance matrix
P̂t,̟ for this class of inflated EnKF model.

We can comment on the effect of inflation regularisation on the contractive properties of Eǫs,t; i.e.
specifically with the replacement of A← A1,̟ in (1.3) and in the definition of Eǫs,t in (1.6). Arguing
as in (2.17), when S ∈ S+r , then up to a change of basis we can always assume that S = I. Then,

µ(A) < ̟ =⇒ ‖Eǫs,t(Q)‖2 ≤ exp [(µ(A)−̟)(t− s)] −→(t−s)→∞ 0

which illustrates the added stabilising effects of ̟ I in the extreme case in which P̂t,̟ S has no
stabilising effect at all. Contrast this with (2.17). It is also worth noting, given the contraction
estimates in Section 2.2.1, that,

µ(A1,̟ − P S) = µ((A−̟S)− P S) ≤ µ(A− P S)

for any fixed matrix P ∈ S0r and S ∈ S0r .
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Note also that the form of (1.7) with (1.8) is immediately applicable in this case. That is,

following the proof of Theorem 3.1 in [23], we can check that the evolution of the sample mean M̂t,̟

associated with this class of inflated EnKF model is given by,

dM̂t,̟ =
[
A− (P̂t,̟ +̟I)S

]
M̂t,̟ dt+

(
P̂t,̟ +̟ I

)
B′R−1

2 dYt + ǫΣ
1/2
1,̟(P̂t,̟) dŴt

=⇒ d(M̂t,̟ −Xt)
law
=

[
A1,̟ − P̂t,̟S

] (
M̂t,̟ − Xt

)
dt+ (Σǫ

1,̟(P̂t,̟))
1/2 dWt

and thus (M̂t,̟ −Xt) corresponds exactly with the general form of (1.7) with (1.8) with κ = 1.

Later we consider the stability of this process (M̂t,̟ −Xt).

3.2.2 McKean-Vlasov Diffusions of Type (2)

In this case κ = 0. Following the proof of Theorem 3.1 in [23] we check that the sample covariance

matrix P̂t,̟ associated with the interacting particle system (3.5), satisfies (1.3) with κ = 0 in (1.5),
and with the replacement of A given by

A ←− A0,̟ := (A− 2−1̟S)

used in in (1.3). Since we accommodate arbitrary matrices A ∈ Mr in (1.3), the latter replacement
is again already covered. All the estimates presented in Section 2 immediately apply to the sample
covariance matrix P̂t,̟ of this class of inflated EnKF model.

We highlight that in this case, Σ0,̟ = Σ0,0 = R and thus if κ = 0 then ̟ has no effect in terms
of the diffusion matrix. Nevertheless, we may repeat the commentary as in case (1) on the effect
of inflation regularisation on the contractive properties of Eǫs,t; i.e. specifically in this case with the
replacement of A← A0,̟ in (1.3) and in Eǫs,t.

Now the evolution of the sample mean M̂t,̟ associated with this class of inflated EnKF model is
given by,

dM̂t,̟ =
[
A− (P̂t,̟ +̟I)S

]
M̂t,̟ dt+

(
P̂t,̟ +̟ I

)
B′R−1

2 dYt + ǫR1/2 dŴt

=⇒ d(M̂t,̟ −Xt)
law
=

[
A1,̟ − P̂t,̟ S

] (
M̂t,̟ − Xt

)
dt+ (Σǫ

0,̟(P̂t,̟))
1/2dWt

We remark further in this case, that the drift matrix A1,̟ in the flow of (M̂t,̟ −Xt) is different to
the drift matrix A← A0,̟ in the Riccati diffusion (describing the flow of the sample covariance) in
the presence of (non-zero ̟ > 0) inflation regularisation.

3.3 Ensemble Filtering Stability Properties

In this section we consider the stability of the flow of ψǫ
t(Q,x) := (M̂t,̟ −Xt) in both type (1) and

type (2) (possibly regularized) EnKF models with P̂0,̟ = Q ∈ S0r and (M̂0,̟ −X0) = x ∈ R
r. This

flow may be related to the Ornstein-Uhlenbeck process (1.7) and can be written more generally as,

ψǫ
t(Q,x) = E

ǫ
s,t(Q)ψǫ

s(Q,x) +

∫ t

s
E

ǫ
u,t(Q)

(
Σǫ
κ,̟(P̂u,̟)

)1/2
dWu (3.9)

Here, E ǫ
s,t(Q) is a transition matrix associated with the flow of matrices [A1,̟ − P̂t,̟S] (defined

similarly to Eǫs,t in (1.6)). This implies the stability properties of the flow of (M̂t,̟ −Xt) depend
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on the long time behaviour and contraction properties of the random transition matrices E ǫ
s,t(Q). If

̟ = 0 then A1,̟ = A and E ǫ
s,t(Q) = Eǫs,t(Q) for any κ ∈ {0, 1}.

Now from preceding results on Eǫs,t in Section 2.2.1, we may comment on the stability of the flow

ψǫ
t(Q,x) = (M̂t,̟ −Xt) in (3.9). Indeed, from our prior work in [9], see also Section 2.2.1, we have

the following stability estimates:

• Let κ ∈ {1, 0}. For any increasing sequence of time horizons tk ↑k→∞ ∞ and any x1 6= x2 and
any Q ∈ S0r , the probability of the following event

lim sup
k→∞

1

tk
log ‖ψǫ

tk
(Q,x1)− ψǫ

tk
(Q,x2)‖ <

1

2
µ(A1,̟ −P∞,̟ S) is greater than 1− ν

(3.10)
for any ν ∈]0, 1[, as soon as ǫn ≤ cn ν for some n ≥ 1. Here, P∞,̟ denotes the unique fixed
point satisfying the Riccati matrix map

Aκ,̟P∞,̟ + P∞,̟A
′
κ,̟ +R−P∞,̟SP∞,̟ = 0

• Assume κ = 0. For any n ≥ 1, ǫ ≤ εn,t and any time horizon t such that tn ≤ t ≤ tǫn, we have
the contraction inequality,

E (‖ψǫ
t (Q,x1)− ψǫ

t(Q,x2)‖n)1/n ≤ exp

[
1

4
t µ(A1,̟ −P∞,̟ S)

]
‖x1 − x2‖ (3.11)

These results concern the flow of the estimation error (M̂t,̟−Xt). See [9] for further discussion.
Note that (3.10) is analogous to (2.21) in Corollary 2.5 but at the level of the process (3.9) itself.
Analogous reformulations as in (2.22), (2.23), and 2.24, but on the process (3.9), also follow.

We can comment on the effect of inflation regularisation on the contraction properties of E ǫ
s,t(Q),

as compared e.g. to Eǫs,t(Q). Arguing as in (2.17), when S ∈ S+r , then up to a change of basis we
can always assume that S = I. We then have,

µ(A) < ̟ =⇒ ‖E ǫ
s,t(Q)‖2 ≤ exp [(µ(A)−̟)(t− s)] −→(t−s)→∞ 0

which illustrates the added stabilising effects of ̟I in the extreme case in which P̂t,̟ S has no

stabilising effect at all. Contrast this with (2.17). In practice, P̂t,̟ S will also act to stabilise the
filter, see e.g. (3.11). Indeed, in the classical Kalman filtering setting (1.9) with ǫ = 0 = ̟, the
time-varying matrix (A−PtS) is stabilising [8] for any A ∈ Mr, even A unstable. In the EnKF, we

know that P̂t will fluctuate about Pt, e.g. see Theorem 2.3. Therefore, the stabilisation properties
of (A−P̂tS) are unclear; indeed the study of Eǫs,t(Q) in the preceding Section 2.2.1 is concerned with
precisely this issue. Now the above implies that the addition of ̟I can act to counter the negative
effects of this fluctuation (and directly add a stabilising effect on the state estimation error).

4 Matrix Riccati Diffusion Flows

In this section we present some general properties and high-level results concerning the matrix
Riccati diffusion (1.3). The results in this section are of interest on their own (and are also used
later in the proof of our main results). We still suppose (A,R1/2) is stabilizable and (A,S1/2) is
detectable throughout the remainder.
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4.1 Inverse Matrix Riccati Diffusion Flows

In our prior discussion and main results we characterise the moments and behaviour of the inverse
stochastic flow of (1.3), which we denoted by φ−ǫ

t (Q) := Q−1
t . Characterising this flow is important

as it allows us to lower bound, in a positive definite sense, moments of the actual stochastic flow
(1.3). This is further required for our main stability results; in an analogous manner to the fact
that the inverse deterministic Riccati flow φ−1

t (Q) is used to study the stability of the deterministic
Riccati flow φt(Q); e.g. see [8].

Here we characterise the inverse matrix Riccati diffusion and its general structure. This is also
likely of interest on its own (e.g. it characterises the so-called flow of the sample information matrix
for the ensemble Kalman-Bucy filters).

Lemma 4.1. When ǫ ≤ ε0, the inverse stochastic flow Q−1
t satisfies the diffusion equation

dQ−1
t

law
= Θǫ

−(Q
−1
t ) dt+ ǫ dMt,− with dMt,− :=

[
Q

−1/2
t dWt Σκ,̟,−

(
Q−1

t

)1/2]
sym

(4.1)

and where
Σκ,̟,−(Q) := QΣκ,̟(Q

−1)Q ≤ V +QUQ

with (U, V ) defined as in (1.11). Here, Θǫ
− denotes the collection of drift functions satisfying the

following inequality

Θǫ
−(Q) ≤ −QA−A′ Q+ Sǫ

− −QRǫ
−Q+

ǫ2

4

(
Tr (QU) + Tr

(
V Q−1

))
Q (4.2)

with the collection of matrices (Rǫ
−, S

ǫ
−) defined by

Rǫ
− := R− ǫ2

4
(r + 2) U and Sǫ

− := S +
ǫ2

4
(r + 2) V

Note that the specific (equality) form of Θǫ
−(·) is given in the proof below.

Proof. Note that setting F (Q) := Q−1 implies that

∇F (Q) ·H = −Q−1 H Q−1 and
1

2
∇2F (Q) · (H,H) = Q−1 H Q−1 H Q−1

Using the Ito differential calculus for stochastic matrix diffusions developed in [12], with a slight
abuse of notation we obtain the formula

dQ−1
t = −Q−1

t Θ(Qt) Q
−1
t dt+ ǫ2 Q−1

t dMt Q
−1
t dMt Q

−1
t − ǫ Q−1

t dMt Q
−1
t

=

([
−Q−1

t A−A′ Q−1
t + S −Q−1

t RQ−1
t

]

+
ǫ2

4
(r + 2) Q−1

t Σκ,̟ (Qt)Q
−1
t +

ǫ2

4
Tr
(
Q−1

t Σκ,̟(Qt)
)
Q−1

t

)
dt− ǫ Q−1

t dMt Q
−1
t

The last assertion comes from the decomposition

4
[
Q

1/2
t dWtΣ

1/2
κ,̟ (Qt)

]
sym

Q−1
t

[
Q

1/2
t dWt Σ

1/2
κ,̟ (Qt)

]
sym

=
[
Q

1/2
t dWtΣ

1/2
κ,̟ (Qt)Q

−1/2
t +Σ

1/2
κ,̟ (Qt) dW ′

] [
dWtΣ

1/2
κ,̟ (Qt) +Q

−1/2
t Σ

1/2
κ,̟ (Qt) dW ′Q

1/2
t

]

=
(
(r + 2) Σκ,̟ (Qt) + Tr

(
Q−1

t Σκ,̟(Qt)
)
Qt

)
dt
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For a more rigorous derivation of the angle bracket of matrix valued martingales we refer the reader
to Section 3 in [12]. On the other hand, we have

2 Q−1
t dMt Q

−1
t =

[
Q

−1/2
t dWt Σ

1/2
κ,̟ (Qt)Q

−1
t +Q−1

t Σ1/2
κ,̟ (Qt) dW ′ Q

−1/2
t

]

Also observe that
(
Σ1/2
κ,̟ (Qt)Q

−1
t

)′ (
Σ1/2
κ,̟ (Qt)Q

−1
t

)
=Q−1

t Σκ,̟(Q)Q−1
t

:=Σκ,̟,−

(
Q−1

t

)

=Σ
1/2
κ,̟,−

(
Q−1

t

)
Σ
1/2
κ,̟,−

(
Q−1

t

)

≤Q−1
t (U +QtV Qt)Q

−1
t = V +Q−1

t UQ−1
t

This implies that

Σ1/2
κ,̟ (Qt)Q

−1
t Σ

−1/2
κ,̟,−

(
Q−1

t

)
is an orthogonal matrix

Using the invariance of the matrix Brownian motion by orthogonal transformation this implies that

Q−1
t dMt Q

−1
t

law
=
[
Q

−1/2
t dWt Σ

1/2
−

(
Q−1

t

)]
sym

We also have

Q−1
t Σκ,̟ (Qt)Q

−1
t ≤ Q−1

t UQ−1
t + V and Tr

(
Q−1

t Σκ,̟(Qt)
)
≤ Tr

(
Q−1

t U
)
+ Tr (V Qt)

This shows that the drift term Θǫ
−(Q

−1
t ) of Q−1

t is given by

Θǫ
−(Q

−1
t )

:= −Q−1
t A−A′Q−1

t + S −Q−1
t RQ−1

t +
ǫ2

4
(r + 2)Q−1

t Σκ,̟ (Qt)Q
−1
t +

ǫ2

4
Tr
(
Q−1

t Σκ,̟(Qt)
)
Q−1

t

≤ −Q−1
t A−A′Q−1

t +

(
S +

ǫ2

4
(r + 2)V

)
−Q−1

t

(
R− ǫ2

4
(r + 2)U

)
Q−1

t

+
ǫ2

4

(
Tr
(
Q−1

t U
)
+ Tr (V Qt)

)
Q−1

t

This ends the proof of (4.1).

4.2 A Comparison Lemma

Here we provide a basic comparison lemma which is useful for deriving moment bounds. For example,
we will show subsequently that the left hand side under bias estimate in (1.10), see also (2.7), is a
simple consequence of the next lemma.

Lemma 4.2 (Comparison Formulae). Assume that the flow t 7→ ϕt(Q) satisfies a matrix Riccati-type
inequality of the form

∂tϕt(Q) ≤ Θ(ϕt(Q))

for any t ≥ 0 any Q ∈ S0r . Then, for any times s ≤ t and any P1, P2 ∈ S0r we have the estimate

ϕt(P1) ≤ φt(P2) + Es,t(P2) [ϕs(P1)− φs(P2)] Es,t(P2)
′ (4.3)

and for any Q ∈ S0r we also have the reverse estimate

∂tϕt(Q) ≥ Θ(ϕt(Q)) =⇒ ϕt(Q) ≥ φt(Q)
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Proof. We recall the polarization-type formulae

Θ(P1)−Θ(P2)

=
[
A− 1

2(P1 + P2)S
]
(P1 − P2) + (P1 − P2)

[
A− 1

2(P1 + P2)S
]′

= (A− P2S)(P1 − P2) + (P1 − P2)(A− P2S)
′ − (P1 − P2)S(P1 − P2)

(4.4)

We set
∆t := ϕt(P1)− φt(P2)

Assume that ∂tϕt(Q) ≤ Θ(ϕt(Q)). Using the second polarization formula, we have

∂t∆t ≤ (A− φt(P2)S)∆t +∆t (A− φt(P2)S)
′ −∆tS∆t

On the other hand, for any s ≤ t we have

∂tEs,t(P2)
−1 = −Es,t(P2)

−1 ∂tEs,t(P2) Es,t(P2)
−1 = −Es,t(P2)

−1 (A− φt(P2)S)

This implies that

∂t

(
Es,t(P2)

−1∆t

(
Es,t(P2)

−1
)′) ≤ − Es,t(P2)

−1∆tS∆t

(
Es,t(P2)

−1
)′

from which we conclude that

Es,t(P2)
−1∆t

(
Es,t(P2)

−1
)′ ≤ ∆s −

∫ t

s
Es,u(P2)

−1∆uS∆u

(
Es,u(P2)

−1
)′
du

∆t ≤ Es,t(P2)∆s Es,t(P2)
′ −
∫ t

s
Eu,t(P2)∆uS∆uEu,t(P2)

′ du

This ends the proof of the first assertion.
We further assume that

∂tϕt(Q) ≥ Θ(ϕt(Q)) and we let ∆t : = ϕt(Q)− φt(Q)

Using the first polarization formula, we have

∂t∆t ≥ At(Q) ∆t +∆t At(Q)′ with At(Q) := A− 1

2
(ϕt(Q) + φt(Q))S

Let Ẽs,t(Q) denote the state transition matrix associated with the matrix flow u 7→ Au(Q). Arguing
as above, we have

∂tẼs,t(Q)−1 = −Ẽs,t(Q)−1 ∂tẼs,t(Q) Ẽs,t(Q)−1 = −Ẽs,t(Q)−1At(Q)

This implies that

∂t

(
Ẽs,t(Q)−1∆t

(
Ẽs,t(Q)−1

)′)
= Ẽs,t(Q)−1 [∂t∆t − (At(Q)∆t +∆tAt(Q)′)]

(
Es,t(Q)−1

)′ ≥ 0

from which we conclude that

Ẽs,t(Q)−1∆t

(
Ẽs,t(Q)−1

)′
≥ ∆s =⇒ ∆t ≥ Ẽs,t(Q)∆s Ẽs,t(Q)′ ≥ 0
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This ends the proof of the lemma.
We illustrate the impact of the above lemma with a simple proof of the l.h.s. under bias estimate

in (1.10), see also the refined estimate in (2.7). Note in (1.10) we do not ask for S ∈ S+r and only
require stabilisability and detectability of the model. For any symmetric matrix valued random
variable Q ∈ S0r we have

E([Q− E(Q)]S [Q− E(Q)]) ≥ 0 ⇐⇒ E(QSQ) ≥ E(Q)S E(Q)

Using (4.3), this implies that

∂tE (Qt) ≤ Θ(E (Qt)) =⇒ E (φǫt(P1)) ≤ φt(P2) + Et(P2) (P1 − P2) Et(P2)
′ (4.5)

which immediately implies the left hand side under bias in (1.10). The polarization formula (4.4)
also yields the monotone property

P1 ≤ P2 =⇒ E (φǫt(P1)) ≤ E (φǫt(P2))

Using the polarization formula (4.4) we also have

∂t(E(Qt)−P∞) ≤ (A−P∞S)(E(Qt)−P∞) + (E(Qt)−P∞)(A−P∞S)
′

which yields the formulae

E [Qt] ≤ P∞ + Et(P∞) (Q−P∞) Et(P∞)′

4.3 A Liouville Formula

This section is concerned with a stochastic version of the Liouville formula connecting the determi-
nant with the trace of the logarithm of the stochastic exponential semigroup Eǫs,t(Q). This result of
its own interest is also pivotal in proof of Theorem 2.7 provided in in section 5.5.

We recall the trace formula

log det
(
Eǫs,t(Q)

)
= Tr

(
log Eǫs,t(Q)

)
=

∫ t

s
Tr(A− φǫu(Q)S) du (4.6)

which is valid for any ǫ ∈ [0, ε0]. By Jacobi’s formula we have

∂tdet(φt(Q)) = det(φt(Q))Tr(Q−1∂tφt(Q))

= det(φt(Q))
[
2(A− φt(Q)S) + φt(Q)−1R+ φt(Q)S

]

Using (4.6), this implies that

log
[
det(φt(Q)Q−1)

]
=

∫ t

0

[
2 Tr(A− φs(Q)S) + Tr

(
φs(Q)−1R+ φs(Q)S

)]
ds

= log
[
det(Et(Q)Et(Q)′)

]
+

∫ t

0
Tr
(
φs(Q)−1R+ φs(Q)S

)
ds

for any Q ∈ S+r . In particular choosing Q = P∞ we have the exponential decay

det(Et(P∞)) = exp [t Tr (A−P∞S)] = exp

[
− t
2

Tr
(
P

−1
∞ R+ P∞S

)]
≤ exp

[
−t
√

Tr(RS)
]

To find the last inequality, we used the fact that [7]

∀P ∈ S+r , ∀R,S ∈ S+0 , Tr(P−1R+ PS) ≥ 2Tr

([
S1/2 R S1/2

]1/2)
≥ 2

√
Tr(RS) (4.7)
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Lemma 4.3 (Liouville Formula). For any time horizon t ≥ 0 and any Q0 ∈ S+r we have the
log-determinant formula

log
[
det(QtQ

−1
0 )
]

=

∫ t

0

[
2 Tr(A−QsS) + Tr

(
Q−1

s

(
Σ1,0 −

ǫ2

2

r + 1

2
Σκ,̟

)
(Qs)

)]
ds+ ǫ

∫ t

0
Tr
(
Q−1

s dMs

)

≥
∫ t

0

[
2 Tr(A−QsS) + Tr

(
Q−1

s Rǫ +QsS
ǫ
)]
ds+ ǫ

∫ t

0
Tr
(
Q−1

s dMs

)

(4.8)
with the collection of matrices (Rǫ, Sǫ) defined in (1.13).

The proof of this lemma is technical, and is thus given in the Appendix.

4.4 A Dyson-Type Equation

We assume ǫ ≤ ε0, and ̟ = 0 and thus (U, V ) = (R,κS) as in (1.12). Now let (qt,i)1≤i≤r be
the orthonormal eigenvectors associated with the eigenvalues 0 < λr(t) < . . . < λ1(t) of the matrix
Riccati diffusion Qt ∈ S+r . For any H ∈ {A,R, S,U, V } we set

Ht,i := q′
t,iH qt,i

We then have the following general Dyson-type eigenvalue equation.

Proposition 4.4. Up to a change of probability space the eigenvalues

dλi(t) =


Θt,i(λi(t)) +

ǫ2

4

∑

j 6=i

λi(t)
(
Ut,j + λj(t)

2 Vt,j
)
+ λj(t)

(
Ut,i + λi(t)

2 Vt,i
)

λi(t)− λj(t)


 dt

+ǫ
√
λi(t) (Ut,i + λi(t)2 Vt,i) dWt,i

(4.9)

for some sequence Wt,i of independent Brownian motions and the Riccati drift function

Θt,i(λ) = 2At,i λ+Rt,i − λ2 St,i

Proof. Using the second order Hadamard variational formula we have

dλi(t) =


q′

t,iΘ(Qt)qt,i + ǫ2
∑

j 6=i

1

λi(t)− λj(t)
∂t 〈M·,j,i|M·,j,i〉t


 dt+ ǫ dMt,i,i

with the collection of martingale

dMt,j,i := q′
t,j dMt qt,i

=⇒ 4 ∂t 〈M·,j,i|M·,j,i〉t = 1i=j λi(t)
(
Ut,i + λi(t)

2 Vt,i
)

+λi(t)
(
Ut,j + λj(t)

2 Vt,j
)
+ λj(t)

(
Ut,i + λi(t)

2 Vt,i
)

Also observe that for any i 6= j we have ∂t〈M·,i,i|M·,j,j〉t := 0.This yields the formula (4.9).
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We consider the diffusion function (1.12) and we assume that

(A,R, S,U, V ) = (a I, r I, s I, u I, v I) for some a ∈ R r, s ∈]0,∞[ and u, v ≥ 0

In this special case, the eigenvalues 0 < λr(t) < . . . < λ1(t) of the matrix Riccati diffusion Qt ∈ S+r
satisfy the Dyson-type diffusion equation

dλi(t) =


Θ(λi(t)) +

ǫ2

4

∑

j 6=i

λi(t)Σκ,0(λj(t)) + λj(t)Σκ,0(λi(t))

λi(t)− λj(t)


 dt+ ǫ

√
λi(t) Σ

1/2
κ,0 (λi(t)) dW

i
t

(4.10)
with the (re-defined here) one-dimensional Riccati drift and diffusion functions

Θ(λ) := 2aλ+ r− λ2s and Σκ,0(λ) := u+ λ2 v

When ǫ = 0 the equation (4.10) resumes to a univariate Riccati equation; that is we have that
λi(t) = λ(t) for any 1 ≤ i ≤ r. In this situation it is rather well known that for any t ≥ υ > 0

∣∣∣∣∣λ(t)−
a+
√
a2 + rs

s

∣∣∣∣∣ ≤ cυ exp
(
−2t

√
a2 + rs

)
for some finite constant cυ <∞

A proof of the above assertion can be found for instance in [11]. Clearly, the very special case in
(1.15) follows from the above.

5 Proofs of the Main Theorems

5.1 Proof of Theorem 2.1

The proof of the first assertion follows the arguments provided in Section 3 of [35]. More precisely,
consider the sets

Ωn := {P ∈ S0r : Tr(P ) ≤ n}
and the exit time

τn := inf {t ≥ 0 : Qt 6∈ Ωn}
Up to a change of probability space the process Qt∧τn when ǫ = 2/

√
N coincides with the

evolution of sample covariance matrices of an associated system of particles interacting with their
internal sample covariance matrices; see [12, 23] and Section 3 in the present article. Notice that
this system of interacting diffusions is well defined on [0, τn]. Up to a time-rescaling of the Brownian
motions in (1.3), this result is also met for any ǫ ≥ 0, so that Qt∧τn cannot exit the set S0r .

For any m ≥ n we have

Qt∧τm := Qt∧τn = Qt for any t ∈ [0, τn]

Let τ⋆ be the finite or infinite limit of the monotone increasing sequence τn. The stochastic process,

Qt = Qt∧τn 1[0,τn[(t)

is a well-defined Markov process for any t < τn. Finally, observe that

∂tE(Tr(Qt∧τn)) ≤ 2aE(Tr(Qt∧τn)) + r− sE(Tr(Qt∧τn))
2 ≤ 2aE(Tr(Qt∧τn)) + r
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with the parameters
(a, r, s) := (µ(A), Tr(R), r−1λr(S))

This implies that

nP (τn ≤ t) ≤ E(Tr(Qt∧τn)) = E(Tr(Qt)1t<τn) + E(Tr(Qτn)1τn≤t) ≤ e2at (Tr(Q0) + r/(2a))

from which we check that

P (τn ≤ t) ≤
1

n

(
e2at (Tr(Q0) + r/(2a))

)
=⇒ P(τ⋆ =∞) = 1

We conclude that (1.3) has an unique weak solution.
The proof of second assertion is a consequence of Lemma 4.3 combined with the McKean argu-

ment developed in Proposition 4.3 in [42]. To check this claim, we set

Zt(Q) := det
(
Eǫt (Q)−1φǫt(Q)

(
Eǫt (Q)′

)−1
)

and τ ǫQ := inf
{
t > 0 : φǫt(Q) ∈ ∂S+r

}

Using (4.6) we have

det
(
Eǫt (Q)−1

(
Eǫt (Q)′

)−1
)

= exp

[
−2
∫ t

0
Tr(A− φǫs(Q)S) ds

]

By Lemma 4.3 we have the decomposition

logZt(Q) = logZ0(Q) +mt(Q) +

∫ t

0
Tr

(
Q−1

s

(
Σ1,0 −

ǫ2

2

r + 1

2
Σκ,̟

)
(Qs)

)
ds

≥ logZ0(Q) +mt(Q)

with the continuous local martingale mt(Q) on [0, τ ǫQ[ defined by

mt(Q) := ǫ

∫ t

0
Tr
(
Q−1

s dMs

)

and the noting that the following positive mapping satisfies

∫ t

0
Tr

(
Q−1

s

(
Σ1,0 −

ǫ2

2

r + 1

2
Σκ,̟

)
(Qs)

)
ds ≥

∫ t

0

[
Tr
(
Q−1

s Rǫ
)
+ Tr (QsS

ǫ)
]
ds

≥ 2t
√

Tr (RǫSǫ)

The end of the proof of the existence and uniqueness of a strong solution of the matrix Riccati
diffusion (1.3) on S+r is now a consequence of Proposition 4.3 in [42]. Specifically, if τ ǫQ < ∞ on
some event with positive probability, then on this event set we have

lim
t→τǫ

Q

logZt(Q) = −∞ =⇒ lim
t→τǫ

Q

mt(Q) = −∞

This contradicts the fact that either limt→τǫ
Q
mt(Q) ∈ R or

lim sup
t→τǫ

Q

mt(Q) = +∞ = − lim inf
t→τǫ

Q

mt(Q)

This ends the proof of the second assertion.
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Now we come to the proof of (2.1). We set

dW̃t := (Qt
⌢⊗ Σκ,̟(Qt))

1/2 dWt

Thus, the angle bracket of the matrix-valued martingale W̃t is given by

∂t〈 W̃(i, j) | W̃(k, l) 〉t

=
∑

1≤i′,k′≤r

(Qt
⌢⊗ Σκ,̟(Qt))

1/2((i, j), (i′ , j′)) 1(i′,j′)=(k′,l′) (Qt
⌢⊗ Σκ,̟(Qt))

1/2((k, l), (k′, l′))

= (Qt
⌢⊗ Σκ,̟(Qt))((i, j), (k, l))

Using (1.16) we conclude that

dQt
law
= Θ(Qt) dt+ ǫ (Qt

⌢⊗ Σκ,̟(Qt))
1/2 dWt

For any matrix H ∈ Mr we have

(P1⊗P2)(H) = P1H
′ P2 = P2H P1 = (P2 ⊗ P1)(H) = (P1 ⊗ P2)(H

′) = (P2⊗P1)(H
′)

Also observe that

(P1 ⊗ P2)(H) = P1H P2 = P2H
′ P1 = (P2 ⊗ P1)(H

′)

=⇒ (P1
⌢⊗ P2)(H) =

1

2
[(P1 ⊗ P2) + (P1⊗P2)]

(
H +H ′

2

)

=⇒ (P1
⌢⊗ P2)(H) =

1

4
[(P1 ⊗ P2) + (P1⊗P2)] [(I ⊗ I) + (I ⊗ I)] (H)

This shows that

H ′ = −H =⇒ (P1
⌢⊗ P2)(H) = 0 =⇒ (P1

⌢⊗ P2)
1/2(H) = 0

Additionally, we have

H = H ′ =⇒ (P1
⌢⊗ P2)(H) = (P1 ⊗s P2)(H)

By Doob’s representation theorem (see Theorem 4.2 [33], and the original work of Doob [24]), the
proof of (2.1) is now a consequence of the fact that

Wt +W ′
t

2

law
= Vt,sym

The proof of (2.2) comes from the fact that vt = ς(Vt,sym) is an r-dimensional Brownian motion,
and we have that

dqt = θ(qt) dt+ ǫ
∑

1≤i≤r

σi(qt) dv
i
t

In Stratonovitch form we have

dqt = θǫ(qt) dt+ ǫ
∑

1≤i≤r

σi(qt) ◦ dvit with the drift θiǫ = θi − ǫ2

2

∑

1≤k,l≤r

σkl ∂qkσ
i
l
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The notation σi(qt) ◦ dvit implies that Itô integrals are replaced by Stratonovitch integrals. We also
recall that

ǫ ≤ ε0 =⇒ ∀t > 0, Qt ∈ S+r =⇒ ∀t > 0, qt ∈ Dr := ς(S+r )

This shows that for any t > 0 the process qt never visits the boundary ∂Dr = ς(∂S+r ), even when
we start at some state q0 ∈ ∂Dr. On the other hand, we have

(1.18) =⇒ ∀q ∈ Dr,
{
ς−1(q)⊗s Σκ,̟

(
ς−1(q)

)}
> 0

This shows that the linear span of the r-vector fields q ∈ Dr 7→ σi(q) ∈ R
r of the diffusion is all Rr.

Also notice that the set of point q ∈ ς(S0r ) for which det(
{
ς−1(q)⊗s Σκ,̟ς

−1(q))
}
) = 0 coincides

with ∂Dr which is of null measure in ς(Sr). In other words the elliptic degeneracies of the diffusion
qt are of null Lebesgue measure.

The generator of the diffusion qt ∈ Dr can be expressed in Hörmander form by the formula

L = Xǫ,0 +
1

2

∑

1≤i≤r

X2
ǫ,i

with the first order C∞-vector fields on Dr given by

Xǫ,0 :=
∑

1≤i≤r

θiǫ ∂qi and Xǫ,i := ǫ
∑

1≤k≤r

σki ∂qk

The operator L is hypo-elliptic, since the Lie algebra generated by the r vector fields (Xǫ,i)1≤i≤r

span the entire Euclidian space R
r at any state q ∈ Dr. By Hörmander’s theorem, it follows that the

transition semigroup πǫt(p, dq) of qt has smooth positive densities ρǫ ∈ C∞(]0,∞[×D2
r ); see e.g. [5, 6],

and the reference by Bramanti [15] dedicated to hypo-elliptic operators and Hörmander vector fields.
This ends the proof of the theorem.

5.2 Proof of Theorem 2.2

Let (a, r, s) := (µ(A),Tr(R), r−1λr(S)). Also define the collection of parameters

rǫn := r+
ǫ2

2
(n− 1) λ1(U) and sǫn := s− ǫ2

2
(n − 1) λ1(V )

Observe that
κ = 0 =⇒ sǫn := s

For any n ≥ 1 we let εn be the largest (finite) parameter ǫ ≥ 0 such that sǫn > 0 and we set

(rn, sn) := (rεnn , s
εn
n )

Let pt,n be the one-dimensional Riccati flow associated with the differential equation

∂tpt,n = 2apt,n + rn − sn p
2
t,n

and let p0,n = Tr(Q). In this notation, for any n ≥ 1 and any ǫ ∈ [0, εn] we have the estimate

E[Tr(φǫt(Q))n]1/n ≤ pt,n ≤ p∞,n ∨ Tr(Q) with p∞,n :=
a+
√
a2 + rnsn

sn
(5.1)
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Observe that

κ = 0 =⇒ p∞,n :=
a+

√
a2 + rs+ ǫ2

2 (n− 1) rλ1(U)

s
≤ p∞,1 +

ǫ

s

√
n− 1

√
rλ1(U)

2

To check (5.1), observe that

qt := Tr(Qt) ⇒ Tr(Θ(Qt)) ≤ 2aqt + r− sq2t and Tr(QtΣκ,̟(Qt)) ≤ qtλ1(U) + q3tλ1(V )

This yields the formula,

dqnt = n

[
qn−1
t Tr(Θ(Qt)) +

ǫ2

2
(n− 1) qn−2

t Tr(QtΣκ,̟(Qt))

]
dt+ ǫ n qn−1

t dTr(Mt)

from which we check the differential inequalities

n−1 ∂tE(q
n
t ) ≤ 2a E(qnt ) + rǫn E(qn−1

t )− sǫn E(qn+1
t )

≤ 2a E(qnt ) + rǫn E(qnt )
1−1/n − sǫn E(qnt )

1+1/n

The last lines follows from the fact that,

E(qn−1
t ) ≤ E(qnt )

1−1/n and E(qn+1
t ) ≤ E(qnt )

1+1/n

We conclude that

∂tE(q
n
t )

1/n = n−1
E(qnt )

−(1−1/n) ∂tE(q
n
t ) ≤ 2a E(qnt )

1/n + rǫn − sǫn E(qnt )
2/n

Now (5.1) is a direct consequence of Lemma 4.2 and the estimates on one-dimensional Riccati flows
presented in [11].

In addition, using the uniform estimates presented in [11] for any t ≥ υ > 0 we have

E(Tr(φǫt(Q))n)1/n ≤ pt,n ≤ cυ p
⋆
∞,n with p⋆∞,n :=

a+ 3
√
a2 + rnsn

sn

Observe again that

κ = 0 =⇒ p⋆∞,n ≤ p⋆∞,1 +
3 ǫ

s

√
n− 1

√
rλ1(U)

2

This completes the proof of the Riccati diffusion moment estimates in (2.4), (2.5) and (2.6).
Now we come to the proof of the trace estimates of the inverse stochastic flow φ−ǫ

t (Q) stated
in (2.4) and (2.5). The approach follows the preceding discussion but is more notationally and
computationally burdensome, given the form of the inverse flow; e.g. see (4.1). We set

a− := −λr(Asym) r− := Tr (S) s− := r−1λr (R)

Note the exchanged roles of R and S in s− and r−.
For any n ≥ 1 we let εn,− be the largest parameter ǫ ≥ 0 such that

sǫn,− := s− −
ǫ2

2

[
(n+ r−1)λ1(U) +

λ1(V )

4

]
> 0

Also consider the collection of parameters

rǫn,−(Q) = r− +
ǫ2

2

[(
1 +

r

2

)
Tr(V ) + (n− 1)λ1(V ) +

λ1(V )

4

(
p2∞,2n ∨ Tr(Q)2

)]
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with the sequence of parameters p∞,n introduced in (5.1).
In this notation, for any n ≥ 1, Q ∈ S+r and any ǫ ∈ [0, εn,−] we have the uniform estimate

sup
t≥0

E(Tr(φ−ǫ
t (Q))n)1/n ≤ p∞,n,−(Q) ∨ Tr(Q−1) (5.2)

with the collection of parameters

p∞,n,−(Q) :=
a− +

√
a2− + rn,−(Q)sn,−

sn,−
with (rn,−(Q), sn,−) := (r

εn,−

n,− (Q), s
εn,−

n,− )

To check this claim, observe that

qt,− := Tr(Q−1
t ) =⇒ Tr

(
Θǫ

−(Q
−1
t )
)
≤ 2a−qt,− + rǫt,− − sǫ1,− q2t,−

with the functions

rǫt,− := r− +
ǫ2

4

[
(2 + r) Tr (V ) +

λ1(V )

2
Tr (Qt)

2

]

In the last display we have used the fact that

Tr
(
Q−2

t

)
≥ r−1(Tr

(
Q−1

t

)
)2 and Tr (V Qt)Tr

(
Q−1

t

)
≤ λ1(V )

2

(
Tr (Qt)

2 + Tr
(
Q−1

t

)2)

On the other hand, we have

dqt,− = Tr
(
Θǫ

−(Q
−1
t )
)
dt+ ǫ dmt,−

with
∂t〈m·,− | m·,−〉t = Tr

(
Q−1

t Σκ,̟,−

(
Q−1

t

))
≤ qt,− λ1(V ) + q3t,− λ1(U)

Thus, for any n ≥ 1 we have

n−1 ∂t E
(
qnt,−

)
≤ 2a− E

(
qnt,−

)
+ E

(
rǫt,n,− qn−1

t,−

)
− sǫn,− E

(
qn+1
t,−

)

and the collection of stochastic processes

rǫt,n,− := rǫt,− +
ǫ2

2
(n− 1)λ1(V )

= Tr (S) +
ǫ2

2

[(
1 +

r

2

)
Tr (V ) + (n− 1)λ1(V ) +

λ1(V )

4
Tr (Qt)

2

]

On the other hand, using (5.1) we check that

E
(
rǫt,n,− qn−1

t,−

)
≤ E

(
qnt,−

)1−1/n
rǫ⋆,n,− with rǫ⋆,n,− := sup

t≥0
E((rǫt,n,−)

n)1/n ≤ rǫn,−(Q)

This yields the estimate

n−1∂tE
(
qnt,−

)
= 2a− E

(
qnt,−

)
+ rǫ⋆,n,− E

(
qnt,−

)1−1/n − sǫn,−E
(
qnt,−

)1+1/n

The end of the proof of (5.2) now follows the same lines of arguments as the proof of the trace
estimates (5.1), thus it is skipped. This ends the proof of (5.2) and thus the proof of the inverse
Riccati diffusion moment estimates in (2.4). The uniform estimates on the inverse flow in (2.5) follow
the same line of arguments as in the proof of the l.h.s in (2.5) given the inverse moment estimates
already proved in (2.4).

This ends the proof of the theorem.
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5.3 Proof of Theorem 2.3

Consider the Gramian matrix,

Gt(Q) =

∫ t

0
Es(Q)′S Es(Q) ds

and the non-negative matrix function

Gt(Q) = Et(Q)
[
(QGt(Q)Σκ,̟(Q))sym + 1

2 [QTr (Σκ,̟(Q)Gt(Q)) + Σκ,̟(Q)Tr (QGt(Q))]
]
Et(Q)′

In this notation we have the second order decomposition

φǫt(Q) = φt(Q) + ǫ Mǫ
t(Q)− ǫ2

2
B
ǫ
t(Q)

with the processes

M
ǫ
t(Q) :=

∫ t

0
Et−u(φ

ǫ
u(Q)) dMu(Q) Et−u(φ

ǫ
u(Q))′ and B

ǫ
t(Q) :=

∫ t

0
Gt−u (φ

ǫ
u(Q)) du

A proof of the above decomposition can be found in [12, in the proof of Theorem 1.3]. The above
forward-backward perturbation formula can be thought as an extended version of the Alekseev-
Gröbner lemma to diffusion flows in matrix spaces [22].

Using (2.13) we have

‖Gt(Q)‖ ≤ c (1 + ‖Q‖2) =⇒ ‖Gt (Q) ‖ ≤ c (1 + ‖Q‖5) (λ1(U) + λ1(V ) ‖Q‖2) exp (−2βt)

Using the generalized Minkowski inequality we check the estimate

|||Bǫ
t(Q)|||n ≤ c

∫ t

0

[
1 + |||φǫu(Q)|||510n

] [
λ1(U) + λ1(V ) |||φǫu(Q)|||24n

]
exp (−2β(t− u)) du

By (2.4) for any ǫ ≤ ε10n(V ) we have

|||Bǫ
t(Q)|||n ≤ cn (1 + ‖Q‖5) (λ1(U) + λ1(V ) ‖Q‖2)

This yields the uniform bias estimate

0 ≤ φt (Q)− E [φǫt(Q)] ≤ c ǫ2 (1 + ‖Q‖5) (λ1(U) + λ1(V ) ‖Q‖2) I =⇒ (2.7)

In addition, using (2.6) when κ = 0 we have for any ǫ ≥ 0,

|||Bǫ
t(Q)|||n ≤ c (1 + ‖Q‖5) (1 + ǫ

√
n)5

which yields
0 ≤ φt (Q)− E [φǫt(Q)] ≤ c ǫ2 (1 + ‖Q‖5) (1 + ǫ

√
n)5 I

and we may refine (2.7) appropriately in this case, κ = 0, for any ǫ ≥ 0.
The trace of the martingale

M
ǫ
s,t(Q) :=

∫ s

0
Et−u(φ

ǫ
u(Q)) dMu(Q) Et−u(φ

ǫ
u(Q))′
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is a martingale with angle bracket

4−1∂s 〈Tr
(
M

ǫ
·,t(Q)

)
| Tr

(
M

ǫ
·,t(Q)

)
〉s

= Tr
[
φǫs(Q)Et−s(φ

ǫ
s(Q))′ Et−s(φ

ǫ
s(Q))Σκ,̟ (φǫs(Q)) Et−s(φ

ǫ
s(Q))′ Et−s(φ

ǫ
s(Q))

]

≤ ‖Et−s(φ
ǫ
s(Q))‖4Frob Tr(φǫs(Q)) Tr (Σκ,̟ (φǫs(Q)))

Applying the Burkholder-Davis-Gundy inequality presented in [12] we find

|||Mǫ
t(Q)|||22n ≤ c n

∫ t

0
E
[
‖Et−s(φ

ǫ
s(Q))‖4n Tr(φǫs(Q))n Tr (Σκ,̟ (φǫs(Q)))n

]1/n
ds

The estimates (2.4) imply that

|||Mǫ
t(Q)|||22n ≤ c n

∫ t

0
‖Et−s(P∞)‖4 E

[
(1 + ‖φǫs(Q)‖5n) (λ1(U)n + λ1(V )n ‖φǫs(Q)‖2n)

]1/n
ds

≤ cn (1 + ‖Q‖7)

We conclude that
|||Mǫ

t(Q)|||2n−1 ≤ |||Mǫ
t(Q)|||2n ≤ cn (1 + ‖Q‖7/2)

and therefore
ǫ−1|||φǫt(Q)− φt(Q)|||n ≤ cn (1 + ‖Q‖7)

This ends the proof of (2.8).
Observe when κ = 0, for any ǫ ≥ 0 the estimates (2.6) implies that

E (‖Mǫ
t(Q)‖n)1/n ≤ c n1/2 (1 + ‖Q‖5/2) (1 + ǫ

√
n)5/2

and therefore

ǫ−1 |||φǫt(Q)− φt(Q)|||n ≤ c (1 + ǫ
√
n)5/2

[
(1 + ǫ

√
n)5/2 + ǫ

√
n
]
(1 + ‖Q‖5)

≤ c (1 + ‖Q‖5) (1 + ǫ
√
n)5

This ends the proof of (2.9).
The proof of the theorem is now complete.

5.4 Proof of Theorem 2.4

Using (2.5) we have for any t ≥ υ and Q ∈ S+r we have the uniform estimate

Πǫ
t(Λ)(Q) ≤ cυ

as soon as ǫ ≤ ε1(U, V ) ∧ ε1(V ), for some constant cυ whose values only depend on υ. This implies
that Λ is a Lyapunov function with compact level sets. Also note, for any bounded measurable
function F on S0r , any t > 0, and any P ∈ S0r we have

∫

S+
r

Πǫ
t(P, dQ)F (Q) =

∫

Dr

πǫt(ς(P ), dq) (F ◦ ς−1)(q)
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Recalling that continuous images of compact sets are compact, and the density (p, q) 7→ ρǫt(p, q) is
continuous for any t > 0, for any compact set K ⊂ S+r we have

inf
(p,q)∈ς(K)2

ρǫt(p, q) := ρǫt,K > 0

We conclude that for any compact K ⊂ S+r , P ∈ K and F ≥ 0 we have
∫

S+
r

Πǫ
t(P, dQ)F (Q) =

∫

Dr

ρǫt(ς(P ), q) (F ◦ ς−1)(q) γr(dq) ≥ ̺ǫt,K

∫

Dr

γς(K) (F ◦ ς−1)(q)

with the uniform probability measure γς(K) on ς(K) defined by

γς(K)(dq) :=
γr(dq) 1ς(K)(q)

γr(ς(K))
and the parameter ̺ǫt,K := ρǫt,K γr(ς(K)) > 0

Then, for any compact K and any t > 0 we have the minorisation condition

∀P ∈ K, Πǫ
t(P, dQ) ≥ ̺ǫt,K ΓK(dQ)

with the uniform probability measure ΓK on K. This condition, combined with the existence of a
Lyapunov function with compact level sets, ensures that the law Qt converges exponentially fast to
a unique invariant measure Γǫ

∞ = Γǫ
∞Πǫ

t , as the time horizon t→∞. The contraction estimates are
now a consequence of Theorem 8.2.21 and Theorem 17.4.1 in [21]; see also [29]. This completes the
proof of the theorem.

5.5 Proof of Theorem 2.7

Using (4.8), for any ζ ∈ R, we have

det(Eǫt (Q)Eǫt (Q)′)ζ = exp

[
2ζ

∫ t

0
Tr(A−Qs S) ds

]

≤ det(QtQ
−1)ζ exp

[
−ζ
∫ t

0
Tr
(
Q−1

s Rǫ +Qs S
ǫ
)
ds+ ǫ ζ mt

]
(5.3)

with the martingale

dmt := −Tr
(
Q−1

t dMt

)
=⇒ ∂t〈m | m〉t = Tr

(
Q−1

t Σκ,̟(Qt)
)
≤ Tr

(
Q−1

t U +QtV
)

This implies that

E
[
det(Eǫt (Q)Eǫt (Q)′)ζ

]

≤ E

[
det(QtQ

−1)2ζ
]1/2

E

[
exp

[
−2ζ

∫ t

0
Tr
(
Q−1

s Rǫ
ζ +Qs S

ǫ
ζ

)
ds

]
Zǫ
t,ζ

]1/2

with the parameters (Rǫ
ζ , S

ǫ
ζ) introduced in (2.26) and the exponential martingale

Zǫ
t,ζ := exp

[
2ǫ ζ mt −

(2ǫ ζ)2

2
〈m | m〉t

]

By Friedland’s inequality (1.20) for any 4ζ ≥ 1 we have

|||det(Qt)|||2ζ ≤ det(φt(Q)) + c
(
‖φt(Q)‖r−1 + |||Qt|||r−1

4ζ(r−1)

)
|||Qt − φt(Q)|||4ζ
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Recalling that det(Q) ≤ r−r Tr(Q)r ≤ c ‖Q‖r and using (2.4) we then check that

ǫ ≤ ε4ζr(V ) =⇒ |||det(φǫt(Q))|||2ζ ≤ cζ (1 + ‖Q‖r+1)

In this case, using (4.7) we conclude that

det(Q)E
[
det(Eǫt (Q)Eǫt (Q)′)ζ

]1/ζ
≤ cζ (1 + ‖Q‖r+1) exp

[
−2t

√
Tr
(
Rǫ

ζS
ǫ
ζ

)]

This ends the proof of the estimate (2.27).
Now we come to the proof of (2.28). Using (5.3) for any (ζ, ζ ′) ∈ R

2 such that

2ζ ′ > ζ > 0 ⇐⇒ −1 < ξ :=
ζ

ζ ′
− 1 < 1

we have

exp

[
2ζ ′

∫ t

0
Tr(A−QsS) ds

]
≤ Zǫ

t,ζ/2 det(QtQ
−1)ζ exp

[
−
∫ t

0
F ǫ
ζ,ζ′(Qs) ds

]

with the functional

F ǫ
ζ,ζ′(Q) = 2(ζ − ζ ′)Tr(A−QS) + ζ Tr

(
Q−1Rǫ +QSǫ

)
− (ǫ ζ)2

2
Tr
(
Q−1U +QV

)

= 2(ζ − ζ ′)Tr(A) + (2ζ ′ − ζ)Tr

(
Q

[
S − ζ

2ζ ′ − ζ
ǫ2

2

[
r + 1

2
+ ζ

]
V

])

+ζ Tr

(
Q−1

[
R− ǫ2

2

[
r + 1

2
+ ζ

]
U

])

with the matrices (U, V ) defined in (1.11). Rewritten in terms of the parameters (ξ, ζ ′) we have,

1

ζ ′
F ǫ
ζ′(1+ξ),ζ′(Q) = 2ξ Tr(A) + (1− ξ)Tr

(
Q

[
S − 1 + ξ

1− ξ
ǫ2

2

[
r + 1

2
+ ζ ′(1 + ξ)

]
V

])

+(1 + ξ)Tr

(
Q−1

[
R− ǫ2

2

[
r + 1

2
+ ζ ′(1 + ξ)

]
U

])

for any |ξ| ≤ 1 and ζ ′ > 0. We let

ξ0 :=
Tr(A)√

Tr(A)2 + Tr(RS)

and we choose ǫ such that

S̃ǫ
ζ′ := S − ǫ2

2

1 + ξ0
1− ξ0

[
r + 1

2
+ ζ ′(1 + ξ0)

]
V ≥ 0 and R̃ǫ

ζ′ := R− ǫ2

2

[
r + 1

2
+ ζ ′(1 + ξ0)

]
U ≥ 0

Now, using (4.7) we check that

1

2ζ ′
F ǫ
(1+ξ0)ζ′,ζ′

(Q) ≥ ξ0 Tr(A) +
√
1− ξ20

√
Tr
(
R̃ǫ

ζ′S̃
ǫ
ζ′

)

=
Tr(A)2√

Tr(A)2 + Tr(RS)
+

√
Tr(RS)√

Tr(A)2 + Tr(RS)

√
Tr
(
R̃ǫ

ζ′S̃
ǫ
ζ′

)
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which yields the uniform estimate

1

2ζ ′
F ǫ
(1+ξ0)ζ′,ζ′

≥
√

Tr(A)2 + Tr(RS)

[
1−

√
Tr(RS)

Tr(A)2 + Tr(RS)

(
√

Tr(RS)−
√

Tr
(
R̃ǫ

ζ′S̃
ǫ
ζ′

))]

We conclude that for any ζ ′ ≥ 0 there exists some ε0 and some function ~ζ′(ǫ) ∈ [0, 1] such that
limǫ→0 ~ζ′(ǫ) = 0 such that for any time horizon t ≥ 0 and any Q > 0 we have the almost sure
estimate

exp

[
2ζ ′
∫ t

0
Tr(A−QsS) ds

]

≤ Zǫ
t,(1+ξ0)ζ′/2

det(QtQ
−1)(1+ξ0)ζ′ exp

[
−2ζ ′

(√
Tr(A)2 + Tr(RS) (1− ~ζ′(ǫ))

)
t
]

Moreover, for any non-negative parameters (ǫ, ζ) the exponential martingale Zǫ
t,ζ can be inter-

preted as a change of probability measure. Let Ft be the filtration generated by the diffusion Qt

and let P
ǫ
ζ be the probability defined by

Zǫ
t,ζ := exp

[∫ t

0
Tr
(
Hǫ

s,ζdWs

)
− 1

2

∫ t

0
Tr
(
Hǫ

s,ζ

(
Hǫ

s,ζ

)′)
ds

]
=

dPǫ
ζ

dP
| Ft

with the stochastic process

Hǫ
t,ζ = −2ǫ ζ Σκ,̟(Qt)

1/2Q
−1/2
t

=⇒ Tr
(
Hǫ

s,ζ dWs

)
= −2ǫ ζ Tr

(
Q−1

t

[
Q

1/2
t dWsΣκ,̟(Qt)

1/2
])

= −2ǫ ζ Tr
(
Q−1

s dMs

)

By Girsanov’s theorem, under P
ǫ
ζ the process

dWǫ
t,ζ = dWt + 2ǫ ζ Q

−1/2
t Σκ,̟(Qt)

1/2 dt

is an (r × r)-Brownian motion. Thus, under P
ǫ
ζ , the matrix Riccati diffusion Qt is the solution of

the equation
dQt = Θǫ,ζ(Qt)dt+ ǫ dMt

with the drift function

Θǫ,ζ(Q) = AQ+QA′ +
(
R− 2ǫ2ζU

)
−Q

[
S + 2ǫ2ζV

]
Q ≤ Θ(Q)

We conclude that

E

[
exp

[
2ζ ′
∫ t

0
Tr(A−QsS) ds

]]

≤ E

(
det(Qǫ

t,ζ′Q
−1)(1+ξ0)ζ′

)
exp

[
−2ζ ′

(√
Tr(A)2 + Tr(RS) (1− ~ζ′(ǫ))

)
t
]

where Qǫ
t,ζ′ is a matrix Riccati diffusion defined similarly to Qt but with the replacement

(R,S) ←−
[
(R,S)− (U,−V )ǫ2(1 + ξ0)ζ

′
]

and with (U, V ) defined in (1.11). This ends the proof of (2.28).
The proof of the theorem is complete.
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A Appendix

In this appendix we first derive (1.17) and (1.18). Then we prove the estimate in (2.10). Finally, we
prove the Liouville formula stated in Lemma 4.3.

A.1 Proof of (1.17) and (1.18)

We have

{P1 ⊗s P2} = ς ◦ (P1 ⊗s P2) ◦ ς−1 ⇐⇒ {P1 ⊗s P2} ς(H) = ς ((P1 ⊗s P2)(H))

Observe that
〈H1, (P1 ⊗s P2)(H2)〉Frob = 〈ς(H1), {P1 ⊗s P2} ς(H2)〉r

We also have

{P1 ⊗s P2}1/2 ς(H) = ς
(
(P1 ⊗s P2)

1/2(H)
)
⇐⇒ {P1 ⊗s P2}1/2 = ς ◦ (P1 ⊗s P2)

1/2 ◦ ς−1

To check this claim notice that

T ς(H) := ς
(
(P1 ⊗s P2)

1/2(H)
)

=⇒ T (T ς(H)) = T ς
(
(P1 ⊗s P2)

1/2(H)
)
= ς

(
(P1 ⊗s P2)

1/2(P1 ⊗s P2)
1/2(H)

)

=⇒ T 2 = {P1 ⊗s P2}

This ends the proof of (1.17).
When P1, P2 > 0 we have

ς(H)′ {P1 ⊗s P2} ς(H)

= Tr (H(P1 ⊗s P2)H)

= Tr (HP1HP2) = Tr
(
[H1/2P1H

1/2][H1/2P2H
1/2]
)
> 0, ∀H ∈ Sr − {0}

Then, we also have

ς(H)′ {P1 ⊗s P2} ς(H) ≤ Tr(H1/2P1H
1/2)Tr(H1/2P2H

1/2) ≤ λ1(P1)λ2(P2) ‖H‖2

=⇒ λ1({P1 ⊗s P2}) ≤ λ1(P1)λ1(P2)

Similarly, we have

ς(H)′ {P1 ⊗s P2} ς(H) ≥ λr(P2)Tr (HP1H) ≥ λr(P1)λr(P2) ‖H‖2

=⇒ λr({P1 ⊗s P2}) ≥ λr(P1)λr(P2)

This ends the proof of (1.18).
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A.2 Proof of the Estimate (2.10)

By Lemma 4.7 in [8] we have the uniform estimate

‖φt(Q)−1‖ ≤ c (1 + ‖Q−1‖)

Using (2.4) and (2.8) for any ǫ ≤ ε2n(U, V ) ∧ ε20n(V ) we check that

φ−ǫ
t (Q)− φt (Q)−1 = φ−ǫ

t (Q) [φǫt(Q)− φt (Q)]φt (Q)−1

=⇒
∣∣∣
∣∣∣
∣∣∣φ−ǫ

t (Q)− φt (Q)−1
∣∣∣
∣∣∣
∣∣∣
n
≤ c (1 + ‖Q−1‖) |||φǫt(Q)− φt(Q)|||2n

∣∣∣∣∣∣φ−ǫ
t (Q)

∣∣∣∣∣∣
2n

=⇒
∣∣∣
∣∣∣
∣∣∣φ−ǫ

t (Q)− φt (Q)−1
∣∣∣
∣∣∣
∣∣∣
n
≤ cn ǫ (1 + ‖Q−1‖) (1 + ‖Q‖8)

This ends the proof of (2.10).

A.3 Proof of Lemma 4.3

Fix some matrix Q ∈ S+r and set

Qt = φǫt(Q) and Q̃t := Eǫt (Q)−1Qt

(
Eǫt (Q)′

)−1 ⇐⇒ Q̃−1
t := Eǫt (Q)′Q−1

t Eǫt (Q)

Note that

dEǫt (Q)−1 = −Eǫt (Q)−1 (dEǫt (Q)) Eǫt (Q)−1

⇐⇒ ∂tEǫt (Q)−1 = −Eǫt (Q)−1 (∂tEǫt (Q)) Eǫt (Q)−1 = −Eǫt (Q)−1(A−QtS)

This implies that

dQ̃t = Eǫt (Q)−1
[
dQt − (A−QtS)Qt −Qt (A−QtS)

′
] (
Eǫt (Q)′

)−1

= Eǫt (Q)−1 [R+Qt S Qt]
(
Eǫt (Q)′

)−1
dt+ ǫ dM̃t

= Eǫt (Q)−1Q
1/2
t

[
Q

−1/2
t RQ

−1/2
t +Q

1/2
t S Q

1/2
t

]
Q

1/2
t

(
Eǫt (Q)′

)−1
dt+ ǫ dM̃t

=⇒ Q̃−1
t dQ̃t = Eǫt (Q)′

[
Q−1

t R+ S Qt

] (
Eǫt (Q)′

)−1
dt+ ǫ Eǫt (Q)′Q−1

t dMt

(
Eǫt (Q)′

)−1

=⇒ Tr
(
Q̃−1

t dQ̃t

)
= Tr

(
Q−1

t R+ S Qt

)
dt+ ǫTr

(
Q−1

t dMt

)

with the martingale

dM̃t := Eǫt (Q)−1dMt

(
Eǫt (Q)′

)−1

=⇒ dM̃t Q̃
−1
t = Eǫt (Q)−1 dMt Q

−1Eǫt (Q)

and dM̃t Q̃
−1
t dM̃t Q̃

−1
t = Eǫt (Q)−1 dMt Q

−1 dMt Q
−1Eǫt (Q)

=⇒ Tr
(
dM̃t Q̃

−1
t

)
= Tr(dMtQ

−1) and Tr
(
dM̃t Q̃

−1
t dM̃t Q̃

−1
t

)
= Tr

(
dMtQ

−1 dMtQ
−1
)

For a more rigorous derivation of the angle bracket of matrix-valued martingales we refer the reader
to Section 3 in [12].

37



The determinant function f(·) := det(·) is smooth on the space of invertible matrices. The first
and second Fréchet derivatives are given for any H,H1,H2 ∈ Mr by the Jacobi formulae

∇f(A) ·H = f(A)Tr(HA−1)

∇2f(A) · (H1,H2) = −f(A)
[
Tr(H1A

−1H2A
−1)− Tr(H1A

−1)Tr(H2A
−1)
]

Using the Ito differential calculus for stochastic matrix diffusions developed in [12], with a slight
abuse of notation we find the formula,

df(Q̃t) = f(Q̃t)

[
Tr(Q̃−1

t dQ̃t)−
ǫ2

2

[
Tr(dM̃tQ̃

−1
t dM̃tQ̃

−1
t )− Tr(dM̃tQ̃

−1
t )Tr(dM̃tQ̃

−1
t )
]]

= f(Q̃t)

[
Tr(Q−1

t R+ SQt)

−ǫ
2

2

[
Tr
(
dMtQ

−1
t dMtQ

−1
t

)
− Tr(dMtQ

−1
t )Tr(dMtQ

−1
t )
] ]
dt+ ǫ dMt(f)

with the martingale
dMt(f) := f(Q̃t)Tr

(
Q−1

t dMt

)

Recalling that

2 dMtQ
−1
t = Q

1/2
t dWtΣ

1/2
κ,̟ (Qt)Q

−1
t +Σ1/2

κ,̟ (Qt) dW ′
tQ

−1/2
t

we check that

Tr
(
dMtQ

−1
t

)
= Tr

(
dWtΣ

1/2
κ,̟ (Qt)Q

−1/2
t

)

=⇒ Tr
(
dMtQ

−1
t

)
Tr
(
dMtQ

−1
t

)
= Tr

(
Σ
1/2
κ,̟ (Qt)Q

−1
t Σ

1/2
κ,̟ (Qt)

)
dt

≤ Tr(Q−1
t U +QtV ) dt

=⇒ dMt(f) dMt(f) = f(Q̃t)
2 Tr

(
Q−1

t Σκ,̟ (Qt)
)
≤ f(Q̃t)

2 Tr
(
Q−1

t U +QtV
)
dt

The first implication follows from the fact that

Tr(QdWt)Tr(dWtQ) = Tr(QQ′) dt

Similarly, we have

4Tr
(
dMt Q

−1
t dMtQ

−1
t

)

= Tr
[(
Q

1/2
t dWtΣ

1/2
κ,̟ (Qt)Q

−1
t +Σ1/2

κ,̟ (Qt) dW ′
tQ

−1/2
t

)

×
(
Q

1/2
t dWtΣ

1/2
κ,̟ (Qt)Q

−1
t +Σ

1/2
κ,̟ (Qt) dW ′

tQ
−1/2
t

)]

= 2Tr
(
dWtΣ

1/2
κ,̟ (Qt)Q

−1/2
t dWtΣ

1/2
κ,̟ (Qt) Q

−1/2
t

)

+2Tr
(
Σ
1/2
κ,̟ (Qt)Q

−1
t Σ

1/2
κ,̟ (Qt) dW ′

t dWt

)
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Recalling the standard identities,

dWtQdWt = Q′ dt and dWt dW ′
t = r I dt = dW ′

t dWt

we check that

Tr
(
dMtQ

−1
t dMtQ

−1
t

)
=

r + 1

2
Tr
(
Σ1/2
κ,̟ (Qt)Q

−1
t Σ1/2

κ,̟ (Qt)
)
≤ r + 1

2
Tr
(
Q−1

t U + V Qt

)

For a more rigorous derivation of the angle bracket of matrix-valued martingales we refer the reader
to Section 3 in [12]. In summary, we have proved that

df(Q̃t) = f(Q̃t)

[
Tr(Q−1

t R+ SQt)− ǫ2
r − 1

4
Tr
(
Q−1

t Σκ,̟ (Qt)
)]

dt+ ǫ f(Q̃t)Tr
(
Q−1

t dMt

)

≥ f(Q̃t)

[
Tr(Q−1

t R+ S Qt)− ǫ2
r − 1

4
Tr
(
Q−1

t U + V Qt

)]
dt+ ǫ f(Q̃t)Tr

(
Q−1

t dMt

)

= f(Q̃t)

[
Tr

(
Q−1

t

(
R− ǫ2 r − 1

4
U

))
+ Tr

(
Qt

(
S − ǫ2 r − 1

4
V

))]
dt+ ǫ dMt(f)

Now let g(·) := log f(·). Applying Ito’s formula we conclude that

dg(Q̃t) =

[
Tr(Q−1

t R+ SQt)−
ǫ2

2

r + 1

2
Tr
(
Q−1

t Σκ,̟ (Qt)
)]

dt+ ǫTr
(
Q−1

t dMt

)

≥
[
Tr

(
Q−1

t

(
R− ǫ2

2

r + 1

2
U

))
+ Tr

(
Qt

(
S − ǫ2

2

r + 1

2
V

))]
dt+ ǫTr

(
Q−1

t dMt

)

This ends the proof of the lemma.
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